MATH3200: APPLIED LINEAR ALGEBRA PRACTICE MODULE 82A: INNER PRODUCTS AND ORTHOGONALITY

WINFRIED JUST, OHIO UNIVERSITY

This module is based on Lecture 42. Recall the following definitions and facts from this lecture:

The (standard) inner product $\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle$ of vectors $\vec{\mathbf{x}} = [x_1, x_2, \dots, x_n], \vec{\mathbf{y}} = [y_1, y_2, \dots, y_n]$ is defines as $\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i$.

 $\sqrt{\langle \vec{\mathbf{x}}, \vec{\mathbf{x}} \rangle} = \|\vec{\mathbf{x}}\| \text{ is the Euclidean norm of } \vec{\mathbf{x}}. \text{ Thus } \langle \vec{\mathbf{x}}, \vec{\mathbf{x}} \rangle = \|\vec{\mathbf{x}}\|^2.$

Two vectors $\vec{\mathbf{x}}, \vec{\mathbf{y}}$ are orthogonal if, and only if, $\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle = 0$.

The angle Θ in $[0, \pi]$ between two nonzero vectors in \mathbb{R}^n can be computed from the Law of Cosines $\cos \Theta = \frac{\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle}{\|\vec{\mathbf{x}}\| \|\vec{\mathbf{y}}\|}$. The angle Θ then becomes $\Theta = \arccos \frac{\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle}{\|\vec{\mathbf{x}}\| \|\vec{\mathbf{y}}\|}$.

Question 82.1: Consider the following vectors in \mathbb{R}^3 :

 $\vec{\mathbf{u}} = [1, 2, 3], \quad \vec{\mathbf{v}} = [-1, -1, 1], \quad \vec{\mathbf{w}} = [1, 0, 1], \quad \vec{\mathbf{0}} = [0, 0, 0].$

Compute $\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle$ for all six pairs of these vectors.

Question 82.2: Which of the six pairs of vectors of Question 82.2 are orthogonal?

Question 82.3: Is there a vector $\vec{\mathbf{x}}$ in \mathbb{R}^3 that is orthogonal to itself?

Question 82.4: Let $\vec{\mathbf{x}} = [\sqrt{3}, 1], \ \vec{\mathbf{y}} = [3, 0], \ \vec{\mathbf{z}} = [-1, 1].$

- (a) Find the angle between $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$.
- (b) Find the angle between \vec{y} and \vec{z} .