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Solutions of 1 — x = e~

—Ax

The equation 1 — x = e is quite interesting.

It always has the solution x = 0.

When A > 1, then the function e ** is decreasing, concave up,
and its first derivative at 0 is less than —1, which is the first
derivative of the function 1 — x.

Thus in this case there also exists exactly one solution
x =x(A) € (0,1).

Moreover, x() is a strictly increasing function such that

lim x(A\) =0 and lim x(\) =1.
A1+ A—00
This solution x(\) pops up in very different contexts, both in
mathematical biology and in other areas of mathematics. We will
now present three different topics where this happens: The spread
of immunizing infections, Galton-Watson birth processes, and
random graphs.
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SIR-models of disease transmission

Chathuri: Consider an infectious disease that is caused by
pathogens (such as bacteria or viruses) that spread through direct
contact in a population of N people, aka hosts.

Assume, moreover, that the infection is immunizing so that
nobody who recovers can ever be re-infected.

We can model the spread of such a disease by assuming that each
host in the population is in one of three compartments at any
given time:

@ S: Susceptible to infection.
@ /: Infected and able to infect others.

@ R: Removed has recovered from the disease with permanent
immunity or died from it.
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SIR-models of disease transmission

We can now construct S/R-models of how membership in the
compartments changes. Schematically, they look as follows:

]
1
1
1

—_— Movement of hosts

------- > Transmission of pathogens

On a quantitative level, we may consider variables s, i, r that represent
the proportions of hosts in the three compartments at any given time,
and study how these proportions change.
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ODE-based S/IR-models

These models take the form

s’ = —Psi,
7' = Bsi — i,
r'=i,

where 3,7~ > 0 are constants.

The equilibria are all vectors (s*,0, r*) with s* +r* =1; s*, r* > 0.
Taking advantage of Leibniz notation for the derivative, we see that
di  di/dt  Bsi—~i ~

ds ds/dt —Bsi Bs

which we can be solved by

= /di—/(—l+gs>ds

— i:—s+%|ns+c.
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The proportion s, of hosts who escape the infection

Imposing initial conditions gives us that

. v . v
i=—-—s+—=Ins+ip+sy— = Insp.
p p

Taking the limit as t goes to infinity, we have that

ioo:0:—soo—i—%lnsoo—i—io—i—so—%lnso.

We will assume here that no one is recovered at the beginning of
the epidemic (i.e., rp = 0, so that sop + ip = 1). Then we have

soo—llnsoozl—llnso.

B B
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Calculating s, for epidemics caused by one index case

The equation

i i
Seo — =Inseo =1—=1Insy
B B
can be rewritten as
RoSeo — Insoe = Ry — In s,
where Ry = g is called the basic reproductive ratio.

When the epidemic is started by one infectious host called the
index case, the initial population will be nearly completely
susceptible (i.e., sp =~ 1, which implies that Insp =~ 0).

In this case it follows that

—1Insy = (1 — 50)Ro-
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Calculating the final size for SIR-models

The equation
—1Inse = (1 — 50)Ro

can be written as

1—(1—55) = e Rollms),

When we let x = 1 — s, denote the final size of the epidemic, that
is, the proportion of hosts who experienced infection, and let
A = Rp, we obtain the equation:

1—x=¢e ™.
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Galton-Watson birth processes

Rabi: Consider an initial set of objects/individuals, which we call
0" generation. We assume that each individual produces a random
number of daughters at the end of every period producing
successive generations. Also, the number of daughters born from a
parent does not depend on the size of the population.

Let X, denote the number of individuals in the n" generation
forn=0,1,... with Xo = 1.

Galton-Watson birth/branching processes (GWbps) are
discrete-time Markov chains, where the r.v.s {X,,}ZOZO, and the
time n=20,1,2,... are discrete variables.
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Some more assumptions for GWbps

@ All individuals in the population gives birth to their daughters
independently.

@ The same offspring distribution applies to all generations.

o In the nt" generation, each individual gives birth to Y
daughters.The discrete random variable Y takes non-negative
integer values with probabilities (pg, p1, ...), where

pr=P(Y =r), r=0,1,2,...

Thus the size of (n 4 1) generation is

Xn
Xn+1 == Z \/I-a
i=1
where Y1, Yo,... arei.i.d. copies of Y.
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Probability generating function

The probability generating function (pgf) for X, is given by

8x,(5) Zpr ) (1)

where s is a real number in the unit interval.

If X, has the Poisson distribution with the parameter A\, then the
pgf is given by

8x,(s) = Z sre (2)

= e—Ml S>. (3)
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Extinction probability of a GWbp

Let us consider a family of one arbitrarily chosen individual. Let dj,
denote the probability that the family of an individual dies out by
the n'" generation, i.e., d, = P(X, = 0).

The family of such an individual will become extinct if the
individual has 0 daughters, or 1 daughter whose family becomes
extinct by the (n — 1) generation, or 2 daughters both of whose
families become extinct by the (n — 1) generation, and so on. So
the probabilities of the events described above are:

Po, pldf:!,-—la p2d§—17

Since these events are mutually disjoint, the probability of
occurrence of one of these event is

o0
> pedyy = dn.
r=0
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Extinction probability of a GWbp

Now using g(s) = > ;o prs" we get,
o0
Z Prdrry_l = g(dn—l)'
r=0

Hence
dn = g(dn-1). (4)

Since X, = 0 implies X,.1 = 0, we have
O=dg<di <db <--- <1,
i.e., {dp} is a bounded monotone sequence. Hence

d= lim d, (5)

n—oo
exists. It is called the probability of extinction.
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Extinction probability of a GWbp

Taking limit on both sides of the equation d, = g(ds—1),
as n — oo we get
d=g(d)=e "9 (6)

Let x be the survival probability of the process. Then x =1 —d.
Now substituting value of d as 1 — x in Equation (6), we get

1—x=e (7)
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Graphs, paths, connected components

WJ: A graph is a pair G = (V(G), E(G)), where V(G) is a
nonempty set of nodes or vertices, and E(G) is a set of unordered
pairs of nodes that represent the edges.

The size of a graph is the number of nodes N.

The degree deg(i) of node i is the number of edges that contain it.

A path in a graph G is a sequence of nodes P = (i1, i2,...,im)
such that each of the pairs {i, i}, {i2, 3}, .., {im—1,im} is an
edge of G.

The connected component of a node i in a graph G as the set of
all nodes that can be reached by a path in G that starts at /.

Disclaimer: The terminology in graph theory is not as
well-established as in other areas of mathematics. For example,
some authors would call P as above a “walk” and/or define a
connected component as a subgraph rather than a set of nodes.
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An example

Figure: A graph G = (V,E). Here V ={1,2,3,4,5,6,7,8}, while
E={{1,2},{1,5},{1,7},{2,5},{4,5},{6,8}}. The edges traversed by
the path P = (1,2,5,4) are highlighted. The connected components are
{1,2,4,5,7}, together with {3} and {6,8}. The degrees are deg(3) =0,
deg(i) =1 for i€ {4,6,7,8}, deg(2) = 2, deg(1l) = deg(5) = 3.
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Random graphs

Graphs can be used to model various structures of interest in
applied mathematics, for example contact networks.

Unfortunately, for large populations of people, we would not know
the entire contact network. However, we might be able to estimate
some of its statistical properties, such as the mean degree.

This would allow us to study other expected properties of the
contact network if we assume that it is random graph, that is,
randomly drawn from a probability distribution of graphs that tend
to have these empirically verified statistical properties.

Note: In most cases, any graph of a specified size N could in
principle be drawn from the distribution. Thus we will not be able
to assert that a random graph has a given property for sure, but
only that it will have this property asymptotically almost surely
(a.a.s.), that is, with probability approaching 1 as N — oc.
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Erdés-Rényi random graphs

To construct an Erdés-Rényi graph with N nodes, start by listing

all possible edges ey, ..., enwn—1 between these nodes.
2

Then repeatedly toss a biased coin that comes up heads with
probability p. We include edge e; as an actual edge if, and only if,
the coin comes up heads in toss number /.

The mean degree will be approximately A = p(N — 1).

It will be more convenient to use the parameter \ instead of the
parameter p = ﬁ The symbol Ggg(N, ) will denote an
Erdés-Rényi random graph that is constructed with parameters N
and A.

For large N, the degree distribution in Ggg(N, \) tends to be
approximately Poisson with parameter \.
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An example of a.a.s.. The maximal degree

Let us consider the probability of the event Ldeg that Ger(N, \)
will contain a node with degree > In N.

Since there are N nodes and the degree distribution is
approximately Poisson with parameter A, the probability of Ldeg

can be estimated as follows:
k

P(Ldeg) < N P(deg(i) > InN) ~ N> 32, ny € 57
From a well-known estimate of the upper tail of the Poisson
distribution we now get:

_ ANInN 1+ Ny —1+In N
NZiO:ﬂnN]e SNe * o) =S
The right-hand side approaches zero as N — oo, and it follows
that Ger(N, A) will a.a.s. contain no nodes with degree > In N.

This makes Erd6s-Rényi random graphs rather unsuitable as
models of contact networks, but they are still important.

—AXx
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Connected components in Erdés-Rényi random graphs

If the degree distribution in Gggr(N, \) is approximately Poisson,
then a fraction of e of all nodes will have degree deg(i) = 0,
that is, will be in connected components of size 1.

How about the largest component, aka giant component?

Theorem (P. Erdés and A. Rényi, 1960)

Suppose A > 1 and e > 0. Let 0 < x < 1 be such that
1—x=e ™M,
Then there exists a constant ¢ > 0 such that in the class of

Erdés-Rényi graphs Ger(N, A) the following holds a.a.s.:
@ There exists one connected component GC of Ger(N, \) of
IGC \
relative size x — e < <X+e.

e All other connected components of Ger(N, \) have size
<clnN.

—Ax
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What is the connection?

Chathuri: The size of this giant component is exactly the same as
the final size of the epidemic that | derived for the SIR-model! Is
there a connection between random graphs and disease
transmission?

Rabi: And it is exactly the same as the survival probability that |
derived for the Galton-Watson birth process! Is there a connection
between random graphs and these birth processes?

WJ: In fact there is. But first let’s think about this: Would there
be a connection between disease transmission and Galton-Watson
birth-processes? How, exactly, are diseases transmitted?

Chathuri: In the models that | presented, by direct contact. Such
a contact is called effective if a sufficient number of pathogens is
transmitted to cause an infection. But whether or not a contact
between any two persons occurs, and whether or not it is effective,
these would be random events.

Ax
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Generations of the infection

Rabi: So the spread of an outbreak with one index case (initially
infectious host) really works like the Galton-Watson process that |
described:

@ The index case would be the individual in generation 0.

@ The hosts that get infected by the infected case can be considered
the “daughters” of the index case. They comprise generation 1.

@ The hosts that become infected by an individual in generation 1 can
be considered “daughters” of that individual. They comprise
generation 2. And so on.

@ If the population is large and each host has relatively few effective
contacts during the time until they recover, the number of
“daughters,” that is, number of secondary infections caused by this
host will have approximately a Poisson distribution with
parameter A = Ry.

Chathuri: Right! The parameter Ry is usually defined as the average
number of secondary infections cause by an average index case in an
otherwise susceptible population.
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Are the assumptions of the Galton-Watson process

satisfied?

WJ: But we need to check the assumptions of the Galton-Watson
birth process.

Chathuri: All models are only approximations of the real world. In
the study of disease dynamics we usually make the simplifying
assumption that the effective contacts that different pairs of people
have are independent. Under this assumption, the numbers of
offspring will be independent random variables, as in Rabi's model.

WJ: Will they have approximately Poisson distributions with
parameter A = Ry?

Chathuri: Yes, we can make this simplifying assumptions, as long
as there is not much variability in the time it takes until recovery
from the disease.
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Minor vs. major outbreaks

Rabi: Now we can see that one of two scenarios must occur:

@ Either the birth process dies out and the spread of the
infection will very quickly stop.

@ Or the process will survive, with more and more people
getting infected.

WJ: In the former case we will observe a minor outbreak with only
a very, very small fraction of the population experiencing infection.
In the latter case we will observe a major outbreak or epidemic with
a significant fraction x = 1 — s, of hosts experiencing infection.

Chathuri: The ODE model will predict the former scenario for
initial condition (so, io, o) = (1,0,0), and the latter scenario for an
initial condition (sp, iy, r0) = (1 —¢€,¢,0), where € > 0 is very small.

WJ: Right! This ODE model is really just an approximation of a
stochastic process that is very similar to the one that Rabi
described.
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Rabi: But hold on: When the Galton-Watson process survives, new
daughters will be produced forever. How could this happen in a finite
population?

WJ: It can’t. We still have not checked the assumption that the number
of “daughters,” or secondary infections, is identically distributed in all
generations.

Chathuri: This one will actually be false. Only the number of effective
contacts can be assumed identically distributed. When an infectious
hosts makes contact with a host who is already removed or infectious, no
new infection will result. Thus when there is already a significant
proportion of such hosts, this will decrease the parameter A in the
distribution for your process.

WJ: So we can see that Rabi's Galton-Watson process will be a good
approximation for the next-generation process in the beginning of an
outbreak, but not in later stages of an epidemic.

Chathuri: But why do we get the same value for the survival probability
of this process and the final size?
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Let's construct a random graph

Let’s forget about actual outbreaks for a moment and consider
hypothetical ones in a fixed population of size N. Let's construct an
Erdés-Rényi random graph Gggr(N, A) by making the hosts in this
population the nodes. We will include an edge {/,j} in this graph with

probability p = NR—Ol' so that A = Rq.

We can interpret p as the conditional probability of the event that an
effective contact between 7 and j during the time interval between
infection of the first of these hosts and removal of that host who gets
first infected, if in fact at least one of these hosts gets infected during
the outbreak.

There is a close correspondence between such graphs and simulated
outbreaks in an SIR-model with the given Ry. Now let's look at an
outbreak that would correspond to the Erdds-Rényi graph that we have
produced.

The connected component of a node i/ will be the set of all hosts who
experience infection if the outbreak was caused by index case i.

C. K. M, R. K. C,, and W. J., Ohio University Three Disguises of 1 — x = @



The final size of a major outbreak and survival probabilites

The final size in the SIR model is the relative size of the connected
component of the index case i.

If the index case is in the giant component, then the outbreak is a major
one, and the estimate of the relative size of the giant component will be
an estimate of the final size of the outbreak.

This explains why we get the same number for the relative size of the
giant component and for the final size of a major outbreak in the ODE
model.

If the index case is in a small component, then the next-generation
process will die out before it reaches a significant proportion of the hosts,
that is, while the Galton-Watson process is still a good approximation for
the actual next-generation process. This will happen with

probability d =1 — x. Now if we pick the index case randomly for our
given instance of Geg(N, \), then this probability must also be equal to
1 — x, where x is the relative size of the giant component. This explains
why x must be equal to the survival probability of the Galton-Watson
process.
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