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Continuity on metric spaces: Definition

Let X ⊆ R, let f : X → R and let x0 ∈ X . Recall that f is
continuous at x0 if, and only if,

∀ε > 0 ∃δ > 0 ∀x ∈ X (|x − x0| < δ =⇒ |f (x)− f (x0)| < ε).

If d denotes the usual metric on R, then this can be written as

∀ε > 0 ∃δ > 0∀x ∈ X (d(x , x0) < δ =⇒ d(f (x), f (x0)) < ε).

This definition can be generalized to functions on arbitrary metric
spaces as follows:

Definition 2.1.1: (Continuous functions) Let (X , dX ) be a metric
space, let (Y , dY ) be another metric space, and let f : X → Y be
a function. If x0 ∈ X , we say that f is continuous at x0 iff for every
ε > 0, there exists a δ > 0 such that dY (f (x), f (x0)) < ε whenever
dX (x , x0) < δ. In symbols:

∀ε > 0 ∃δ > 0 ∀x ∈ X (dX (x , x0) < δ =⇒ dY (f (x), f (x0)) < ε).

We say that f is continuous iff it is continuous at every point
x ∈ X .
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Example 1

Notice that it follows immediately from this definition that if
f : X → Y is continuous at x0 ∈ X , then the restriction f � K to
any K ⊆ X with x0 is also continuous at x0.

Example 1: Let X be any set, let (Y , dy ) be a metric space, let
x0 ∈ X , and let f : X → Y be any function. If we consider X with
the discrete metric ddisc , then f will always be continuous at x0.

Question L44.1: Let ε > 0. How should we choose δ > 0 so that
∀x ∈ X (ddisc(x , x0) < δ =⇒ dY (f (x), f (x0)) < ε)?

Here any positive δ ≤ 1 will work, since ddisc(x , x0) < 1 implies
that x = x0.
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Continuity and convergent sequences

Recall that if x0 ∈ X ⊆ R and if f : X → R, then f is continuous
at x0 (with respect to the usual metric on R) if and only if for
every sequence (xn)∞n=1 that converges to x0 the sequence of
function values (f (xn))∞n=1 converges to f (x0).

This result generalizes as follows:

Theorem 2.1.4: (Continuity preserves convergence) Suppose that
(X , dX ) and (Y , dY ) are metric spaces. Let f : X → Y be a
function, and let x0 ∈ X be a point in X .
Then the following three statements are logically equivalent:

(a) f is continuous at x0.

(b) Whenever (x (n))∞n=1 is a sequence in X that converges to x0
with respect to the metric dX , the sequence (f (x (n)))∞n=1

converges to f (x0) with respect to the metric dY .

(c) For every open set V ⊂ Y that contains f (x0), there exists an
open set U ⊂ X containing x0 such that f (U) ⊆ V .
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About the proof of Theorem 2.1.4

The equivalence between parts (a) and (b) of this theorem can be
proved in the exact same way as for the special case of functions
from X ⊆ R into R that we have already seen.

For the implication (c) =⇒ (a), let f , x0 be as in the assumption,
and consider ε > 0. Let V := B(f (x0), ε).

Then V is open in Y , so that by (c) there exists an open U ⊆ X
such that x0 ∈ U and f (U) ⊆ V , which means that
∀x ∈ U f (x) ∈ V .

By our choice of V , then ∀x ∈ U dY (f (x), f (x0)) < ε.

Question L44.2: Why does there exist δ > 0 such that
∀x ∈ X (dX (x , x0) < δ =⇒ dY (f (x), f (x0)) < ε)?

Because if x0 ∈ U and U is open, then there exists an open ball
B(x0, r) ⊆ U with radius r > 0. We can then take δ := r > 0.

We will prove the implication (a) =⇒ (c) in Module 49.
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A characterization of continuous functions

We now obtain the following characterization of continuous
functions between metric spaces, that is, functions that are
continuous at every point in their domains:

Theorem 2.1.5: Let (X , dX ) be a metric space, and let (Y , dY )
be another metric space. Let f : X → Y be a function.
Then the following four statements are equivalent:

(a) f is continuous.

(b) Whenever (x (n))∞n=1 is a sequence in X which converges to
some point x0 ∈ X with respect to the metric dX ,
the sequence (f (x (n)))∞n=1 converges to f (x0) with respect to
the metric dY .

(c) Whenever V is an open set in Y , the set
f −1(V ) := {x ∈ X : f (x) ∈ V } is an open set in X .

(d) Whenever F is a closed set in Y , the set
f −1(F ) := {x ∈ X : f (x) ∈ F} is a closed set in X .
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About the proof of Theorem 2.1.5

The equivalence between parts (a) and (b) follows immediately
from Theorem 2.1.4(a)(b) and the definition of continuous function
as functions that are continuous at each x in their domains.

For the implication (a) =⇒ (c), assume f : X → V is continuous
let V ⊆ Y , and x ∈ f −1(V ). Then f (x) ∈ V , and f is continuous
at x .

By Theorem 2.1.4(c), there exists an open Ux ⊂ X with x ∈ Ux

such that f (Ux) ⊆ V . But then {x} ⊆ Ux ⊆ f −1(Ux) ⊆ f −1(V ).

Thus f −1(V ) =
⋃

x∈f −1(V ){x} =
⋃

x∈f −1(V ) Ux ⊆ f −1(V ).

Since the union of any collection of open sets is open, we conclude
that f −1(V ) is an open subset of X , which proves part (c).

Now assume part(c) is true, and let F be a closed subset of Y .
Then V := Y \F is open and F = Y \V , so that
f −1(F ) = X\f −1(V ). By part (c), f −1(V ) is open, so that its
complement f −1(F ) is closed in Y , and part (d) follows.

We will conclude the proof of Theorem 2.1.5 in Module 49.
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Continuity of compositions

As in the special case of continuous functions on subsets of R,
continuity is preserved under compositions:

Corollary 2.1.7: (Continuity is preserved by composition) Let
(X , dX ), (Y , dY ), and (Z , dZ ) be metric spaces.

(a) If f : X → Y is continuous at a point x0 ∈ X , and g : Y → Z
is continuous at f (x0), then the composition g ◦ f : X → Z ,
defined by g ◦ f (x) := g(f (x)), is continuous at x0.

(b) If f : X → Y is continuous, and g : Y → Z is continuous,
then g ◦ f : X → Z is also continuous.

Note that part (b) immediately follows from part (a).
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Proof of Corollary 2.1.7(a)

For the proof of part (a), let f be as in the assumption, and let
x0 ∈ X .

We will prove the property of Theorem 2.1.4(c).

Specifically we need to show:

For every open set V ⊆ Z such that g(f (x0)) ∈ V there exists an
open set U ⊆ X such that x0 ∈ U and g ◦ f (U) ⊆ V .

By Theorem 2.1.4(c) applied to the function g at f (x0), there
exists an open set W ⊆ Y such that f (x0) ∈W and g(W ) ⊆ V .

By Theorem 2.1.4(c) again, now applied to the function f at x0,
there exists an open set U ⊆ X such that x0 ∈ U and f (U) ⊆W .
Then g ◦ f (U) = g(f (U)) ⊆ g(W ) ⊆ V , as required. �
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Examples 2 and 3

The analogues of Theorem 2.1.5(c),(d) for images fail:

Example 2: Let (X , d) be any metric space, and let f : X → R be
the constant function defined by f (x) := 2020 for all x ∈ X .

Then f is continuous, since for every sequence (x (n))∞n=1 of
elements of X with limn→∞ x (n) = x0 the sequence
limn→∞ f (x (n)) = f (x0) = 2020.

But X is open X , while f (x) = {2020} is not an open subset of R.

Example 3: Let f : R→ R be defined by f (x) := arctan x for all
x ∈ R.

Then f is continuous, F := R is closed in R,

but f (F ) = (−π
2 ,

π
2 ) is not closed in R.
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Continuity for different metrics

Remark L44.1: Although we usually don’t specify the metrics in
our terminology, it is important to realize that if dx and d ′x are two
different metrics on X or dy and d ′y are two different metrics on Y ,
then continuity of a given function f depends on which metric we
are talking about.

Question L44.3: Let f : R→ R. If we consider the discrete
metric ddisc on the domain of f and the usual metric d on the
range of f , what can we deduce about continuity of f ?

It will always be continuous; see Example 1.

Question L44.4: If f (x) := x for all x in R and we consider the
usual metric d on the domain and the discrete metric ddisc on the
range, what can we deduce about the continuity of f ?

It will be discontinuous at every x0 in R since there are lots of
convergent sequences (x (n))∞n=1 in (R, d) with limit x0 that are not
eventually constant, but (f (x (n)))∞n=1 converge to f (x0) in
(R, ddisc) only if (x (n))∞n=1 = (f (x (n)))∞n=1 is eventually constant.
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Continuity for equivalent metrics

Recall that we consider two metrics d , d ′ on the same space X
equivalent if every sequence of elements of X that is convergent
with respect to one of these metrics is also convergent, to the
same limit with respect to the other metric.

It follows from Theorem 2.1.4 that if dx and d ′x are two equivalent
metrics on X and dy and d ′y are two equivalent metrics on Y , any
given function f : X → Y is continuous at any given x0 ∈ X with
respect to dx and dy if and only if, it is continuous at x0 with
respect to d ′x and d ′y .

In particular, when we study continuity of functions f : X → Rm,
where X ⊆ Rn, then it does not matter whether on the domain and
range we consider the Euclidean metric d`2 , the taxi-cab metric d`1 ,
or the sup-norm metric d`∞ , since they are all equivalent.
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Projections and direct sums of functions

Example 4: Let n ≥ 1, and let i ∈ {1, . . . , n}. Then the projection
πi : Rn → R on the i th coordinate defined by πi (x1, . . . , xn) = xi
is continuous.

It now follows from continuity of compositions that if f : X → Rn

is continuous at x0 ∈ X then the projection πi ◦ f is also
continuous at x0.

Example 5: Given two functions f : X → Y and g : X → Z , one
can define their direct sum f ⊕ g : X → Y × Z by
f ⊕ g(x) := (f (x), g(x)). This is the function taking values in the
Cartesian product Y × Z whose first co-ordinate is f (x) and whose
second co-ordinate is g(x).

For instance, if f : R→ R is the function f (x) := x2 + 3, and
g : R→ R is the function g(x) = 4x , then f ⊕ g : R→ R2 is the
function f ⊕ g(x) := (x2 + 3, 4x).
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Two lemmas

Lemma 2.2.1: Let f : X → R and g : X → R be functions, and
let f ⊕ g : X → R2 be their direct sum. We give R2 the Euclidean
metric.

(a) If x0 ∈ X , then f and g are both continuous at x0 iff
f ⊕ g is continuous at x0.

(b) f and g are both continuous iff f ⊕ g is continuous.

Lemma 2.2.2: The addition function (x , y) 7→ x + y ,
the subtraction function (x , y) 7→ x − y ,
the multiplication function (x , y) 7→ xy ,
the maximum function (x , y) 7→ max(x , y),
and the minimum function (x , y) 7→ min(x , y)
are all continuous functions from R2 to R.
The division function (x , y) 7→ x/y is a continuous function from
R× (R\0) = {(x , y) ∈ R2 : y 6= 0} to R.

Winfried Just, Ohio University MATH4/5302, Lecture 44: Continuity on metric spaces



Continuity of arithmetic operations

Corollary 2.2.3(a): Let (X , d) be a metric space, let f : X → R
and g : X → R be functions. Let c be a real number. If x0 ∈ X
and f and g are continuous at x0, then the functions:
f + g : X → R and f − g : X → R,
fg : X → R and cf : X → R,
max(f , g) : X → R and min(f , g) : X → R
are also continuous at x0.
If ∀x ∈ X g(x) 6= 0, then f /g : X → R is also continuous at x0.

Sketch of the proof: Let us prove here that if f , g : X → R are
continuous at x0, then the function f + g is also continuous.

Consider the function h : R2 → R defined by h(x , y) = x + y .

Note that f + g = h ◦ (f ⊕ g).

Thus the composition h(f ⊕ g) is also continuous at x0.

The proofs of the other parts of Corollary 2.2.3(a) are similar. �
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