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Examples of Games

Chess, bridge, the dating game.

Common features:

• two or more players interact

• benefits for each player depend on action

of all players

• players may regret their actions with hind-

sight

Note that games may or may not involve chance

events, and the interests of the players may be

totally opposed (a zero-sum game), or in (par-

tial or total) alignment.
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Ingredients of a game

• a set of n players

• a set of possible strategies for each player

• a payoff function that assigns a payoff for

each player to each n-tuple of strategies

Example: In the dating game, a set of strate-

gies might be:

{show up for the date, don’t show up}.

Note that players choose their strategies simul-

taneously and independently.
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Rational Self-Interest

The basic assumption of game theory is that

players only act out of rational self-interest,

which means that their only goal is maximizing

their own payoff. Thus niceness or spite are

not considered in game theory, unless they are

factored into the payoff function.
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Nash Equilibria

An n-tuple of strategies in an n-player game is

called a Nash Equilibrium if none of the players

regrets their choice of strategy after learning

about the strategies adopted by all other play-

ers.
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Games in Economics

Payoffs are expected profits.

Examples of Strategies:

• buy, sell, or hold a stock

• enter a market or stay out

• start a prize war or collude
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Games in Politics

The currency of payoffs is usually political power.

Examples of Strategies:

• invade or don’t invade Iraq

• consult or ignore your allies

• respect or break the Geneva convention
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Games in Animal Behavior

Payoffs are expected number of offspring.

Examples of Strategies:

• in a contest over a resource, attack your

opponent, retreat, or display

• graze on your neighbor’s beautiful green

patch or forage elsewhere

• guard your offspring or seek new mating

opportunities
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How about Rational
Self-Interest?

Animals (including H. sapiens) of course can-

not be presumed to act out of rational self-

interest. This, incidentally, somewhat limits

the usefulness of game-theoretic models in eco-

nomics and political science.

However, if payoffs are expected number of off-

spring, then biological evolution will produce

behavior that is consistent with this assump-

tion.
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How about Nash Equilibria?

Evolution’s way of showing regret is producing

a mutant that does better than the wild type.

In evolutionary game theory, we are looking not

just for any Nash Equilibrium, but for a strat-

egy that when adopted by an infinite popula-

tion is immune to invasion by mutants. Such a

strategy is called an evolutionarily stable strat-

egy, or ESS (Maynard Smith and Price, 1973).
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Example: The Hawk-Dove
Game

This game due to Maynard Smith and Price

(1973) models a contest over a resource (e.g.,

food, territory) of value V .

Strategies: {Hawk, Dove}

Payoffs: Two Hawks always fight for the re-

source and incur an expected net cost C due

to the fight; two Doves share the resource for

a net gain of V/2 each; a Dove will retreat if

encountering a Hawk, receiving a payoff of 0

while the Hawk gains V .

Problem: A population of Doves can be in-

vaded by a mutant Hawk, a population of Hawks

can be invaded by a mutant Dove.
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Mixed-Strategy ESS’s

While neither Hawk nor Dove is a pure-strategy

ESS in this game, it can be shown that a pop-

ulation of players that behave like Hawks with

probability V
V +2C and like Doves with proba-

bility 2C
V +2C is an ESS. Such an ESS is called

a mixed-strategy ESS. A population that con-

tains a proportion of V
V +2C pure Hawks and

2C
V +2C pure Doves is also evolutionarily stable;

in the latter case we say that the ESS is real-

ized by a polymorphism.

Caveat: Additional strategies, such as Asses-

sor, could invade this ESS.
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Fighting Fish

In 1995, Morris et al. studied territorial con-

tests of males in swordtail fish species Xiphopho-

rus nigrensis and X. multilineatus. Contests

always started with a display phase, followed

either by a retreat of the smaller contestant,

or by a fight that involved biting. Most, but

not all, of the observed fights were won by the

larger fish.

Question: Which fish usually delivered the

first bite?
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The Napoleon Complex

Answer: 78% of the observed fights were ini-

tiated by the smaller animal, and in 70% of the

fights, the fish that delivered the first bite lost

the contest.

What kind of model can explain these ob-

servations?

One (mildly complicated) model was presented

in (Just and Morris, 2003, Evolutionary Ecol-

ogy).

Can we develop a kind of “minimal model”

for studying escalation?
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Model Assumptions

This part of the talk describes joint work with

Molly R. Morris and Xiaolu Sun.

Contests have two stages, a “display” stage,

and an optional “fight” stage. We want to

model the decision to either retreat without a

fight (R), escalate to the fighting stage (E), or

continue displaying and leave the initiative to

the opponent (D). Let p be the probability of

winning a fight. We assume that the decision

whether to escalate to fighting should depend

only on p and the expected fitness gain G from

a fight, where

G = p · (ResourceV alue)− CostOfF ight(p).
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Four Classes of p

The action of a player should only depend on

whether p is

• very small (G < 0)

• small (G > 0, p < 0.5)

• large (opponent’s G > 0, p > 0.5)

• very large (opponent’s G < 0)

Note that if p is very small, then unilateral re-

treat R is the only sensible action; in the three

other classes a fight is preferable to unilateral

retreat.
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The Strategies

A strategy specifies the action that a player

will perform in each class of p. Thus strategy

REDD calls for retreat if p is very small, for es-

calation if p is small, and for continued display

if p is large or very large.

Note that in a population of REDD, most fights

will be started by their eventual losers, in a

population of RDED, most fights will be started

by their eventual winners, and in a popula-

tion of REED, about half of the fights will be

started by their eventual losers.

Overall there are 34 = 81 possible strategies.

One should not restrict the model to the three

most “plausible” strategies REDD, REED, and

RDED.
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The Missing Ingredient

In the model sketched so far, there are no

ESS’s.

Note that we have assumed that player’s ac-

tions depend on their (real) winning probability

p, but animals can only act on what they per-

ceive.

We need an extra parameter q, which is the

probability of misperception of the class of p

for a neighboring one.
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Parameters of the Model

V - value of the resource

K - cost of losing a fight

L - cost of engaging in a fight

a - representative value of very small p

b - representative value of small p

q - probability of misperception

d - penalty for displaying indefinitely

19



Sampling the Parameter Space

How typical are parameter settings where REDD

or an REDD/REED mix is an ESS?

How typical are parameter settings where RDED

or an RDED/REED mix is an ESS?

We examined this question by randomly sam-

pling 100,000 parameter settings drawn from

a fairly generic region of the parameter space

and testing each setting for pure-strategy ESS’s

and mixed-strategy ESS’s with at most two

pure-strategy components.
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Results

For 85.5% of the sampled settings, either pure

REDD or an REDD/REED mix was found to

be an ESS.

In contrast, for only 3.2% of the sampled set-

tings, either pure RDED or an RDED/REED

mix was found to be an ESS.
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Interpretations

Naive version: Most animal fights will be started

by their likely losers.

But most of the relatively few studies of es-

calation in various species show that fights are

more often initiated by their likely winners.
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Interpretations

Pessimistic version: The model must be wrong.
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Interpretations

More cautious version: Our “minimal model”

is clearly too simple to adequately account for

the factors that drive escalation in any spe-

cific species. The model should be considered

as a kind of “null hypothesis” that shows that

escalation by likely winners is far from obvi-

ous and needs explanations. The model can

be extended in various ways to incorporate bi-

ological details relevant to different species.

By pinpointing the different ways in which our

model is “wrong” (or too simplistic) with re-

gard to any given species, we can learn some-

thing about the biology of this particular species.
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The ESS Concept Revisited

An ESS is a strategy that when adopted by

an infinite population is immune to invasion

by mutants.

Note that this definition says nothing about

whether an ESS could evolve in a population

that is not at equilibrium, or whether it is likely

to be lost in finite populations due to random

drift.

One can study these issues with simulated evo-

lution.
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Our Simulations

Our digital animals are strings of four letters

from the alphabet {R, E, D}. We let popu-

lations of 3,000 of them evolve over 25,000

mating seasons. Fitness after each mating sea-

son is determined by the outcomes of about

10 simulated contests per animal. Parents for

the next generation are chosen with probability

proportional to fitness; strategies are inherited

with crossover and mutation.

We start from random populations. Do pre-

dicted ESS’s evolve? How robust are they un-

der genetic drift?
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Results of Simulations

For a parameter setting for which pure REDD

was predicted as an ESS, a population that

consisted of over 90% REDD did consistently

evolve from random populations, and the ESS

was robust under random drift.

For several parameter settings for which a mix

of REED/REDD was predicted as an ESS,

populations whose great majority played either

REED or REDD did consistently evolve from

random populations or RDED populations, and

this fact was robust under random drift. How-

ever, the proportions of REED and REDD in

the mix fluctuated wildly.
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Simulating other Games

Our digital animals were little strings of sym-

bols that prescribe actions in certain situations.

Strategies in many other games can be de-

scribed in this way, but the number of possible

“situations” is usually much bigger than four.

A Problem: The longer our genomes get, the

more mutational meltdown do we observe.
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A Toy Game

Now I describe joint work with Fang Zhu (2003,

GECCO Workshop on Representation).

Imagine a predator that feeds on n different

prey species. Whenever the predator spots

prey, he must decide whether to chase after

it. The decision should depend on whether

his probability of catching the prey is above a

threshold t, where

t = (energy lost in chase)/(energy gained from

consuming prey)

Assume each prey species is characterized by

one threshold. We want to study how evolu-

tion can optimize all these thresholds simulta-

neously.
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A Toy Model

Imagine a game against Nature who randomly

draws numbers i from {1, ..., n} and probabili-

ties p, and asks us whether we want to chase.

If we don’t chase, we get a payoff of zero. If

we decide to chase, Nature will give us a net

reward Vi with probability p and will make us

pay a net cost Ci with probability 1− p.

A strategy in this game can be conceptualized

as a string of probability thresholds ti so that

we decide to chase when Nature presents us

with the pair (i, p) if, and only if, p > ti.
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A Toy Simulation

Fix n, let our digital animals be strings of n real

numbers gi ∈ [0,1] that represent candidates

for the thresholds ti. In each mating season, let

them play a number of times against nature,

choose parents with probability proportional to

fitness, produce offspring by crossover and mu-

tations (adding a little noise). Let populations

of 1,000 of them evolve for 40,000 mating sea-

sons. How close do we get (on average) to

optimal fitness?
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Sample Results

n below optimal fitness
2 0.36%
3 0.47%
4 0.56%
5 0.63%
6 0.72%

20 2.42%

Conventional wisdom: Mutational meltdown

is bad for evolution. The problem gets worse

the larger the genome size and the higher the

mutation rate.
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The War of Attrition

The War of Attrition is a game-theoretic model

of animal contests for a resource of value V

that do not involve physical contact, but are

decided by the length of time an animal is pre-

pared to keep displaying.

Maynard Smith (1974) predicts a mixed-strategy

ESS with probability density function of the

maximal displaying times t given by:

g(t) =
1

V
e−t/V .

For a population that adopts the ESS, the ex-

pected payoff from the game is zero.
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Simulating the War of Attrition

Just and Zhu (2004, Behavioural Processes)

simulated the evolution of strategies in this

game. Our simulated populations consistently

achieve an average positive payoff from the

War of Attrition game, and this payoff is larger

for larger mutation rates.

It appears that in this case mutational melt-

down is good!
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Mutational Meltdown Can Be
Very Bad

But in other cases we found that it was dif-

ficult to achieve any meaningful evolution in

the computer if our “genome sizes” increased.

While this may be partially due to the small

population sizes and high mutation rates needed

in our simulations, simulation studies of the

widely used Sequential Assessment Game show

that it is highly dubious whether the predicted

ESS in this game could evolve even under Na-

ture’s small mution rates and large popula-

tion sizes (Just and Sun, 2004, Proceedings

of GECCO).
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How does Nature Deal with
Mutational Meltdown?

• by inventing sex

• by keeping genome sizes small

• perhaps in other, currently not well-understood

ways
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Revisiting our Toy Simulation

We want to optimize n thresholds. Thus far

we have represented each threshold ti by a

separate “gene” gi ∈ [0,1]. Let us call this

“one-gene-one-trait” approach separable cod-

ing. What if we try to use only six “genes”

and code twenty different thresholds ti by tak-

ing (geometric) averages of combinations of

three among these genes, i.e.

ti = (gji1gji2gji3)
1/3 ?
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Sample Results

n coding below optimal fitness
2 separable 0.36%
3 separable 0.47%
4 separable 0.56%
5 separable 0.63%
6 separable 0.72%

20 separable 2.42%
20 nonseparable 0.50%

Note that by reducing genome size to six, one

might hope for results similar to the ones for

separable coding of six thresholds with six genes,

but we do much better!

Why?
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Pleitropy

Conventional wisdom: Pleiotropy is a nui-

sance if we want to decode the workings of

a genome. A human engineer would have de-

signed organisms more neatly, on a one-gene-

one-trait basis. But evolution is an oppor-

tunistic tinkerer who doesn’t care about neat

blueprints.

Moreover, pleiotropy may help Nature to keep

genome sizes small.

But is this the whole story?
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Understanding Genome
Organization

Our experiments suggest that there may be

other benefits of pleiotropy besides keeping the

genome small.

Can we describe these benefits in terms of

mathematical theorems?

If so, how do these translate into expecta-

tions that we should form about the genotype-

phenotype map?

Can we study these questions by ignoring the

higher levels of biological organization and con-

centrating on “phenotypes” that are properties

of the organism’s biochemical networks?
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