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Continuity on metric spaces: Definition

Let X C R, let f: X — R and let xg € X. Recall that f is
continuous at xg if, and only if,

Ve >035>0Vx e X (|Jx —x| <0 = |f(x)—f(x)| <e).
If d denotes the usual metric on R, then this can be written as
Ve>036 >0Vx € X (d(x,x) <d = d(f(x),f(x)) < ¢).

This definition can be generalized to functions on arbitrary metric

spaces as follows:

Definition 2.1.1: (Continuous functions) Let (X, dx) be a metric
space, let (Y, dy) be another metric space, and let f : X — Y be

a function. If xp € X, we say that f is continuous at xp iff for every
e > 0, there exists a ¢ > 0 such that dy(f(x), f(x0)) < € whenever
dx(x,x0) < 9. In symbols:

Ve>030 >0Vx € X (dx(x,x0) <0 = dy(f(x),f(x0)) < e).

We say that f is continuous iff it is continuous at every point
x € X.
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Example 1

Notice that it follows immediately from this definition that if
f: X — Y is continuous at xp € X, then the restriction f [ K to
any K C X with xp is also continuous at xg.

Example 1: Let X be any set, let (Y, d,) be a metric space, let
xp € X, and let f : X — Y be any function. If we consider X with
the discrete metric dgsc, then f will always be continuous at xp.

Question L44.1: Let £ > 0. How should we choose § > 0 so that
Vx € X (dd,'sc(X,Xo) <)== dy(f(X), f(Xo)) < 6)?

Here any positive § < 1 will work, since dgisc(x, xp) < 1 implies
that x = xgp.
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Continuity and convergent sequences

Recall that if xo € X CR and if f : X — R, then f is continuous
at xp (with respect to the usual metric on R) if and only if for
every sequence (x,)>2; that converges to xg the sequence of
function values (f(xn))5; converges to f(xp).

This result generalizes as follows:

Theorem 2.1.4: (Continuity preserves convergence) Suppose that
(X,dx) and (Y, dy) are metric spaces. Let f : X — Y be a
function, and let xp € X be a point in X.

Then the following three statements are logically equivalent:

(a) f is continuous at xp.
(b) Whenever (x(m)> 1 Is a sequence in X that converges to xp

n=

with respect to the metric dx, the sequence (f(x("))e2,
converges to f(xg) with respect to the metric dy.

(c) For every open set V C Y that contains f(xp), there exists an
open set U C X containing xp such that f(U) C V .
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About the proof of Theorem 2.1.4

The equivalence between parts (a) and (b) of this theorem can be
proved in the exact same way as for the special case of functions
from X C R into R that we have already seen.

For the implication (¢) = (a), let f, xp be as in the assumption,
and consider € > 0. Let V := B(f(x0), ¢).

Then V is open in Y, so that by (c) there exists an open U C X
such that xo € U and f(U) C V, which means that
Vx e U f(x) e V.

By our choice of V, then Vx € U dy(f(x), f(x)) < e.

Question L44.2: Why does there exist § > 0 such that
Vx € X (dx(x,x0) <0 = dy(f(x),f(x0)) <e)?

Because if xg € U and U is open, then there exists an open ball
B(xo, r) C U with radius r > 0. We can then take § :=r > 0.

We will prove the implication (a) = (¢) in Module 49.
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A characterization of continuous functions

We now obtain the following characterization of continuous
functions between metric spaces, that is, functions that are
continuous at every point in their domains:

Theorem 2.1.5: Let (X, dx) be a metric space, and let (Y, dy)
be another metric space. Let f : X — Y be a function.

Then the following four statements are equivalent:

(a) f is continuous.

(b) Whenever (x(M)>°_ is a sequence in X which converges to
some point xg € X with respect to the metric dx,
the sequence (f(x("))>; converges to f(xg) with respect to
the metric dy .

(c) Whenever V is an open set in Y, the set
f~1(V):={x € X: f(x) € V} is an open set in X.

(d) Whenever F is a closed set in Y, the set
f~Y(F):={x€ X : f(x) € F} is a closed set in X.
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About the proof of Theorem 2.1.5

The equivalence between parts (a) and (b) follows immediately
from Theorem 2.1.4(a)(b) and the definition of continuous function
as functions that are continuous at each x in their domains.

For the implication (a) = (c), assume f : X — V is continuous
let V C VY, and x € f~1(V). Then f(x) € V, and f is continuous
at x.

By Theorem 2.1.4(c), there exists an open Uy, C X with x € Uy
such that f(Uy) C V. But then {x} C U, C f~}(U,) C f~1(V).
Thus f_l(v) - Uxef V){X} Ufo (V) UX - f—l(v)

Since the union of any collection of open sets is open, we conclude
that f~1(V) is an open subset of X, which proves part (c).

Now assume part(c) is true, and let F be a closed subset of Y.
Then V := Y\F is open and F = Y\V, so that

f~Y(F) = X\f~1(V). By part (c), f~1(V) is open, so that its
complement f~1(F) is closed in Y, and part (d) follows.

We will conclude the proof of Theorem 2.1.5 in Module 49.
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Continuity of compositions

As in the special case of continuous functions on subsets of R,
continuity is preserved under compositions:

Corollary 2.1.7: (Continuity is preserved by composition) Let
(X,dx), (Y,dy), and (Z, dz) be metric spaces.

(a) If f: X — Y is continuous at a point xo € X,and g: Y — Z
is continuous at f(xp), then the composition go f : X — Z,
defined by g o f(x) := g(f(x)), is continuous at xo.

(b) If f: X — Y is continuous, and g : Y — Z is continuous,
then gof : X — Z is also continuous.

Note that part (b) immediately follows from part (a).
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Proof of Corollary 2.1.7(a)

For the proof of part (a), let f be as in the assumption, and let
xp € X.

We will prove the property of Theorem 2.1.4(c).

Specifically we need to show:

For every open set V C Z such that g(f(xp)) € V there exists an
open set U C X such that xp € U and go f(U) C V.

By Theorem 2.1.4(c) applied to the function g at f(xp), there
exists an open set W C Y such that f(xp) € W and g(W) C V.

By Theorem 2.1.4(c) again, now applied to the function f at xo,
there exists an open set U C X such that xp € U and f(U) C W.
Then go f(U) = g(f(U)) C g(W) C V, as required. [
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Examples 2 and 3

The analogues of Theorem 2.1.5(c),(d) for images fail:

Example 2: Let (X, d) be any metric space, and let f : X — R be
the constant function defined by f(x) := 2020 for all x € X.

Then f is continuous, since for every sequence (x("M)>, of
elements of X with lim,_., x(" = Xp the sequence

limy_e0 F(x{M) = f(x) = 2020.

But X is open X, while f(x) = {2020} is not an open subset of R.

Example 3: Let f : R — R be defined by f(x) := arctan x for all
x € R.

Then f is continuous, F := R is closed in R,
but f(F) = (—%, %) is not closed in R.
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Continuity for different metrics

Remark L44.1: Although we usually don't specify the metrics in
our terminology, it is important to realize that if dy and d are two
different metrics on X or d, and d}’, are two different metrics on Y/,
then continuity of a given function f depends on which metric we
are talking about.

Question L44.3: Let f : R — R. If we consider the discrete
metric dgisc on the domain of f and the usual metric d on the
range of f, what can we deduce about continuity of 7

It will always be continuous; see Example 1.

Question L44.4: If f(x) := x for all x in R and we consider the
usual metric d on the domain and the discrete metric dyjsc on the
range, what can we deduce about the continuity of f7

It will be discontinuous at every xg in R since there are lots of
convergent sequences (x(M)2 , in (R, d) with limit xo that are not
eventually constant, but (£(x("))2; converge to f(xp) in

(R, dgisc) only if (x(M)22 = (£(x(M))>2, is eventually constant.
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Continuity for equivalent metrics

Recall that we consider two metrics d, d’ on the same space X
equivalent if every sequence of elements of X that is convergent
with respect to one of these metrics is also convergent, to the
same limit with respect to the other metric.

It follows from Theorem 2.1.4 that if dy and d are two equivalent
metrics on X and d) and d}’, are two equivalent metrics on Y, any
given function f : X — Y is continuous at any given xp € X with
respect to dy and d, if and only if, it is continuous at xp with
respect to d; and d.

In particular, when we study continuity of functions f : X — R™,
where X C R”, then it does not matter whether on the domain and
range we consider the Euclidean metric dy2, the taxi-cab metric dg,
or the sup-norm metric dye, since they are all equivalent.
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Projections and direct sums of functions

Example 4: Let n > 1, and let i € {1,...,n}. Then the projection
7i : R" — R on the it" coordinate defined by 7; (X125 veyXn) = X;
is continuous.

It now follows from continuity of compositions that if f : X — R”"
is continuous at xg € X then the projection m; o f is also
continuous at xg.

Example 5: Given two functions f : X — Y and g : X — Z, one
can define their direct sum f & g: X = Y x Z by

f & g(x) := (f(x),g(x)). This is the function taking values in the
Cartesian product Y x Z whose first co-ordinate is f(x) and whose
second co-ordinate is g(x).

For instance, if f : R — R is the function f(x) := x? + 3, and

g : R — R is the function g(x) = 4x, then f © g : R — R? is the
function f @ g(x) := (x? + 3, 4x).
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Two lemmas

Lemma 2.2.1: Let f : X — R and g : X — R be functions, and
let f © g : X — R? be their direct sum. We give R? the Euclidean
metric.

(a) If xo € X, then f and g are both continuous at xg iff
f @ g is continuous at xp.

(b) f and g are both continuous iff f & g is continuous.

Lemma 2.2.2: The addition function (x,y) — x +y,

the subtraction function (x,y) — x — y,

the multiplication function (x,y) — xy,

the maximum function (x,y) — max(x,y),

and the minimum function (x, y) — min(x,y)

are all continuous functions from R? to R.

The division function (x,y) — x/y is a continuous function from
R x (R\0) = {(x,y) € R2:y # 0} to R.
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Continuity of arithmetic operations

Corollary 2.2.3(a): Let (X, d) be a metric space, let f : X -+ R
and g : X — R be functions. Let ¢ be a real number. If xg € X
and f and g are continuous at xp, then the functions:

f+g: X—>Rand f—g: X =R,

fg: X - Rand cf : X = R,

max(f,g) : X — R and min(f,g) : X - R

are also continuous at xp.

If ¥x € X g(x)#0, then f/g : X — R is also continuous at xp.

Sketch of the proof: Let us prove here that if f,g: X — R are
continuous at xg, then the function f + g is also continuous.
Consider the function h : R? — R defined by h(x,y) = x + y.
Note that f + g = ho (f @ g).

Thus the composition h(f @ g) is also continuous at xo.

The proofs of the other parts of Corollary 2.2.3(a) are similar. [J
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