MATH3200: APPLIED LINEAR ALGEBRA SELF-STUDY AND PRACTICE MODULE 55B: MATRIX REPRESENTATION OF LINEAR TRANSFORMATIONS

WINFRIED JUST, OHIO UNIVERSITY

This module is based on Lecture 30 and Conversation 30A. Recall the following theorem from this Conversation:

Theorem 1 (Matrix representation of linear transformations). Suppose $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. If both the elements of the domain \mathbb{R}^n of L and the function values $L(\vec{\mathbf{x}})$ in \mathbb{R}^m are treated as column vectors. Then there exists a matrix \mathbf{A} of order $m \times n$ such that $L = L_{\mathbf{A}}$, that is, $L(\vec{\mathbf{x}}) = \mathbf{A}\vec{\mathbf{x}}$ for all $\vec{\mathbf{x}}$ in \mathbb{R}^n .

Proof of Theorem 1: Let us analyze a proof of this theorem here.

Recall that if we treat \mathbb{R}^n as a space of column vectors, then the standard basis vectors are

$$\vec{\mathbf{e}}_1 = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix} \qquad \vec{\mathbf{e}}_2 = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix} & \dots & \vec{\mathbf{e}}_n = egin{bmatrix} 0 \ 0 \ dots \ 1 \end{bmatrix}$$

Thus every vector $\vec{\mathbf{x}} \in \mathbb{R}^n$ can be uniquely expressed as a linear combination

$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} = x_1 \vec{\mathbf{e}}_1 + x_2 \vec{\mathbf{e}}_2 + \dots + x_n \vec{\mathbf{e}}_n.$$

Now let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Consider the $m \times 1$ column vectors

$$L(\vec{\mathbf{e}}_1) = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} \quad L(\vec{\mathbf{e}}_2) = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} \quad \dots \quad L(\vec{\mathbf{e}}_n) = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Let us form an $m \times n$ matrix **A** with these columns:

$$\mathbf{A} = [L(\vec{\mathbf{e}}_1), L(\vec{\mathbf{e}}_2), \dots, L(\vec{\mathbf{e}}_n)] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

We want to show that L is the same linear transformation as the linear transformation $L_{\mathbf{A}}$ that is defined by $L_{\mathbf{A}}(\vec{\mathbf{x}}) = \mathbf{A}\vec{\mathbf{x}}$ for every vector $\vec{\mathbf{x}} \in \mathbb{R}^n$.

Let us first calculate the values $L_{\mathbf{A}}(\vec{\mathbf{e}}_j)$ for the standard basis vectors $\vec{\mathbf{e}}_j$.

(1)
$$L_{\mathbf{A}}(\vec{\mathbf{e}}_{1}) = \mathbf{A}\vec{\mathbf{e}}_{1} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} = L(\vec{\mathbf{e}}_{1})$$

Question 55.10: Where does the last equality in (1) come from?

Similarly,

$$L_{\mathbf{A}}(\vec{\mathbf{e}}_{2}) = \mathbf{A}\vec{\mathbf{e}}_{2} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} = L(\vec{\mathbf{e}}_{2})$$

(and so on ...)

$$L_{\mathbf{A}}(\vec{\mathbf{e}}_n) = \mathbf{A}\vec{\mathbf{e}}_n = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = L(\vec{\mathbf{e}}_n)$$

We have shown that for j = 1, 2, ..., n:

$$L_{\mathbf{A}}(\vec{\mathbf{e}}_j) = \mathbf{A}\vec{\mathbf{e}}_j = L(\vec{\mathbf{e}}_j).$$

Now let $\vec{\mathbf{x}}$ be any vector in \mathbb{R}^n . Then

$$\vec{\mathbf{x}} = x_1 \vec{\mathbf{e}}_1 + x_2 \vec{\mathbf{e}}_2 + \dots + x_n \vec{\mathbf{e}}_n,$$

and it follows from the linearity of $L_{\mathbf{A}}$ that

$$L_{\mathbf{A}}(\vec{\mathbf{x}}) = x_1 L_{\mathbf{A}}(\vec{\mathbf{e}}_1) + x_2 L_{\mathbf{A}}(\vec{\mathbf{e}}_2) + \dots + x_n L_{\mathbf{A}}(\vec{\mathbf{e}}_n).$$

From what we have already shown it follows that

(2)
$$L_{\mathbf{A}}(\vec{\mathbf{x}}) = x_1 L(\vec{\mathbf{e}}_1) + x_2 L(\vec{\mathbf{e}}_2) + \dots + x_n L(\vec{\mathbf{e}}_n) = L(\vec{\mathbf{x}}).$$

Question 55.11: Where does the last equality in (2) come from?

Thus the two functions $L_{\mathbf{A}}$ and L take the same values for all inputs $\vec{\mathbf{x}}$ and must be the same function. \square