
Data requirements of
reverse-engineering

algorithms

Winfried Just

Department Mathematics, Ohio

University,
Athens, Ohio, U.S.A.

This material is based on work done while the author

was visiting the Mathematical Biosciences Institute

(MBI) at OSU in Columbus, Ohio. The author

acknowledges support by the National Science

Foundation under Agreement No. 0112050.

1

The problem

• Collecting data on biochemical net-

works remains expensive; reverse-

engineering algorithms typically rely

on small data sets.

• This makes reverse-engineering prob-

lems vastly underdetermined.

• Reverse-engineering algorithms usu-

ally select and return one model

that is consistent with the data.

2

Our goal

Develop a theory of data require-

ments for the most popular reverse-

engineering algorithms.

Ideally, such a theory would:

• Predict the probability that a given

algorithm infers the correct, or an

approximately correct, model of the

network from a given data set.

• Provide guidelines for the most promis-

ing choice of input parameters.

3

Outline of the talk

• Part 1: General considerations

• Part 2: Proof of principle: Theo-

rems about the Laubenbacher-Stigler

algorithm

4

Why a lot of data may be

needed

• Validation of the modeling paradigm

(stochastic vs. continuous vs. dis-

crete).

• Dealing with noise in the data (this

is essentially statistics).

• Model selection under the assump-

tion of a suitable modeling paradigm

and clean data.

5

One modeling paradigm

• There are n chemical species with

concentrations ~x = [x1, . . . xn]T .

• xi ∈ F , for some finite set F .

• Concentration levels change simul-

taneously in discrete time steps so

that xi(t + 1) = hi(~x(t)).

6

One reverse-engineering prob-

lem

Given a data set

D = {< x̄(t), y(t) >: t ∈ [m]}

such that y(t) = hi(~x(t)) for all t ∈ [m],

find the unknown function hi.

The function hi will henceforth be called

the i-th regulatory function; a reverse-

engineering algorithm returns a model

h∗i of hi consistent with the data.

We will not in general assume that the

data are time series data.
7

A caveat

It is not clear whether the hi’s should

be reverse-engineered one at a time.

8

Quality of the solution

• Perfectionist: Accept h∗i only if h∗i =

hi.

• Topologist: Accept h∗i if it depends

on the same input variables as hi.

• Approximist: Accept h∗i if it cor-

rectly predicts the network response

to most concentration vectors that

have not been studied in the lab.

9

No Free Lunch Theorem

For a data set D of size m there are

|F ||F |n−m different solutions h∗i for the

reverse engineering problem. Model se-

lection is (at least implicitly) based on

a prior distribution Θ of biologically plau-

sible functions hi. If Θ is the uniform

prior, then no reverse-engineering al-

gorithm can do better than randomly

picking a model h∗i , at least if the ex-

perimental protocol by which the data

were obtained is ignored.

10

Some cheaper lunches exist

Even with a uniform prior Θ, one can

sometimes slightly increase the chances

of finding the correct model if the data

collection protocol is known.

How come? If data were collected

from systems that had been running

unperturbed for a long time, one can

assume that data input vectors are part

of an attractor.

11

Using data collection proto-

col information

• Reverse-engineering all hi simulta-

neously may be beneficial.

• A formalism for data collection pro-

tocols should indicate which knock-

out, overexpression, or perturbation

experiments are feasible.

• Guidelines for data collections may

result as an additional bonus.

12

In the absence of a theory

We imagine an experimenter who ran-

domly samples (with replacement from

a uniform distribution) data inputs ~x(t)

from Fn and takes measurements of

the system response y(t). Initial data

sets Dm = {< ~x(t), y(t) >: t ∈ [m]}
are analyzed with the same algorithm.

Let λ(hi) be the smallest m such that

the algorithm returns h∗i = hi. We can

prove esitmates for the expected value

E(λ(hi)).

13

Towards meaningful priors

• Performance of reverse-engineering

algorithms should be assessed in the

context of a biologically meaningful

prior Θ.

• Regulatory functions tend to depend

on relatively few inputs.

• Boolean gene regulatory functions

tend to be so-called nested cana-

lyzing functions.

14

Two algorithms

• The LS-algorithm of Laubenbacher

and Stigler, 2004. A computational

algebra approach to reverse engi-

neering of gene regulatory networks.

J. Theor. Biol. 229, 523–537.

• The LS-algorithm with preprocess-

ing of Jarrah, Laubenbacher, Stigler,

and Stillman, 2007. Reverse en-

gineering of polynomial dynamical

systems. Adv. in Appl. Math. to

appear.

15

Input parameters

In these algorithms, F is assumed to

be a finite field, such as F2 = {0,1}.
The algorithms use so-called term or-

ders of monomials in the polynomial

ring F [x1, . . . , xn] as input parameters.

The most important types of term or-

ders are lex orders and graded or-

ders. In the LS-algorithm, the term

order is entirely user-defined, in the LS-

algorithm with preprocessing, the user

specifies the type of term order (e.g.,

lex or graded) and the algorithm deter-

mines the specific term order based on

the data.
16

The LS-algorithm with graded

orders

Theorem 1. Let F = {0,1} and let hi

be a nested canalyzing function that

depends on k variables. If the LS-algorithm

is run with a randomly chosen graded

term order, then E(λ(hi)) is Θ(nk). If

the LS-algorithm is run with an opti-

mally chosen graded term order, then

E(λ(hi)) is Ω(nk−1).

17

The LS-algorithm with lex or-

ders

Theorem 2. Suppose hi depends on

exactly k > 0 variables.

(i) If the LS-algorithm is run with a

randomly chosen lex order, then E(λ(hi))

is Ω(cn) for some constant c > 1.

(ii) If the LS-algorithm is run with an

optimally chosen lex order, then E(λ(hi))

is O(|F |kk ln |F |).

18

The LS-algorithm with pre-

processing

Theorem 3.Suppose hi depends on at

most k variables. If the LS-algorithm

with preprocessing is run for lex or-

ders, then E(λ(hi)) is O(|F |2k 2k ln n).

Moreover, if hi is nested canalyzing,

then E(λ(hi)) is O(|F |k+1 (k +1) ln n).

19

