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Abstract

The phenomena of pleiotropy, the influence of
individual genes on multiple traits of an or-
ganism, and epistasis, the interaction of mul-
tiple genes in influencing a single trait, are
ubiquitous characteristics of organization of
genomes of living organisms. In evolutionary
computation, a high degree of epistasis and
pleiotropy is often considered an indication
of hardness of the problem. The experiments
reported here indicate that even for a very
simple separable fitness function, pleiotropy
and epistasis can enhance the effectiveness of
evolution as an optimizing procedure when
compared to a straightforward problem rep-
resentation.

1 INTRODUCTION

Most traits of real organisms seem to be governed by
the interaction of multiple genes, and the effect of
any one of these genes often depends on the alleles
of the other genes that influence the trait. This phe-
nomenon is known as epistasis. On the other hand,
many, perhaps most, genes of a real organism influence
multiple traits of the organism. This phenomenon is
known as pleiotropy. However, genomes of real or-
ganisms appear to be organized in modules (Bolker,
2000; Raff, 1996; Wagner and Altenberg, 1996), with
little pleiotropic interactions between different mod-
ules. The evolutionary origin of modules is an active
area of current research; for a survey of recent work
see (Wagner et al., to appear).

In a sense, modules are limitations of pleiotropy.
Thus modules appear to embody Bonner’s Low
Pleiotropy Principle (Bonner, 1974) which postulates
that the genotype-phenotype map should exhibit low

pleiotropy. So why is there so much pleiotropy in real
genomes after all? One possible reason is that bio-
logical evolution is an opportunistic tinker who reuses
whatever raw material (such as genes) is at hand to
solve new problems that arise over time. A second pos-
sible reason is that there appear to be upper bounds
for the size of viable genomes (Ridley, 2001), and or-
ganisms simply have to reuse genes for new purposes
rather than adding new ones. A third possibility is
that pleiotropy and epistasis are unavoidable conse-
quences of the chemical and physical mechanisms by
which DNA in real organisms controls phenotypes.
Pleiotropy has also been proposed as a factor that can
increase the degree of variability maintained in quan-
titative characters (Hastings and Hom, 1990; Gimmel-
farb, 1996). We are interested here in exploring an-
other possibility, namely that pleiotropy and epistasis
may make evolution more efficient at optimizing mul-
tiple traits simultaneously. The model we are present-
ing allows us to distinguish between effects of reduced
genome size and effects of pleiotropy and epistasis, and
there is no premium on maintaining variability.

In evolutionary computation, pleiotropy and epista-
sis are considered properties of the fitness landscape.
Problems that can be represented by fitness landscapes
without any epistasis are known as separable problems.
Davidor (1991) introduced the notion of epistasis vari-
ance of a fitness landscape as one measure of difficulty
of a problem for a genetic algorithm. A similar mea-
sure was introduced in (Rochet, 1997). Measures of
epistasis can be understood as indications how far the
fitness function is from separability; see (Naudts and
Kallel, 2000) for a recent review. Fitness landscapes
that show a high degree of epistasis are usually consid-
ered difficult for genetic algorithms; however, there are
are some known exceptions to this rule (Manela and
Campbell, 1992; Reeves and Wright, 1995; Rochet et
al., 1998). Pleiotropy has been studied in the evolu-
tionary computation literature in the context of the



evolution of the genotype-phenotype map. Altenberg
(1995) found a tendency towards low pleiotropy in
simulated evolution of the genotype-phenotype map.
In contrast, Kwaśnicka (1997, 1998) reportedly found
that pleiotropy and polygene effects can enhance the
effectiveness of evolution (Kwaśnicka, 1999). The re-
search quoted above has concentrated on the role of
epistasis in non-separable problems, with variants of
Kauffman’s NK-model (Kauffman, 1989) figuring most
prominently.

In this study we demonstrate that pleiotropy and epis-
tasis can enhance the effectiveness of evolution as
an optimizing procedure even for separable problems.
While we realize that realistic problems of interest
to evolutionary computation are non-separable, it is
hoped that the very simplicity of our model will make
it more amenable to a mathematical treatment than
the existing models for which effects of pleiotropy and
epistasis have been studied. Of the models published
in the literature, our model is closest to the MQT
model of Taylor and Higgs (2000); an important dif-
ference being that chromosomes in the latter model
are bit strings, whereas chromosomes in our model are
strings of real numbers. Moreover, the questions stud-
ied in (Taylor and Higgs, 2000) are different from the
one we are investigating.

2 THE MODEL

We assume that a certain species of animals will re-
peatedly play games against nature during their life-
time. If the animal wins the game, its fitness will in-
crease by an amount V (value of the resource); if it
loses, its fitness will decrease by an amount C (cost).
Before each game, the animal is given the probabil-
ity of winning the game and has to decide whether
or not to play the game. This decision is coded by a
genetically determined threshold tj : The animal will
play the game if, and only if, the probability of win-
ning is at least tj . Before each game, the threshold
is randomly selected from a list of n thresholds (one
can think of these thresholds as representing a variety
of situations an animal may face during its life, like
hunting for prey of different species or under different
conditions). These n thresholds are the multiple traits
that evolution is supposed to optimize.

Note that if probabilities of winning the game are dis-
tributed uniformly over the interval [0, 1], then the ex-
pected fitness gain from playing one round of the game
is given by the formula:
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The latter quantity is maximized if tj = C
V +C for all j.

The challenge for evolution is to optimize all thresholds
simultaneously. Note that the larger the number of
thresholds, the smaller the selection pressure on each
individual threshold, and the harder it should be to
optimize the overall fitness of the animal.

3 OUR SIMULATIONS

In our simulations, we explored two ways of coding
these multiple thresholds. In separable coding, each
threshold tj was represented by a real number gj be-
tween 0 and 1. This type of coding was tested for
n = 2, 3, 4, 5, 6, 20. The other type of coding, non-
separable coding, was tested only for n = 20. Here
the organism’s genome consisted of six real numbers
g1, . . . , g6 between 0 and 1. Each of the 20 thresh-
olds was represented by the (arithmetic or geometric)
mean of three of these numbers, with each of the 20
combinations of three genes representing a different
threshold.

Let us describe the user-definable parameters that
were kept constant throughout our simulations. We
simulated the evolution of populations of 1, 000 digi-
tal animals. Each animal lived for 10 mating seasons
and had 20 chances per mating seasons to play a game
against nature. The initial fitness of each animal was
set to 25 at the beginning of each mating season and
then decreased or increased according to the outcomes
of the games played by this animal. Note that the
simulation of actual outcomes of games, as opposed to
simulations where fitnesses are simply calculated from
formula (1), adds an extra level of noise to the system.
One might expect that this would make it more diffi-
cult for evolution to optimize thresholds. To control
for this effect, we ran an additional set of simulations
were fitness was simply calculated from formula (1)
and no actual games were simulated. After each mat-
ing season, the oldest animals were replaced by new-
comers. Parents of each newcomer were selected ran-
domly, with chances of being selected proportional to
fitness attained in this mating season. The genome
of the newcomer was inherited from the parents with
uniform crossover and possible mutations. Mutations
occurred with probability 0.01 at each locus gj. In



Table 1: Results for first series of simulations
T C B. O. F. Sd
2 sep 0.36% 0.13%
3 sep 0.47% 0.14%
4 sep 0.56% 0.18%
5 sep 0.63% 0.18%
6 sep 0.72% 0.20%

20 sep 2.42% 2.26%
20 ns/am 0.52% 0.22%
20 ns/gm 0.50% 0.18%

the case of a mutation, the new value for gj was calcu-
lated as gj = e0.05ξ+lnGj where Gj represents the value
inherited at this locus from the parent and ξ is a ran-
dom variable with standard normal distribution. We
set V = C = 5 in each simulation. Thus the theoreti-
cally optimal value of each tj was 0.5, and for players
following the optimal strategy, the expected fitness af-
ter the 20 games of each mating season would be 50.
The program kept track of the actual average fitness
of all players at the end of each mating season, of the
average expected fitness of all players at the end of a
given mating season (calculated by formula (1)), and
of the average of the latter over the last 1, 000 seasons.

4 RESULTS

We ran four series of experiments. In the first se-
ries, we run 180 simulations each for separable cod-
ing of n thresholds with n = 2, 3, 4, 5, 6, 20; as well
as 180 simulations each with non-separable coding of
n = 20 thresholds by six genes, where thresholds were
computed as arithmetic or geometric averages of three
of the genes. Simulations were started from popula-
tions of random strategies, where the means of the
genes in the initial population were varied from 0.1
to 0.9 in increments of 0.1 for 20 simulations each,
with standard deviations of 0.2. Individual simula-
tions were run for 40, 000 mating seasons each. Ta-
ble 1 shows the results for these simulations. The first
column shows the number of thresholds to be opti-
mized, the second column shows the type of coding
used, where, e.g., ns/am stands for non-separable cod-
ing with arithmetic averages. Column three (“Below
optimal fitness”) shows the percentages by which the
average expected fitness in the last 1, 000 seasons of
each simulation were below the theoretically optimal
expected fitness of 50. Standard deviations between
individual simulations are computed for each run of
180 simulations and shown in the last column.

The results of the first series of experiments do not

Table 2: Results for second series of simulations
T In C SEASONS Sd
5 0.8 sep 2, 853 487
6 0.8 sep 3, 309 523

20 0.8 ns/am 2, 936 457
20 0.8 ns/gm 2, 886 367
5 0.2 sep 8, 951 1, 203
6 0.2 sep 10, 269 1, 142

20 0.2 ns/am 9, 214 1, 257
20 0.2 ns/gm 9, 788 1, 310

Table 3: Results for third series of simulations
T In C SEASONS Sd
5 0.8 sep 4, 210 645
6 0.8 sep 5, 147 791

20 0.8 ns/am 4, 299 623
20 0.8 ns/gm 4, 060 522
5 0.2 sep 13, 286 2, 042
6 0.2 sep 15, 445 1, 730

20 0.2 ns/am 12, 798 1, 599
20 0.2 ns/gm 13, 902 1, 780

allow us to distinguish between the effects on stabiliz-
ing vs. directional selection. In order to observe the
results of directional selection, we started simulations
were all genes in the initial population were set to 0.2
or 0.8 and run simulations until the average fitness of
the population in a given mating season reached for the
first time a value of over 49, which is within 2% of the
theoretical optimum. We run 50 simulations each with
separable coding for n = 5 and n = 6 thresholds, as
well as with non-separable coding of 20 thresholds by
six genes with each threshold represented by the arith-
metic and geometric average of three genes. Results
are shown in Table 2. The second column indicates the
values of the genes in the initial population. Column
four shows the average length of the simulation, and
column five shows the standard deviation of the latter
between the 50 simulations of each run.

The third series of experiments was similar to the sec-
ond one, but this time we let the simulations run until
the average expected fitness of the population, calcu-
lated from formula (1), reached for the first time a
value of over 49. This was done to control for fluctu-
ations of fitness that might be due to a large number
of players being exceptionally lucky in a given season.

The fourth series of experiments was similar to the
third one, but this time we did not simulate actual
games but instead set the fitness of each individual in



Table 4: Results for fourth series of simulations
T In C SEASONS Sd

5 0.8 sep 4, 405 693
6 0.8 sep 5, 015 768

20 0.8 ns/am 4, 318 629
20 0.8 ns/gm 4, 115 615
5 0.2 sep 12, 756 1, 818
6 0.2 sep 14, 660 1, 985

20 0.2 ns/am 12, 137 1, 393
20 0.2 ns/gm 13, 003 1, 521

each mating season to the expected fitness calculated
from formula (1). This approach further reduces the
noise in the system due to random outcomes of games.

5 CONCLUSION

The results with separable coding show clearly that
the more thresholds an animal has to optimize, the
more difficult it is for evolution to optimize all of these
thresholds simultaneously. But the way thresholds
are coded greatly matters: In the first series of ex-
periments, the results for non-separable coding of 20
thresholds by six genes were better than the results of
separable coding of four thresholds by four genes and
significantly better than for separable coding of five
thresholds by five genes. A two-sample t-statistic gives
a P-value of less than 0.002 for comparing the simula-
tions with n = 5 to non-separable coding with geomet-
ric average and a P-value of close to 0.05 for comparing
these simulations to non-separable coding with arith-
metic average. This occurs despite the fact that on the
phenotypic level there is a fourfold stronger selection
pressure on each individual threshold for n = 5 than
for n = 20.

These results strongly suggest that even for a sepa-
rable fitness function, pleiotropy and/or epistasis can
have a beneficial effect on the power of evolution as an
optimization procedure. Note that if the effect were
simply due to the reduced genome size, then in the sim-
ulations where 20 thresholds were coded by six genes
we should see results similar to the results obtained by
encoding six thresholds by six genes, not results that
were better than when encoding four or five thresholds
by individual genes.

In the second series of experiments we observed that
while directional selection with non-separable coding
of 20 thresholds no longer outperformed directional se-
lection with separable coding of five thresholds, it still
significantly outperformed directional selection of six

thresholds with separable coding. The corresponding
P-values of a two-sample t-statistic are about 0.06 for
comparing non-separable coding with geometric mean
to separable coding of six thresholds for the simula-
tions that started from initial thresholds 0.2, and are
less than 0.001 for comparing each of the remaining
three runs with non-separable coding to the corre-
sponding run with separable coding of six thresholds.
It thus appears that the effect reported here mainly
improves stabilizing selection, but also has a signif-
icant impact on directional selection, which is more
relevant for evolutionary computation.

The results of the third and fourth series of simulations
show that the observed benefits of non-separable cod-
ing are not simply due to the noise in the system. On
the contrary, it appears that the inherent noise may in
some cases mask the effects reported here. Note that
the simulations in the third and fourth series ran for
a much larger number of seasons before reaching an
average fitness of 49 than in the second series. This
appears to be due to chance effects in the second se-
ries, where occasionally the population reaches sub-
stantially higher actual average fitness in a season than
the average fitness calculated from formula (1).
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