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Review: The kind of models covered here

We study the spread of Infectious diseases in fixed population of
hosts (without demographics).

It is assumed that transmission of the disease can occur only
during an effective contact between a susceptible and an infectious
host who are connected by an edge in a given contact network.

We will use the simulation program IONTW that was written by
Drew LaMar for some educational materials that we developed
together with Hannah Callender Highlander and Natalia
Toporikova. It is freely available for downloading at

http://www.ohio.edu/people/just/IONTW/

or for running directly on the web at

https://qubeshub.org/iontw
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Review: SIR-models

Models of type SIR may be suitable for immunizing infections
like measles or chicken pox where recovery confers permanent
immunity.

Schematically, such a model can be represented as:
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SI -models

Models of type SI may be suitable for infections such as
HIV/AIDS where there is no recovery. .

Schematically, such a model can be represented as:
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Review: Some questions that we are trying to answer

If one index case is introduced into an entirely susceptible
population, will a major outbreak result? That is, will a
significant fraction of the population eventually get infected?

If a major outbreak does occur, what proportion of hosts will
experience infection? This proportion is called the final size
(of the outbreak).

Which control measures are most effective in either
preventing a major outbreak or reducing its final size?
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Review: For agent-based models of type SIR or SI we need

A population of N agents that represent hosts.

A time line t ∈ N for discrete-time models or t ∈ R for
continuous-time models.

States. At any given time, an agent can be either in state
S (susceptible), I (infectious), or R (removed).

For discrete-time models:
A transmission probability bij that agent i , if currently
infectious, will transmit a critical number of pathogens to
agent j during the current time step.
A removal probability ai that agent i , if currently infectious,
will transition into state R by the next time step.

For continuous-time models:
A transmission rate βij at which events of infections of agent j
by agent i occur, if agent i is currently infectious and agent j
is currently susceptible.
A removal rate αi at which agent i , if currently infectious, will
transition into state R.
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Some special assumptions

In IONTW we always make the assumption of homogeneity of
hosts. Mathematically speaking this meas that there are single
constants a, α such that ai = a and αi = α for all i .

When a = 0 or α = 0, then we obains SI -models.

Under the uniform mixing assumption there are single constants
b, β such that bij = b and βij = β for all i , j with i 6= j .

Today we will not assume but work with network-based models of
disease transmission.

In them we also have single parameters b, β, but assume that

bij = b, βij = β when i and j are connected in the contact
network,

bij = 0, βij = 0 otherwise.
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Review: Contact networks as graphs

We can model contact networks as a graph.

The nodes of the graph represent hosts, the edges connect any
two hosts who have reasonable frequent contact of the kind that
may lead to the transmission of the particular infection.

Giving a precise meaning to “reasonably frequent” here is a
decision that the modeler has to make.

The degree deg(i) of a node i is the number of edges that
connect i with other nodes.

Different contact networks can be relevant for different diseases.

The uniform mixing assumption can be modeled in this framework
by assuming that the nework is the complete graph where all
possible edges between the N nodes are included.
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Paths and connected components in graphs

A path from node i to node j in a graph is a sequence of
nodes (i = i0, i1, . . . , i` = j) such that {im, im+1} is an edge
for each m < `.

The distance d(i , j) is the length ` of the shortest path from i
to j if such a path exists, and is ∞ otherwise.

The connected component of a node i in a graph is the set of
all nodes j with d(i , j) <∞.

The diameter of a connected component is the largest
distance between any two nodes in this connected component.

A graph is connected when it has exactly one connected
component.
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Paths, connected components, and disease transmission

An infection can travel from the index case i to another
node j only along a path of the contact network.

Thus in an SIR-model, the set of nodes that will experience
infection during an outbreak must be contained in the
connected component of the index case.

In an SI -model, the set of nodes that will experience infection
during an outbreak will be equal to the connected component
of the index case.
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Random graphs

In reality, contact networks may not be well-structured. It is also
difficult to collect enough reliable data on a contact network on an
actual population.

But we can often estimate some network parameters like the mean
degree of a node in the network, or, more generally, the degree
distribution.

We can then assume that the actual network will be somewhat
typical for networks that are drawn from a certain distribution (for
a given population size N) and study the expected dynamics on
such (instances of) random networks.

We say that (dynamics on) random graphs satisfy a given property
(more formally: satisfy this property a.a.s — asymptotically almost
surely if the probability that the property holds goes to 1 as the
population size N for which we draw the random netwok goes
to ∞.
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Erdős-Rényi random graphs

Erdős-Rényi random graphs are the most basic example. Here
each possible edge between the N nodes is included with
probability p, independently for all pairs {i , j} of distinct
nodes i 6= j . They have the following properties (a.a.s.):

The mean degree is close to λ := p(N − 1).

The degree distribution is approximately Poisson with
parameter λ and nodes with degrees much higher than λ are
extremely unlikely.

They are disconnected.

For λ < 1, all connected components have size O(logN).

For λ > 1, there exists exactly one giant component of size
approximately ΘN, where Θ is the unique solution of
1− x = e−λx in the interval (0, 1). The diameter of this
component will be of order O(logN).
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Connection with the final size under uniform mixing

Consider a discrete-time SIR-model with a = 1 on a complete
graph with N nodes.

When we simulate an outbreak, we would normally at each time
step t and for each node i that is infectious at time t:

Decide randomly and independently for each j that is still
susceptible at time t whether there will be an effective
contact between i and j at this time step (with probability b).

Change the states of some nodes j to “infectious” according
to these decisions.

Equivalently, we could:

First draw an Erdős-Rényi random graph on N nodes with
connection probability p = b.

Then change the states of some nodes j at subsequent time
steps of the simulation to “infectious” according to whether
or not there is an edge in the Erdős-Rényi random graph.
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Conclusions and a word of caution

Consider a discrete-time SIR-model with a = 1 on a complete
graph with N nodes. Then for Θ > 0 with 1−Θ = e−R0Θ:

When R0 < 1, then all outbreaks will be minor, with only
O(logN) hosts experiencing infection.

When R0 > 1, then with positive probability, we will see major
outbreaks of final size close to Θ.

These predictions remain the same regardless of whether we
consider exactly one or a small fixed positive number of index
cases.

We can estimate the probability that one index case causes a
major outbreak as Θ.

Curiously enough, the last prediction will not hold if we instead
consider a continuous-time model or a model with a < 1.

Why?
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Clustering coefficients

Consider two randomly chosen people. Let pr be the probability
that they are friends.

Now consider a randomly chosen person and two friends of that
randomly chosen person. Let pf be the probability that they are
friends.

Does it seem plausible that:

(a) pr > pf ?

(b) pr = pf ?

(c) pr < pf ?

Real contact human networks will typically show some amount of
clustering. This can be quantified by clustering coefficients. There
are various definitions of these in the literature; here we will
consider normalized clustering coefficients that essentially measure
the ratio pf

pr
.
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The effect of clustering coefficients

Erdős-Rényi random networks are not realistic models of human
contact networks because they have normalized clustering
coefficients = 1.

For the same basic reproductive ratio R0, final sizes tend to be
smaller in networks with higher clustering coefficients.

Why?
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The small-world property

Consider the following network of human contacts: For each pair
of humans, connect them by an edge if they know each other well
enough that they could ask each other for a small favor. It is
generally believed that this graph is connected.

In 1967 the American social psychologist Stanley Milgram and his
collaborators conducted a clever experiment to estimate the
average distances between two people in this graph. The results
indicate that these average distances are at most six. This is the
famous six degrees of separation claim.

Why is this surprising?

Let us say that a class of graphs has the small-world property if
some fixed positive percentile of the distances between nodes
scales like O(logN).
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Other examples of networks with the small-world property

Erdős-Rényi random networks are a.a.s. disconnected but still have
the small-world property for connection probability p > 1 becuase
the diameter of the giant connected component scales
like O(logN).

Let us consider the graph whose nodes are all mathematicians.
Connect two nodes by an edge if they have co-authored at least
one paper. This graph has about 401 000 nodes, and a largest
connected component of about 286,000 nodes. Mathematicians in
this component have an Erdős number, which signifies the distance
from Paul Erdős. These numbers range from 0 (Erdős himself) to
13, with a median of 5. There are 503 co-authors of Erdős with an
Erdős number of 1, and 6 593 mathemaicians with an Erdős
number of 2. http://www.oakland.edu/enp/trivia/

This graph also has a high clustering coefficient; it looks like a
small-world network.
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Recall our story: The Sisters of the Round Table

Consider the monastic order of the Sisters of the Round Table.
The sisters spend most of their lives in their individual cells, where
they devote themselves to prayer and meditation. The only time
they have contact with each other is during meals that they take
seated in a fixed order around a giant round table. Within this
community, diseases can be transmitted only during mealtime.

Let us assume now that disease transmission can occur only
between two sisters who have at most one other sister sitting in
between them.

This network exhibits clustering, but does not have the small-world
property.
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But this is not the whole story ...

The Sisters of the Round Table who also will engage in
conversation on their way to and from the table with their next-cell
neighbors who may be seated across the table.

By adding the edges of Erdős-Rényi random graphs to the edges of
nearest-neighbor graphs, we obtain small-world models. Such
networks have both high clustering coefficients and the small-world
property.

They might more realistically represent actual contact networks
than either nearest-neighbor networks or Erdős-Rényi random
graphs.

But: In these small-world models, the degree distribution is still
very strongly concentrated around the mean value. Nodes with
with extremely high degrees, that is with degrees significantly
exceeding logN are still a.a.s. absent.
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Some empirical observations

Empirically studied human contact networks tend to have degree
distributions that roughly (very roughly!) conform to a power law
with

P(deg(i) = k) ∼ k−γ ,

where γ is some network-dependent constant with 2 < γ < 3.

Such networks are often called scale-free networks.

Such networks typically have some nodes called hubs with
extremely high degrees, of order around N1/γ .
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Methods for generating random scale-free networks

We can generate the as configuration models or generic
models for a given legitimate degree distribution.

There are several subtly different algorithms for generating
such random graphs.

We can obtain examples for γ = 3 by using the preferential
attachment model of Barabasi and Albert. Here nodes are
added one-by-one and attached with higher probability to
nodes that already have high degree.

Variants of the preferential attachment model that also
incorporate such processes as random rewiring can give
scale-free distributions with γ < 3.
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Modeling vaccination

Vaccination can be modeled by moving a set of susceptible nodes
into the R-compartment prior to any outbreak.

Under the uniform mixing assumption, it is predicted that when
a proportion of at least

Vhit = 1− 1
R0

of hosts is vaccinated, the we obtain herd immunity so that no
major utbreaks will be observed.

The fraction Vhit is called the herd immunity threshold.

Vaccinating significantly more than Vhit hosts is not cost effective.

Vaccinating much fewer than Vhit hosts has little effect.

Can we do much better in network-based models?
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Vaccinating the hubs—which hubs?

If the degree distribution is scale-free, then vaccinating a mach
smaller proportion than Vhit of nodes with very high degrees, the
hubs, may result in herd immunity.

But how do we find high-degree nodes to vaccinate if we
don’t know the network structure?
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Why do your friens have more friends than you do?

In 1991, S. L. Feld published and article with that title in the
American Journal of Sociology.

He showed that in all graphs of friendships with some
heterogeneities of degrees most people have fewer friends than
their friends have, on average.

This fact is called the Friendship Paradox.

Why would this be true?

Is this useful for vaccination strategies?

In acquaintance vaccination, we randomly pick a subset of hosts,
ask each of them to name a random acquaintance, and then
vaccinate that acquaintance.
But what if the acquaintance refuses to get vacinated?
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Directions of future reseach

When vaccination is voluntary, it can be studied with
vaccination games. Together with Ying Xin and David
Gerberry, we have beed studying such games where people
base their decisions on imitation rather than rational
calculations of costs. We obtained some interesting results
that I will present next week in Lisboa under the uniform
mixing assumption. This opens up a wide area of studying our
version of imitation for network-based models of disease
transmission.
Even for optimal strategies of mandatory vaccination there are
many open problems, especially on small-world networks.
There has been surprisingly little work on versions of
small-world models that are obtained by ading a scale-free
random graph instead of an Erdős-Rényi random graph to a
regular grid.
Relatively little work has been done on network-based models
with some heterogeneities of hosts.
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Resources: Software

My web page http://www.ohio.edu/people/just/IONTW/

and its mirror page https://qubeshub.org/iontw contains links
to a number of background readings and modules for further
exploration.

You can also download IONTW from this page, or run a web-based
version at

https:

//qubeshub.org/community/groups/iontw/iontwsimtool

after a (free) sign-up procedure.
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Resources: Book chapters

The following book chapters may be suitable as modules in and
introductory mathematical biology course, for self-study, or as a basis for
guided undergraduate research projects:

Winfried Just, Hannah Callender, M. Drew LaMar, and Natalia
Toporikova (2015); Transmission of infectious diseases: Data,
models, and simulations. In Raina Robeva (ed.), Algebraic and
Discrete Mathematical Methods for Modern Biology, Academic
Press, 193–215.

Winfried Just, Hannah Callender, and M. Drew LaMar (2015);
Disease transmission dynamics on networks: Network structure vs.
disease dynamics. In: Raina Robeva (ed.), Algebraic and Discrete
Mathematical Methods for Modern Biology, Academic Press,
217–235.

Winfried Just and Hannah Callender Highlander; Vaccination
strategies for small worlds. In A. Wootton, V. Peterson, C. Lee,
eds., A Primer for Undergraduate Research: From Groups and Tiles
to Frames and Vaccines, Springer Verlag, 2018, 223–264.
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