MATH3200: APPLIED LINEAR ALGEBRA PRACTICE MODULE 63A: MORE PROPERTIES OF DETERMINANTS

WINFRIED JUST, OHIO UNIVERSITY

This module is based on Lecture 33. Recall the following properties of determinants from this lecture:

Theorem 1. Let A be any square matrix. Then:

- (1) If **B** is obtained by exchanging two rows of **A** or two columns of **A**, then $det(\mathbf{B}) = -det(\mathbf{A})$.
- (2) If **B** is obtained by multiplying one row of **A** or one column of **A** by a scalar λ , then $\det(\mathbf{B}) = \lambda \det(\mathbf{A})$.
- (3) If **B** is obtained by adding a scalar multiple of one row of **A** to another row of **A** or one column of **A** to another column of **A**, then $det(\mathbf{B}) = det(\mathbf{A})$.

Theorem 2. Let A, B be matrices of order $n \times n$. Then

- (1) $\det(\mathbf{A}^T) = \det(\mathbf{A})$.
- (2) $\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$.
- (3) If \mathbf{A}^{-1} exists, then $\det(\mathbf{A}^{-1}) = \frac{1}{\det(A)}$.

Theorem 3. The following properties of an $n \times n$ matrix **A** are equivalent:

- (1) $det(\mathbf{A}) = 0$; that is, \mathbf{A} is singular.
- (2) $r(\mathbf{A}) < n$.
- (3) **A** is not invertible, that is, \mathbf{A}^{-1} does not exist.
- (4) The system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{0}}$ is underdetermined.
- (5) Each system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ is either underdetermined or inconsistent.
- (6) The range of $L_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^n$ is not all of \mathbb{R}^n .
- (7) The function $L_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^n$ is not one-to-one.

Theorem 4. The following properties of an $n \times n$ matrix **A** are equivalent:

- (1) **A** is non-singular, that is, $\det(\mathbf{A}) \neq 0$.
- (2) **A** has full rank, that is, $r(\mathbf{A}) = n$.
- (3) **A** is invertible, that is, A^{-1} exists.
- (4) The system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{0}}$ has a unique solution.
- (5) Each system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ has a unique solution.
- (6) The range of $L_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^n$ is \mathbb{R}^n .
- (7) The function $L_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one.

Question 63.1: Which of the matrices **A**, **B**, **C**, **D** of Questions 62.1–62.4 of Module 62 is/are invertible?

For Questions 63.2–63.7, consider the matrix $\mathbf{A} = \begin{bmatrix} 2 & 3 & 5 \\ 7 & 11 & 13 \\ 17 & 19 & 23 \end{bmatrix}$

It can be shown that $det(\mathbf{A}) = -78$.

Question 63.2: Based on this information, find $\begin{vmatrix} 2 & 5 & 3 \\ 7 & 13 & 11 \\ 17 & 23 & 19 \end{vmatrix}$

Question 63.3: Based on this information, find $\begin{vmatrix} 1 & 7 & 17 \\ 1.5 & 11 & 19 \\ 2.5 & 13 & 23 \end{vmatrix}$

Question 63.4: Based on this information, find $\begin{vmatrix} 7 & 5 & 3 \\ 20 & 13 & 11 \\ 40 & 23 & 19 \end{vmatrix}$

Question 63.5: Based on this information, what can you say about A^{-1} and its determinant?

Question 63.6: Based on this information, determine whether the following system of linear equations is underdetermined, inconsistent, or has exactly one solution:

$$2x_1 + 3x_2 + 5x_3 = 1$$

 $7x_1 + 11x_2 + 13x_3 = 4$
 $17x_1 + 19x_2 + 23x_3 = 8$

Question 63.7: (a) Can you conclude, based on the above information, that there exists at

least one vector $\vec{\mathbf{x}} \in \mathbb{R}^3$ such that $L_{\mathbf{A}}(\vec{\mathbf{x}}) = \begin{bmatrix} \pi \\ 0.6 \\ 45 \end{bmatrix}$?

(b) Can you conclude, based on the above information, that there exists at most one vector

$$\vec{\mathbf{x}} \in \mathbb{R}^3$$
 such that $L_{\mathbf{A}}(\vec{\mathbf{x}}) = \begin{bmatrix} \pi \\ 0.6 \\ 45 \end{bmatrix}$?

An LU-decomposition of an $n \times n$ matrix \mathbf{A} is a pair of $n \times n$ matrices \mathbf{L} and \mathbf{U} such that: \mathbf{L} is lower-triangular and \mathbf{U} is upper-triangular and $\mathbf{A} = \mathbf{L}\mathbf{U}$. If \mathbf{A} has an $\mathbf{L}\mathbf{U}$ -decomposition, then \mathbf{L} and \mathbf{U} can be chosen in such a way that all elements on the (main) diagonal of \mathbf{L} are equal to 1.

Question 63.8: Suppose **A** is an $n \times n$ matrix with an LU decomposition such that both **L** and **U** have only ones on their (main) diagonals. Based on this information, what can one deduce about $\det(\mathbf{A})$?