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What is a dynamical system? In Words:

In order to define a dynamical system, we need to specify variables,
the permissible values (states) they can take, and how these
variables will change over time.

The primary focus of the subject is on the qualitative features of
the long-term behavior of the system.
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What is a dynamical system? In Symbols:

In order to define a dynamical system, we need to specify:

A state space X ,

a time line T (usually N = {0, 1, 2, . . . },Z, [0,∞), or R),

a time evolution function ϕ : X × T→ X such that for all
x ∈ X and t1, t2 ∈ T

ϕ(x , 0) = x
ϕ(ϕ(x , t1), t2) = ϕ(x , t1 + t2).

The function ϕ(x , ·) is called the trajectory of (initial state) x ,

its restriction to positive times is the forward trajectory of x,

the set O+(x) := {ϕ(x , t) : t ∈ T, t ≥ 0} is called the forward
orbit of x,

the set O(x) := {ϕ(x , t) : t ∈ T} is called the (full) orbit of x .

The focus of the subject is on studying orbits and the behavior of
trajectories when t →∞.
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Example 1: A population of rabbits triples every year

How can we model this real-world situation as a dynamical
system?

Time: T = N or T = Z come to mind.

Let x(t) denote the number of rabbits in year t.

The information given tells us that the time evolution function
satisfies ϕ(x , 1) = 3x , and, more generally, ϕ(x , t) = 3tx .

Assume, for example, that x(0) = 9.

Then the forward trajectory is the sequence (9, 27, 81, 243, . . . ).

The forward orbit is the set {9, 27, 81, 243, . . . }.
We can also extrapolate into the past:

Then the full trajectory is the two-sided sequence
(. . . 1, 3, 9, 27, 81, 243, . . . ). Oops! How does one rabbit multiply?

The full orbit is the set {. . . 1/3, 1, 3, 9, 27, 81, 243, . . . }.
Oops! What is one third of a rabbit?
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Example 1 continued: How should we choose X?

We are in a quandary: If we take X = [0,∞) for our state space,
the system becomes time-reversible, which is a mathematically
nice property. But only states in N make biological sense.

The best way out is to choose X = R for the state space and
T = Z for the time line. This will give our dynamical system the
nicest possible properties.

We then call N the biologically feasible region.

This is again a judicious compromise between choosing a set with
nice mathematical properties and biological realism. We
conveniently ignore the fact that 1 rabbit cannot multiply all by
itself and 1030 rabbits won’t fit anywhere on earth.

The information given specifies a difference equation

xt+1 = F (xt) or x(t + 1) = F (x(t)),

where F : X → X is the map F (x) = 3x , and xt or x(t) are often
used for the state of the system at time t.
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Discrete-Time Dynamical Systems

A (deterministic) discrete-time dynamical system is a pair
(X ,F ) such that

The state space X is a topological space.

F : X → X is a continuous map.

The time evolution function is then given by

ϕ(x , t) = F t(x).

When F is a homeomorphism we will write (X ,T ) instead of
(X ,F ). The system then becomes time-reversible and we take
T = Z as the time line.

When we write (X ,F ), we implicitly assume that T = N is the
time line.
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(Forward) invariant sets

Consider a discrete dynamical system (X ,T ).

A subset Y ⊆ X is forward invariant if

T (y) ∈ Y for all y ∈ Y ,

and is invariant if

both T (y) ∈ Y and T−1(y) ∈ Y for all y ∈ Y .

An x ∈ X is a steady state or equilibrium if {x} is (forward)
invariant.

In our Example 1 of the rabbits, the biologically feasible region N
is forward invariant but not invariant,

the sets (0,∞), [0,∞), (−∞, 0) and (−∞, 0] are all invariant,

and x = 0 (extinction) is the only steady state.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Discrete Dynamical Systems 1



The good: Linear systems

In our Example 1 of the rabbits, the state space X is a topological
vector space and the map

T (x) = 3x is linear.

We were able to immediately find a formula for the time evolution
function and determine what is going on in the system.

In general, as we will see shortly, linear systems (X ,F ) or (X ,T )
are relatively easy to study in this sense. They are the “good” ones.
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Example 2: A nonlinear system

Consider the system ((Z+)2,Fe), where (Z+)2 is the set of ordered
pairs (x , y) of positive integers and

Fe(x , y) = (x , y − x) if x < y ;

Fe(x , y) = (x − y , y) if x > y ;

Fe(x , y) = (x , y) if x = y .

Can you write a formula for ϕ((x , y), t)? Good luck!

What happens in this system in the long run?

After finitely many steps, the system reaches the steady state
(gcd(x(0), y(0)), gcd(x(0), y(0))). This system embodies Euclid’s
algorithm for computing gcd(x , y).

Each pair (x , x) is a steady state.

We can think of each set {(x , x)} as an attractor that will be
eventually reached from each initial state in its basin of
attraction.
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Example 3: Another simple nonlinear system

Consider the system (Z+,Fc), where

Fc(n) =
n

2
if n is even;

Fc(n) = 3n + 1 if n is odd.
(1)

Notice that this system is not time-reversible as

Fc(8) = 8
2 = 4 = Fc(1) = 3 · 1 + 1.

What happens in this system in the long run?

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Discrete Dynamical Systems 1



Example 3 continued: Some observations

Fc(n) =
n

2
if n is even;

Fc(n) = 3n + 1 if n is odd.
(2)

There are no steady states.

{1, 2, 4} is a periodic orbit.

This periodic orbit is a attractor whose basin of attraction
comprises at least all numbers up to 5.764× 1018.

The famous Collatz Conjecture states that {1, 2, 4} is globally
attracting, that is, its basin of attraction comprises all positive
integers. For more info see
http://en.wikipedia.org/wiki/Collatz_conjecture.
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Discrete linear systems on R

These systems are of the form (R,F ), where F (x) = λx and λ is a
constant.

Time-reversible iff λ 6= 0.

0 is always an equilibrium and is the only one iff λ 6= 1.

If λ = 1, then every state is an equilibrium.

If λ = −1, then every state except 0 belongs a periodic orbit
of length 2; we also say that every nonzero state is a periodic
point of (minimal) period 2.
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Stability of the equilibrium at 0

Let F (x) = λx .

What happens if the initial state is near, but not exactly at
equilibrium?

If |λ| < 1, then limt→∞ x(t) = 0 for all trajectories. This
means that the equilibrium at 0 is globally asymptotically
stable in this case.

If |λ| > 1, then limt→∞ |x(t)− 0| =∞ for all trajectories.
This implies that the equilibrium at 0 is unstable in this case.

If |λ| = 1, then for every ε > 0 there exists δ > 0 (δ = ε
works) such that |x(t)− 0| < ε for all t as long as
|x(0)− 0| < δ. The equilibrium at 0 is Lyapunov stable in
this case, but not asymptotically stable.
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A few remarks on these notions

Asymptotic stability means that trajectories will approach the
equilibrium as t →∞. But in contrast to Examples 2 and 3,
usually they will not reach the equilibrium in finite time.

Global asymptotic stability means that all trajectories will approach
the equilibrium; local asymptotic stability means that trajectories
that start sufficiently close to the equilibrium will approach it,
without ever getting too far away. There can be many locally stable
equilibria, but if an equilibrium is globally stable, it must be the
unique equilibrium.

Lyapunov stability roughly means that trajectories that start near
the equilibrium will stay close to it.

An equilibrium is unstable iff it is not Lyapunov stable. This means
that at least some trajectories that start arbitrarily close to the
equilibrium will move away from it by a fixed positive minimal
distance.

Curiously enough, global asymptotic stability does not always imply
local asymptotic stability.
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Example 4: Fewer Rabbits

Consider the rabbit population of Example 1, but assume that each
year a fox takes 100 rabbits.

How can we model this as a dynamical system?

We can again construct a discrete dynamical system (R,T ).
What should the formula for T be?

Not enough information given!

Option 1: The fox feeds only after breeding takes place.

Then T (x) = 3x − 100. Here x∗ = 50 is the unique equilibrium.

Option 2: The fox takes 40 rabbits before breeding season and 60
rabbits after breeding season.

Then T (x) = 3(x − 40)− 60 = 3x − 180.
Here x∗ = 90 is the unique equilibrium.

Option 3: Ask a biologist for more data first!

In each case we get an affine system.
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Multi-dimensional linear and affine systems

We will now consider systems (Rn,F ). For simplicity we will
mostly write x instead of ~x .

Such a system is linear if F (x) = Mx for some n × n
matrix M.

The zero vector ~0 is always an equilibrium, and it is unique iff
M − I is invertible, that is, iff 1 is not an eigenvalue of M.

Such a system is affine if F (x) = Mx + b for some vector b.

If 1 is not an eigenvalue of M, then this system has a unique
equilibrium x∗ = (I −M)−1b.

If we introduce a new variable y = x − x∗, then the dynamics
in terms of the new variable this system is the same as
(Rn,My). Thus the study of affine systems reduces to the
study of linear systems.

What can we say about the stability of the equilibrium ~0 in
linear systems?
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Case 1: M is diagonalizable

Assume that M has a full set of (n linearly independent)
eigenvectors with real eigenvalues.

Then M is diagonalizable, which means that for a suitable choice
of basis the function F can be written as

F (x1, . . . , xn) = (λ1x1, . . . , λnxn),

where λ1, . . . , λn are the eigenvalues of M. This gives

F t(x1, . . . , xn) = (λt1x1, . . . , λ
t
nxn). Thus

~0 is (locally and globally) asymptotically stable iff
max |λi | < 1,

~0 is unstable if max |λi | > 1,

~0 is Lyapunov stable iff max |λi | ≤ 1.

The first two items are always true when all eigenvalues of M are
real, the last item may fail if 1 or −1 is a repeated eigenvalue.
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Case 2: M has a complex eigenvalue

Assume that M has conjugate complex eigenvalues

λ1 = (r ,Θ), λ2 = (r ,−Θ).

Then for a suitable choice of basis the function F can be written as

F (x1, x2, . . .) = F (r0 cosα, r0 sinα, . . .) = (rr0 cos(α+Θ), rr0 sin(α+Θ), . . .).

This gives

F t(x1, x2, . . .) = (r tr0 cos(α + tΘ), r tr0 sin(α + tΘ), . . .).

Now the (x1, x2)-plane is invariant, and for initial conditions in this
plane:

The trajectory spirals into ~0 iff r < 1.

The trajectory spirals out to infinity iff r > 1,

The trajectory is confined to the circle with radius r0 iff r = 1. It
may be periodic with arbitrary period or aperiodic, depending on Θ.
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The upshot

Consider any linear system (Rn,Mx).

Let λ1, λ2, . . . , λn be the eigenvalues of M.

Regardless of wether the eigenvalues of M are real or complex:

~0 is (locally and globally) asymptotically stable iff
max |λi | < 1,

~0 is unstable if max |λi | > 1,

If none of the eigenvalues is repeated, then ~0 is Lyapunov
stable iff max |λi | ≤ 1.
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Another way of looking at this result

Consider any linear system (Rn,Mx) and assume that M has a
full set of (real or complex) eigenvectors.

Let Es be the linear span of all eigenvectors whose eigenvalues
satisfy |λi | < 1.
This is called the stable subspace.
All trajectories that start in Es approach ~0 as t →∞.

Let Eu be the linear span of all eigenvectors whose eigenvalues
satisfy |λi | > 1.
This is called the unstable subspace.
All trajectories that start in Eu will approach ~0 as t → −∞.

Let Ec be the linear span of all eigenvectors whose eigenvalue
satisfies |λi | = 1.
This is called the center subspace.
All trajectories that start in Ec stay at a fixed distance of ~0.

Each of the subspaces Es ,Eu,Ec is an invariant set.
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An application: Linear stability analysis

But the most interesting systems are not linear!

True enough. But consider an equilibrium x∗ in system (X ,T ) and
assume that near x∗ we can parametrize the system by vectors
in Rn so that T is a diffeomorphism.

For simplicity of notation we may assume here that X = Rn.
Moreover, using essentially the same trick as for reducing affine to
linear systems, we may wlog assume that x∗ = ~0.

Since T is differentiable, there exists a matrix M such that

T (x) = Mx + R(x), where lim‖x‖→0
‖R(x)‖
‖x‖ = 0.

The system (Rn,Mx) is called the linearization of (X ,F ) at x∗.

If all eigenvalues of M satisfy |λi | < 1,
then x∗ is locally asymptotically stable in (X ,T ).

If there exists at least one eigenvalue λi with |λi | > 1,
then x∗ is unstable in (X ,T ).
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Why does this work?

Assume that x∗ is a hyperbolic equilibrium, which means that for the
system (Rn,Mx) of the previous slide we have Ec = {~0}.
Then there exists a continuous map h : Rn → X , called a local
conjugacy, that slightly deforms the geometry near ~0 so that it changes
trajectories of (Rn,Mx) near ~0 into trajectories of (X ,T ) near x∗.

In particular, h will bend Es into the stable manifold (of the same
dimension as Es) at x∗ in (X ,T ).

All trajectories that start in the stable manifold will approach x∗ as
t →∞.

Similarly, h will bend Eu into the unstable manifold (of the same
dimension as Eu) at x∗ in (X ,T ).

All trajectories that start in the stable manifold will approach x∗ as
t → −∞, and, in particular, will (initially) move away from x∗.

Thus if Eu has dimension at least 1, x∗ must be unstable in (X ,T ).

Otherwise Es must have dimension n (by hyperbolicity), and the stable

manifold will contain a neighborhood of x∗, so that x∗ is locally

asymptotically stable in (X ,T ).
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But what if?

But what if the equilibrium x∗ is not hyperbolic?

If M has at least one eigenvalue with |λi | > 1, then we can
still conclude that x∗ is unstable in (X ,T ).
If max |λi | = 1, then all bets are off. There is no general
theorem for this case.

Where does this funny name “hyperbolic equilibrium” come
from?

Some mathematicians just love hyperbole. But seriously ...

And even if the equilibrium is hyperbolic but has both a stable
and unstable manifold of positive dimensions, what happens
to a trajectory that start outside the unions of these sets?

See you next Tuesday!
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