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Biochemical networks

• gene regulatory networks

• metabolic networks

• signal transduction networks

• the number n of chemicals in such networks

can be of order 103 or even 104
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Network dynamics

Concentration of chemicals in a network change

over time.

Future concentration levels are determined by

the present concentration vector.

Thus networks can be modeled as dynamical

systems, either as

• continuous flows, or

• finite dynamical systems when both time

and concentration levels have been suitably

discretized.
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Reverse engineering

Contemporary experimental methods make it

possible to collect data on the concentration

levels of all chemicals in a network simultane-

ously; even for networks with n > 104 chemi-

cals.

In reverse engineering of a network, one tries to

answer the following questions, simultaneously

for all chemicals in the network:

1. Which chemicals directly influence the fu-

ture concentration levels of chemical i? (net-

work topology)

2. How to compute future concentration lev-

els of chemical i from the present concen-

tration vector?

(regulatory functions)
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Polynomial dynamical systems

The data collected on large networks are snap-

shots in time and typically noisy. Thus at

present the most promising modeling paradigm

for reverse engineering is treating the network

as a finite dynamical system with state space

Fn for some finite set F , and updating function

H = (h1, . . . , hn).

If the cardinality of F is a prime number, then

we can treat F as a finite field, and every com-

ponent hi of the updating function becomes a

polynomial in F [x1, . . . , xn].

In this case the (unknown) true model of the

network becomes a polynomial dynamical sys-

tem (PDS).
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Models of regulatory functions

Let [m] := {1, . . . , m}. The data for reverse

engineering one regulatory function hi take the

form

D = {< x̄(t), y(t) >: t ∈ [m]}.
Any polynomial function h ∈ F [x1, . . . , xn] with

h(x̄(t)) = y(t) for all t ∈ [m] will be called a

model for D.

Note that D has |F ||F |n−m models.

Enumerating all models is prohibitive in most

cases, and we need reverse-engineering algo-

rithms that select one of the many models

consistent with the data.
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The set of models

Let

ID = {g ∈ F [x1, . . . , xn] : ∀t ∈ [m] g(x̄(t)) = 0}.
Then ID is an ideal in F [x1, . . . , xn].

Lemma 1 (Laubenbacher-Stigler). Let D be a

data set and h a model for D. Then the set of

all models for D is the set h + ID.
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Review: Term orders

A term order is a well-order ≺ on the set of

all monomials in F [x1, . . . , xn] such that xα ≺
xβ implies xαxγ ≺ xβxγ for all multiexponents

α, β, γ.

Examples

1. lex(icographical) orders generated by a vari-

able order x1 ≺ x2 ≺ · · · ≺ xn

2. graded term orders, in which
∑

α <
∑

β

always implies xα ≺ xβ.

For the variable order above, x1x2 ≺lex x3,

but for any graded term order, x3 ≺ x1x2.
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Review: Gröbner bases

For any ideal I ∈ F [x1, . . . , xn] and term order

≺, there exists a basis G≺ for I called a (re-

duced) Gröbner basis.

This basis has the property that for every f ∈
F [x1, . . . , xn] there exists a unique polynomial

f%G≺, called the normal form of f with re-

spect to G≺, such that

f − f%G≺ ∈ I

and no term of f%G≺ is divisible by the leading

term of any polynomial in G≺.
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The LS-algorithm

The reverse-engineering algorithm developed

by Laubenbacher and Stigler (LS-algorithm)

takes as input a data set D for one regulatory

function h∗ and a term order ≺, computes one

model h for D and a Gröbner basis G≺ for ID,

and returns the normal form h%G≺.

This output is the most parsimonious model

for D in the sense specified by ≺.

Laubenbacher and Stigler report a success rate

of 82% of their algorithm on a synthetic data

set generated from a well-characterized net-

work in Drosophila melanogaster.
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The first bottleneck: Data requirements

In typical reverse-engineering problems, m <<

n.

So the question arises:

Question 2.How many data points are needed

on average before we can expect a given reverse-

engineering algorithm, e.g., the LS-algorithm,

to return the correct model?

To turn this into a mathematical question, we

will assume that the data inputs x̄(t) are cho-

sen randomly and independently from the set

Fn of all possible data inputs.
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The expected number of data points needed

Now assume h∗ is the true, but unknown reg-

ulatory function for a chemical in our network,

and h∗ depends on k of the n variables. In prac-

tice, k will be small, so we treat it as fixed.

E(h∗,≺) := the expected number of data with

random inputs that need to be collected before

the LS-algorithm with parameter ≺ returns h∗.

We are interested in the question how E(h∗,≺)

scales with the number n of chemicals in the

network.
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Theorems about E(h∗,≺)

Theorem 3 (Just). If ≺ is a graded term order,

then E(h∗,≺) scales as a polynomial in n and it

doesn’t matter much which particular graded

order ≺ is used.

Theorem 4 (Just). If ≺ is a randomly chosen

lex order, then E(h∗,≺) > cn for some constant

c > 1.

Theorem 5 (Just). If ≺ is an optimally chosen

lex order, then E(h∗,≺) scales as log n. This

performance is achieved by a recent modifica-

tion of the LS-algorithm developed by Jarrah,

Laubenbacher, Stigler, and Stillman.
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The second bottleneck: Run-time

The LS-algorithm requires computing a Gröbner

basis for the ideal in F [x1, . . . , xn] of a vari-

ety with m points. The standard method via

the Buchberger-Möller Algorithm (BMA) has

a time-complexity of O(n2m3).

To date no algorithms had been know that

were optimized for the case when m << n,

which is typical for experimental data on bio-

chemical networks.

Just and Stigler developed a new algorithm,

called the EssBM algorithm, that computes re-

duced Gröbner bases in running time O(nm3+

m6). Empirical comparisons show that for n >

200 our algorithm runs faster than the stan-

dard implementation of the BMA when m is

small (between 5 and 15).
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The EssBM algorithm in a nutshell

The EssBM algorithm considers the variables

one at a time and classifies them as either es-

sential or inessential variables.

For each inessential variable, one polynomial

that has this variable as leading term is added

to the Gröbner basis.

The BMA is called at most m times to identify

additional elements of the Gröbner basis that

are relations between the essential variables.
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Directions of ongoing research

• Investigate the performance of the

LS-algorithm on data sets with nonrandom

data inputs.

• Investigate data requirements for other re-

verse engineering algorithms.

• Further improve the run-time of the EssBM

algorithm (we have another algorithm, but

need to implement it).

• Modify the LS-algorithm so that it prefer-

entially finds models that are similar to reg-

ulatory functions in experimentally charac-

terized biochemical networks.
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