
Using Gröbner bases to
reverse-engineer

biochemical networks

Winfried Just1,2 and Brandilyn Stigler1

1) Mathematical Biosciences Institute,

Ohio State University, Columbus, Ohio,

U.S.A.

2) Department Mathematics, Ohio University,

Athens, Ohio, U.S.A.

This material is based upon work supported by the

National Science Foundation under Agreement No.

0112050.

1

Biochemical networks

• gene regulatory networks

• metabolic networks

• signal transduction networks

• the number n of chemicals in such networks

can be of order 103 or even 104

2

Network dynamics

Concentration of chemicals in a network change

over time.

Future concentration levels are determined by

the present concentration vector.

Thus networks can be modeled as dynamical

systems, either as

• continuous flows, or

• finite dynamical systems when both time

and concentration levels have been suitably

discretized.

3

Reverse engineering

Contemporary experimental methods make it

possible to collect data on the concentration

levels of all chemicals in a network simultane-

ously; even for networks with n > 104 chemi-

cals.

In reverse engineering of a network, one tries to

answer the following questions, simultaneously

for all chemicals in the network:

1. Which chemicals directly influence the fu-

ture concentration levels of chemical i? (net-

work topology)

2. How to compute future concentration lev-

els of chemical i from the present concen-

tration vector?

(regulatory functions)

4

Polynomial dynamical systems

The data collected on large networks are snap-

shots in time and typically noisy. Thus at

present the most promising modeling paradigm

for reverse engineering is treating the network

as a finite dynamical system with state space

Fn for some finite set F , and updating function

H = (h1, . . . , hn).

If the cardinality of F is a prime number, then

we can treat F as a finite field, and every com-

ponent hi of the updating function becomes a

polynomial in F [x1, . . . , xn].

In this case the (unknown) true model of the

network becomes a polynomial dynamical sys-

tem (PDS).

5

Models of regulatory functions

Let [m] := {1, . . . , m}. The data for reverse

engineering one regulatory function hi take the

form

D = {< x̄(t), y(t) >: t ∈ [m]}.
Any polynomial function h ∈ F [x1, . . . , xn] with

h(x̄(t)) = y(t) for all t ∈ [m] will be called a

model for D.

Note that D has |F ||F |n−m models.

Enumerating all models is prohibitive in most

cases, and we need reverse-engineering algo-

rithms that select one of the many models

consistent with the data.

6

The set of models

Let

ID = {g ∈ F [x1, . . . , xn] : ∀t ∈ [m] g(x̄(t)) = 0}.
Then ID is an ideal in F [x1, . . . , xn].

Lemma 1 (Laubenbacher-Stigler). Let D be a

data set and h a model for D. Then the set of

all models for D is the set h + ID.

7

Review: Term orders

A term order is a well-order ≺ on the set of

all monomials in F [x1, . . . , xn] such that xα ≺
xβ implies xαxγ ≺ xβxγ for all multiexponents

α, β, γ.

Examples

1. lex(icographical) orders generated by a vari-

able order x1 ≺ x2 ≺ · · · ≺ xn

2. graded term orders, in which
∑

α <
∑

β

always implies xα ≺ xβ.

For the variable order above, x1x2 ≺lex x3,

but for any graded term order, x3 ≺ x1x2.

8

Review: Gröbner bases

For any ideal I ∈ F [x1, . . . , xn] and term order

≺, there exists a basis G≺ for I called a (re-

duced) Gröbner basis.

This basis has the property that for every f ∈
F [x1, . . . , xn] there exists a unique polynomial

f%G≺, called the normal form of f with re-

spect to G≺, such that

f − f%G≺ ∈ I

and no term of f%G≺ is divisible by the leading

term of any polynomial in G≺.

9

The LS-algorithm

The reverse-engineering algorithm developed

by Laubenbacher and Stigler (LS-algorithm)

takes as input a data set D for one regulatory

function h∗ and a term order ≺, computes one

model h for D and a Gröbner basis G≺ for ID,

and returns the normal form h%G≺.

This output is the most parsimonious model

for D in the sense specified by ≺.

Laubenbacher and Stigler report a success rate

of 82% of their algorithm on a synthetic data

set generated from a well-characterized net-

work in Drosophila melanogaster.

10

The first bottleneck: Data requirements

In typical reverse-engineering problems, m <<

n.

So the question arises:

Question 2.How many data points are needed

on average before we can expect a given reverse-

engineering algorithm, e.g., the LS-algorithm,

to return the correct model?

To turn this into a mathematical question, we

will assume that the data inputs x̄(t) are cho-

sen randomly and independently from the set

Fn of all possible data inputs.

11

The expected number of data points needed

Now assume h∗ is the true, but unknown reg-

ulatory function for a chemical in our network,

and h∗ depends on k of the n variables. In prac-

tice, k will be small, so we treat it as fixed.

E(h∗,≺) := the expected number of data with

random inputs that need to be collected before

the LS-algorithm with parameter ≺ returns h∗.

We are interested in the question how E(h∗,≺)

scales with the number n of chemicals in the

network.

12

Theorems about E(h∗,≺)

Theorem 3 (Just). If ≺ is a graded term order,

then E(h∗,≺) scales as a polynomial in n and it

doesn’t matter much which particular graded

order ≺ is used.

Theorem 4 (Just). If ≺ is a randomly chosen

lex order, then E(h∗,≺) > cn for some constant

c > 1.

Theorem 5 (Just). If ≺ is an optimally chosen

lex order, then E(h∗,≺) scales as log n. This

performance is achieved by a recent modifica-

tion of the LS-algorithm developed by Jarrah,

Laubenbacher, Stigler, and Stillman.

13

The second bottleneck: Run-time

The LS-algorithm requires computing a Gröbner

basis for the ideal in F [x1, . . . , xn] of a vari-

ety with m points. The standard method via

the Buchberger-Möller Algorithm (BMA) has

a time-complexity of O(n2m3).

To date no algorithms had been know that

were optimized for the case when m << n,

which is typical for experimental data on bio-

chemical networks.

Just and Stigler developed a new algorithm,

called the EssBM algorithm, that computes re-

duced Gröbner bases in running time O(nm3+

m6). Empirical comparisons show that for n >

200 our algorithm runs faster than the stan-

dard implementation of the BMA when m is

small (between 5 and 15).

14

The EssBM algorithm in a nutshell

The EssBM algorithm considers the variables

one at a time and classifies them as either es-

sential or inessential variables.

For each inessential variable, one polynomial

that has this variable as leading term is added

to the Gröbner basis.

The BMA is called at most m times to identify

additional elements of the Gröbner basis that

are relations between the essential variables.

15

Directions of ongoing research

• Investigate the performance of the

LS-algorithm on data sets with nonrandom

data inputs.

• Investigate data requirements for other re-

verse engineering algorithms.

• Further improve the run-time of the EssBM

algorithm (we have another algorithm, but

need to implement it).

• Modify the LS-algorithm so that it prefer-

entially finds models that are similar to reg-

ulatory functions in experimentally charac-

terized biochemical networks.

16

References

Laubenbacher, R. and Stigler, B. (2004).

A computational algebra approach to reverse

engineering of gene regulatory networks. J.

Theor. Biol. 229, 523–537.

Just, W. (2006).

Reverse engineering discrete dynamical systems

from data sets with random input vectors. To

appear in J. Comput. Biol.

Jarrah, A., Laubenbacher, R., Stigler, B. and

Stillman, M. (2006). Reverse-engineering of

polynomial dynamical systems. Submitted.

Just, W. and Stigler, B. (2006).

Computing Groebner Bases when m << n. Sub-

mitted.

17

