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The general problem

Suppose we have a natural system N and some variables ~v(t) that
change over time. We can consider mathematical models M0,M1

that predict the dynamics of the variables ~v .

When can we be assured that models M0,M1 make
equivalent predictions about the variables ~v?

With some appropriated definitions, this questions can be turned
into a mathematical problem; whereas the question whether the
model makes true predictions about ~v is empirical and goes
beyond mathematics.
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Some caveats

The models M0,M1 may contain additional variables beyond
those that model ~v .

The models M0,M1 may be of different types: ODE, PDE
systems, discrete-time systems with a continuous or discrete
state space (e.g. Boolean), or even stochastic processes of
various kinds.

The meaning of equivalent predictions is far from obvious
when M0,M1 are of different types. In general, the precise
definition will depend on the particular aspects of the
dynamics that M0,M1 are supposed to model.
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DE models of gene regulation

What is going on in a cell biochemically at any given time is
determined by which genes are being expressed at the time. The
possible expression patterns form the states of the gene regulatory
network.

How can we study this network?

One approach would be to conceptualize a state of a gene
regulatory network as a vector of concentrations of messenger RNA
(mRNA). This would give a system of ODEs (or PDEs if location
in the cell is also taken into account).

Let M1 denote the resulting model.
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Boolean models of gene regulation

It is difficult to measure actual mRNA concentrations with
reasonable accuracy. But it is easy to take fuzzy snapshots of
mRNA levels at different times even for all genes of an organism
simultaneously using microarrays. These snapshots reveal only
whether the expression level of a gene is high or low (sort of). One
is thus tempted to construct a model M0 of gene regulation that
is a Boolean system, where

Variable i represents the mRNA level of gene i .

Expression levels take only values 0 (low) and 1 (high).

Time proceeds in discrete steps.

At each time step, all variables are updated simultaneously.

All these assumptions are biologically unrealistic.
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What kind of mathematical object is M0?

The state space is {0, 1}n, where n is the number of genes.

Time τ takes values in the set N of nonnegative integers.

There exists a function f : {0, 1}n → {0, 1}n called the
updating function such that
~s(τ + 1) = f (~s(τ)).

The i-th component fi : {0, 1}n → {0, 1}n of f is called the
regulatory function of gene number i .

Note that M0 is uniquely determined by f .
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Some empirical observations

Boolean models often appear to work pretty well for gene
regulation.

The processes of of transcription (production of mRNA),
translation (of mRNA into proteins) and diffusion of mRNA
proceed at different time scales.

Gene regulatory and other biological networks appear to
involve more intermediaries than seems strictly necessary.

Why do Boolean systems work so well as models of gene
regulatory networks?
What is the role of separation of timescales and
intermediaries in this phenomenon?
Under what conditions is M0 guaranteed to be a good
approximation of M1?
In other words, which conditions guarantee that a DE model
M1 will exhibit switchlike behavior?
Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Discrete vs. Continuous Models



Some empirical observations

Boolean models often appear to work pretty well for gene
regulation.

The processes of of transcription (production of mRNA),
translation (of mRNA into proteins) and diffusion of mRNA
proceed at different time scales.

Gene regulatory and other biological networks appear to
involve more intermediaries than seems strictly necessary.

Why do Boolean systems work so well as models of gene
regulatory networks?
What is the role of separation of timescales and
intermediaries in this phenomenon?
Under what conditions is M0 guaranteed to be a good
approximation of M1?
In other words, which conditions guarantee that a DE model
M1 will exhibit switchlike behavior?
Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Discrete vs. Continuous Models



Some empirical observations

Boolean models often appear to work pretty well for gene
regulation.

The processes of of transcription (production of mRNA),
translation (of mRNA into proteins) and diffusion of mRNA
proceed at different time scales.

Gene regulatory and other biological networks appear to
involve more intermediaries than seems strictly necessary.

Why do Boolean systems work so well as models of gene
regulatory networks?
What is the role of separation of timescales and
intermediaries in this phenomenon?
Under what conditions is M0 guaranteed to be a good
approximation of M1?
In other words, which conditions guarantee that a DE model
M1 will exhibit switchlike behavior?
Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Discrete vs. Continuous Models



Some empirical observations

Boolean models often appear to work pretty well for gene
regulation.

The processes of of transcription (production of mRNA),
translation (of mRNA into proteins) and diffusion of mRNA
proceed at different time scales.

Gene regulatory and other biological networks appear to
involve more intermediaries than seems strictly necessary.

Why do Boolean systems work so well as models of gene
regulatory networks?

What is the role of separation of timescales and
intermediaries in this phenomenon?
Under what conditions is M0 guaranteed to be a good
approximation of M1?
In other words, which conditions guarantee that a DE model
M1 will exhibit switchlike behavior?
Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Discrete vs. Continuous Models



Some empirical observations

Boolean models often appear to work pretty well for gene
regulation.

The processes of of transcription (production of mRNA),
translation (of mRNA into proteins) and diffusion of mRNA
proceed at different time scales.

Gene regulatory and other biological networks appear to
involve more intermediaries than seems strictly necessary.

Why do Boolean systems work so well as models of gene
regulatory networks?
What is the role of separation of timescales and
intermediaries in this phenomenon?

Under what conditions is M0 guaranteed to be a good
approximation of M1?
In other words, which conditions guarantee that a DE model
M1 will exhibit switchlike behavior?
Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Discrete vs. Continuous Models



Some empirical observations

Boolean models often appear to work pretty well for gene
regulation.

The processes of of transcription (production of mRNA),
translation (of mRNA into proteins) and diffusion of mRNA
proceed at different time scales.

Gene regulatory and other biological networks appear to
involve more intermediaries than seems strictly necessary.

Why do Boolean systems work so well as models of gene
regulatory networks?
What is the role of separation of timescales and
intermediaries in this phenomenon?
Under what conditions is M0 guaranteed to be a good
approximation of M1?

In other words, which conditions guarantee that a DE model
M1 will exhibit switchlike behavior?
Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Discrete vs. Continuous Models



Some empirical observations

Boolean models often appear to work pretty well for gene
regulation.

The processes of of transcription (production of mRNA),
translation (of mRNA into proteins) and diffusion of mRNA
proceed at different time scales.

Gene regulatory and other biological networks appear to
involve more intermediaries than seems strictly necessary.

Why do Boolean systems work so well as models of gene
regulatory networks?
What is the role of separation of timescales and
intermediaries in this phenomenon?
Under what conditions is M0 guaranteed to be a good
approximation of M1?
In other words, which conditions guarantee that a DE model
M1 will exhibit switchlike behavior?
Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Discrete vs. Continuous Models



What is an approximation in this context?
Comparing apples with oranges

The mRNA concentrations ~v of N will be represented by vectors ~x
of reals in M1 and Boolean vectors ~s in M0.

We can fix a discretization S that maps real vectors ~x to Boolean
vectors ~s = S(~x).

Then we can consider M0 a good approximation of M1 if for each
ODE trajectory ~x(t) that starts from initial condition ~x(0) ∈ U for
some large enough U the corresponding discretized trajectory
S(~x(t)) is consistent with the Boolean trajectory ~s(τ), where
~s(0) = S(~x(0)), that is, if the updating function f of M1 correctly
predicts, at all future times, which discretized state will be entered
next by the DE trajectory.

All of numerical analysis is essentially based on this type of
construction, except that there the concern is with not exceeding
the error tolerance over a finite time interval.
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What is the next state?

Time t in the DE model does not admit any kind of next state.
We need to define what this means.

Consider a time tswitch when
~s(τ) = limt→t−switch

S(~x(t)) 6= limt→t+switch
S(~x(t)) = ~s(τ + 1).

If ~s(τ + 1) = f (~s(τ)) in all such situations, we have strong
consistency.

If si (τ + 1) = fi (~s(τ)) for the variable number i whose
Boolean state actually changes and sj(τ + 1) = sj(τ) for
j 6= i , we have consistency.

Other notions of consistency are meaningful if we can treat
changes in the Boolean state of several variables that occur in
very short intervals as simultaneous.
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A problem from mathematical neuroscience

Recordings from certain neuronal tissues (of real organisms) reveal
the following pattern: Time seems to be partitioned into episodes
with surprisingly sharp boundaries. During one episode, a group of
neurons fires, while other neurons are at rest. In the next episode,
a different group of neurons fires. Group membership may vary
from episode to episode, a phenomenon called dynamic clustering.

Why? Can we mathematically explain this phenomenon?
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An ODE Model of Neuronal Networks
by Terman D, Ahn S, Wang X, Just W, Physica D. 2008

Each excitatory (E -) cell satisfies

dvi
dt

= f (vi ,wi )− gEI

∑
s Ij (vi − v I

syn)

dwi

dt
= εg(vi ,wi )

dsi
dt

= α(1− si )H(vi − θE )− βsi .

Each inhibitory (I -) cell satisfies

dv I
i

dt
= f (v I

i ,w
I
i )− gIE

∑
sj(v I

i − vE
syn)− gII

∑
s Ij (v I

i − v I
syn)

dw I
i

dt
= εg(v I

i ,w
I
i )

dx I
i

dt
= εαx(1− x I

i )H(v I
i − θI )− εβxx I

i

ds Ii
dt

= αI (1− s Ii )H(x I
i − θx)− βI s Ii .
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Can we analyze the dynamics of this model?

The architecture involves a layer of excitatory neurons and a
layer of inhibitory neurons that mediate the firing of the
excitatory neurons. The whole layer acts as a pacemaker.

Individual neurons are usually modeled by the the
Hodgkin-Huxley Equations, which are nonlinear ODEs
involving multiple time scales.

These are difficult to analyze mathematically even for single
neurons, let alone for large networks.

Fortune cookie: Doing the impossible is kind of fun.

Let us call the model that we just described M1.
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These are difficult to analyze mathematically even for single
neurons, let alone for large networks.

Fortune cookie: Doing the impossible is kind of fun.

Let us call the model that we just described M1.
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Mathematical neuroscience for the rest of us

The following is true in at least some neuronal networks.

Neurons fire or are at rest.

After a neuron has fired, it has to go through a certain
refractory period when it cannot fire.

A neuron will fire when it has reached the end of its refractory
period and when it receives firing input from a specified
minimal number of other neurons.

Let us build a simple model M0 of neuronal networks based on
these facts.
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A Discrete Dynamical System Model

A directed graph D = (VD ,AD) and integers n (size of the
network), pi (refractory period), thi (firing threshold).

A state ~s(τ) at the discrete time τ is a vector:
~s(τ) = (s1(τ), . . . , sn(τ)) where si (τ) ∈ {0, 1, . . . , pi} for each i .
The state si (τ) = 0 means neuron i fires at time τ.

Dynamics on the discrete network:

If si (τ) < pi , then si (τ + 1) = si (τ) + 1.

If si (τ) = pi , and there exists at least thi neurons j with
sj(k) = 0 and < j , i > ∈ AD , then si (τ + 1) = 0.

If si (τ) = pi and there do not exist thi neurons j with
sj(τ) = 0 and < j , i > ∈ AD , then si (τ + 1) = pi .

If pi = 1 for all i then this is a Boolean system.
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Reducing Neuronal Networks to Discrete Dynamics,
by Terman D, Ahn S, Wang X, Just W, Physica D. 2008

Theorem

For each ODE model M1 of neuronal networks as described above,
if the intrinsic and synaptic properties of the cells are chosen
appropriately, the dynamics of M1 will exhibit dynamic clustering.

Moreover, there exists a discrete model M0 as on the previous slide
that correctly predicts, for a large region U of the state space of
M1 and all times t which neurons will fire during which episodes.

The corresponding models M0 are much more tractable than the
models M1. In particular, they permit us to study the dependence
of the dynamics on the network connectivity.
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Some drawbacks of this result

The right-hand sides of the ODEs for M1 contain some
discontinuities (some use the Heaviside function).

The required architecture of the network is very special.

The ODE models are very complicated and difficult to analyze.

We would really like to know what kind of architectures in
general favor or imply consistency of a ODE system with a
Boolean system. In particular, we want to understand the
role of separation of timescales and of intermediary variables.
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Recall the following notions

Let t denote time in the ODE model M1, let τ denote time in the
Boolean approximation M0. Consider a time tswitch when
~s(τ) = limt→t−switch

S(~x(t)) 6= limt→t+switch
S(~x(t)) = ~s(τ + 1).

If ~s(τ + 1) = f (~s(τ)) in all such situations, we have strong
consistency.

If si (τ + 1) = fi (~s(τ)) for the variable number i whose
Boolean state actually changes and sj(τ + 1) = sj(τ) for
j 6= i , we have consistency.

Other notions of consistency are meaningful if we can treat
changes in the Boolean state of several variables that occur in
very short intervals as simultaneous.
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Related results in the literature

Leon Glass and his followers have produced a large body of
work on consistency (but not in general strong consistency)
between so-called piecewise linear ODE models of gene
regulatory networks and their Boolean approximations. Again,
the right-hand sides of the ODEs in these models have
discontinuities.

E. Gehrmann, B. Drossel, Boolean versus continuous dynamics
on simple two-gene modules, Phys. Rev. E 82 (2010) 046120
prove strong consistency for one simple example of ODE and
Boolean networks. The right-hand sides of the ODE model in
this example are Lipschitz-continuous.
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Our plan

Construct classes D of toy ODE models such that

The ODEs for individual variables are easy to understand.

The right-hand sides of the ODEs are Lipschitz-continuous.

The class D is universal in the sense that each Boolean system
M0 can be treated as a (not necessarily consistent) natural
approximation of a system M1 ∈ D.

The class D permits explorations of how network connectivity
(in particular: intermediary variables) and separation of time
scales influence the presence or absence of consistency
between M1 and M0.

W. Just, M. Korb, B. Elbert, and T. Young; Two classes of ODE
models with switch-like behavior, Physica D 264 (2013) 35–48.
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Conversion of Boolean into ODE systems

In order to achieve universality of our class D we need to translate
a Boolean system with updating function f into ODE systems
D(f , ~γ), where ~γ is a vector of parameters.

For this we need a conversion
Q = Q f = (Q1, . . . ,Qn) : Rn → [0, 1]n.

Conversions are Lipschitz continuous,

constant on (−∞,−1]× {~y}, and on [1,∞)× {~y}, where
{~y} ∈ Rn\{i},

Q(s̃) = ˜f (s), where for a Boolean vector s we have s̃i = 2si − 1.

The paper discusses several natural classes of conversion schemes.
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The ODEs

Let g(x) = 3x − x3 − 3.

The ODE for variable i will take the form

ẋi = γi (g(xi ) + 6Qi (~x)),

where Qi is the ith coordinate of a given conversion Q = Q f , and
γi is a positive constant that allows us to implement separation of
time scales.
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Properties of the ODEs

ẋi = γi (g(xi ) + 6Qi (~x)), where g(x) = 3x − x3 − 3. Think if Qi as
a constant.

If Qi < 1/6, there exists a unique globally stable equilibrium
x∗i < −1.

If Qi > 5/6, there exists a unique globally stable equilibrium
x∗∗i > 1.

If Qi ∈ (1/6, 5/6), there exist three equilibria, locally stable
ones x∗i < −1 and x∗∗i > 1, as well as an unstable one
−1 < x◦ < 1.

[−2.1038, 2.1038]2n is forward invariant and can be considered
the state space of our ODE systems.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Discrete vs. Continuous Models



Properties of the ODEs
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An example

Let Qi be a nondecreasing function that takes the value 0
whenever xj ∈ (−∞,−1] and takes the value 1 whenever

xj ∈ [1,∞). We can think of Qi as the ith coordinate of a
conversion of a Boolean function f with fi (~s) = sj .

Consider

ẋi = γi (g(xi ) + 6Qi (~x)), where g(x) = 3x − x3 − 3 and an initial
state where xi (0) ∈ (−∞,−1] while xj(t) ∈ [1,∞) for all times t.

Then Qi > 5/6, so there exists a unique globally stable equilibrium
x∗∗i > 1.
Variable i will move into the interval [1,∞) and thus will
eventually change its Boolean state to 1, as predicted by the
Boolean updating function.

This example allows us to incorporate equations into our system
that essentially copy the Boolean value of some variable j to
variable i , at whatever time scale we choose.
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Signature variables and signaling variables

Think of n variables of a natural system N whose dynamics we are
interested in. We will represent them in our ODE systems as
variables x1, . . . , xn, called signature variables. We are interested in
achieving (strong) consistency with the dynamics of their Boolean
counterparts s1, . . . , sn as governed by a Boolean updating
function f .

To achieve this goal, we will need additional signaling variables
xn+1, . . . , x2n that will not have counterparts in the Boolean
approximation.

We construct a system D(f , ~γ) by choosing the DE for each
signature variable xi as in the example on the previous slide, with
j = xn+i (so the value of the signaling variable gets essentially
copied to the corresponding signature variable).

The signaling variable xn+i takes input from the signature variables
only, with Qn+i being a conversion of the Boolean regulatory
function fi .
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Signaling variables are needed

Consider the one-dimensional Boolean system M0 given by the
updating function
f (s) = ¬s.

Then M0 cannot be consistent with a one-dimensional ODE
system M1 for any discretization based on a single threshold.

But we get strong consistency with D(f , ~γ) for any ~γ.
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Strong consistency is possible only for some Boolean
systems

Consider a Boolean system M0 with updating function f . We say
that f (or M0) is one-stepping if for every ~s the Boolean vectors ~s
and f (~s) differ in at most one coordinate.

Lemma

A Boolean system can be strongly consistent with an ODE system
M1 for any reasonable discretization only if M0 is one-stepping.

Proof: For any discretization with nice enough boundaries, most
trajectories of M1 will cross only one boundary at a time.
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A Theorem

Theorem

Let M0 be a Boolean system with a one-stepping updating
function f : {0, 1}n → {0, 1}n and let ~γ − = (γ1, . . . , γn) be a fixed
vector of positive reals.

Then there exist µ > 0 such that for every
extension of ~γ − to a 2n-dimensional vector ~γ of positive reals with
γi+n < µ for all i , the systems M0 and D(f , ~γ) are strongly
consistent.

We have already seen that the assumption that f is one-stepping is
necessary in this theorem.
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A more general Theorem

We also have a more technical notion of monotone-stepping
Boolean functions. All one-stepping Boolean functions are
monotone-stepping, but not vice versa.

Theorem

Let M0 be a Boolean system with a monotone-stepping updating
function f : {0, 1}n → {0, 1}n and let ~γ − = (γ1, . . . , γn) be a fixed
vector of positive reals. Then there exist µ > 0 such that for every
extension of ~γ − to a 2n-dimensional vector ~γ of positive reals with
γi+n < µ for all i , the systems M0 and D(f , ~γ) are consistent.
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Open problems: Possible extensions

Some additional assumption on f is needed in the last
theorem, but the assumption that f is monotone-stepping is
too strong. It remains open to find a necessary and sufficient
condition on f for which the conclusion of the last theorem
holds.

The particular form of the DEs in our class D allowed us to
find the proofs of the above theorems, but the argument really
seems to require only a particular type of interacting
bifurcations. It remains to formulate and prove versions of the
theorems in such a more general form.
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Directions for Further Research

How about arbitrary functions? The second theorem can be
extended to some, but not all Boolean functions. But we know
(not yet published) that of M0 is an arbitrary Boolean system, then
M0 is consistent with some ODE system M1.

This follows from the observation that every Boolean system can
be embedded into a one-stepping Boolean system with additional
Boolean variables, which allows to construct M1 ∈ D, but with a
more complicated relationship between M0 and M1. In effect, M1

will have a lot more intermediary variables.

The particular forms of the DEs for the intermediary variables may
not matter all that much. We can think of M1 as a network of
intermediary (signaling) and signature variables.

What structural properties of this network favor or imply
consistency?
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