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Scoring matrices

Let Σ be an alphabet (e.g., {A, C, G, T}), and

let ∆ /∈ Σ denote the space symbol. A scor-

ing scheme is a symmetric scoring function

dM : (Σ∪∆)×(Σ∪∆) 7→ N together with spec-

ifications on how to handle gaps. A scoring

function dM can be conveniently represented

by a scoring matrix M . The cost of a pair of

symbols s1, s2 under the scoring matrix M is

dM(s1, s2).

We will not in general assume that the scor-

ing function is a metric; if we do, then this

assumption will be explicitly stated.
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Gaps

A gap is a string of the form ∆i. The cost

of an alignment of two sequences is obtained

summing the cost of all columns and the costs

of all gaps, also called gap penalties. Most

scoring schemes used in practice are affine,

i.e., each gap penalty is the sum of a fixed

gap opening penalty g (possibly 0) and all gap

extension penalties occurring in the alignment

of the gap, where the gap extension penalties

are the values of dM(s,∆) for s ∈ Σ. If all gap

extension penalties are zero, then we have a

scoring scheme with fixed gap penalties.
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Scoring alignments of two
sequences

Suppose we are given a scoring matix M and

a gap opening penalty g, the cost of aligning

two sequences s1 and s2 of equal length m is

dM(s1, s2) = g(G1+G2)+
∑m

i=1 dM(s1[i], s2[i]),

where Gj is the number of gaps in sj.
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Multiple sequence alignments

Given a set < t1, . . . , tk > of sequences over the

alphabet Σ ∪ {∆}, a multiple alignment is a

set < at1, . . . , atk > of equal-length sequences

(where ati stands for aligned ti) over the al-

phabet Σ∪ {∆} such that each ati can be ob-

tained from ti by inserting some space symbols

into the sequences without altering the order

of symbols of ti.
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The SP-Alignment Problem

Given two equal-length sequences at1, at2, their

induced pairwise alignment is the pair of se-

quences bt1, bt2 that is obtained from at1, at2
by removing all columns containing only ∆’s.

The SP-Alignment problem for a given scoring

scheme (dM , g) is to find the multiple align-

ment < at1, . . . , atk > that minimizes the score

SP(< at1, . . . atk >) =
∑

1≤i<j≤k d(bti, btj) among

all possible multiple alignments of < t1, . . . , tk >.
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Variants of the SP-Alignment
Problem

• In the Gap-0-Alignment Problem, spaces
may be inserted only at the beginning or
the end of sequences.

• In the Gap-0-1-Alignment Problem, all se-
quences have the same length, and only
one space may be inserted at he beginning
or end of each sequence.

• In the Space-L-Alignment Problem, into
each sequence at most L spaces may be in-
serted (with no restrictions on where these
insertions may occur).

These variants have some relevance to molecu-
lar biology, since optimal alinements of biomolec-
ular sequences typically contain relatively few
space symbols, and frequently do have gaps at
the beginning or end of sequences.
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An ancient result

Theorem 1. (Wang and Jiang, 1994) There

exists a (nonmetric) scoring scheme for which

the SP-Alignment Problem is NP-hard.
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A medieval result

Theorem 2. (Just; proved 1999, appeared 2001)

“For all scoring schemes actually used in molec-

ular biology,” each of the following problems is

NP-hard:

• The SP-Alignment Problem.

• The Gap-0-Alignment Problem.

• The Gap-0-1-Alignment Problem.

The proof of this theorem shows that the anal-

ogous result also holds for Space-L-Alignment,

but this has not been stated explicitly in the

paper.
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An old open question

In a 1999 survey paper, Jiang, Kearney, and Li

asked: “Does SP-Alignment admit a PTAS if

we assume that the scoring matrix is metric?”
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Another medieval result

Theorem 3. (Just; proved 1999, appeared 2001)

There exists a nonmetric scoring scheme such

that each of the following problems is MAX-

SNP-hard:

• The SP-Alignment Problem.

• The Gap-0-Alignment Problem.

• The Gap-0-1-Alignment Problem.

The proof of this theorem shows that the anal-

ogous result also holds for Space-L-Alignment;

this has not been stated explicitly in (Just,

2001), but a corresponding result (for fixed

gap penalties) appears in (Just and Della Ve-

dova, 2004).
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An excursion into Operations
Research

Suppose a communication network is to be set

up in a country that consists of k regions. In

each region, there should be one switchboard

of the network, and each switchboard is to

be connected by expensive, high quality ca-

ble to every other switchboard. If in each re-

gion there are several possible locations for the

switchboard that are equally good for the op-

eration of the network within this region, then

the locations of switchboards should be cho-

sen in such a way as to minimize overall cost

of cable between them.
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The Switchboard Location
Problem

The Switchboard Location problem has as in-

stance some disjoint sets R1, . . . , Rk called re-

gions, as well as a distance function d between

all pairs < xi, xj > of points in R1∪· · ·∪Rk. Un-

like in (Just and Della Vedova, 2004), we will

assume throughout this talk that d is a metric.

A feasible solution is a set < x1, . . . , xk > of

points such that xi ∈ Ri for 1 ≤ i ≤ k. The

problem asks for a feasible solution that mini-

mizes
∑

1≤i<j≤k d(xi, xj).
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The Switchboard LocationP
Problem

Let P be a positive integer. The Switchboard

LocationP problem is the restriction of the Switch-

board Location problem to regions of size at

most P .

The spread of an instance I of Switchboard

LocationP problem is the quotient of largest

distance between points from different regions

and the smallest distance between points from

different regions. The Switchboard LocationP(σ)

problem is the restriction of the Switchboard

LocationP problem instances of spread at most σ.
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An easy theorem

Theorem 4. (Just and Della Vedova, 2004)

The Switchboard Location2 problem is NP-

hard.

Proof: Given a graph G =< V, E > with ver-

tices V = {v1, . . . , vk}, we construct a metric

space X = {x1, . . . , xk, y1, . . . , yk} as follows:

For i 6= j, we let d(xi, xj) = d(yi, yj) = 2. If

{vi, vj} ∈ E, then d(xi, yj) = 1; if {vi, vj} /∈ E,

then d(xi, yj) = 2. For 1 ≤ i ≤ k, the region Ri

is defined as {xi, yi}. This gives us an instance

I of the Switchboard Location2 problem. Note

that every optimal solution of I induces a cut

in G of maximal size. Now the theorem follows

from NP-hardness of MAX-CUT. �
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A harder theorem

Theorem 5. (Just and Della Vedova, 2004)

For every fixed P , the Switchboard LocationP

problem (restricted to metric distances) admits

a PTAS.

First the theorem was proved without the restic-

tion on metricity for Switchboard LocationP(σ)

for any fixed σ > 1. (Just and Della Vedova,

2000). The elegant one-page proof uses a

powerful theorem of (Arora, Karger, and Karpin-

ski, 1999). Several years later I showed how

the assumption of metricity allows one to re-

move the restriction on instances of small spread.

This part of the proof takes up five pages of

calculations in (Just and Della Vedova, 2004).

16



Don’t get too excited

The exponent of the expected running time for

the PTAS contains a factor of 1
ε2

, where ε is

the desired relative accuracy.
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Back to the Gap-0-1 Alignment
Problem

Suppose we are given sequences t1, . . . , tk of

equal length and a metric scoring scheme. We

can then construct an abstract metric space

{∆t1, t1∆, . . . ,∆tk, tk∆} that consists of the

original sequences with space symbols inserted

either to their right or to their left, and the

distance defined by the scoring function. If

we define regions Ri = {∆ti, ti∆}, then find-

ing the optimal gap-0-1 alignment for these

sequences clearly becomes an instance of the

Switchboard Location2 Problem! This proves:

Theorem 6. (Just and Della Vedova, 2004)

The Gap-0-1 Alignment Problem for metric

scoring schemes admits a PTAS.
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Back to the Space-L Alignment
Problem

Suppose we are given sequences t1, . . . , tk of

length at most n, a metric scoring scheme,

and a positive integer L. We can then con-

struct for each i a set Ri that consists of all

possible sequences that can be obtained from

ti by inserting at most L space symbols into

it. The union of these Ri’s forms an abstract

metric space whose distance is defined by the

scoring function. If P denotes the maximum

cardinality of all these regions Ri, then find-

ing the optimal space-L alignment for these

sequences clearly becomes an instance of the

Switchboard LocationP Problem! This should

prove that the Space-L Alignment Problem for

metric scoring schemes admits a PTAS.
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Not so fast!

There are
(
n+L+1

L

)
ways of inserting at most

L spaces into a sequence of length n, which

makes the P in our previous slide equal to(
n+L+1

L

)
, and thus causes the exponent in our

running time to grow for fixed ε with increas-

ing sequence length. This is not what we had

in mind when we said “PTAS.”
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A partial rescue

Roughly speaking, the spread σ of an instance

of the Space-L Alignment Problem is the ra-

tio between the optimal Space-L alignment of

the two most distance sequences and the op-

timal Space-L alignment of the two closest se-

quences. The Space-L Alignment (σ) Prob-

lem is the restriction of the Space-L Alignment

Problem to instances of spread at most σ.

Theorem 7. (Just and Della Vedova, 2004)

Let σ be a constant. Then the Space-L Mul-

tiple Alignment(σ) Problem has a PTAS. This

is true even if metricity of the scoring scheme

is not assumed.
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Biological significance of the
last theorem

It is an empirical fact that multiple sequence

alignment is easy if all the sequences are closely

related (except in cases where they have long

repeats or inversions). Our last theorem shows

that, in a sense, Space-L Alignment is also

“easy” if none of the sequences are closely

related to each other. If the Space-L Mul-

tiple Alignment Problem with metric scoring

schemes does not have a PTAS, then the really

hard cases must be mixtures of closely related

and very distant sequences.
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