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What processes are we modeling?

We are interested in diseases that are triggered when pathogens
aka infectious agents such as viruses or bacteria (called
microparasites) enter the organism of a host (human, animal,
plant).

We are not interested here in the actual changes that the disease
causes in the organism of the host, or how the pathogens multiply
within the host. We only care about how the disease spreads
between hosts of a given population.

In this lecture we will focus on diseases whose transmission requires
direct contact (of a certain type) between hosts, as opposed to
diseases that require a third type of organisms, called vectors for
transmission between hosts (mosquitoes in the case of malaria), or
diseases where the pathogens are taken up from the shared
environment of the hosts (drinking water in the case of cholera).
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Which questions are we trying to answer?

If some disease pathogens are introduced into a population of
hosts that have not previously been exposed to the disease,
will a major outbreak aka an epidemic result? That is, should
we expect that a significant fraction of hosts in the population
will eventually get infected?

If an epidemic does result, what proportion of hosts will be
infected? The proportion of hosts that will be infected at
some (not necessarily the same) time during the epidemic is
called the final size (of the outbreak).

What control measures are most effective in either preventing
an epidemic or reducing the final size as much as possible?

Possible control measures include vaccination, quarantine,
culling, (for animal and plant diseases) or behavior
modifications (for human diseases).
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When is a mathematical model good (enough)?

Our goal is to construct mathematical models that give us correct
answers to the questions on the previous slide. For that, we need
the model to:

Give us answers in the first place. Thus the model needs to be
simple enough to be tractable either by mathematical analysis
or computer simulations.

Be sufficiently realistic. It needs to take into account
sufficiently many biological details that influence the dynamics
so as to make reasonably correct predictions.

Be based on data that we actually can collect.

This may be too much to ask for. In practice, we may not know
whether a given model is sufficiently realistic.
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What happens to a host during a disease?

Since we only aim at modeling the dynamics between hosts, we
only make the following assumptions about the disease that gets
transmitted to host number i at some time T i

E :

All (potential) hosts start out being susceptible to the disease
(at times t < T i

E ).

At all times T i
E ≤ t < T i

I the host will not (yet) be able to
infect others.

At all times t with T i
I ≤ t < T i

R ≤ ∞ the host will be
infectious, that is, will transmit the disease with positive
probability during contacts with susceptible hosts.

At all times t ≥ T i
R the host will neither be infectious nor

susceptible.

How are the onset and cessation of symptoms related to
these times? What happens at time T i

R?

What kind of diseases do not satisfy the above assumptions?
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The building blocks of disease models: compartments

Let’s summarize:

T i
E is time of exposure of host number i .

T i
I is time of onset of infectiousness of host number i .

T i
R is time of removal of host number i , which means the host

number i either dies from the disease or acquires permanent
immunity at time T i

R .

This suggests a partition of host population at time t into up to
four compartments:
S comprises all susceptible hosts (for which t < T i

E ),
E comprises all exposed hosts with T i

E ≤ t < T i
I ),

I comprises all infectious hosts with T i
I ≤ t < T i

R , and
R comprises all removed hosts with T i

R ≤ t.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Disease Dynamics



SEIR-models

If all four compartments are considered, we get an SEIR-model.
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Latency periods

The time interval [T i
E ,T

i
I ) between exposure and onset of

infectiousness is called the latency period. This may be different
from the time interval between exposure and onset of symptoms,
which is called the incubation period.

In many diseases, the length of the latency period is very short
relative to the duration of infectiousness TR

i − T i
I .

If the length of the latency period is very short relative to
the duration of infectiousness, could we perhaps simplify the
model? If so, how would we go about it?
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SIR-models

The simplifying assumption T i
E = T i

I eliminates the
E -compartment and we get an SIR-model.
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SI -models

If in addition T i
R =∞, then the R-compartment becomes

redundant and we get an SI -model.
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SIS-models

If we assume instead that at time T i
R hosts recover and become

susceptible to reinfection instead of acquiring immunity, then we
get an SIS-model.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Disease Dynamics



Four basic types of compartment models

S comprises all susceptible hosts (for which t < T i
E ),

E comprises all exposed hosts with T i
E ≤ t < T i

I ),
I comprises all infectious hosts with T i

I ≤ t < T i
R , and

R comprises all removed hosts with T i
R ≤ t.

The times T i
E ,T

i
I ,T

i
R are specific to each host. Membership in the

compartments changes over time, and we can think of hosts
moving (but not in space!) from S to E to I to R.

The above is called an SEIR-model.
The simplifying assumption T i

E = T i
I eliminates the

E -compartment and gives an SIR-model.
If in addition T i

R =∞, then the R-compartment becomes
redundant and we get an SI -model.
If we assume instead that T i

E = T i
I and at time T i

R hosts
simply recover and become susceptible to reinfection instead
of acquiring immunity, then we get an SIS-model.

The choice of model type should depend on the disease. Can
you think of other types of meaningful compartment models?
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Major vs. minor outbreaks

Let us see whether we can translate our guiding questions into
compartmentalese.

Assume an SIR-model. Consider a population of N individuals, all
initially in S , and assume K of them become infected from outside
sources at time TE , where K � N.

For each time t ≥ 0 consider the fraction N − #S(t)
N .

The limit F (K ,N) = limt→∞
N − #S(t)

N is the final size, i.e.
fraction of hosts that don’t escape infection.

If for fixed K we have limN→∞ F (K ,N) = 0, then the disease will
affect only a negligible fraction of a large population. This
signifies that all outbreaks are predicted to be minor.

If not, then there is danger of a major outbreak.
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Translating control measures into compartmentalese

How would vaccination at time Tv < TE of a fraction r of
hosts translate into compartmentalese?

As moving rN hosts into R at time Tv .

How would culling at time Tv < TE of a fraction r of an
animal herd translate into compartmentalese?

Again as moving rN hosts into R at time Tv .

Compartmentalese seems to be a convenient language for us.

But some important aspects of reality may get lost in the
translation.
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Let’s build and explore some models!

Disease transmission can be modeled within various mathematical
frameworks, including ODE, PDE, difference equation, and
stochastic process models.

If the population size N is sufficiently large, then one can try to
build ODE models with variables S , I , R (if we do have removed
individuals), and perhaps E . These variables could either
represent the proportions of hosts in the respective compartments,
or their numbers.

In order to make the use of derivatives somewhat respectable in
this application, one can think of population size being expressed
in units of a thousand or a million individuals so that at least some
fractional values of the variables make sense.
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Simplifying assumption of our ODE models

We will moreover assume that the population size N is fixed,
which ignores demographics, that is, births, deaths from
unrelated causes, immigration and emigration.
We will ignore the E -compartment and assume that the onset
of infectiousness coincides with the time of exposure.
In the resulting ODE models the state of the population is
represented by three variables S , I , and R.
All ODE models implicitly assume that the future course of an
outbreak depends only on the current values of the variables
that represent counts or proportions of hosts in the
compartments.

One always needs to carefully consider to what extent the
assumptions of the model might distort its predictions. We will
examine the last of these assumptions in some detail later in this
talk and in the lab.

It remains to derive expressions for dS
dt ,

dI
dt , and dR

dt (if applicable).
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Building an ODE model for SI

The only variables are S and I . New infections of susceptible
individuals are the only mechanism by which the variables change.

Consider an (average) susceptible host. The “rate at which this
host acquires the infection” is called the force of infection and will
be denoted here by f .

In ODE models we assume that f (t) is proportional to the number
of currently infectious hosts, that is, f (t) = βI (t) for some
constant β. This is aversion of the uniform mixing assumption.

The rate at which hosts (plural) move out of the S-compartment
and into the I -compartment is equal to f (t)S(t). This gives

dS
dt (t) = −βS(t)I (t); dI

dt (t) = βS(t)I (t).

The constant β needs to be estimated from data. It may or may
not depend on N.
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What does this SI -model predict?

Consider the SI -model
dS
dt = −βIS ; dI

dt = βIS .

Then d(S+I )
dt = 0. What does this tell us?

We can eliminate one of the variables; let us set S = I − N:
dI
dt = βI (N − I ).

Looks familiar?

The right-hand side is positive for all I ∈ (0,N), which implies that
all trajectories that start with I (0) ∈ (0,N] will approach the
steady state in which all hosts are infected. The disease-free
equilibrium at which no hosts are infectious is unstable.

What does this model predict about the final size of the
outbreak?

Is this prediction realistic? If not, how should we modify
the model?
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An ODE version of the SIS-model

The only variables are S and I . The rate of new infections is
expressed as in the SI model, but now we also need to consider the
rate at which infectious hosts recover and move back into the
S-compartment.

This rate is assumed proportional to I (t). We obtain:

dS
dt = −βIS + αI ;
dI
dt = βIS − αI .

Again, the constants α and β need to be estimated from data.
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What does this SIS model predict?

dS
dt = −βIS + αI ;
dI
dt = βIS − αI .

Since dS+I
dt = 0, by letting S = N − I , this simplifies to:

dI
dt = βI (N − I )− αI = βI (N − α

β − I ).

Looks familiar? This is a logistic growth model!

It follows that the model has a disease-free equilibrium I ∗ = 0 and
an endemic equilibrium I ∗∗ = N − α

β .

If R0 := βN
α < 1, then the disease-free equilibrium is the only

biologically meaningful one and is globally stable; if R0 > 1, all
trajectories that start with I (0) ∈ (0,N] converge to the endemic
equilibrium.

It seems that the number that we labeled R0 is very important.
We will explore its precise meaning later in this talk.
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What happens if N increases?

Consider a very large population size N. The location of the
endemic equilibrium I ∗∗ = N − α

β indicates that in the long run, at
all times every host except a lucky α

β few will be infected.

This seems weird. Is this prediction correct and meaningful?

Only if β does not depend on N, that is, if transmission is strictly
density-dependent.

If, for example, transmission is frequency-dependent, then β = β′

N
for some fixed β′. In this case we get:

I ∗∗ = N − αN
β′ = N(1− α

β′ ).

This means that the endemic equilibrium is predicted to exist only
if β′ > α and will comprise a fixed fraction of the population in
this case.
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An ODE version of the SIR model

The variables are S , I and R. The difference from the SIS-model is
that upon recovery, hosts move into the R-compartment instead of
back into the S-compartment. This gives:
dS
dt = −βIS ; (as in the SI -model)
dI
dt = βIS − αI = I (βS − α); (as in the SIS-model)
dR
dt = αI .

If very few infectious hosts are introduced into a large and
otherwise susceptible population, then S ≈ N.

For R0 := βN
α < 1, we get dI

dt < 1, and the model predicts that I
will decrease at all times and the outbreak will be minor.

If R0 > 1, then the model predicts that I will initially increase,
peak when βS(t)− α = 0, and then decrease. Every outbreak will
be a major one in this case. The final size will be a proportion that
is strictly between 0 and 1.

Again, the number R0 turns out to be very important.
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Predictions of this SIR-model about control measures

dS
dt = −βIS ; dI

dt = βIS − αI = I (βS − α); dR
dt = αI .

If we start from any initial condition with I (0) > 0, then I will
decrease at all times and the outbreak will be minor as long as
βS(0)− α < 0. If βS(0)− α > 0, then I will initially increase, and
the outbreak will be major.

How can we design effective control measures based on this
prediction?

Think about vaccinating a certain proportion HIT of hosts prior to
an outbreak.

This will change S(0) from ≈ N into (1− HIT )N.

If we set HIT = 1− 1
R0

= 1− α
βN , then

βS(0)− α = β(1− HIT )N − α = β α
βN N − α = 0.

The fraction HIT is called the herd immunity threshold. It is the
minimum fraction of hosts that need to be vaccinated to prevent
major outbreaks.
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Herd immunity and public policy

Herd immunity is a counterintuitive concept: By vaccinating
enough hosts, we protect the entire population from major
outbreaks, not only the hosts that got vaccinated. It may be a lot
less costly to vaccinate only a fraction instead of all hosts at risk.
But think about a severe, possibly life-threatening disease.

Would it be ethical to vaccinate only a fraction HIT of hosts?
Can you think of some practical obstacles to implementing
such a policy?

One important concern is that the calculation of HIT needs to be
based on a mathematical model. If we want to base a serious
public policy decision on this number, we need to make sure, as
best as we can, that the assumptions of the model do not
significantly distort the predictions about the value of HIT .

How much can we trust the predictions of our ODE models?
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The ODE version of the SIR-model revisited

dS
dt = −βIS ; dI

dt = βIS − αI = I (βS − α); dR
dt = αI .

If one or very few infectious hosts are introduced into a large and
otherwise susceptible population, then for R0 := βN

α < 1, the
model predicts that I will decrease at all times and the outbreak
will be minor. If R0 > 1, then the model predicts that I will
initially increase and every outbreak will be a major one.

Also recall the underlying assumption of all ODE models that

“ the future course of an outbreak depends only on the current
values of the variables that represent counts or proportions of hosts
in the compartments.”

Is there anything suspicious about these predictions and the
underlying assumption?
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The problem with deterministic models

Suppose one infectious host with a new strain of the flu, called an
index case, is introduced into an otherwise susceptible population.
You will not automatically catch the flu if you stand in a bus next
to this person. If that person sneezes into your face though, you
most likely will.

What is true of you is true of everybody else in the population.
The index case may or may not infect anybody else and may or
may not cause any kind of outbreak. Disease transmission is
inherently a stochastic process.

ODE and other types of deterministic models ignore the stochastic
nature of disease transmission.
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In what sense can we predict the final size?

On the previous slide we assumed K out of N individuals became
initially infected and considered
F (K ,N) = limt→∞

N − #S(t)
N .

This limit exists all right in each repetition of the “experiment,”
but the outcome will differ between repeated runs of the
“experiment.”
To make the above definition of final size meaningful for a given
compartmental model we need to treat both sides as expected
values.

Even in this interpretation though, F (K ,N) will not in general be
determined by K and N alone. Does it matter which hosts are
initially infected?

ODE models ignore heterogeneities between individual hosts, as
“the future course of an outbreak depends only on the current
values of the variables that represent counts or proportions of hosts
in the compartments.”
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An example

Consider the spread of flu in a dorm with initially K = 1 student
infected. If we ignore heterogeneities, then we can estimate the
probability that a major outbreak will result if the infected student
is “average.” Look at two scenarios:

Scenario 1: The infected student caught it in a bar.

Does the probability estimate based on the assumption of an
“average” student appear to apply in this scenario, or does it
appear to be too high or too low?

Scenario 2: The infected student caught it from the janitor.

Does the probability estimate based on the assumption of an
“average” student appear to apply in this scenario, or does it
appear to be too high or too low?
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Advantages and disadvantages of ODE models

ODE models often make fairly realistic predictions. They have
certain advantages and certain disadvantages.

ODE models are relatively easy to study.

They involve few variables and require estimation of very few
parameters.

ODE models ignore the stochastic nature of disease
transmission.

ODE models ignore heterogeneities between individual hosts.

ODE models are based on the often unrealistic assumption of
uniform mixing between individual hosts.

We will present a different type of models that can alleviate these
three disadvantages to some extent. But first let us look at some
examples of how outbreaks get started.
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How would an outbreak get started anyway? Example 1

A single infected host is introduced into a large population of
susceptibles.
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How would an outbreak get started anyway? Example 1

A new infection occurs.
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How would an outbreak get started anyway? Example 1

An infectious host is removed.
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How would an outbreak get started anyway? Example 1

An infectious host is removed.
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How would an outbreak get started anyway? Example 1

An infectious host is removed. The infection has died out.
We have a minor outbreak in this example.
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The generations of the infection in Example 1

The average number of secondary infections per infectious host in
this example is 2+0+1+1+1+0

6 = 5
6 .
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How would an outbreak get started anyway? Example 2

Generations 0 and 1 might look as in Example 1.
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How would an outbreak get started anyway? Example 2

A new infection occurs.
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How would an outbreak get started anyway? Example 2

An infectious host is removed.
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How would an outbreak get started anyway? Example 2

A new infection occurs.
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How would an outbreak get started anyway? Example 2

An infectious host is removed.
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How would an outbreak get started anyway? Example 2

An infectious host is removed.
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Some generations of the infection in Example 2

The average number of secondary infections per infectious host in
generations 0 to 2 in this example is 2+2+0+2+3+2+3+1

8 = 15
8 .
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Does Example 2 indicate the start of an epidemic?

Most likely. From generation 0 to generation 3 the number of
infectious hosts has increased by a factor of 8, and one might
expect similar increases in subsequent generations.
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What makes the difference?

Definition

The expected number of secondary infections that will be caused
by a single infectious host that is introduced into a large and
entirely susceptible population is denoted by R0 and called the
basic reproductive ratio or basic reproductive number.

If R0 � N and if we assume uniform mixing of the population,
then practically all contacts of infectious hosts during the first few
generations will be with susceptibles, and we can assume, as long
as k is sufficiently small, that R0 ≈ Rk , where Rk denotes the
mean number of secondary infections caused by a host in the k-th
generation.

Thus our best guess at R0 would be R0 ≈ 5
6 < 1 in Example 1 and

R0 ≈ 15
8 > 1 in Example 2.
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R0 makes the difference

Theorem

Assume uniform mixing and introduction of a single infectious host
into an entirely susceptible large population. Assume, moreover,
that R0 does not depend on N.

If R0 < 1, then the expected number of hosts that eventually
experience infection is bounded by a constant that depends only
on R0 but not on N, and the disease is predicted to quickly die out.

If R0 > 1, then with probability > 0 an epidemic whose final size is
at least a fraction F (1,N) > 0 that depends only on R0 will occur.

“Proof”: Under the assumption the expected number of infecteds
in generation k satisfies E (gk) = R0R1 . . .Rk−1 ≤ Rk

0 , since
Rk ≤ R0. Thus E (limt→∞N − S(t)) ≤

∑∞
k=0 Rk

0 = 1
1−R0

.

If R0 > 1, then E (gk) ≈ Rk
0 for small k . More generally, Rk ≥ 1

until a significant fraction of susceptibles move to the I - or
R-compartments. An epidemic will occur with positive probability.
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Our next goals

We want to build models that don’t suffer from the drawbacks of
ODE models but still allow us to make meaningful predictions. We
are aiming at models that

Take into account the stochastic nature of disease
transmission.

Allow us to consider differences between individual hosts
instead of assuming that each host is “average.”

Are still tractable.

Can be defined in terms of relatively few parameters that can
be reasonably well estimated from data.

This may be too much to ask for. We will need to strike a
reasonable compromise between the first two and the last two
items on the wish list.

In particular, we will still need to make some simplifying
assumptions.
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Building stochastic process models: basics

Let us assume a fixed population of size N and restrict our
description to SIR-models.

Examples 1 and 2 suggest that stuff happens at times T i
I and T i

R ,
which are random variables. One can conceptualize disease
dynamics as a stochastic process that moves hosts around between
the compartments.

At any given time, a r.v. xi (t) associated with host number i can
take values xi (t) ∈ {S , I ,R}, depending on whether t < T i

I , or
t iI ≤ t < T i

R , or T i
R ≤ t.

The state of the population at time t is the vector
~x(t) = (x1(t), . . . , xN(t)).

The state of the population changes randomly over time. We will
assume that for any given ~x(t) and any ∆t > 0, the probability
distribution of states ~x(t + ∆t) that depends only on ~x(t) and ∆t.
Our processes will have the Markov Property.
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Mathematical vs. agent-based stochastic process models

Under these assumptions, building a mathematical model of the
stochastic process boils down to finding formulas that specify how
the probability distributions of future states ~x(t + ∆t) depend on
the current state ~x(t) and on ∆t.

Instead of building mathematical models, in our case one can
construct so-called agent-based models. These are computer
programs that embody the stochastic process and allow us to
simulate it instead of deriving mathematically rigorous predictions.
This is often much easier. In the lab, we will use the code to
explore this type of models.

In our agent-based models, the representation of the r.v. xi in the
computer is called an agent, and building the model boils down to
finding precise rules, usually If ... then ... rules, for how the states
of the agents change over time.
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Building agent-based models: xi (t) ∈ I ∪ R

If xi (t) = R, then xi (t + ∆t) = R. No randomness here.

If xi (t) = I , then xi (t + ∆t) = I or xi (t + ∆t) = R.

This is not a complete rule. We have two possibilities that will
occur with some probability. In each run of a simulation, the
computer needs to make a decision. A more complete rule would
look like this:

Randomly generate a time T i
R .

If xi (t) = I and t + ∆t < TR
i , then xi (t + ∆t) = I .

If xi (t) = I and t + ∆t ≥ TR
i , then xi (t + ∆t) = R.

I called this a “more complete” rule. Is there still something
missing?
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What, exactly, does “randomly generate” mean?

The phrase “randomly generate” does not have an absolute
meaning. We need to specify the probability distribution from
which the random object (the time of removal TR

i in our case) is
to be drawn.

Which distribution should we use here?

By our assumption of the Markov property, the distribution of the
time T i

R − t until removal should depend only on the current state,
not on how long ago host i became infectious. Mathematicians
would say that the r.v. T i

R − T i
I is memoryless.

Memoryless continuous r.v.s have exponential distributions. Thus
we will assume that

P(T i
R ≥ T i

I + ∆t) = e−αi∆t .

Here αi is a parameter of the model. It is equal to the reciprocal of
the mean value of TR

i − T i
I .
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A challenge question

The assumption that T i
R − T i

I is a memoryless r.v. turned out to
be very convenient, but it is blatantly wrong for most diseases.
Recovery times show usually a distribution that peaks at some
modal value. For example, you are much more likely to recover
during day 7 of a bout of the flu than during day 2, while an
exponential distribution would predict the opposite.

Challenge Question: How can we modify the model so that the
distribution of recovery times becomes more realistic without
sacrificing the Markov Property of the process?
Hint: Introduce additional compartments.
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Building agent-based models: xi (t) = S

If xi (t) = S , then xi (t + ∆t) = S or xi (t + ∆t) = I or
xi (t + ∆t) = R.

We can turn this into a more complete rule as follows:

Randomly generate a time T i
I .

Randomly generate a time T i
R > T i

I .
If xi (t) = S and t + ∆t < T i

I , then xi (t + ∆t) = S .
If xi (t) = S and T i

I ≤ t + ∆t < TR
i , then xi (t + ∆t) = I .

If xi (t) = S and TR
i ≤ t + ∆t, then xi (t + ∆t) = R.

The hard part of course is how to randomly generate the time T i
I

when host i becomes infectious.
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How to randomly generate T i
I

If xi (0) = S , then host i can become infectious only through direct
contact with another host j who will be infectious at the time of
the contact, while i is still susceptible. Not all such contacts will
lead to infection of host i ; transmission of a sufficient number of
pathogens during the contact is required.

Consider a hypothetical situation where i and j are the only hosts,
xi (T j

I ) = S , and T j
R =∞ (as in an SI -model). If the probability of

subsequent “successful” contact between i and j is positive, then
there will be a time T i ,j

I > T j
I when host i gets infected by host j .

The Markov property implies that T i ,j
I − T j

I is a memoryless r.v.
with an exponential distribution.

P(T i ,j
I ≥ T j

I + ∆t) = e−βi,j∆t .

The number βi ,j is another parameter of the model. It is equal to

the reciprocal of the mean value of T i ,j
I − T j

I .
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How to randomly generate T i
I , continued

In actual simulations there will usually be more than two hosts,
and infectious hosts will eventually be removed. However, we can
still use the formula

P(T i ,j
I ≥ T j

I + ∆t) = e−βi,j∆t

to generate hypothetical times T i ,j
I .

If xi (0) = S and host i becomes eventually infectious, then we
must have
T i
I = T i ,j

I for some j .

How can we identify the correct T i ,j
I ?

It has to be the smallest among those T i ,j
I that satisfy T i ,j

I < T j
R .
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We have built a model!

The rules we have described in the previous slides define an
agent-based model. Recall that this is an algorithm that embodies
a stochastic process and allows to simulate it.

Essentially, the algorithm will randomly generate transition
times T i

I ,T
i
R and simulate the process by changing the states of

the agents at these times accordingly.

These transition times need to be generated in a certain order and
sometimes updated. This involves careful bookkeeping, which is
not entirely trivial but fairly routine. I will omit these details here.
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Some properties of our model

The model is a continuous-time stochastic process. Transition
times T i

I ,T
i
R can take any nonnegative real values, but

nothing of interest happens in between these times.

We have made a number of simplifying assumptions along the
way; not all of which were spelled out explicitly. When trying
to make inferences about actual outbreaks of diseases, one
always needs to carefully examine these assumptions.

The parameters of the model are αi and βi ,j . The former
allow us to incorporate some amount of heterogeneity of
hosts, while the latter give us considerable flexibility in
modeling the mixing pattern.

What might influence αi?

What might influence βi ,j?

We have implicitly assumed that αi and βi ,j do not depend on
the current state of the system. Is this assumption justified?
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Have we accomplished our goal?

Did we build models that:

Take into account the stochastic nature of disease
transmission? Yes!

Allow us to consider differences between individual hosts?
Yes!

Are still tractable. Yes, at least in terms of simulations.

Can be defined in terms of relatively few parameters that can
be reasonably well estimated from data? No!

There are just too many parameters. We would need N
parameters αi plus N(N − 1) parameters βi ,j . For realistic
population sizes, it is impossible to estimate that many parameters
from any kind of data set.

How can we reduce the number of parameters that need to be
estimated from the data without sacrificing the major advantages
of our models?
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Reducing the number of parameters: homogeneity of hosts

Having a separate parameter αi for each host allows us to consider
heterogeneity of hosts in the sense of individual host’s propensity
to recover more or less quickly from the disease. Biologically
speaking, the parameter αi may correspond to the strength of
host i ’s immune system or general state of health.

However, even if αi = αj , the actual duration of infectiousness

T i
R − T i

I for host i may be significantly different from T j
R − T j

I for
host j , as αi only is a parameter of a probability distribution. There
always will be some variability in actual durations of infectiousness.

It thus seems plausible that the predictions of the model will not
change much if we assume that αi = α for some fixed single
parameter α. We will from now on make this assumption.

Since 1
α represents the mean duration of infectiousness for the

population, the parameter α should be relatively easy to estimate
from data.
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Reducing the number of parameters: the uniform mixing
assumption

The parameters βi ,j depend both on how frequently hosts i and j
tend to make contact, and on the intensity of the contacts, which
translates into the probability that sufficiently many pathogens get
transferred during a single contact.

These two aspects often, but not always go together. Mr. Jones
may spend more time with his boss than with his wife, but will kiss
and hug her more often than his boss, or so one would hope.

The uniform mixing assumption postulates that for any pair (i , j)
of different hosts both the frequency and intensity of contacts is
the same. In the context of our models, this translates into
assuming that βi ,j = β for some fixed single parameter β.

The parameter β should also be relatively easy to estimate from
data. If we make both assumptions of homogeneity of hosts and
uniform mixing, we end up with models that have only two
parameters: α and β. Looks familiar?
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Is the uniform mixing assumption realistic?
What if it isn’t?

Mixing may be nearly uniform if hosts move around a lot relative
to the size of the habitat, encounter each other rarely, and there is
no social structure.

In populations with a well-defined social or territorial structure
though, some pairs of individuals will have contact relatively
frequently (think of co-workers or neighbors in human
populations), while other pairs of individuals will almost certainly
never encounter each other (think of your likelihood to ever meet
the Supreme Leader of North Korea).

We can approximate the latter situation by assuming the existence
of a contact network which determines whether it is even possible
that the disease can be transmitted between two given hosts.
The nature of the required contact, and thus the relevant contact
network, may depend on the particular disease. Think of the flu
vs. a computer virus vs. a sexually transmitted disease.
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Mathematical structures for modeling contact networks:
graphs

A graph is an ordered pair G = (V ,E ), where V denotes the set of
vertices, or nodes, and the set E of edges of G is a subset of the
set of unordered pairs of nodes.

A contact network can be modeled as a graph whose vertices are
the individual hosts in the population, and an edge between two
hosts signifies an above-threshold probability of a relevant contact
between these two hosts.

One can then assume that disease transmission can occur only
between two hosts that are represented by adjacent nodes, that is,
endpoints of a common edge, and study the possible or likely
dynamics of the disease on the network.
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An example of a graph
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Could Example 1 occur on this contact network?
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Could Example 1 occur on this contact network?
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Could Example 2 occur on this contact network?
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Could Example 2 occur on this contact network?
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Could Example 2 occur on this contact network?
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Could Example 2 occur on this contact network?
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Example 2 could not occur on this contact network
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Some graph jargon: paths

A path from vertex v1 to vertex vn is a sequence v1v2 . . . vn of
pairwise distinct vertices such that each {vi , vi+1} ∈ E . If v1 is
infected and v2, . . . , vn are all susceptible, then vn may eventually
become infected.
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Some graph jargon: connected components

The connected component of a vertex v is the set of vertices that
comprises v together with all w such that there exists a directed
path from v to w . If v and w belong to different connected
components, then infection of v in an otherwise susceptible
population cannot lead to infection of w .
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Some graph jargon: degrees

The degree of a vertex v is the number of adjacent vertices, that
is, vertices w with {v ,w} ∈ E .
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Stochastic process models for disease transmission on
networks

Ingredients:

Specification of the type of model (SI , SIR, or SIS).
A graph G = (V ,E ) with N vertices that represents the
contact network.
A parameter α that represents the removal or recovery rate.
A parameter β that specifies the rate at which a given
susceptible host acquires infections from a given adjacent
infectious host.

The process will then be modeled exactly as before, with

βi ,j =

{
β if {i , j} ∈ E ,

0 if {i , j} /∈ E .
(1)

The uniform mixing assumption corresponds to the case where G
is the complete graph that contains all possible edges.
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What is to be gained from network models of disease
transmission?

While the kind of network models we defined here are more
realistic than models based on the uniform mixing assumption,
they still rely on a lot of simplifying assumptions. But they can
give us some valuable insights:

They can make predictions about the probability of an
epidemic that are not available from ODE models.

They may allow us to discern cases when the uniform mixing
assumption is inadequate.

They may point to features of the contact network that
significantly influence the outcome of an epidemic. This gives
some guidance about what kind of data we need to collect in
order to be able to make reasonably accurate predictions.

They can inform the design of effective control measures when
the uniform mixing assumption is inadequate.
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But how to model the network?

A major problem is that we usually have only very limited
knowledge of the actual contact network. There are basically two
ways of building mathematically meaningful models of the
underlying networks.

In some cases the network may have a very special structure
that can be determined from data.

Alternatively, we can assume that the network is randomly
drawn from a probability distribution with certain parameters.
The values of these parameters should be chosen in such a
way that they favor networks with properties that conform to
whatever data we have about the actual network.
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Special case 1: L×M rectangular grids

Think of a banana plantation where the pathogen can move only
by a distance of at most 1.
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Special case 2: Rectangular grids with diagonal edges

Think of a banana plantation where the pathogen can move only
by a distance of at most 1.5.
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The Sisters of the Round Table

Consider the monastic order of the Sisters of the Round Table.
The sisters spend most of their lives in their individual cells, where
they devote themselves to prayer and meditation. The only time
they have contact with each other is during meals that they take
seated in a fixed order around a giant round table.

Within this community, diseases can be can spread only during
mealtime. The probability of transmission will be largest between
sisters who sit next to each other, and then decrease with the
distance at the table. When constructing a network model, we
need to make a decision on the cutoff. Making a reasonable choice
here is part of the art of modeling; there are no fixed rules.

Let us assume that there is a significant probability of transmission
from sister i to sister j if at most one sister sits in between.
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Special case 3: The contact network of the Sisters of the
Round Table
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Towards more realistic network models

I called all three of the above examples “special cases” because
they assumed a very rigid structure of the contact network. In
most real-world situations the situation is much more messy.

In fact, even in a strictly monastic setting, contact networks will
rarely have such a rigid structure. The Sisters will not necessarily
head straight to the table from their cells. More likely, along the
way they will tend to exchange a few kind words with their
next-cell neighbors who may be seated across the table.

How could we incorporate these more informal contacts into
our network model without knowing who occupies adjacent
cells?

By adding a few randomly chosen edges to the network of the
previous slide.

How could we produce a set of randomly chosen edges?
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Erdős-Rényi random graphs

The most basic construction of graphs with randomly chosen
edges, or random graphs, was first systematically studied by the
Hungarian mathematicians Paul Erdős and Alfred Rényi. A version
of it can be described as follows:

Specify the set of N nodes. For each potential edge e = {i , j}, flip
a (biased) coin that comes up heads with probability p and
include e in E iff the coin does come up heads.

The parameters of this model are p and N. The mean degree in
this model will be equal to p(N − 1).

By the Central Limit Theorem, the degree distribution should be
roughly normal for large enough N, thus strongly peaked
around p(N − 1).

There are other types of random graphs whose degree distributions
are not close to normal, such as so-called scale-free networks.
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