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The unconnected node closest to node O, A, B, C, or E is node D (closest to E). Connect
node D to node E.

The only remaining unconnected node is node 7. It is closest to node D. Connect node T
to node D.

All nodes are now connected, so this solution to the problem is the desired (optimal) one.
The total length of the links is 14 miles.

Although it may appear at first glance that the choice of the initial node will affect
the resulting final solution (and its total link length) with this procedure, it really does
not. We suggest you verify this fact for the example by reapplying the algorithm, starting
with nodes other than node O.

The minimum spanning tree problem is the one problem we consider in this chapter
that falls into the broad category of network design. In this category, the objective is to
design the most appropriate network for the given application (frequently involving trans-
portation systems) rather than analyzing an already designed network. Selected Reference
7 provides a survey of this important area.

THE MAXIMUM FLOW PROBLEM

Now recall that the third problem facing the Seervada Park management (see Sec. 9.1)
during the peak season is to determine how to route the various tram trips from the park
entrance (station O in Fig. 9.1) to the scenic wonder (station 7') to maximize the number
of trips per day. (Each tram will return by the same route it took on the outgoing trip, so
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The Seervada Park maximum

flow problem.
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the analysis focuses on outgoing trips only.) To avoid unduly disturbing the ecology and
wildlife of the region, strict upper limits have been imposed on the number of outgoing
trips allowed per day in the outbound direction on each individual road. For each road,
the direction of travel for outgoing trips is indicated by an arrow in Fig. 9.6. The number
at the base of the arrow gives the upper limit on the number of outgoing trips allowed per
day. Given the limits, one feasible solution is to send 7 trams per day, with 5 using the
rote O > B—>E—>T,1usingO—->B—>C—->E—T,and | using O - B— C —
E — D — T. However, because this solution blocks the use of any routes starting with
O — C (because the E — T and E — D capacities are fully used), it is easy to find bet-
ter feasible solutions. Many combinations of routes (and the number of trips to assign to
each one) need to be considered to find the one(s) maximizing the number of trips made
per day. This kind of problem is called a maximum flow problem.
In general terms, the maximum flow problem can be described as follows.

1. All flow through a directed and connected network originates at one node, called the
source, and terminates at one other node, called the sink. (The source and sink in the
Seervada Park problem are the park entrance at node O and the scenic wonder at node
T, respectively.)

2. All the remaining nodes are transshipment nodes. (These are nodes A, B, C, D, and E
in the Seervada Park problem.)

3. Flow through an arc is allowed only in the direction indicated by the arrowhead, where
the maximum amount of flow is given by the capacity of that arc. At the source, all
arcs point away from the node. At the sink, all arcs point into the node.

4. The objective is to maximize the total amount of flow from the source to the sink. This
amount is measured in either of two equivalent ways, namely, either the amount leav-
ing the source or the amount entering the sink.

Some Applications

Here are some typical kinds of applications of the maximum flow problem.

1. Maximize the flow through a company’s distribution network from its factories to its
customers.
2. Maximize the flow through a company’s supply network from its vendors to its factories.
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3. Maximize the flow of oil through a system of pipelines.
4. Maximize the flow of water through a system of aqueducts.
5. Maximize the flow of vehicles through a transportation network.

For some of these applications, the flow through the network may originate at more
than one node and may also terminate at more than one node, even though a maximum
flow problem is allowed to have only a single source and a single sink. For example, a
company’s distribution network commonly has multiple factories and multiple customers.
A clever reformulation is used to make such a situation fit the maximum flow problem.
This reformulation involves expanding the original network to include a dummy source,
a dummy sink, and some new arcs. The dummy source is treated as the node that origi-
nates all the flow that, in reality, originates from some of the other nodes. For each of
these other nodes, a new arc is inserted that leads from the dummy source to this node,
where the capacity of this arc equals the maximum flow that, in reality, can originate from
this node. Similarly, the dummy sink is treated as the node that absorbs all the flow that,
in reality, terminates at some of the other nodes. Therefore, a new arc is inserted from
each of these other nodes to the dummy sink, where the capacity of this arc equals the
maximum flow that, in reality, can terminate at this node. Because of all these changes,
all the nodes in the original network now are transshipment nodes, so the expanded net-
work has the required single source (the dummy source) and single sink (the dummy sink)
to fit the maximum flow problem.

An Algorithm

Because the maximum flow problem can be formulated as a linear programming prob-
lem (see Prob. 9.5-2), it can be solved by the simplex method, so any of the linear pro-
gramming software packages introduced in Chaps. 3 and 4 can be used. However, an even
more efficient augmenting path algorithm is available for solving this problem. This al-
gorithm is based on two intuitive concepts, a residual network and an augmenting path.

After some flows have been assigned to the arcs, the residual network shows the re-
maining arc capacities (called residual capacities) for assigning additional flows. For ex-
ample, consider arc O — B in Fig. 9.6, which has an arc capacity of 7. Now suppose that
the assigned flows include a flow of 5 through this arc, which leaves a residual capacity
of 7 — 5 = 2 for any additional flow assignment through O — B. This status is depicted
as follows in the residual network.

(r—C)
o B
The number on an arc next to a node gives the residual capacity for flow from that node
to the other node. Therefore, in addition to the residual capacity of 2 for flow from O to
B, the 5 on the right indicates a residual capacity of 5 for assigning some flow from B to
O (that is, for canceling some previously assigned flow from O to B).

Initially, before any flows have been assigned, the residual network for the Seervada

Park problem has the appearance shown in Fig. 9.7. Every arc in the original network
(Fig. 9.6) has been changed from a directed arc to an undirected arc. However, the arc
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FIGURE 9.7

The initial residual network
for the Seervada Park
maximum flow problem.
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capacity in the original direction remains the same and the arc capacity in the opposite
direction is zero, so the constraints on flows are unchanged.

Subsequently, whenever some amount of flow is assigned to an arc, that amount is
subtracted from the residual capacity in the same direction and added to the residual ca-
pacity in the opposite direction.

An augmenting path is a directed path from the source to the sink in the residual
network such that every arc on this path has strictly positive residual capacity. The mini-
mum of these residual capacities is called the residual capacity of the augmenting path
because it represents the amount of flow that can feasibly be added to the entire path.
Therefore, each augmenting path provides an opportunity to further augment the flow
through the original network.

The augmenting path algorithm repeatedly selects some augmenting path and adds a
flow equal to its residual capacity to that path in the original network. This process con-
tinues until there are no more augmenting paths, so the flow from the source to the sink
cannot be increased further. The key to ensuring that the final solution necessarily is op-
timal is the fact that augmenting paths can cancel some previously assigned flows in the
original network, so an indiscriminate selection of paths for assigning flows cannot pre-
vent the use of a better combination of flow assignments.

To summarize, each iferation of the algorithm consists of the following three steps.

The Augmenting Path Algorithm for the Maximum Flow Problem.’

1. Identify an augmenting path by finding some directed path from the source to the sink
in the residual network such that every arc on this path has strictly positive residual
capacity. (If no augmenting path exists, the net flows already assigned constitute an
optimal flow pattern.)

2. Identify the residual capacity c* of this augmenting path by finding the minimum of
the residual capacities of the arcs on this path. Increase the flow in this path by c*.

3. Decrease by c* the residual capacity of each arc on this augmenting path. Increase by
c* the residual capacity of each arc in the opposite direction on this augmenting path.
Return to step 1.

't is assumed that the arc capacities are either integers or rational numbers.
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When step 1 is carried out, there often will be a number of alternative augmenting
paths from which to choose. Although the algorithmic strategy for making this selection
is important for the efficiency of large-scale implementations, we shall not delve into this
relatively specialized topic. (Later in the section, we do describe a systematic procedure
for finding some augmenting path.) Therefore, for the following example (and the prob-
lems at the end of the chapter), the selection is just made arbitrarily.

Applying This Algorithm to the Seervada Park Maximum Flow Problem

Applying this algorithm to the Seervada Park problem (see Fig. 9.6 for the original net-
work) yields the results summarized next. Starting with the initial residual network given
in Fig. 9.7, we give the new residual network after each one or two iterations, where the
total amount of flow from O to T achieved thus far is shown in boldface (next to nodes
Oand 7).

Iteration 1: In Fig. 9.7, one of several augmenting paths is O — B — E — T, which
has a residual capacity of min{7, 5, 6} = 5. By assigning a flow of 5 to this path, the re-
sulting residual network is

Iteration 2: Assign a flow of 3 to the augmenting path O — A — D — T. The re-
sulting residual network is

Iteration 3: Assign a flow of 1 to the augmenting path O - A —- B — D — T.
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Iteration 4: Assign a flow of 2 to the augmenting path O — B — D — T. The re-
sulting residual network is

Iteration 5: Assign a flow of 1 to the augmenting path O - C —- E — D — T.
Iteration 6: Assign a flow of 1 to the augmenting path O — C — E — T. The re-
sulting residual network is

Iteration 7: Assign a flow of 1 to the augmenting pathO - C—-FE —-B— D — T.
The resulting residual network is

There are no more augmenting paths, so the current flow pattern is optimal.
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FIGURE 9.8

Optimal solution for the
Seervada Park maximum flow

problem.
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The current flow pattern may be identified by either cumulating the flow assignments
or comparing the final residual capacities with the original arc capacities. If we use the
latter method, there is flow along an arc if the final residual capacity is less than the orig-
inal capacity. The magnitude of this flow equals the difference in these capacities. Ap-
plying this method by comparing the residual network obtained from the last iteration
with either Fig. 9.6 or 9.7 yields the optimal flow pattern shown in Fig. 9.8.

This example nicely illustrates the reason for replacing each directed arc i — j in the
original network by an undirected arc in the residual network and then increasing the resid-
ual capacity for j — i by ¢* when a flow of ¢* is assigned to i — j. Without this refine-
ment, the first six iterations would be unchanged. However, at that point it would appear
that no augmenting paths remain (because the real unused arc capacity for £ — B is zero).
Therefore, the refinement permits us to add the flow assignment of 1 for O - C — E —
B — D — T in iteration 7. In effect, this additional flow assignment cancels 1 unit of
flow assigned at iteration 1 (O — B — E — T) and replaces it by assignments of 1 unit
of flowtobothO - B—-D—-Tand O —- C— E—T.

Finding an Augmenting Path

The most difficult part of this algorithm when large networks are involved is finding an
augmenting path. This task may be simplified by the following systematic procedure. Be-
gin by determining all nodes that can be reached from the source along a single arc with
strictly positive residual capacity. Then, for each of these nodes that were reached, deter-
mine all new nodes (those not yet reached) that can be reached from this node along an
arc with strictly positive residual capacity. Repeat this successively with the new nodes
as they are reached. The result will be the identification of a tree of all the nodes that can
be reached from the source along a path with strictly positive residual flow capacity. Hence,
this fanning-out procedure will always identify an augmenting path if one exists. The pro-
cedure is illustrated in Fig. 9.9 for the residual network that results from iteration 6 in the
preceding example.

Although the procedure illustrated in Fig. 9.9 is a relatively straightforward one, it
would be helpful to be able to recognize when optimality has been reached without an
exhaustive search for a nonexistent path. It is sometimes possible to recognize this event
because of an important theorem of network theory known as the max-flow min-cut the-
orem. A cut may be defined as any set of directed arcs containing at least one arc from
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Procedure for finding an
augmenting path for
iteration 7 of the Seervada
Park maximum flow
problem.
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every directed path from the source to the sink. There normally are many ways to slice
through a network to form a cut to help analyze the network. For any particular cut, the
cut value is the sum of the arc capacities of the arcs (in the specified direction) of the
cut. The max-flow min-cut theorem states that, for any network with a single source and
sink, the maximum feasible flow from the source to the sink equals the minimum cut value
for all cuts of the network. Thus, if we let ' denote the amount of flow from the source
to the sink for any feasible flow pattern, the value of any cut provides an upper bound to
F, and the smallest of the cut values is equal to the maximum value of F. Therefore, if a
cut whose value equals the value of F currently attained by the solution procedure can be
found in the original network, the current flow pattern must be optimal. Eventually, opti-
mality has been attained whenever there exists a cut in the residual network whose value
is zero.

To illustrate, consider the network of Fig. 9.7. One interesting cut through this net-
work is shown in Fig. 9.10. Notice that the value of the cutis 3 + 4 + 1 + 6 = 14, which
was found to be the maximum value of F, so this cut is a minimum cut. Notice also that,
in the residual network resulting from iteration 7, where F' = 14, the corresponding cut
has a value of zero. If this had been noticed, it would not have been necessary to search
for additional augmenting paths.

FIGURE 9.10

A minimum cut for the
Seervada Park maximum flow
problem.
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