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Discrete systems

Let Π = {0,1, . . . , p− 1}n, where n ≥ 1, p > 1.

A map g : Π → Π defines an n-dimensional,

p-discrete system dynamical system (Π, g).

A state in the system at time t will be denoted

by s(t) = [s1(t), . . . , sn(t)].

The dynamics is given by

s(t + 1) = g(s(t)), s(t) ∈ Π.

Note that all trajectories eventually reach a pe-

riodic orbit or a fixed point.

The letter n will always stand for the di-

mension of the system.

2



Cooperative discrete systems

Define the cooperative (partial) order on Π

by r ≤ s if ri ≤ si for i = 1, . . . , n. A discrete

system is cooperative if r(0) ≤ s(0) implies

r(t) ≤ r(t) for every t ≥ 0, which is equivalent

to the implication

r ≤ s → g(r) ≤ g(s).
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Why do we care about such systems?

Discrete cooperative systems were recently pro-

posed as a tools to study genetic networks by

Sontag, Laubenbacher, and others.

Of particular interest is the case of Boolean

systems (Boolean networks) when p = 2.

Boolean networks (not necessarily cooperative

ones) were already proposed as models of gene

regulation by Kauffman in the late 1960’s. In

this framework, the components si are con-

sidered discretized concentrations of individual

gene products and the components gi of g =

[g1, . . . , gn] are considered regulatory functions

of the corresponding genes.

4



Long periodic orbits

Kauffman distinguishes two basic types of dy-
namics of Boolean networks: an ordered regime

and a chaotic regime. In particular, very long
periodic orbits are one hallmark of the chaotic
regime and tend not to be observed in the or-
dered regime.

Very long periodic orbits tend not to be ob-
served in simulations of random Boolean net-
works if:

• All regulatory function have only a small
number of inputs, or

• all regulatory functions are nested canalyz-
ing, or

• there are few negative feedback loops.
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How long is “long?”

Note that all periodic orbits in a p-discrete dy-

namical system have length at most pn.

Our research was guided by the question:

Which conditions guarantee that for some

or all c with 1 < c < p and sufficiently large n,

an n-dimensional cooperative system can-

not have periodic orbits of length ≥ cn?

Note that we are aiming at rigorously proving

the absence of exponentially long orbits rather

than showing that they occur infrequently.
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Smale’s Theorem

Smale’s Theorem states that any compactly

supported, (n − 1)-dimensional, C1 dynamical

system defined on

H = {x ∈ Rn |x1 + . . . + xn = 0}
can be embedded into some cooperative C1

system. Equivalently, the dynamics of cooper-

ative systems can be completely arbitrary on

unordered hyperplanes such as H.

Does this theorem have a counterpart dis-

crete cooperative systems?
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An “almost” Smale Theorem

1. For every n, p > 1 there exists an n-dimensional

p-discrete system that cannot be embed-

ded into a cooperative p-discrete system of

dimension n + 1.

2. For every n > 0, there exists p0 such that

for every p > p0 every n-dimensional p-

discrete system can be embedded into a

cooperative p-discrete system of dimension

n + 2.
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Hirsch’s Theorem

A C1-cooperative system is strongly cooper-

ative if for every two different initial condi-

tions x(0) ≤ y(0) we have xi(t) < yi(t) for all

i = 1, . . . , n and t > 0.

Hirsch’s theorem states that almost every bounded

solution of a C1-strongly cooperative system

converges towards the set of equilibria. This

result rules out stable periodic orbits and chaotic

attractors.

Is there a discrete counterpart of strong

cooperativity that rules out exponentially

long orbits?
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Strongly cooperative discrete systems

Let r(t), s(t) be states in a p-discrete system

(Π, g). We will write r(t) < s(t) if r(t) ≤ s(t)

and ri < si for at least one i.

We will say that a (Π, g) is strongly cooper-

ative if

r(0) < s(0) → r(1) < s(1)

for all r(0), s(0) ∈ Π.
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A discrete version of Hirsch’s Theorem

Theorem: Suppose (Π, g) is an n-dimensional

strongly cooperative p-discrete system, Then

each periodic orbit in (Π, g) has length at most

e
√

(p−1)n ln(p−1)n(1+o(1)).

Note that e
√

(p−1)n ln(p−1)n(1+o(1)) < cn for each

c > 1 and sufficiently large n; hence strongly

cooperative discrete systems cannot have ex-

ponentially long periodic orbits.

Moreover, we show that small perturbations of

initial conditions don’t amplify, an analogue of

Lyapunov stability of all attractors.
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Irreducible C1 systems

We can associate directed graphs Gx on {1, . . . , n}
with an n-dimensional cooperative C1-system

by including an arc < i, j > iff ∂fj/∂xi(x) > 0.

We called the system irreducible if Gx is strongly

connected for every x.

Irreducible cooperative C1-systems are strongly

cooperative and Hirsch’s Theorem applies to

them.
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Irreducible discrete systems

For s ∈ Π and i ∈ {1, . . . , n} define si+ ∈ Π by

(si+)i = min{si + 1, p− 1} and (si+)j = xj for

j 6= i. Similarly, define xi− ∈ Π.

Define G∗s by including an arc < i, j > iff g(s)j <

g(si+)j or g(si−)j < g(s)j. Moreover, define

Gs by removing the arcs < i, j > from G∗s for

which 0 < si < p − 1 and g(si−)j = g(s)j or

g(s)j < g(si+)j.

Call (Π, g) irreducible if Gs is strongly con-

nected for all s and semi-irreducible if G∗s is

strongly connected for all s. We call (Π, g)

strongly irreducible along an attractor S if

the intersection of all Gs for s ∈ S is strongly

connected.
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Irreducible cooperative discrete systems

1. Irreducible cooperative p-discrete systems

are strongly cooperative and have orbits of

length at most n.

2. Semi-irreducible cooperative non-Boolean

p-discrete systems can have orbits of length

≥ cn for every 0 < c < p.

3. Strong irreducibility along an attractor S in

a cooperative Boolean system implies |S| ≤
n.

4. Non-Boolean cooperative p-discrete systems

can be strongly irreducible along attractors

of length ≥ cn for every 0 < c < p.
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The empirical results revisited

Very long periodic orbits tend not to be ob-

served in simulations of random Boolean net-

works if:

• All regulatory function have only a small

number of inputs, or

• all regulatory functions are nested canalyz-

ing, or

• there are few negative feedback loops.
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Bi-quadratic cooperative systems

Can cooperative Boolean systems with limited

numbers of inputs have very long orbits?

Let us call a Boolean system quadratic if each

regulatory function takes input from at most

two variables. The only regulatory functions

allowed in cooperative quadratic Boolean sys-

tems are the strictly quadratic Boolean func-

tions

sk(t+1) = si(t)∧sj(t) and sk(t+1) = si(t)∨sj(t)

and the monic functions sk(t + 1) = si(t).

All these permissible functions are nested can-

alyzing.

We call a quadratic Boolean system bi-quadratic

if, in addition, each variable can act as input

only to at most two variables.
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Long orbits in bi-quadratic cooperative Boolean

systems

Theorem: Let 0 < c < 2. Then for all suffi-

ciently large n there exist na n-dimensional bi-

quadratic cooperative Boolean systems (Π, g)

with orbits of length > cn.

The system constructed in the proof is akin

to a small (relative to n) Turing machine that

acts on several “tapes” of variables with monic

regulatory functions.

Can one prove the theorem with a radically

different construction?
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Turing systems

We call an n-dimensional Boolean system an

(M, n)-Turing system if at least n −M of the

regulatory functions are monic.

Cooperative (M, n)-Turing systems behave like

a Turing machine with at most M internal vari-

ables that acts on one or several ‘tapes’ that

contain the values of the remaining variables.

One can also conceptualize (M, n) Turing sys-

tems as M-dimensional Boolean delay systems.

The systems constructed for the proof of our

theorem are (M(n), n)-Turing systems such that

lim
n→∞

M(n)

n
= 0.
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Turing systems are the only examples

Theorem: Let α > 0. Then there exists a pos-

itive constant c < 2 such that for sufficiently

large n, every n-dimensional bi-quadratic coop-

erative Boolean system with an orbit of length

at least cn is an (αn, n)-Turing system.
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