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Epidemiology, behavioral epidemiology, and medicine

Epidemiology studies how infectious diseases spread through
populations of humans, animals, or plants.

The subfield of behavioral epidemiology studies the interplay
between the spread of diseases and human reactions to observed or
predicted spread.

Mathematical modeling in behavioral epidemiology as an area of
research started only around 2002 and has seen explosive growth
since then. A 2016 survey of the literature on vaccination decisions
alone already lists 777 references (Wang, Z. et al., Statistical
physics of vaccination. Phys Rep 664:1–113).

Note that epidemiology is very different from medicine:

While medicine aims at curing diseases, epidemiology aims at
limiting the spread of infections and thereby preventing people
from becoming sick in the first place.

In a nutshell: Epidemiology is trying to mess up medicine’s
business model.
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Epidemiology: Some basic terminology

Epidemiology is by nature an interdisciplinary science. On the
biological side, we need to know what changes are caused when
pathogens (viruses, bacteria, fungi, protozoa) invade the organism
of a host (a human, animal, or plant) and how these pathogens
spread from host to host.

Transmission of a pathogen from one host to another may require
a contact between the two hosts (like in seasonal flu or COVID-19)
or an intermediary, called an insect vector (like in malaria or in
Chagas disease, which is endemic in South and Central America).

Sidebar: I was introduced to epidemiology through joint research
on the spread of Chagas disease with Mario Grijalva from OU
Heritage College of Osteopatic Medicine and my former Ph.D.
student Bismark Oduro.

In contrast to medicine, epidemiology does not focus on individual
cases, but takes a bird’s eye view of how pathogens spread through
populations of hosts.
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What’s math got to do with it?

The most important goal of epidemiology is to gain insight into
the effectiveness of possible control measures or preventive
measures, such as vaccination, quarantine, or behavior
modification (like social distancing, wearing masks, or lockdowns).

Guiding question of epidemiology: By how much can we limit
the spread of an infection within a population at what cost?

This question can be studied with mathematical models of how
pathogens spread in populations.

Transmissions of pathogens between individual hosts are
stochastic events, so the most natural framework for building
such models are stochastic processes.

But one can often simplify them to useful approximations with
ODE or difference equation models.

The insights from the biological side of epidemiology enter
these models as assumptions and parameters.

Winfried Just Behavioral Epidemiology



Staples of mathematical epidemiology: States and
compartments

Models of mathematical epidemiology assume that at any given
time, each host is in one of several specified states, such as:

susceptible (not infected, can become infected)

exposed (infected, but not (yet) infectious)

infectious (able to infect others)

removed (no longer susceptible to becoming infections and
can no longer infect others)

Not all these states are considered in all epidemiological models.
Models can also have additional states, like “asymptomatic
infectious” for studying COVID-19.

A compartment of an epidemiological model is the set of hosts in a
given state. The model itself is then conceptualized in terms of
hosts moving between compartments over time.
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Model types: Possible moves between compartments

Figure: Four basic model types: SEIR (A), SIR (B), SI (C), SIS (D)

The choice of the model type depends on the characteristics of the
infectious disease that we want to study.
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Example: An ODE version of the SIR-model

The variables represent the proportions of hosts in the S-, I-,
R-compartments; α, β > 0 are model parameters.

ds

dt
= −βsi

di

dt
= βsi − αi = (βs − α)i

dr

dt
= αi

Let R0 := β
α . It is called the basic reproduction number.

When R0 > 1, we will initially observe a near exponential
increase of infectious hosts, at least as long as s(t) ≈ 1.

When R0 ≤ 1, the model predicts decrease of i at all times.
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The importance of R0 in disease modeling

The official definition of R0 conceptualizes it as the average
number of secondary infections that will be caused by introduction
of one index case (infectious individual) into an otherwise entirely
susceptible population.

The subscript 0 in this notation means that R0 is a special case of
the more general notion of the reproduction number R or Rt at
time t = 0.

R0 is a measure of contagiousness and is the most important
parameter in modeling the spread of infectious diseases. For very
simple models like the one on the previous and next slides, it
essentially determines all the interesting predictions.

This is no longer true though for more realistic and elaborate
models.
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The value of R0 for the flu and COVID-19

For the seasonal flu, R0 changes from year to year and has
historically been between 1 and 2, with a mean of 1.3.

For the original strain of COVID-19, it has been estimated that
2.5 < R0 < 3.

For newer variants of COVID-19, R0 can no longer be estimated
directly from epidemiological data, since by now we don’t have
conditions anywhere that would feature an entirely susceptible
population that does not practice any preventive measures. But we
can compare reproductive numbers between different variants.

It was found that reproductive numbers for the α variant of
COVID-19 are about 60% higher than for the original variant.

Similarly, an influential study found that the δ variant is about
50% more “infectious” than the α variant, but this wasn’t actually
based on a comparison of reproduction numbers. Current
estimates of R0 for the δ variant being between 5 and 9 need to be
treated with caution.
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The herd immunity threshold

ds

dt
= −βsi

di

dt
= βsi − αi = βi

(
s − α

β

)
= βi

(
s − 1

R0

)
dr

dt
= αi

The sign of di
dt becomes negative when a proportion of at least

HIT := 1 − 1
R0

of hosts is no longer susceptible.

The quantity HIT is called the herd immunity threshold. Based on
the estimates of R0, it was be around 0.65 for the original variant
of COVID-19.

Question: Does this mean that if we were to let this original
variant of COVID-19 spread freely through the population until
around 65% of people will have experienced infection, the
remaining 35% would be protected (from the original strain)?
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Herd immunity alone won’t help much

No.

First of all, it is unclear to what extent models of type SIR or SEIR
are adequate for COVID-19. There are documented cases (very
few so far) where immunity after recovery from the infection was
subsequently lost. If this turns out to be common, we would need
to use models of type SEIRS, where there is no herd immunity.

And even in our simple SIR model, new infections only reach a
peak, but do not stop, when herd immunity is achieved. For
example, when R0 = 3, this model predicts herd immunity when at
least 2/3 of the population have experienced infection, but predicts
a final size of 0.94, which means that around 94% of the
population would eventually experience infection.

This overshoot phenomenon tends to be totally ignored in public
discussions of controlling COVID-19 through achieving herd
immunity.
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How do control measures enter the picture?

So far we have only considered the unmitigated spread of an
infection and have not talked about control measures.

Essentially, control measures alter some initial conditions or
parameters of the underlying disease transmission model, and their
effectiveness can to some extent be studied within the framework
of traditional mathematical epidemiology. For example:

Vaccinations will move people into the R-compartment
without the experience of actual infections. When people get
vaccinated prior to a disease outbreak, this changes the initial
conditions. If vaccine uptake corresponds to at least the herd
immunity threshold, this will then protect the entire
population.

Cancelling certain social activities, like attending large parties
or taking vacations in crowded locations, will reduce the
number of contacts and thus reduce the reproduction number
of airborne infections.
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Staples of behavioral epidemiology: Awareness and
behavioral reponses

Similarly, wearing masks and keeping 6 feet apart will reduce
the likelihood of transmission during a single contact and will
also reduce the reproduction number of airborne infections.

But all this is going to help only if people actually decide to get
vaccinated and to adopt these behavioral changes.

Behavioral epidemiology studies how and when people make such
decisions.

Generally speaking, they will do so only if they are aware of the
dangers of an outbreak. A standard assumption in behavioral
epidemiology is that adoption of control measures like the ones
listed here constitute behavioral responses that are induced by
awareness.
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What if awareness wanes over time?

Awareness of an outbreak may be generated by information about
new infections, either through direct observation or media reports.
It may also spread from person to person by word of mouth or
through social media, not unlike the spreading of an infection.

One would expect that awareness, and the behavioral response
induced by it, might wane over time. This would certainly be the
case if the behavioral response has driven down new infections.

Question: Could this waning of awareness and the induced
behavioral response lead to sustained oscillations of the numbers of
new infections if the underlying dynamics of the disease is of type
SIS, where hosts do not acquire immunity to reinfection upon
recovery?

We studied this question together with Joan Saldaña of the
University of Girona and my former Ph.D. student Ying Xin in:
Oscillations in epidemic models with spread of awareness. J. Math.
Biol. 76, 1027–1057 (2018).
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SAIS models and SAUIS models

In the paper, we constructed and explored two ODE models that
are similar in spirit to the first one I showed you, but more
elaborate. Here I will only outline their basic features and skip the
details.

For the first model, which we called a model of type SAIS, we
added one compartment of susceptible, but aware individuals (the
A-compartment) to a standard SIS-model. Hosts in this
compartment adopt a behavioral response that lowers their
chances of becoming infected, and also attempt to spread their
own awareness to others.

In the second model, which we called a model of type SAUIS, we
added a second compartment of aware hosts to an SAIS model,
which we called the U-compartment. Hosts in this compartment
adopt a behavioral response that lowers their chances of becoming
infected, but are unwilling to spread their own awareness to others.
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It depends how awareness spreads from person to person

We proved that sustained oscillations are ruled out in models of
type SAIS and all trajetories will always approach equilibria.

On the other hand, we rigorously demonstrated that models of
type SAUIS permit sustained oscillations for certain parameter
settings. Technically speaking, SAUIS models permit Hopf
bifurcations in their dynamics, while SAIS models do not.

According to our interpretation of these results, the cause of these
oscillations is not the waning awareness all by itself, but the
combination of this phenomenon with the differential pattern of
sharing awareness.

An interesting open question is what happens if the underlying
disease dynamics in these models is of type SIRS (or SEIRS)
instead, as it may well be for COVID-19. My Ph.D. student Ying
had done some simulations for such models that indicated even
more exotic bifurcations than mere Hopf bifurcations. But then
she graduated, and we did not pursue this topic further.
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To get vaccinated or not to get vaccinated?

That became the question for each of us.

Here is how a completely rational person would approach the
problem (for a hypothetical perfect vaccine; but the principle is
similar for a 95% effective one):

Getting vaccinated has a small cost cv > 0 (time spent, mild
side effects, etc.).

Not getting vaccinated has a much larger cost ci � cv if I do
get infected, but has no cost at all if I luck out and don’t
catch the disease anyway.

If x is the probability of an unvaccinated person getting
infected, I should get vaccinated if, and only if, xci ≥ cv .

Question: What’s missing from the above argument?

The probability x is not fixed, but depends on the vaccination
coverage, that is, the overall proportion V of people in the
population who decide to get vaccinated.
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Vaccination games

So, a population of perfectly rational people might decide about
vaccinations as follows: Let’s each make independently our
decisions to get vaccinated with probability V ∗. This will give a
population-wide vaccination coverage of (roughly) V ∗.

If V ∗ is chosen in such a way that

cv = x(V ∗)ci ,

then nobody will regret their decision, and V ∗ represents the Nash
equilibrium of a model called a vaccination game.

Alas, the Nash equilibrium is not optimal in the sense of
minimizing the expected cost to society as a whole.

Under mild additional assumptions, a vaccination coverage
V = HIT would be societally optimal, but V ∗ < HIT .

To see the latter, it suffices to know that for large populations
x(HIT ) ≈ 0, so that cv > x(HIT )ci .
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But people are not rational. So there is some hope.

Real people use heuristics such as imitating successful others for
making their decisions. Vaccination decisions through imitation
have been extensively studied. The seminal paper Fu F,
Rosenbloom DI, Wang L, Nowak MA (2011) Imitation dynamics of
vaccination behaviour on social networks. Proc R Soc B
278(1702):42–49 roughly uses the following setup for studying
vaccinations against the seasonal flu:

Hosts independently make their vaccination decisions before
each flu season.

Each host compares their own cost from last season with the
cost of one randomly chosen other member of the population.

Each host then switches their strategy (vaccinate/don’t
vaccinate) with a probability that is given by a Fermi function
of the difference in costs.

The resulting vaccination coverages and infection probabilities
are then calculated in a difference equation model based on
expected values of V and on an SIR model for the flu.
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So, does imitation work better than rational self-interest?

No. At least not under generic assumptions.

That’s what the vast literature says. But pretty much all of this
literature uses the same Fermi function for the switching
probability as the seminal paper:

pswitch =
1

1 + e−β(C(your strategy)−C(other))

Here β > 0 is a parameter that can be interpreted as a degree of
certainty about the actual cost difference.

Well, if it comes from physics and if Professor Nowak from Harvard
introduced it into this context, it must be good stuff, right?

Except that psychological experiments on real decision-making
didn’t find a good match and needed additional parameters to find
a decent fit; see Traulsen A, Semmann D, Sommerfeld RD,
Krambeck HJ, Milinski M (2010) Human strategy updating in
evolutionary games. Proc Natl Acad Sci USA 107(7):2962–2966.
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Generalized Fermi functions

Together with David Gerberry of Xavier University and Ying Xin,
in Open-minded imitation can achieve near-optimal vaccination
coverage. J. Math. Biol. 79, 1491–1514 (2019), we generalized
Fermi functions as follows:

pswitch =
1

α + e−β(C(your strategy)−C(other))

=
α−1

1 + α−1e−β(C(your strategy)−C(other))
.

The parameter α > 1 can be interpreted as a degree of
open-mindedness, a willingness to try out a new strategy if it
doesn’t seem to be too much worse than what you have been
doing previously.

For the same generic case as in Fu et al., we found both
analytically and and by simulation studies that by choosing α and
β large enough, we can get equilibrium vaccination coverages
above V ∗ and arbitrarily close to the societal optimum HIT .
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Lots of open questions remain

While the results of this paper are encouraging, they only cover the
simplest case. It remains open to what extent our results
generalize:

To imperfect vaccines.

To models that incorporate the structure of contacts in the
population.

To imitation of more than one other.

To diseases that resemble COVID-19 more than the seasonal
flu.

The list goes on, and we have some very interesting partial results
for some of these problems.

But I currently don’t have committed collaborators for this topic.
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