MATH 3200: OUTLINE OF CHAPTER 5 IMPORTANT TOOLS OF LINEAR ALGEBRA

WINFRIED JUST, OHIO UNIVERSITY

Covers vector norms, inner products, orthogonality, orthonormal bases, and least squares solutions.

We will usually refer to specific items of the material as follows: L1 means Lecture 1, C2 means Conversation 2, and M3 means Module 3.

1. Concepts and Facts

1.1. Norms and distances (L41, M81).

- The *norm* of a vector $\vec{\mathbf{x}}$ is a real number $||\vec{\mathbf{x}}||$ that can be thought of as its length. It has the following properties:
 - (i) $\|\vec{\mathbf{x}}\| \ge 0$ and $\|\vec{\mathbf{x}}\| = 0$ if, and only if, $\vec{\mathbf{x}} = \vec{\mathbf{0}}$.
 - (ii) If α is any scalar, then $\|\alpha \vec{\mathbf{x}}\| = |\alpha| \|\vec{\mathbf{x}}\|$.
 - (iii) $\|\vec{\mathbf{x}} + \vec{\mathbf{y}}\| \le \|\vec{\mathbf{x}}\| + \|\vec{\mathbf{y}}\|$ for any vectors $\vec{\mathbf{x}}, \vec{\mathbf{y}}$.
- There are many different norms on a given vector space. As in the lectures, in this review we focus on the familiar *Euclidean norm* $\|\cdot\|$ that is defined as follows:

$$\|\vec{\mathbf{x}}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

- A unit vector is a vector $\vec{\mathbf{x}}$ such that $||\vec{\mathbf{x}}|| = 1$.
- The normalization of $\vec{\mathbf{x}} \neq \vec{\mathbf{0}}$ is the vector $\frac{\vec{\mathbf{x}}}{\|\vec{\mathbf{x}}\|}$.
- The distance $d(\vec{\mathbf{x}}, \vec{\mathbf{y}})$ between vectors $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ is defined as $d(\vec{\mathbf{x}}, \vec{\mathbf{y}}) = ||\vec{\mathbf{x}} \vec{\mathbf{y}}||$.

1.2. Orthogonality (L42, M82).

• The (standard) inner product $\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle$ aka dot product of vectors $\vec{\mathbf{x}} = [x_1, x_2, \dots, x_n]$ and $\vec{\mathbf{y}} = [y_1, y_2, \dots, y_n]$ is defined as

$$\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i.$$

- $\sqrt{\langle \vec{\mathbf{x}}, \vec{\mathbf{x}} \rangle} = ||\vec{\mathbf{x}}||$ is the Euclidean norm of $\vec{\mathbf{x}}$. Thus $\langle \vec{\mathbf{x}}, \vec{\mathbf{x}} \rangle = ||\vec{\mathbf{x}}||^2$.
- Two vectors $\vec{\mathbf{x}}, \vec{\mathbf{y}}$ are *orthogonal* if, and only if, $\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle = 0$.
- The angle Θ in $[0, \pi]$ between two nonzero vectors in \mathbb{R}^n can be computed from the Law of Cosines

$$\cos\Theta = \frac{\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle}{\|\vec{\mathbf{x}}\| \|\vec{\mathbf{y}}\|}.$$

1.3. Orthogonal projections, orthogonal complements, and orthonormal bases (L43, M83).

- Let $\vec{\mathbf{a}}, \vec{\mathbf{x}}$ be two vectors in \mathbb{R}^n . Then there exists exactly one pair $(\vec{\mathbf{u}}, \vec{\mathbf{v}})$ of vectors in \mathbb{R}^n such that
 - $-\vec{\mathbf{x}} = \vec{\mathbf{u}} + \vec{\mathbf{v}}.$
 - $-\vec{\mathbf{u}} = c\vec{\mathbf{a}}$ for some scalar c, that is, $\vec{\mathbf{u}}, \vec{\mathbf{a}}$ are on the same line.
 - $-\langle \vec{\mathbf{a}}, \vec{\mathbf{v}} \rangle = \langle \vec{\mathbf{u}}, \vec{\mathbf{v}} \rangle$, that is, $\vec{\mathbf{v}}$ is orthogonal to $\vec{\mathbf{a}}$ and $\vec{\mathbf{u}}$.

The vector $\vec{\mathbf{u}}$ is called the *projection of* $\vec{\mathbf{x}}$ *onto* $\vec{\mathbf{a}}$, and $\vec{\mathbf{v}}$ is called the *orthogonal complement of* $\vec{\mathbf{x}}$ *with respect to* $\vec{\mathbf{a}}$.

When $\vec{\mathbf{a}} = \vec{\mathbf{0}}$, then $\vec{\mathbf{u}} = \vec{\mathbf{0}}$ and $\vec{\mathbf{v}} = \vec{\mathbf{x}}$.

When $\vec{\mathbf{a}} \neq \vec{\mathbf{0}}$, then

$$\vec{\mathbf{u}} = rac{\langle \vec{\mathbf{a}}, \vec{\mathbf{x}}
angle}{\langle \vec{\mathbf{a}}, \vec{\mathbf{a}}
angle} \vec{\mathbf{a}} \qquad ext{and} \qquad \vec{\mathbf{v}} = \vec{\mathbf{x}} - \vec{\mathbf{u}} = \vec{\mathbf{x}} - rac{\langle \vec{\mathbf{a}}, \vec{\mathbf{x}}
angle}{\langle \vec{\mathbf{a}}, \vec{\mathbf{a}}
angle} \vec{\mathbf{a}}.$$

- A set $B = {\vec{\mathbf{b}}_1, \dots, \vec{\mathbf{b}}_n}$ of vectors is *orthogonal* if $\langle \vec{\mathbf{b}}_i, \vec{\mathbf{b}}_j \rangle = 0$ for all $i \neq j$.
- We call B orthonormal if it is orthogonal and composed of unit vectors, so that $\|\vec{\mathbf{b}}_i\| = \langle \vec{\mathbf{b}}_i, \vec{\mathbf{b}}_i \rangle = 1$ for all $i = 1, \ldots, n$.
- A set B is an *orthonormal basis* for a linear subspace V of \mathbb{R}^n if it is orthonormal and a basis for V.
- $B = {\vec{\mathbf{e}}_1, \dots, \vec{\mathbf{e}}_n}$ is an example of an orthonormal basis for \mathbb{R}^n .
- Every vector space V has an orthonormal basis B. Such a basis can be found by performing Gram-Schmidt orthonormalization on a given spanning set A for V.

- Be able to compute the Euclidean norm $\|\vec{\mathbf{x}}\|$ of a given vector $\vec{\mathbf{x}}$ and determine whether $\vec{\mathbf{x}}$ is a unit vector.
- Be able to normalize a given vector $\vec{\mathbf{x}} \neq \vec{\mathbf{0}}$ with respect to the Euclidean norm.
- Be able to compute the Euclidean distance between two given vectors.
- Be able to compute the inner product of two given vectors.
- Be able to determine whether two given vectors are orthogonal.
- Be able to find the angle between two given vectors using the Law of Cosines.
- For any given vectors $\vec{\mathbf{x}}$, $\vec{\mathbf{a}}$, be able to compute the projection of $\vec{\mathbf{x}}$ onto $\vec{\mathbf{a}}$ and the orthogonal complement of $\vec{\mathbf{x}}$ with respect to $\vec{\mathbf{a}}$.
- For a given set B of vectors of the same order, be able to determine whether this set is orthogonal and/or orthonormal.

3. Applications (L43, M83, C41)

• When B is an orthonormal basis for a vector space V, then every vector $\vec{\mathbf{x}}$ can be written in the alternative coordinates $\vec{\mathbf{c}}$ with respect to B that are given by

$$\vec{\mathbf{c}} = [\langle \vec{\mathbf{b}}_1, \vec{\mathbf{x}} \rangle, \langle \vec{\mathbf{b}}_2, \vec{\mathbf{x}} \rangle, \dots, \langle \vec{\mathbf{b}}_n, \vec{\mathbf{x}} \rangle].$$

Be able to use this formula for finding the alternative coordinates c_i wrt B for a given vector $\vec{\mathbf{x}}$.

• Orthonormal bases can be used to compute *least-squares solutions* $\vec{\mathbf{x}}$ of systems of linear equations $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ that are overconstrained. While not actually a solution, a least-squares solution $\vec{\mathbf{x}}$ has the property that the Euclidean distance of $\mathbf{A}\vec{\mathbf{x}}$ from $\vec{\mathbf{b}}$ is as small as possible. Such $\vec{\mathbf{x}}$ can be computed by first finding the the orthogonal projection $\vec{\mathbf{u}}$ of $\vec{\mathbf{b}}$ onto the linear span of the columns of \mathbf{A} as the sum of the orthogonal projections of $\vec{\mathbf{b}}$ onto the vectors of the orthonormal basis, and then finding $\vec{\mathbf{x}}$ as the solution of the system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$. While this procedure was briefly illustrated in Conversation 41, it will not be a topic for the final.

4. Proofs

A proof of basic properties of the standard inner product is covered in M82B. On the final you may be asked to write similar proofs.