MATH3200: APPLIED LINEAR ALGEBRA PRACTICE MODULE 63B: PROOFS OF SOME PROPERTIES OF DETERMINANTS

WINFRIED JUST, OHIO UNIVERSITY

This module is based on Lecture 33.

In the first two questions you will be asked to construct a proof of the fact that a square matrix **A** is singular if, and only if, it does not have full rank for the case of 2×2 matrices.

Question 63.9: Let **A** be a matrix of order 2×2 . Prove that if one row of **A** is a scalar multiple of the other row, then $\det(\mathbf{A}) = 0$.

When **A** is a 2×2 matrix with $\det(\mathbf{A}) = 0$, then the two rows form a linearly independent set so that one of them is a scalar multiple of the other. The next question asks you to prove this fact under an additional assumption on **A**.

Question 63.10: Let $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a matrix of order 2×2 such that $a \neq 0$.

Prove that if $det(\mathbf{A}) = 0$, then the two rows of **A** form a linearly dependent set of vectors.

Recall the following theorem from Lecture 33:

Theorem 1. Let A, B be two square matrices. Then

- (i) $\det(\mathbf{A}^T) = \det(\mathbf{A})$.
- (ii) $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$.

Question 63.11: Prove part (i) of Theorem 1 for the case when A has order 2×2 .

Question 63.12: Prove part (ii) of Theorem 1 for the case when A, B have order 2×2 .