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Review: Discrete-Time Dynamical Systems

A (determinisitic) discrete-time dynamical system is a pair
(X ,F ) such that

The state space X is a topological space.

F : X → X is a continuous map.

The time evolution function is then given by

ϕ(x , t) = F t(x).

When F is a homeomorphism we will write (X ,T ) instead of
(X ,F ). The system then becomes time-reversible and we take
T = Z as the time line.

When we write (X ,F ), we implicitly assume that T = N is the
time line.
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Review: Linear systems

Consider systems (Rn,F ). For simplicity we will mostly write x
instead of ~x .

Such a system is linear if F (x) = Mx for some n × n
matrix M.

The zero vector ~0 is always an equilibrium, and it is unique iff
M − I is invertible, that is, iff 1 is not an eigenvalue of M.

Let λ1, λ2, . . . , λn be the eigenvalues of M.

~0 is (locally and globally) asymptotically stable iff max |λi | < 1,

~0 is unstable if max |λi | > 1,

If all eigenvalues have multiplicity 1, then ~0 is Lyapunov stable
iff max |λi | ≤ 1.

In the previous lecture we looked at an example of
dimension n = 1; now we will look at a higher-dimensional
example.
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Example 5: Age-structured populations

The simplest model of population growth under unlimited
resources assumes that P(t + 1) = λP(t), where P(t) is the
population at time t and λ is a positive constant.

This ignores the fact that not all age groups contribute equally to
population growth. In age-structured models, the (female)
population is partitioned into age classes ~P = (P1, . . . ,Pn).

For each i , let σi be the survival probability for individuals in the
i-th class for one time step. Moreover, let βi be the average
number of daughters that an individual in the i-th class contributes
to P1 over one time unit. This gives:

P1(t + 1) =
∑n

i=1 βiPi (t)

Pi+1(t + 1) = σiPi (t) for i < n

Pn(t + 1) = σn−1Pn−1(t) + σnPn(t).

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Discrete Dynamical Systems 2



Example 5 continued: The Leslie matrix

The dynamics defined on the previous slide can be written as
~P(t + 1) = L~P(t), where L is called the Leslie matrix.

Fore example, consider a population of human females (in millions)
with age classes 0–19, 20–39, 40–59, 60–120. If the mortalities
over a 20-year time step for these age classes are 10%, 20%, 30%,
70% respectively, and the average numbers of daughters are
β1 = 1, β2 = 0.5, β3 = 0.02, β4 = 0, then we get the Leslie matrix

L =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
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Example 5 continued: The Leslie matrix

The dynamics defined on the previous slide can be written as
~P(t + 1) = L~P(t), where L is called the Leslie matrix.

Fore example, consider a population of human females (in millions)
with age classes 0–19, 20–39, 40–59, 60–120. If the mortalities
over a 20-year time step for these age classes are 10%, 20%, 30%,
70% respectively, and the average numbers of daughters are
β1 = 1, β2 = 0.5, β3 = 0.02, β4 = 0, then we get the Leslie matrix

L =


1 0.5 0.02 0
? ? ? ?
? ? ? ?
? ? ? ?
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Example 5 continued: The Leslie matrix

The dynamics defined on the previous slide can be written as
~P(t + 1) = L~P(t), where L is called the Leslie matrix.

Fore example, consider a population of human females (in millions)
with age classes 0–19, 20–39, 40–59, 60–120. If the mortalities
over a 20-year time step for these age classes are 10%, 20%, 30%,
70% respectively, and the average numbers of daughters are
β1 = 1, β2 = 0.5, β3 = 0.02, β4 = 0, then we get the Leslie matrix

L =


1 0.5 0.02 0

0.9 0 0 0
0 0.8 0 0
? ? ? ?


Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Discrete Dynamical Systems 2



Example 5 continued: The Leslie matrix

The dynamics defined on the previous slide can be written as
~P(t + 1) = L~P(t), where L is called the Leslie matrix.

Fore example, consider a population of human females (in millions)
with age classes 0–19, 20–39, 40–59, 60–120. If the mortalities
over a 20-year time step for these age classes are 10%, 20%, 30%,
70% respectively, and the average numbers of daughters are
β1 = 1, β2 = 0.5, β3 = 0.02, β4 = 0, then we get the Leslie matrix

L =


1 0.5 0.02 0

0.9 0 0 0
0 0.8 0 0
0 0 0.7 0.3
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Example 5 continued: Properties of L

~P(t + 1) = L~P(t), where L =


1 0.5 0.02 0

0.9 0 0 0
0 0.8 0 0
0 0 0.7 0.3


~v1 = (0, 0, 0, 1)T is an eigenvector with eigenvalue 0.3.

~v2 = (0.4279, 0.2867, 0.1708, 0.1146)T is an eigenvector with
eigenvalue 1.3430 and ‖~v2‖1 = 1.

There are two more eigenvectors ~v3, ~v4 with eigenvalues
−0.3083 and −0.0348 respectively.

The stable subspace Es = span(~v1, ~v3, ~v4).

The unstable subspace Eu = span(~v2).

The equilibrium ~0 is hyperbolic.
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Example 5 continued: Properties of the dynamics

~P(t + 1) = L~P(t), where L =


1 0.5 0.02 0

0.9 0 0 0
0 0.8 0 0
0 0 0.7 0.3


The biologically feasible region Ω consists of all vectors that
have only nonnegative coordinates.

The intersection of this region with Es is contained in
span((0, 0, 0, 1)T ). All trajectories that start in this area
asymptotically approach ~0.

For all trajectories that start in Ω \Es we have
limt→∞ Pi (t) =∞.

Moreover, for all trajectories that start in Ω \Es we have

limt→∞
~P(t)

‖~P(t)‖1
= ~v2, where

‖~P(t)‖1 = |P1(t) + P2(t) + P3(t) + P4(t)|.
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Example 6: A nonlinear version of Example 5

Let L be the Leslie matrix of Example 5, and let

Ω1 = {~P ∈ Ω : P1 + P2 + P3 + P4 = 1} = {~P ∈ Ω : ‖~P‖1 = 1}.

Consider the system (Ω1,T ), where T (~P) = L~P
‖~P‖1

.

During the presentation we numerically explored this system.

~P ∗ = (0, 0, 0, 1)T is an unstable equilibrium.

~P ∗∗ = (0.4279, 0.2867, 0.1708, 0.1146)T is a locally stable
equilibrium.

It is approached by all trajectories that start with ~P(0) 6= ~P ∗.

While the system (Ω1,T ) is nonlinear, it has the big advantage
that its state space Ω1 is a compact subset of Ω ⊂ R4.

Most of the theory of dynamical systems focuses on systems with a
compact state space.
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Example 7: The discrete logistic system

All population dynamics models that we have considered so far
implicitly assume unlimited resources. The discrete logistic
model is based on the more realistic assumption that at high
population densities the population will grow at a slower rate or
even decline due to scarcity of resources.

The variable x in this model represents the population size as a
fraction of a hypothetical maximal population size, so that the
state space X = [0, 1] is compact.

The updating function is given by F (x) = rx(1− x),
where r is a parameter with 0 < r ≤ 4.

When xt ≈ 0 we have xt+1 = rxt(1− xt) ≈ rxt ,
so that population growth will be nearly exponential.

At higher population densities the factor 1− xt will slow down
growth, and when xt > 0.5, result in a population decline between
times t and t + 1.
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Properties of the discrete logistic system

The properties of the dynamics depend on the value of r :

For 0 < r ≤ 1, the system has a unique equilibrium x∗ = 0
(extinction). It is asymptotically stable.
For 1 < r , the equilibrium x∗ = 0 is unstable and the system
has a second equilibrium x∗∗ that corresponds the carrying
capacity of the environment.
For 1 < r < 3 the equilibrium x∗∗ is locally asymptotically
stable and will be approached by all trajectories that start in
(0, 1].
For 3 < r the equilibrium x∗∗ is unstable.
For 3 < r < 1 +

√
6 ≈ 3.4495 the system has an orbit of

period 2 that will be approached by almost all trajectories.

We can see that the system undergoes qualitative changes called
bifurcations when we increase the bifurcation parameter r past
certain bifurcation values r∗ = 1, 3, 3.4495.

The one at r∗ = 3.4495 is called a period-doubling bifurcation.
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The discrete logistic system for larger values of r

When we slowly increase the value of r beyond 3.4495:

First a sequence of additional period-doubling bifurcations
occurs when we increase r on (3.4495, 3.570),
so that successively stable periodic orbits of length 2n appear
and then become unstable .

For r ∈ (3.570, 4] the situation is quite complicated.

For example, when r ≈ 3.839, there is a unique stable
equilibrium of period 3.

For some other values of r in this range, the system exhibits
chaotic dynamics.

But what, exactly, is chaos?
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First hallmark of chaos: Sensitive dependence

The literature on definitions of chaos is a bit . . . chaotic.

There are many different, not necessarily equivalent definitions.

One important feature is sensitive dependence, which means
that trajectories that start nearby will quickly grow far apart.

Here is one formal definition.

Definition

Let (X ,F ) be a discrete dynamical system and let K ⊆ X . We say
that the system is sensitive on K if

∃ε > 0∀x ∈ K ∀δ > 0∃y ∈ Bδ(x) ∩ K ∃t ∈ N d(F t(x),F t(y)) > ε.
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Sensitive dependence alone does not characterize chaos

A linear system is sensitive (on the whole state space) iff the
equilibrium ~0 is unstable.

These examples would not be considered chaotic though, as
trajectories that grow apart will keep growing apart, at an
exponential rate, in a very predictable way.

If the state space is compact, then there is an upper limit on how
far apart two trajectories can grow.

In truly chaotic systems, trajectories may grow apart for a while,
but then get close together again in a region K of the state space
where we have sensitive dependence, and this pattern will repeat
ad infinitum.
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Transitivity

Definition

(X ,F ) is transitive if for all nonempty open U,V ⊆ X there exist
infinitely many t > 0 with F t(U) ∩ V 6= ∅.

Linear systems are not transitive.

The discrete logistic system ([0, 1],F ) with F (x) = 4x(1− x)
is transitive and sensitive on K = [0, 1].

Definition (First definition of chaos)

A system (X ,F ) that is transitive and sensitive on X is chaotic.
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A second definition of chaos

Our first definition is too restrictive, as it does not apply to those
examples of systems where trajectories approach a subset of the
state space called an attractor. These attractors are often, but
not always, beautiful fractals.

These attractors may be proper subsets A ⊂ X , and forward
trajectories will eventually move out of any open set U whose
closure does not intersect A, so that we don’t have transitivity on
the whole state space.

But attractors will always be forward invariant, so that (A,F � A)
is a related dynamical system.

Definition (Second definition of chaos)

A system (X ,F ) is chaotic iff it is sensitive on an attractor A.
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What are attractors?
Examples and an informal definition

For example, if x∗ is a locally asymptotically stable fixed
point, then {x∗} is an attractor.

More generally, if x is locally asymptotically stable fixed point
of (X ,F p), then {x ,F (x),F 2(x),F p−1(x)} is a periodic
attractor.

Attractors are closed and forward invariant subsets of X .

A attracts a nonempty open set U ⊇ A of initial conditions.
For any trajectory that starts in U we have
limt→∞ d(x(t),A) = 0.

A is minimal with respect to the last two properties.
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Some observations

Assume a dynamical system is sensitive on an attractor.

The dynamics on the attractor cannot be periodic. In
particular, the attractor cannot be a finite set.

Aperiodicity on the attractor does not all by itself imply chaos.
For example, consider a rotation of X = S1 by an angle α
such that α

2π is irrational. Such a system is transitive, has
aperiodic and dense orbits, but is not sensitive.
Here S1 itself is the only attractor.

If (X ,F ) is transitive, then X itself must be the attractor.
While many attractors of chaotic systems are fractals, some
are perfectly ordinary sets, like [0, 1] in the discrete logistic
system ([0, 1]), 4x(1− x)).
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