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Intervals of reals

Definition 9.1.1: (Intervals) Let a, b € R* be extended real
numbers. We define the closed interval |a, b] by

[a,b] = {x e R*: a<x < b},

the half-open intervals [a, b) and (a, b] by

[a,b) :={x e R*: a<x<b}; (a,b:={xeR*: a<x<b}
and the open intervals (a, b) by

(a,b) :={x € R*: a<x<b}.

We call a the left endpoint of these intervals, and b the right
endpoint.

@ R =(—00,400) and R* = [—00, +00] are intervals.

@ Intervals with both endpoints in R are bounded intervals.

@ [a,a] = {a} for all a € R*. These are degenerate intervals.

e When b < a, then [a, b] = [a,b) = (b, a] = (a, b) = 0.
These are also degenerate intervals.
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Bounded sets of reals

Definition 9.1.22: (Bounded sets) A subset X of the real line is
said to be bounded if we have X C [-M, M] for some real number
M > 0.

A set of reals that is not bounded will be called unbounded.

@ All bounded intervals are bounded sets.
e X C R is bounded iff IM > 0Vx € X |x| < M.
@ The interval [0,400) is unbounded.
@ The sets N,Z,Q, and R are all unbounded.
Question L29.1: Suppose that (a, b) is an interval such that at

least one of the endpoints a, b is not in R. Is then (a, b) always
unbounded?

This is only the case when a < b. The degenerate interval
(00, —00) is empty and hence bounded.
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Why do we need to add the endpoints to make an open

interval (a, b) “closed”? Adherent points

Definition 9.1.5: (e-adherent points) Let X be a subset of R, let
€ >0, and let x € R. We say that x is e-adherent to X iff there
exists a y € X which is e-close to x. In symbols:

dyeX |x—y|<e

Question L29.2: What is the set of 0.5-adherent points of (1,2]?
This is the interval (0.5, 2.5].

Definition 9.1.8: (Adherent points) Let X be a subset of R, and

let x € R. We say that x is an adherent point of X iff it is
e-adherent to X for every € > 0. In symbols:

Ve>03dye X |x—y|<e.
Question L29.3: What is the set of adherent points of (1,2]?
This is the closed interval (.. (1 —¢,2+¢] = [1,2].
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Adherent points: Other definitions and more examples

Observation L29.1: Let X C R, and let x € R. Then the
following conditions are all equivalent:

(a) x is an adherent point of X.
(b) Ve>0dy e X |x—y|<e.
(c) Ve>0 [x—g,x+e]NX#0.
(d) Ve>0dyeX |x—y|<e.
(e) Ve>0 (x—g,x+e)NX #0.
Let us look at some examples:

@ Every x € X is an adherent point of X:
Here we can take y = x in point (b) above.

@ The set of adherent points of ) is (.

@ The set of adherent points of Z is Z itself:
For each x ¢ Z, if we let £ := 1 min{x — |x], x| + 1 — x},
then [x —e,x +e]NZ = 0.
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Adherent points: More examples

4 5 xexxe 6 7

Question L29.4: What is the set of adherent points of Q7

The entire set R. This follows from the fact that for every x € R
and € > 0 there exists g € Q such that x —e < g < x 4 €.

X-€ a x X-€
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The closure of a set of reals

Definition 9.1.10: (Closure) Let X be a subset of R. The closure
of X, sometimes denoted X, is defined to be the set of all the
adherent points of X.

@ Let a,b € R with a < b. Then

(a, b) = [a,b) = (a, b] = [a, b] = [a, b].
o 0 =0.
e N=N,Z=7,R=R, while Q =R.
e We always have X C X.

Definition 9.1.15: A subset E C R is said to be closed if E = E,
or, in other words, when E contains all of its adherent points.

Thus (), N, Z, R and all closed intervals [a, b] are closed, while Q
and nondegenerate open and half-open bounded intervals
(a, b),[a, b), (a, b] are not closed.
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A characterization of adherent points

Lemma 9.1.14: Let X C R, and let x € R. Then x is an adherent
point of X if, and only if, there exists a sequence (a,)7,,
consisting entirely of elements of X, which converges to x.

Proof: Suppose (a,)52, is a sequence of elements of X, and
limp—oo an = X.

Let € > 0. Then there exists N € N such that

VYn> N |a, — x| <e.

By letting y := ay € X, we see that x is e-adherent to X.

As ¢ can be any positive real, it follows that x is adherent to X.

Now assume that x is an adherent point for X.

Then for each n € N we can pick a, € X such that |x — a,| < n}rl.

Let € > 0. By the Archimedian property, there exists N > 0 such
1

that N+1 < €.

Then Vn > N |a, — x| < &, which shows that lim,_o a, = x. O
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A characterization of closed sets of reals

Corollary 9.1.17: Let X be a subset of R. If X is closed, and
(an)o2q is a convergent sequence consisting of elements of X,
then lim,_ o an also lies in X.

Conversely, if it is true that every convergent sequence (a,)7, of
elements of X has its limit in X as well, then X is necessarily
closed.

This result explains our terminology: A set of real numbers is
closed if, and only if, it is closed under limits of convergent
sequences whose elements are all in X.

It also gives another explanation why R must the closure of QQ:
In Chapter 5 we defined the reals as the limits of Cauchy (and
hence convergent) sequences of rational numbers.

Thus Corollary 9.1.17 implies that R is the set of all adherent

points of Q, that is, R = Q.
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Limit points of a set X C R

Adherent points of a set X C R come in two flavors:

Definition 9.1.18: (Limit points) Let X be a subset of the real
line. We say that x is a limit point (or a cluster point) of X iff it is
an adherent point of X\{x}. In symbols:

Ve>0dyeX (x—y|l<eAy#x).
We say that x is an isolated point of X if x € X and
Je>0VyeX (x—y|>eVy=x).

o Let X :=(0,2]U{3}. Then x := 3 is an isolated point of X,
while [0, 2] is the set of limit points of X.
@ For every X C R, each x € X\ X must be a limit point of X.

@ The closure X of any X C R is obtained by adding to X the
set of all its limit points.
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Characterizations of isolated points

Observation L29.2: Let X C R and let x € R.

Then the following conditions are all equivalent:

(a) x is an isolated point of X.

(b) Fe >0Vy € X\{x} |x—y|>e.
(c) Ve>0 XN[x—e,x+e]={x}.
(d) Je >0Vy e X\{x} |x—y|>e.
(e) Ve>0 XN(x—e,x+¢e)={x}
(f)

f) Every sequence (y,)32, of elements of X with lim,_o yp = x
must be eventually constant, so that 3N > 0Vn> N y, = x.

If we think as € representing 6 feet, then x will be an isolated point
of X if, and only if, x € X and x is socially distanced from all
points in X.
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Characterizations of limit points

Observation L29.3: Let X C R and let x € R.
Then the following conditions are equivalent:

(a) x is a limit point of X.
(b) For all e > 0 the set X N [x — &, x + €] is infinite.

(c) There exists a sequence (y,)32, of elements of X that is an
injective function such that lim,_. vn = x.

We will prove this observation in Module 29.

Note that (b) explains the meaning of the name “cluster point,”
and (c) explains the meaning of the name “limit point.”

Note also that if we replace “infinite” by “nonempty” in (b) and if
we omit the requirement that the sequence be an injective function
in (c), we obtain properties that are equivalent to x being an
adherent point of X.
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The Heine-Borel Theorem for subsets of R

Theorem 9.1.24: (Heine-Borel theorem for the line) Let X be a
subset of R. Then the following two statements are equivalent:

(a) X is closed and bounded.

(b) Given any sequence (a,)32, of real numbers which takes
values in X (i.e., a, € X for all n), there exists a subsequence
(an;)j72o of the original sequence, which converges to some
number L in X.

Proof: Assume X is bounded, and let (a,)52, be a sequence of
real numbers which takes values in X.

Then this sequence is bounded, and by the Bolzano-Weierstrass
theorem there exists a subsequence (a,,j)j’io of the original
sequence that converges to some number L € R.

When X is closed, then L must be an element of X.

This proves the implication (a) = (b).
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Proof of the Heine-Borel Theorem, completed

Theorem 9.1.24: Let X C R. Then the following are equivalent:

(a) X is closed and bounded.

(b) Given any sequence (a,)32, of real numbers which takes
values in X, there exists a subsequence (a,,j)j‘io of the original
sequence, which converges to some number L in X.

Proof: Now suppose that (a) fails. We distinguish two cases:
Case 1: X is unbounded.

Then we can recursively construct a sequence (ap)32, such that
either a, € (n,00) for all n € N or a, € (—o0, —n) for all n € N.
Such a sequence cannot have a convergent subsequence.

Case 2: X is not closed.

Then by the Corollary 9.1.17 there exists a convergent sequence
(an)32, of elements of X such that L :=lim,_o an ¢ X. Then the
limit of every subsequence of this sequence is also L ¢ X.

In both cases (b) fails, which proves ~(a) = ~(b). O



Take-home message

In this lecture we formally defined intervals in R.

The empty set () and singletons {a} = [a, a] are degenerate
intervals.

We also defined bounded sets of reals.

x € R is an adherent point of X C R iff
Ve >03dy € X |x—y| <e, thatis, iff
Ve>0 [x—e,x+e]NX#D.

Moreover, x € R is an adherent point of X C R iff there exists a
sequence (a,)7°,, consisting entirely of elements of X, that
converges to x.

The closure of X C R, denoted X, is the set of all the adherent
points of X.

A set X C R is closed iff X = X.
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Take-home message, continued

Adherent points of a set X C R come in two distinct flavors.

Isolated points of X are elements of X such that there exists an
interval (x — &,x + &) for some € > 0 that contains no points of X
other than x itself.

Limit points aka cluster points of X are points in X, not
necessarily in X itself, such that for every € > 0 the interval

(x — €, x + €) contains points of X other than x itself; infinitely
many such points in fact.

x € R is a limit point of X C R if, and only if, it is the limit of a
sequence (yn)52, of elements of X that are all distinct.

The Heine-Borel theorem for the line asserts that a subset X of the
real line R is closed and bounded if, and only if, every sequence of
elements of X has a subsequence that converges to some x € X.
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