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Cauchy sequeces in metric spaces: Definition

Definition 1.4.6: (Cauchy sequences) Let (x (n))∞n=m be a
sequence of points in a metric space (X , d). We say that this
sequence is a Cauchy sequence if, and only if,

∀ε > 0 ∃N ≥ m ∀j , k ≥ N d(x (j), x (k)) < ε.

The above definition generalizes the one that is already familiar to
us for the special case of sequences of real numbers, except that
the textbook phrases it in terms of “< ε” rather than “≤ ε.” We
have already seen that we get equivalent definitions when we make
this substitution.

Question L43.1: Which sequences are Cauchy sequences in a
discrete metric space (X , ddisc)?
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Convergent sequences are Cauchy

Example 43.1: In any discrete metric space (X , ddisc), a sequence
(x (n))∞n=m is a Cauchy sequence if, and only if,
∃N ≥ m ∀j , k ≥ N d(x (j), x (k)) < 1, which in view of the
definition of ddisc means means that
∃N ≥ m ∀j , k ≥ N x (j) = x (k), so that the sequence is eventually
constant.

Recall that this is the case if, and only if, (x (n))∞n=m is convergent
in (X , ddisc).

The following lemma also generalizes the “if”-direction of the
above observation to arbitrary metric spaces:

Lemma 1.4.7: (Convergent sequences are Cauchy sequences) Let
(x (n))∞n=m be a sequence in (X , d) which converges to some
limit x0. Then (x (n))∞n=m is also a Cauchy sequence.

Winfried Just, Ohio University MATH4/5302, Lecture 43: Cauchy sequences and completeness



The proof of Lemma 1.4.7

Lemma 1.4.7: (Convergent sequences are Cauchy sequences) Let
(x (n))∞n=m be a sequence in (X , d) which converges to some
limit x0. Then (x (n))∞n=m is also a Cauchy sequence.

Question L43.2: How would you prove Lemma 1.4.7?

Proof: Let (x (n))∞n=m and x0 be as in the assumptions, and let
ε > 0.

We need to find N ≥ m such that ∀j , k ≥ N d(x (j), x (k)) < ε.

By assumption, ∀δ > 0∃N ≥ m ∀n ≥ N d(x (n), x0) ≤ δ.

In particular, let N ≥ m be such that ∀j , k ≥ N d(x (n), x0) ≤ ε
3 .

By the triangle inequality and symmetry, for all j , k ≥ N we then
have

d(x (j), x (k)) ≤ d(x (j), x0) + d(x0, x
(k)) =

d(x (j), x0) + d(x (k), x0) ≤ ε
3 + ε

3 < ε, as required. �
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Complete metric spaces

The converse of Lemma 1.4.7 is not true in every metric space; as
we have seen in Chapter 4, there are Cauchy sequences on Q with
the usual metric that do not converge (to any x0 ∈ Q). But we
have also seen that the converse of Lemma 1.4.7 is true in R with
the usual metric, as well as in all discrete metric spaces. This
motivates the following definition:

Definition 1.4.10: (Complete metric spaces) A metric space
(X , d) is said to be complete if, and only if, every Cauchy sequence
in (X , d) is in fact convergent in (X , d).

Thus Q with the usual metric is not complete, R with the usual
metric is, and any discrete metric space (X , ddisc) is also complete.
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Completions of metric spaces

Let us recall that in MATH4/5301 we constructed the set R of real
numbers in such a way that for the usual metric d , every x ∈ R is
the limit of a Cauchy sequence in the subspace (Q, d).

This construction can be generalized: Whenever (Y , dY ) is a
metric space, then it is a subspace of a complete metric space
(X , dX ) such that every x ∈ X is the limit of a Cauchy sequence of
elements of Y . The space (X , dX ) is called the completion of
(Y , dY ).

Exercise 1.4.8 in the textbook gives details of this construction,
but we will omit them here.
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Banach spaces

Other important examples of complete metric spaces include the
spaces (Rn, d`1), (Rn, d`2), (Rn, d`∞) for n ≥ 2, and
(`1, d`1), (`2, d`2), (`∞, d`∞).

All of these examples are Banach spaces, that is, vector spaces
where the distance is induced by a norm and gives the metric space
the structure of a complete space.

A proof that a given metric space (X , d) is complete usually
proceeds in three steps:

Step 1: We need to pick, for a given Cauchy sequence in (X , d) a
candidate x0 for its limit.

Step 2: We need to show that x0 is actually an element of X .

Step 3: We need to show that x0 is actually the limit of the Cauchy
sequence.

Sometimes step 2 is trivial, and sometimes it is more convenient to
switch the order of steps 2 and 3.
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Proving that (X , d) is a Banach space, Example

Let us illustrate this procedure for the Banach spaces described
above. So let (X , d) be one of these spaces.

Consider a Cauchy sequence (x (n))∞n=m in this space.

For every n ≥ m, let x
(n)
i denote the i th coordinate of x (n), where i

ranges from 1 to n if X = Rn and i ∈ N if X is one of the spaces
`1, `2, `∞.

For Step 1, notice that for all metrics d under consideration and

for all i , j , k the inequality d(x (j), x (k)) ≥ |x (j)i − x
(k)
i | holds. Thus

for each relevant i , the sequence (x
(n)
i )∞n=m is a Cauchy sequence

of real numbers, and is therefore convergent.

We let xi := limn→∞ x
(n)
i for each relevant i , and let x denote the

vector with coordinates xi , where i ranges from 1 to n if X = Rn

and i ∈ N if X is one of the spaces `1, `2, `∞. This is our
candidate for the limit of our Cauchy sequence.
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Proving that (X , d) is a Banach space, Example, continued

Now consider the case when X = Rn for some positive natural
number n. Then it follows immediately form our choice of x that
x ∈ X , so that Step 2 becomes trivial.

We have seen in Module 44 that analogue of Proposition 1.1.18
fails in the spaces `1, `2, `∞, and we will need to work a little
harder in these cases to complete Step 2. We will return to this
issue in Module 46.

For Step 3, let us again focus on the case when X = Rn for some
positive natural number n. Then it follows from our construction
that (x (n))∞n=m and x are as in Proposition 1.1.18(d), and
parts (a)–(c) of the same proposition tell us that x = limn→∞ x (n)

with respect to each of the metrics d`1 , d`2 , d`∞ .

We will discuss the proofs for the other three spaces in Module 46.
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Subspaces of complete spaces

Question L43.3: Suppose Y is a subspace of a complete metric
space. Is then Y always complete?

No. Consider, for example, Q ⊆ R with the usual metric.

However, closed subspaces of complete metric spaces are always
complete:

Proposition 1.4.12: Let (X , d) be a metric space, and let
(Y , d � Y × Y ) be a subspace of (X , d).

(a) If (Y , d � Y × Y ) is complete, then Y must be closed in X .

(b) Conversely, suppose that (X , d) is a complete metric space,
and Y ⊆ X is closed.
Then the subspace (Y , d � Y × Y ) is also complete.

Proof: For Part (b), we observe that every Cauchy sequence in
(Y , d � Y × Y ) is also a Cauchy sequence in X , and therefore
must have a limit in X . But if Y is closed, then this limit must be
an element of Y .
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Subspaces of complete spaces, completed

Proposition 1.4.12: Let (X , d) be a metric space, and let
(Y , d � Y × Y ) be a subspace of (X , d).

(a) If (Y , d � Y × Y ) is complete, then Y must be closed in X .

(b) Conversely, suppose that (X , d) is a complete metric space,
and Y ⊆ X is closed.
Then the subspace (Y , d � Y × Y ) is also complete.

Question L43.4: How would you prove Part (a)?

Proof: For Part (a), assume that (x (n))∞n=m is a sequence of
elements of Y that converges to some x0 ∈ X . By Lemma 1.4.7,
(x (n))∞n=m is then a Cauchy sequence of elements of Y , and
converges to some y0 ∈ Y . Thus x0 = y0 ∈ Y , and it follows that
Y is a closed subset of X . �
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