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Boolean networks

Let Π = {0,1}n, where n ≥ 1. A map g : Π → Π

defines an n-dimensional Boolean network

or Boolean system (Π, g).

A state in the system at time t will be denoted

by s(t) = [s1(t), . . . , sn(t)].

The dynamics is given by

s(t + 1) = g(s(t)), s(t) ∈ Π.

Note that all trajectories eventually reach a pe-

riodic orbit or a fixed point.

The letter n will always stand for the di-

mension of the system.
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Models of gene regulation

Genes code gene products (usually proteins).

When a gene is expressed, its product gets

manufactured. After some time delay, the pres-

ence/absence of gene products can switch ex-

pression of certain genes on or off.

This can be crudely modeled by Boolean net-

works if we interpret a value si(t) = 1 as gene

number i being expressed at time t and a value

si(t) = 0 as gene number i not being expressed

at time t.

It has been argued that Boolean models of

gene regulation should show mostly ordered

dynamics.
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Chaotic vs. ordered dynamics

Empirical studies show that Boolean networks

dynamics falls either into the ordered regime

with relatively short attractors, a large pro-

portion of eventually frozen nodes, and high

homeostatic stability; or into the chaotic regime

with relatively long attractors, very few even-

tually frozen nodes, and low homeostatic sta-

bility.

Empirical studies of random Boolean networks

indicate that these hallmark properties of one

or the other regime usually occur together.
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Which orbits are “long?”

Note that all orbits in an n-dimensional Boolean

network length at most 2n. In the ordered

regime, the length of orbits scales like a low-

degree polynomial in n, in the chaotic regime,

they scale exponentially in n.

For 1 < c < 2, we call an n-dimensional Boolean

network c-chaotic if it has at least one orbit of

length ≥ cn.

We are interested in the question which con-

ditions on the network preclude c-chaotic dy-

namics for c sufficiently close to 2.
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p-fluid networks

In the ordered dynamics, along the attractors

reached from most initial states, a large pro-

portion of the variables will never change their

values; such variables are called eventually frozen.

Let us call a Boolean network p-fluid if for a

randomly chosen initial state with probability

at least p a proportion of at most 1− p of the

variables are frozen.

We are interested in the question which condi-

tions on the network preclude p-fluid dynamics

for p sufficiently close to 1.
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Homeostatic (in)stability

In the ordered regime, most single-bit flips in

most initial conditions will leave the trajectory

in the same basin of attraction. This property

is called high homeostatic stability.

Let us call a Boolean system p-unstable if a

random bit flip in a randomly chosen initial

state with probability at least p moves the tra-

jectory into the basin of attraction of a differ-

ent attractor.

We are interested in the question which con-

ditions on the network preclude p-unstable dy-

namics for p sufficiently close to 1.
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Extremely chaotic networks

Suppose c ≈ 2 and p ≈ 1. A Boolean net-

work that is simultaneously c-chaotic, p-fluid,

and p-unstable should be considered extremely

chaotic.

Which conditions on the network preclude ex-

tremely chaotic dynamics?
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Regulatory functions

Recall that the dynamics of a Boolean network

is defined by

s(t + 1) = g(s(t)).

The function g = [g1, . . . , gn] is a Boolean vec-

tor function.

We call its i-th component gi the i-th regula-

tory function. Ususally, gi will depend on only

some of the coordinates of s = [s1, . . . , sn]; we

call these the inputs of variable i.

If gi depends on a coordinate sj, then we say

that i is an output of variable j.
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Candidate conditions

Empirical studies of random Boolean networks

have shown that the dynamics tends to be in

the ordered regime if:

• All regulatory function have only a small

number of inputs, or

• all regulatory functions are nested canalyz-

ing, or

• all regulatory functions are strongly biased,

or

• there are few negative feedback loops.

Do these conditions provably preclude extremely

chaotic dynamics?
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(b, r)-networks

A (b, r)-Boolean network is one in which each

variable has at most r inputs and at most b

outputs.

If r = 2, we call the system quadratic; a (2,2)-

system is called bi-quadratic. A regulatory func-

tion that depends on only one variable is called

monic; a non-monic quadratic regulatory func-

tion is called strictly quadratic.
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Nested canalyzing functions

The formal definition of nested canalyzing func-

tions is a bit complicated, but examples of such

functions include:

• f(s) = si,

• f(s) = ¬si,

• f(s) = si ∧ sj,

• f(s) = si ∨ sj.
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Biased Boolean functions

The bias Λ of a Boolean function is the pro-

portion of input vectors on which the function

takes the value 1.

For example, the bias of each monic function is

0.5. The bias of the strictly quadratic function

si ∨ sj is 0.75; the largest possible bias for any

non-constant quadratic Boolean function.

We call a Boolean network ε-biased if |Λ −
0.5| ≥ ε for each non-monic regulatory func-

tion.
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Cooperative Boolean networks

Define the cooperative (partial) order on Π by

r ≤ s if ri ≤ si for i = 1, . . . , n.

A Boolean network is cooperative if

r ≤ s → g(r) ≤ g(s).

Note that negative feedback loops are totally

absent in cooperative Boolean systems.
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Cooperative quadratic Boolean networks

The only regulatory functions allowed in coop-

erative quadratic Boolean networks are gi = sj,

gi = sj ∨ sk, gi = sj ∧ sk.

Thus cooperative quadratic Boolean networks

are 0.25-biased, have only nested canalyzing

regulatory functions with few inputs and admit

no negative feedback. Hence they satisfy all

empirical conditions mentioned above.

Can one prove that such networks cannot have

extremely chaotic dynamics?
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Extreme chaos is still possible

Theorem 1. Let c, p be constants with 1 < c <

2 and 0 < p < 1. Then for all sufficiently large

n there exist n-dimensional Boolean networks

that are simultaneously:

(i) cooperative and bi-quadratic,

(ii) c-chaotic,

(iii) p-fluid,

(iv) p-unstable.
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Idea of the proof

Fix c < 2. The idea is to set aside a small

subset M of the variables to code a Turing

machine that writes successive binary codes of

integers 0,1, . . . ,2n−|M | on a circular tape that

is coded by the remaining variables. If M is of

fixed size, this will give orbits of length > cn

for sufficiently large n.

Unfortunately, this cannot be done in such a

way that the resulting system is cooperative.
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Overcoming the problem

Let L, ` be such that
(

L
L/2

)
> 2` > cL. Use L

circular synchronously advancing tapes to code

integers 0,1, . . . ,2n`/L−1 in such a way that the

Turing machine M for computing the function

⊕1 does not require negation. The size of M

depends only on L.

This works. For sufficiently large n the con-

struction yields a c-chaotic system, and after

some further tweaking one that is also p-fluid

and p-unstable.
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Are there other examples?

The Turing machine metaphor comes readily

to mind if a (former) logician wants to con-

struct a counterexample. But Nature may have

different ways of cobbling together gene reg-

ulatory networks. Are there examples of ex-

tremely chaotic, bi-quadratic, cooperative Boolean

networks that look radically different from the

ones we constructed?
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Turing systems

In the construction described above, the vast

majority of variables belong to the “tapes.”

They have monic regulatory functions and sim-

ply copy previous values of other variables on

the “tapes.”

Let us call an n-dimensional Boolean system

an (M, n)-Turing system if at least n − M of

the regulatory functions are monic.

For α > 0 and n sufficiently large, the example

constructed in the proof of Theorem 1 is an

(αn, n)-Turing system.
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Turing systems are the only examples

Theorem 2. Let ε, α > 0 and let b, r be pos-

itive integers. Then there exists a positive

constant c(ε, α, b, r) < 2 such that for every

c > c(ε, α, b, r) and sufficiently large n, every c-

chaotic, n-dimensional ε-biased (b, r)-Boolean

system is an (αn, n)-Turing system.

Note that we do not need to assume that the

system is cooperative.

We will let c(ε, α, b, r) denote the smallest num-

ber for which the conclusion of Theorem 2

holds.
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Interpreting c(0.25, α,2,2)

If an n-dimesional bi-quadratic cooperative Boolean

network has an orbit of size ≥ cn for some

c > c(0.25,0.1,2,2), then at most 10% of all

variables in the system have strictly quadratic

regulatory functions.

Similarly, if the system has an orbit of size ≥ cn

for some c > c(0.25,1,2,2), then at least some

variable in the system has a monic regulatory

function.
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Estimates for c(0.25, α,2,2)

We can show that

c(0.25, α,2,2) ≤ 10(2−α)/4 (1)

for all α ∈ [0,1].

If α = 1, this gives c(0.25, α,2,2) ≤ 101/4, and

we can also show that equality holds in this

case.

We can also show that

c(0.25, α,2,2) ≤ 2− 0.0041α, (2)

which is a sharper bound than (1) for α <

0.7987.
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Is “bi”-quadratic necessary?

Can we prove an analogue of Theorem 2 if no

bound on the number of outputs per variable

is assumed? No!

Theorem 3. Let c, p be constants with 1 < c <

2 and 0 < p < 1. Then for all sufficiently large

n there exist n-dimensional Boolean networks

that are simultaneously:

(i) cooperative and have only strictly quadratic

regulatory functions,

(ii) c-chaotic,

(iii) p-fluid,

(iv) p-unstable.
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Can we prove an analogue of Theorem 2

for p-instability?

No!

Theorem 4. Let n be a positive integer. Then

there exists a 1-unstable, strictly bi-quadratic

cooperative Boolean system of dimension 2n.
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How about extreme chaos in its full glory?

Theorem 5. Let c be a constant such that

2
√

0.75 < c < 2 and let p > 0.75 + ln(0.5c)
2 ln 0.75.

Then no strictly quadratic cooperative Boolean

system can simultaneously be c-chaotic and p-

unstable.

For example, no sufficiently high-dimensional

strictly quadratic cooperative Boolean network

can simultaneously be be 0.9-unstable and 1.85-

chaotic.
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Open problem

Determine the exact values of c(ε, α, b, r) when

[ε, α, b, r] 6= [0.25,1,2,2].
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