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This talk will

• Introduce you to the art and science of

mathematical modeling.

• Show you how different areas of mathe-

matics enter this process.

• Illustrate the skills needed to become a suc-

cessful mathematical modeler.
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Models in science

Scientists (biologists, chemists, physicists ...)

want to understand how nature works and make

predictions.

Mathematical models can aid in this process by

reducing a natural systems to its essentials so

that predictions can be based on mathematical

analysis of the models.
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The art of mathematical modeling

Mathematical modeling is a process of selec-

tive ignorance. You always have to make sim-

plifying assumptions.

• What can we remain ignorant about?

• What can we not remain ignorant about?
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Who are we?

Scientists from different disciplines (philoso-

phy, history, sociology, psychology ...) give

different answers.

Biologists tell us that we are giant networks

of chemical reactions between tens of thou-

sands of biochemicals. These reactions hap-

pen in cells, that are organized in tissues, or-

gans, whole organisms. All phenomena at higher

levels of biological organization are emergent

properties of the dynamics at this lowest, bio-

chemical, level.
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The dynamics of a (bio)chemical reaction

network

A chemical reaction network consists of chem-

ical compounds (chemical species) and a set

of chemical reactions during which some com-

pounds (the reactants) are consumed and other

compounds (the reaction products) are formed.

The dynamics of the network is the change

over time in the amounts of individual com-

pounds. We will model reaction networks as

dynamical systems.
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Example of a simple network

Compounds: A, B, C

Reactions:

A + B → 2B + C

C + B → A

We will remain blissfully ignorant about the

names of these compounds.
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Questions about the network

Suppose we start with given amounts of A, B, C.

1. Can the system reach a state were all three

compounds are present in specified amounts?

2. What will eventually happen to the sys-

tem? In particular, will the amounts of

these chemicals keep fluctuating, or will

the system approach a state where these

amounts don’t change (much)? Such a

state would be called a steady state or

equilibrium.

3. If the system does approach a steady state,

what amount of each compound is present

in the steady state?
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The state of the network

The state of the network at any time is given

by the vector of amounts of the chemicals in

the network.

If amounts are given as actual numbers of molecules

of each chemical species, then the state would

be a vector of nonnegative integers. For ex-

ample, for our system a state [13,3,7] would

mean thirteen molecules of A, three molecules

of B, and seven molecules of C.

If the amounts are given as concentrations (most

commonly in moles per liter, where one mole

consists of 6.022 × 1023 molecules), then a

state of our system would be a vector [[A], [B], [C]]

of nonnegative real numbers.

The initial state is the state of our system at

time t = 0.
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Translating the first question

Suppose we start with given amounts of A, B, C.

Can the system reach a state were all three

compounds are present in specified amounts?

In mathematical language: Let [xA(t), xB(t), xC(t)]

be the state of our network at time t. Suppose

we start in initial state state [xA(0), xB(0), xC(0)],

and let [yA, yB, yC] be given. Can here exist

a time t ≥ 0 such that [xA(t), xB(t), xC(t)] =

[yA, yB, yC]?

If so, then [yA, yB, yC] is said to be stoichiomet-

rically compatible with [xA(0), xB(0), xC(0)].
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The stoichiometry matrix

Let us form a matrix whose rows shows the

net consumption (negative sign) and net pro-

duction (positive sign) of molecules of each

species by the corresponding reaction.

N =

[
−1 1 1
1 −1 −1

]

Theorem: A state [yA, yB, yC] is stoichiomet-

rically compatible with a state [xA, xB, xC] only

if there are nonnegative real numbers λ1, λ2

such that

[yA − xA, yB − xB, yC − xC] = λ1~r1 + λ2~r2,

where ~r1, ~r2 are the rows of N .
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Conservation laws

N =

[
−1 1 1
1 −1 −1

]

In this case, the rows are linearly dependent

and λ1~r1 + λ2~r2 = λ[−1,1,1]. This implies the

following conservation laws for system (I):

xA + xB = const

xA + xC = const

For example, a state [7,3,13] could never be

reached from initial state [13,3,7].
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Our remaining two questions

Suppose we start with an initial state [xA, xB, xC].

1. What will eventually happen to the sys-

tem? In particular, will the amounts of

these chemicals keep fluctuating, or will

the system approach a steady state or equi-

librium [yA, yB, yC] where these amounts don’t

change (much)?

2. If so, what is the steady state [yA, yB, yC]?
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When do chemical reactions happen?

We will assume for today that the cell is a well-

stirred chemical reactor in which all relevant

molecules move around in random directions

and with random speed.

Mass-action kinetics:

A chemical reaction happens if the reactants

bump into each other at sufficiently high speed.

Compounds disintegrate spontaneously once in

a while.
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Rates of change

Assume the state of a system is described as
a concentration vector. The reaction

A + B → 2B + C

will happen at a rate k1[A][B] and will cause a
change in [A] at the rate −k1[A][B], a change
in [B] at the rate k1[A][B], and a change in [C]
at the rate k1[A][B].

The reaction

C + B → A

will happen at a rate k2[C][B] and will cause a
change in [A] at the rate k2[C][B], a change in
[B] at the rate −k2[C][B], and a change in [C]
at the rate −k2[C][B].
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An ODE model for system (I)

These observations lead to the following ODE

(ordinary differential equations) model of the

network (I).

d[A]

dt
= −k1[A][B] + k2[C][B]

d[B]

dt
= k1[A][B]− k2[C][B]

d[C]

dt
= k1[A][B]− k2[C][B]

(1)

Note that these differential equations are non-

linear.
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Steady states for system (I)

In a steady state [[A], [B], [C]] we must have

d[A]

dt
=

d[B]

dt
=

d[C]

dt
= 0.

For the ODE model (1) this translates into:

0 = (−k1[A] + k2[C])[B]

0 = (k1[A]− k2[C])[B]

0 = (k1[A]− k2[C])[B].

(2)
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Two steady states for system (I)

Equations (2) are equivalent to

k1[A] = k2[C] (3)

or

[B] = 0. (4)

If we assume for simplicity that k1 = k2 and
if our initial state is [13,3,7], then using the
conservation laws

xA + xB = const

xA + xC = const

we find two possible steady states [10,6,10]
and [16,0,4].

18



Which equilibrium will the system approach?

Suppose k1 = k2 and we have [A] > [C] and

[B] > 0. Then

d[A]

dt
= (−[A] + [C])[B] < 0

d[B]

dt
= ([A]− [C])[B] > 0

d[C]

dt
= ([A]− [C])[B] > 0

(5)

These inequalities will hold along the trajec-

tory that starts in initial state [13,3,7], and

therefore we conclude that our system will ap-

proach the steady equilibrium [10,6,10].
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Does this agree with empirical results?

You report back to the biochemist and are told:

“This is not what I observe in the lab. In my

system, B gets totally depleted. I also asked

a computer scientist, and he wrote me great

software that simulates individual molecules bump-

ing into each other, and in these simulations, B

gets always totally depleted after some time.”

Now what do you do?
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Carefully examine the assumptions!

You look at the simulations and notice two

things:

• It treats reactions as discrete events that

happen between individual molecules.

• The number of molecules in the simula-

tions is very small.

If we are talking about a small number of molecules,

then differential equations may not be the right

modeling framework, because the notion of a

derivative makes sense only if concentrations

can change in arbitrarily small increments.
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How to build a discrete model

Let us assume that the state of the system
at any given time t is a vector of nonnegative
integers [xA(t), xB(t), xC(t)] that represent the
actual numbers of molecules of each species.
For any given initial state, the stoichiometri-
cally compatible state space is finite.

Reactions happen one at a time. If reaction (i)
happens, then we get

[xA(t + 1), xB(t + 1), xC(t + 1)] =

[xA(t)− 1, xB(t) + 1, xC(t) + 1].
(6)

If reaction (ii) happens, then we get

[xA(t + 1), xB(t + 1), xC(t + 1)] =

[xA(t) + 1, xB(t)− 1, xC(t)− 1].
(7)
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Incorporating randomness

Which of the two reactions happens next is a

random event.

The odds of reaction (i) occurring next can be

calculated as

k1xAxB

k2xCxB
=

k1xA

k2xC
.

This allows us to calculate the probability that

the system goes from state [xA(t), xB(t), xC(t)]

into state [xA(t) − 1, xB(t) + 1, xC(t) + 1] as
k1xA

k1xA+k2xC
.

Similarly, the probability that the system goes

from state [xA(t), xB(t), xC(t)] into state [xA(t)+

1, xB(t)− 1, xC(t)− 1] is k2xC
k1xA+k2xC

.
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Markov Chains

We have modeled our system as stochastic

process, more precisely, a finite Markov Chain.

The state [16,0,4] is (the only) absorbing state:

No reaction can happen in this state, and the

process can never leave it. It is a steady state

of the system; in fact it is the only state where

no change can happen. Moreover, it can be

shown that the system will eventually reach

this steady state, and this is true even if we

are talking of a total of 20,000 or twenty mil-

lion molecules instead of twenty.

But you may have to wait longer than the life-

time of the universe for this to happen.
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Have we found an adequate model of the

experimental results?

Only if the number of molecules in the network

is in fact very small.

In this case the model would in fact predict

what is being observed in the lab, and it would

give us a plausible explanation why we are ob-

serving what we do.

This is the best one can hope for any model of

natural phenomena. In contrast to mathemat-

ical theorems, all such models are in principle

falsifiable by new empirical evidence.
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What if the number of molecules is large?

We can numerically explore the behavior of our

Markov Chain if we start, say, in the initial

state [13000,3000,7000]. This can be done at

low cost, for example, by a MatLab program

that runs on your PC.

What we would almost certainly observe is that

the system moves toward [10000,6000,1000]

and then fluctuates a little bit, but stays close

to this state no matter how long we run the

simulation. Thus the state [10000,6000,1000]

would behave like a steady state in which the

amounts don’t change very much, and the pre-

dictions of our ODE model would still be con-

firmed.
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But how can we explain the experimental

results if the number of molecules is in fact

large?

Check your assumptions again!

Recall that real biochemical networks have tens

of thousands of reactions. One typically con-

centrates on a few reactions and hopes that

no major players were missed.

So we go back to our biochemist and ask: “Did

we perhaps overlook other species and reac-

tions that influence the outcome?”

Answer: “Well, B likes to form dimers D.”
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A larger network

Compounds: A, B, C, D

Reactions:

A + B → D + C

C + B → A

2B → D

D → 2B
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An ODE model for system (II)

These observations lead to the following ODE
(ordinary differential equations) model of the
network (II).

d[A]

dt
= −k1[A][B] + k2[C][B]

d[B]

dt
= −k1[A][B]− k2[C][B]− 2k3[B]2 + 2k4[D]

d[C]

dt
= k1[A][B]− k2[C][B]

d[D]

dt
= k1[A][B] + k3[B]2 − k4[D]

(8)

Now if k4 ¿ k3 (“B likes to form dimers”),
then d[B]

dt < 0 until [B] becomes very, very
small. In the lab, this may look like moving to
an equilibrium were B totally disappears, and
it may well be the correct explanation of the
experimental results!
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What is really going on in the lab?

The biochemist used the phrase “B gets totally

depleted.”

But does this mean that only the concentration

of monomers of B goes to zero, or the con-

centration [B]+ [D] of B in both its monomer

and dimerized forms tends to zero? In the first

case, you may have found the correct explana-

tion, in the second case, something else must

be going on.

Always maintain clear communication with the

domain expert and insist on resolving such am-

biguities!
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This was a toy model

The study of real biological networks can get

a lot more complicated.

• We need to assume Michaelis-Menton-type

kinetics. This makes the differential equa-

tions less tractable.

• We often cannot ignore concentration gra-

dients in the cell and its compartments.

For this we may need PDE’s (partial dif-

ferential equations) instead of ODE’s.

• The differential equations may become too

complicated to explore analytically. We

may need numerical analysis to approxi-

mately solve them.
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• In many cases it may not even be possible

to find a suitable mathematical model, but

computer simulations still may be used for

meaningful predictions.

• We may not know the actual reactions that

take place, but may need to infer them

from observed concentration changes. This

brings us to the field of reverse-engineering

of biochemical networks.



Conclusions for artful modeling

• Your permissable level of ignorance depends

on the question you want to answer.

• Err on the side of learning as many details

about the system as possible. You can al-

ways ignore the irrelevant ones later.

• Maintain regular dialogue with the domain

experts, communicate clearly, resolve am-

biguities.

• Different mathematical frameworks may be

appropriate for different problems.

• Keep an open mind!
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What does it take to become a successful

mathematical modeler?

• Familiarity with a wide variety of mathe-

matical tools, including linear algebra, ordi-

nary and partial differential equations, dy-

namical systems, probability and statistics,

stochastic processes, numerical analysis, com-

puter programming. You don’t need to be

a specialist in any one of these areas, but

should know something about all of them

and be prepared to talk to the specialists.

• Good communication skills, especially the

ability to listen to and explain your math-

ematics to specialists in other disciplines.

• A commitment to lifelong learning, both of

mathematics and other disciplines.
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