Hard questions about
simple finite dynamical
systems

Vinny Just

Mathematical Biosciences
Institute and
Department Mathematics,
Ohio University

May 25, 2006

Transcriptional gene regulation

The best understood mechanism of gene reg-
ulation is transcriptional cis-regulation. As an
example, consider a situation where gene num-
ber 7 is being transcribed iff transcription fac-
tor number 12 or transcription factor number
28 bind to the promotor, and repressor num-
ber 13 does not bind. If gene number 7 is
transcribed at time step ¢ and its product does
itself play a role in gene regulation, e.g., is
transcription factor number 7, then this prod-
uct will play its regulatory role at time step

t+ 1.

Boolean dynamical systems

Boolean dynamical systems (BDS's) have been
proposed and studied as models of gene regu-
lation. The state space is {0, 1}"; for example,
a state vector [0, 1,1] means that the product
of gene 1 is absent or at low concentration
while the products of genes 2 and 3 are present
at high concentration. The updating function
f:4{0,1}" — {0,1}" computes the state of the
system at the next time step. In the example
from the previous slide, we would have

f7(x) = (z12 V x28) A 7213.

Questions about BDS’'s:

e How to build a BDS model from data?
(“Reverse Engineering’)

e Given a BDS by a formula for its updating
function, deduce the dynamic properties.

e If we treat BDS models as approximations
of continuous differential equation models
of gene regulatory networks, how well does
the dynamics of the BDS reflect the dy-
namics of the underlying system of differ-
ential equation?

Some questions about dynamics of BDS's:

e Does there exist a steady state?

e Is every limit cycle a steady state?

e Conversely, does there exist a limit cycle of
length > 17

e Does there exist a limit cycle of length 27

A simple-minded answer:

For answering any of these questions, just com-
pute f(z), f(f(x)), ... for all z € {0,1}" and
keep track if the length of the limit cycles you
found.

This is guaranteed to work but we may need
to look at 2™ initial states x which becomes
infeasible for large n.

(When) can we find a faster algorithm?

The class P:

Questions like “Does this BDS have a limit
cycle?’ are known as decision problems. An
instance of this problem is a given BDS. The
description length of an instance is the number
of bits needed to specify the instance, in this
case, the updating function f. If each com-
ponent of f is relatively simple, e.g., linear, a
monomial, a threshold function, then the de-
scription length will be on the order of O(n?),
where n is the number of variables.

A decision problem is in the class P if there
exists an algorithm for correctly deciding this
problem in all instances whose running time on
instances of size n is bounded by a polynomial

in n.

We will refer to the problem of existence of
limit cycles of length > 1 as the LC-problem
and to the problem of existence of limit cycles
of length 2 as the LC2-problem.

Theorem 1. (Elspas 1959, Hernandez-Toledo

2005, Jarrah, Laubenbacher, Vera-Licona 2007)
The LC-problem for BDS's with linear updat-

ing functions is in the class P.

Theorem 2. (Colon-Reyes, Laubenbacher, Pareigis
2004) The LC-problem for BDS's where each
component of the updating function is a mono-
mial, i.e., is of the form x; x;,...x; , IS in the
class P.

Question 3. How about more general BDS's?
What if we allow also functions of the form
T Tiy - .- x4, + 1 Or threshold functions? What
it we allow only functions of these forms that
depend on at most two variables?

Witnesses

Suppose x is a state that is part of a limit
cycle of length 2. Such z will be called a wit-
ness for (a “yes” answer to) the LC2-problem.
Verifying that a given x is a witness for the
L C2-problem can be done by an algorithm that
is polynomial in the description length of the
given BDS.

In contrast, let x be a state that is part of a
limit cycle of length > 1. Then x is a witness
for the LC-problem, but since limit cycles may
have length that is exponential in n, it may not
be possible to verify in polynomial time that =
is a witness for the LC-problem.

10

The class NP

A decision problem is in the class NP if:

e [here is a notion of “potential witness”
and “witness”’ for an instance of the prob-
lem.

e [here exists a witness for an instance I iff
the correct answer for instance I is ‘yes.”

e T he problem of deciding whether a poten-
tial witnhess is an actual witness is in the
class P.

Thus the LC2-problem is in the class NP, but
it is not clear whether the LC-problem is in the
class NP.

11

The P = NP problem

Question 4.Is P = NP?”

This is one of the major open problems in
mathematics.

12

NP-hard and NP-complete problems

A decision problem is NP-hard if the existence
of a polynomial-time algorithm for solving this
problem would imply P = NP. An NP-hard
problem that is itself in the class NP is NP-
complete.

More than a thousand decision problems are
known to be NP-complete.

13

Two examples

Theorem 5. (Akutsu, Kuhara, Maruyama, Miyano
1998) The problem of deciding whether a BDS
has a steady state is NP-complete.

Suppose x1,...,xn are Boolean variables and

Y= (y11 VY12 VY13) A .. A(Um1 V Ym2 V Ym3),

where y;; Is either Tjp,; OF 2Ty, for some iy, €
[n]. Then v is satisfiable if there exists a
Boolean vector z of length n such that (x)
evaluates to 1. The 3-SAT problem takes
as instances formulas i as above and asks
whether 1 is satisfiable.

By a classical theorem (Karp 1972), 3-SAT is
an NP-complete problem.

14

Polynomial-time reducibility

Let £ and D be two decision problems. We
say that D is polynomial-time reducible to FE if
there exists an algorithm A such that:

e A takes instances of D as inputs and al-
ways outputs the correct answer for each
instance of D.

e A uses as a subroutine a hypothetical al-
gorithm B for solving E.

e [here exists a polynomial p such that for
every instance of D of size n the algorithm
A terminates in at most p(n) steps if each
call of the subroutine B is counted as only
one step.

15

How to prove NP-completeness?

The formal definition of NP-hardness of a de-
cision problem FE requires that every decision
problem D in the class NP be polynomial-time
reducible to . Thus if we want to show that a
given decision problem F'is NP-hard, it suffices
to show that some decision problem E that is
known to be NP-hard is polynomial-time re-
ducible to F'. In other words, we need to show
that if there were a polynomial-time algorithm
for deciding F', there would also be such an
algorithm for E.

16

3-SAT is polynomial-time reducible to LC2

Suppose {x1,...xzn} is a set of Boolean vari-
ables, and suppose

Y= (y11 VY12 VY13) A .. . A (Um1 V Ym2 V Ym3),

where y;.; Is either Tjy,; OF 2Ty, for some iy, €
[n]. We construct a Boolean dynamical system
< {0,1}"2 f > as follows:

[fZZZU,L for 1 € [’I’L]
® fut1=v(x1,...,%n) NTpto.

® fnt2 = Tp41.

17

The dynamics of our system

et us see what happens to the updates of our
system.

Case 1: Y(x1,...,xn) = 0.
[1,...,2n,2,?] — [21,...,21,0,7] — [x1,...,2n,0,0].

Thus the system reaches a steady state from
any initial state in at most two steps.

Case 2: Y(x1,...,zn) = 1.
[z1,...,2n,1,0] — [x1,...,2n,0,1] — [x1,...,2n, 1,0].

This is a limit cycle of length 2. Such limit
cycles exist iff 1) is satisfiable.

18

3-SAT is polynomial-time reducible to LC2

Here is an algorithm for 3-SAT that uses a
hypothetical algorithm for LC2:

e Build the BDS we just described. This can
be done by a polynomial-time algorithm in
the description length of .

e Run our hypothetical algorithm for decid-
ing whether this BDS has a limit cycle of
length 2.

e If yes, conclude that v is satisfiable. If not,
conclude that i is not satisfiable.

19

Generalized monomial systems

Theorem 6. The LC2-problem is NP-complete
and the LC-problem is NP-hard for BDS's in
which every component of the updating func-
tion is of the form z;x; or of the form z; + 1
for some (possibly equal) 1,7 € [n].

The proof uses essentially the same idea that
we have just presented, but one needs to work
a little harder.

20

The system used in Theorem 6
] fz == 5137;.
¢ foti =i+ 1.

® If yk‘,l — _'xik,l and yk,z = _Imik72, then f2n—|—k —

Lip 1% o

o ITyr1 ==, and yg o = ~x;, 5, then fonp =

Tntig 1 Lig 2

o Ifyp1 =z, and yg o =z, ,, then fo, 4 =

Lig 1Tn+ig o

o Ifyp1 =, and yp o = x;, ,, then fo, 4 =
xn—l—ik71$n—|—ik,2'

21

o If yp 3= Ty 5 then fop4mar = Ton4-kTiy, 3-
o Ify,3 = Tif, 3 then fo,4m+4k = Ton4kTniy 3°
® fontomtk = Toptm+k T 1.
® fon+3m+1 = Ton+2m+1-

® fon+3m+k+1 = T2n+43m4kL2n+2m+k+1 FOr
ke [m—1].

® fontam+1 = Toptamt2 T 1.

® fontamt2 = TontamTontamt1-

Monotone systems

A Boolean function f is monotone if x < y
implies f(z) < f(y). We say that a BDS is a
monotone system if every component f;. of the
updating function can be written as a combi-
nation of functions x;Vz; and z;Ax;. Note that
the use of negations is not allowed in mono-
tone systems. Moreover, note that the vec-
tors [0,...,0] and [1,...,1] are steady states
for every monotone system. Thus the result
of Akutsu et al. does not apply to such sys-
tems.

22

Theorem 7. T he problem of deciding whether
a given monotone BDS has at least three steady
states is NP-complete.

Proof: Suppose {x1,...xn} is a set of Boolean
variables, and suppose

Y= (y11 VY12 VY13) A .. . A (Um1 V Ym2 V Ym3),

where y;.; Is either Tjp,; OF 2Ty for some iy, €
[n]. We construct a Boolean dynamical system
< {0,1}27 T3 f > as follows:

23

o fi = (TiNT2p+1AT2p43) VT2 42 fOri € [2n].

® fopt1 = (z1V CBn—l—l) A N (xn V wn—l—n)-

® fonto = (z1 A CBn—l—l) Ve V(@n A wn—l—n)-

o f2n—|—3 — @D*(CBL ey Iny Tp41y - - 737271)1 where
Ww* is obtained from i by replacing every

occurrence of —x; by x,4;.

24

The dynamics of our system

Let £ be an initial state of our system.

o If z; = x,4;, = 1 for some ¢ € [n], then
f(f(z)) takes values z; = 1 for all j € [2n]
and f3(z) =1[1,...,1].

o If x; = x,4; = O for some ¢ € [n] and the
system does not reach the steady state
[1,...1] from =z, then f(f(x)) takes val-
ues z; = 0 for all j € [2n] and f3(z) =
[0,...,0].

e If the system does not reach the steady
state [1,...,1] from Z and v is not satisfi-
able, then f3(z) = [0,...,0].

o If v(xy,...,2Tn) = 1, then
T = [z1,...,2n,®1,...,2n, 1,0, 1]
IS a steady state.

25

LC and LC2 for monotone systems

Theorem 8. The LC2-problem is NP-complete
and the LC-problem is NP-hard for BDS's in
which every component of the updating func-
tion is of the form x;\V x; or of the form x; N\ x;
for some (possibly equal) 1,75 € [n].

The proof combines ideas of the proofs of our
previous theorems.

26

The system used in Theorem 8
® fr;1 =i Viyqq forie[n].
® fein =c¢ip Vit forie [n].
® [z, =xiyp forie[n] and £ e [L —3].
® feipp1 =cig forien] and £ e [L—3].
® fr; 1 =zi—2Nup_4 foric€ [n].
® feir_1=c¢iL—2ANup_4 forie[n].
® fu;, =x;-1/Nep_q forie[n].

° sz’,L = Ci.—1 Ner_a for 1 € [n]

27

foi1 = i1 Ve fori€ [n].

fvz’,j-|-1 — Ui ¢ for 1 € [n] and j € [i — 1].
Juy = v11.

fuipq = Ui ANvigq 441 Forie [n — 1].
fupyy = Upgp—q for r € [L —4 —n].
fwi1 = ®i 2N o forie[n].

fw; j11 = w;j for i€ [n] and j € [i —1].
Jt; = w1 1.

ftz'_|_1 =tV Wi+1,i+1 for 1 € [n — 1]

ftn—l—l — tn Vv tn—l—l

fdp, = Tigq,1V Tip o1 i k€ [m] and yy 4
wik,l and Yg,2 = xik,Q'

fdp, = Tip 1,1V Ciyg o0 If k€ [m] and yp 4
xik,l and Yg,2 = _'xik,Q'

fdp, = Cigq,1 YV Tig o1 If k€ [m] and yp 4
_lxik,l and Y2 = $ik,2'

fdp, = Cip1,1V Cip1 IT k€ [m] and yg 4
_lxik,l and Y2 = _Iwik,Q'

fapo, = dk1 V @iy 52 If k€ [m] and yy 3

.CUZ'k,3.

fapo, = di1 V cipg2 If k€ [m] and yg 3
—Ixik:’.

® fdyppp = dku+1 fOr k€ [m] and ¢ € [k — 1].
® feq = d1 2.
° fek—i—l = eL /\dk,k—l—l for k € [m].

® feiri1 = €m4y fOor r € [L —5—m].

