MATH3200: APPLIED LINEAR ALGEBRA SELF-STUDY AND PRACTICE MODULE 66: INTRODUCTION TO EIGENVECTORS AND EIGENVALUES

WINFRIED JUST, OHIO UNIVERSITY

This module is based on Lecture 36 and Conversation 31. Recall the following definition from Lecture 36:

Definition 1. A vector $\vec{\mathbf{x}} \neq \vec{\mathbf{0}}$ is an eigenvector of a square matrix \mathbf{A} if there exists a scalar λ such that $\mathbf{A}\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$. Then λ is an eigenvalue of \mathbf{A} .

Note that an eigenvalue is allowed to be 0, but eigenvectors are not allowed to be zero vectors. Checking whether a given vector $\vec{\mathbf{x}}$ is an eigenvector of a given matrix \mathbf{A} and finding its eigenvalue is straightforward.

Question 66.1: Let
$$\mathbf{A} = \begin{bmatrix} -0.25 & -3.50 & -3.75 \\ 0.25 & 3.50 & 3.75 \\ -0.25 & 3.50 & 3.25 \end{bmatrix}$$

Which of the vectors
$$\vec{\mathbf{x}}_1 = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$
 $\vec{\mathbf{x}}_2 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$ $\vec{\mathbf{x}}_3 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$ $\vec{\mathbf{x}}_4 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$

are eigenvectors of **A**, and what are their eigenvalues?

Question 66.2: Let **A** be the matrix of Question 66.1. Based on the answer to Question 66.1 and what you learned in Conversation 31, verbally describe what the corresponding linear transformation $L_{\mathbf{A}}: \mathbb{R}^3 \to \mathbb{R}^3$ does.

Recall the following facts from Lecture 36:

Proposition 1. Let **A** be a square matrix. If $\vec{\mathbf{x}}$ is an eigenvector of **A** with eigenvalue λ , then for every scalar $c \neq 0$ the vector $c\vec{\mathbf{x}}$ is also an eigenvector of **A** with the same eigenvalue λ .

Proposition 2. Let **A** be a square matrix. The matrix **A** has an eigenvalue $\lambda = 0$ if, and only if, **A** is singular.

Definition 2. Let \mathbf{A} be an $n \times n$ matrix. We say that \mathbf{A} has a full set of eigenvectors if there exist n eigenvectors of \mathbf{A} that form a linearly independent set.

Theorem 3. Let **A** be an $n \times n$ matrix (whose elements are reals). Assume **A** has n pairwise distinct real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Then **A** has a full set of eigenvectors.

Question 66.3: Suppose $\vec{\mathbf{x}} = \begin{bmatrix} 13 \\ -39 \\ 26 \end{bmatrix}$ is an eigenvector of a given matrix \mathbf{A} with eigenvalue $\lambda = 4$. Find an eigenvector $\vec{\mathbf{y}} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ of \mathbf{A} with eigenvalue $\lambda = 4$ such that $y_1 = 1$.

Question 66.4: Let
$$\mathbf{A} = \begin{bmatrix} 1 & 8 & 2 \\ 0 & 0 & 14 \\ 0 & 0 & -3 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 20 & 30 & 0 \\ 66 & 0 & -33 \end{bmatrix}$

Which of the above matrices has/have eigenvectors with eigenvalue 0?

Proposition 1 has a natural generalization:

Proposition 4. Let **A** be a square matrix and let $\vec{\mathbf{x}}_1, \dots, \vec{\mathbf{x}}_k$ be eigenvectors of **A** that all have the same eigenvalue λ . Then every nonzero vector $\vec{\mathbf{y}}$ in span($\vec{\mathbf{x}}_1, \dots, \vec{\mathbf{x}}_n$) is an eigenvector of \mathbf{A} with eigenvalue λ .

Question 66.5: Prove Proposition 4. Hint: You may want to first construct the proof for the special case k=2. In your proof, you will need to use the definition of eigenvectors and eigenvalues and properties of matrix multiplication.

Finally, let us prove Theorem 3 for the special case when n=2.

Question 66.6: (Challenge) Let **A** be a 2×2 matrix with eigenvalues $\lambda_1 \neq \lambda_2$, and let $\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2$ be eigenvectors with eigenvalues λ_1, λ_2 , respectively. Prove that the set $\{\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2\}$ is linearly independent. Hint: Think about what it would take for the set $\{\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2\}$ not to be linearly independent, and then show that this is impossible.