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46. Imagine that the diagram shown below is a map with coun-
tries labeled a—g. Is it possible to color the map with only
three colors so that no two adjacent countries have the same
color? To answer this question, draw and analyze a graph in
which each country is represented by a vertex and two ver-
tices are connected by an edge if, and only if, the countries

a schedule that will allow all faculty members to attend
the meetings of all committees on which they serve. To do
this, represent each committee as the vertex of a graph, and
draw an edge between two vertices if the two committees
have a common member. Find a way to color the vertices
using only three colors so that no two committees have the

share a common border. same color, and explain how to use the result to schedule

the meetings.

a b ¢ 48. A department wants to schedule final exams so that no stu-
B dent has more than one exam on any given day. The vertices

d f of the graph below show the courses that are being taken by

8 more than one student, with an edge connecting two ver-

tices if there is a student in both courses. Find a way to
color the vertices of the graph with only four colors so that
no two adjacent vertices have the same color and explain
how to use the result to schedule the final exams.

H 47. In this exercise a graph is used to help solve a scheduling

problem. Twelve faculty members in a mathematics depart-
ment serve on the following committees:

Undergraduate Education: Tenner, Peterson, Kashina, Cohen

MCS101 MCS102

Graduate Education: Gatto, Yang, Cohen, Catoiu

Colloquium: Sahin, McMurry, Ash
MCS100

Library: Cortzen, Tenner, Sahin MCS110

Hiring: Gatto, McMurry, Yang, Peterson

Personnel: Yang, Wang, Cortzen
MCS135

The committees must all meet during the first week of MCS120

classes, but there are only three time slots available. Find

MCS130

Answers for Test Yourself

1. afinite, nonempty set of vertices; a finite set of edges; one or two vertices called its endpoints 2. an edge with a single endpoint
3. they have the same set of endpoints 4. they are connected by an edge 5. each of its endpoints 6. adjacent 7. isolated 8.
an ordered pair of vertices called its endpoints 9. a graph with no loops or parallel edges 10. simple graph with n vertices whose
set of edges contains exactly one edge for each pair of vertices 11. connected by an edge; any other vertex in V;; any other vertex
in V, 12. every vertex in H is also a vertex in G; every edge in H is also an edge in G; every edge in H has the same endpoints as
ithasin G 13. the number of edges that are incident on the vertex, with an edge that is a loop counted twice 14. the sum of the
degrees of all the vertices of the graph  15. equal to twice the number of edges of the graph 16. an even number

10.2 Trails, Paths, and Circuits

One can begin to reason only when a clear picture has been formed in the imagination.
— W. W. Sawyer, Mathematician’s Delight, 1943

The subject of graph theory began in the year 1736 when the great mathematician Leon-
hard Euler published a paper giving the solution to the following puzzle:

The town of Konigsberg in Prussia (now Kaliningrad in Russia) was built at a point
where two branches of the Pregel River came together. It consisted of an island and
some land along the river banks. These were connected by seven bridges as shown in
Figure 10.2.1.

The question is this: Is it possible for a person to take a walk around town, starting
and ending at the same location and crossing each of the seven bridges exactly once?*

*In his original paper, Euler did not require the walk to start and end at the same point. The analysis
of the problem is simplified, however, by adding this condition. Later in the section, we discuss
walks that start and end at different points.
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10.2 Trails, Paths, and Circuits 643

KoNINGSBERGA

Pregel River

Merian-Erben

Figure 10.2.1 The Seven Bridges of Konigsberg

To solve this puzzle, Euler translated it into a graph theory problem. He noticed that
all points of a given land mass can be identified with each other since a person can travel
from any one point to any other point of the same land mass without crossing a bridge.
Thus for the purpose of solving the puzzle, the map of Konigsberg can be identified with
the graph shown in Figure 10.2.2, in which the vertices A, B, C, and D represent land
masses and the seven edges represent the seven bridges.

Bettmann/CORBIS

Leonhard Euler
(1707-1783) D

Figure 10.2.2 Graph Version of Konigsberg Map

In terms of this graph, the question becomes the following:

Is it possible to find a route through the graph that starts and ends at some
vertex, one of A, B, C, or D, and traverses each edge exactly once?

Equivalently:

Is it possible to trace this graph, starting and ending at the same point,
without ever lifting your pencil from the paper?

Take a few minutes to think about the question yourself. Can you find a route that meets
the requirements? Try it!

Looking for a route is frustrating because you continually find yourself at a vertex
that does not have an unused edge on which to leave, while elsewhere there are unused
edges that must still be traversed. If you start at vertex A, for example, each time you
pass through vertex B, C, or D, you use up two edges because you arrive on one edge
and depart on a different one. So, if it is possible to find a route that uses all the edges
of the graph and starts and ends at A, then the total number of arrivals and departures
from each vertex B, C, and D must be a multiple of 2. Or, in other words, the degrees of
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644 Chapter 10 Graphs and Trees

the vertices B, C, and D must be even. But they are not: deg(B) = 5, deg(C) = 3, and
deg(D) = 3. Hence there is no route that solves the puzzle by starting and ending at A.
Similar reasoning can be used to show that there are no routes that solve the puzzle by
starting and ending at B, C, or D. Therefore, it is impossible to travel all around the city
crossing each bridge exactly once.

Definitions

Travel in a graph is accomplished by moving from one vertex to another along a sequence
of adjacent edges. In the graph below, for instance, you can go from u; to u4 by taking
f1toup and then f7 to u4. This is represented by writing

uy fius frug,

Or you could take the roundabout route

uy frua f3us fauy f3us fsug fous frus frus fsug.

Certain types of sequences of adjacent vertices and edges are of special importance
in graph theory: those that do not have a repeated edge, those that do not have a repeated
vertex, and those that start and end at the same vertex.

Let G be a graph, and let v and w be vertices in G.
A walk from v to w is a finite alternating sequence of adjacent vertices and edges of
G. Thus a walk has the form

Vo€1vi€2 -+ Vy—1€,Vp,

where the v’s represent vertices, the e’s represent edges, vo = v, v, = w, and for
alli =1,2,...n,v;_; and v; are the endpoints of ¢;. The trivial walk from v to v
consists of the single vertex v.

A trail from v to w is a walk from v to w that does not contain a repeated edge.
A path from v to w is a trail that does not contain a repeated vertex.
A closed walk is a walk that starts and ends at the same vertex.

A circuit is a closed walk that contains at least one edge and does not contain a
repeated edge.

A simple circuit is a circuit that does not have any other repeated vertex except the
first and last.
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10.2 Trails, Paths, and Circuits 645

For ease of reference, these definitions are summarized in the following table:

Repeated Repeated Starts and Ends Must Contain at
Edge? Vertex? at Same Point? Least One Edge?
Walk allowed allowed allowed no
Trail no allowed allowed no
Path no no no no
Closed walk allowed allowed yes no
Circuit no allowed yes yes
Simple circuit no first and yes yes
last only

Often a walk can be specified unambiguously by giving either a sequence of edges or
a sequence of vertices. The next two examples show how this is done.

Example 10.2.1 Notation for Walks

a. In the graph below, the notation e;e;e4e3 refers unambiguously to the following walk:
viejvyeavszeqvszezvy. On the other hand, the notation e; is ambiguous if used to refer
to a walk. It could mean either v;e v, or vyejv.

€

€y
vy Lp) Vs

€3

b. In the graph of part (a), the notation v,v3 is ambiguous if used to refer to a walk.
It could mean v,e,v3 or vae3v3. On the other hand, in the graph below, the notation
V1 V2V, v3 refers unambiguously to the walk viejvye;v2€3v3.

€
vy € v, €3 Uy ]

Note that if a graph G does not have any parallel edges, then any walk in G is uniquely
determined by its sequence of vertices.

Example 10.2.2 Walks, Trails Paths, and Circuits

In the graph below, determine which of the following walks are trails, paths, circuits, or
simple circuits.

a. V1€1V2€3VU3€4V3€5V4 b. €1€3€6565€4 C. V2U3V4V5V3V6V2
d. vav3V4V5V6V2 e. viejve v f. v
€y
vy e
. 3 6 v,
e 3 e
€7 €10
Vi e V2
s
Vs
Vg €9
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646 Chapter 10 Graphs and Trees

Solution

a. This walk has a repeated vertex but does not have a repeated edge, so it is a trail from
v; to vy but not a path.

b. This is just a walk from v; to vs. It is not a trail because it has a repeated edge.

c. This walk starts and ends at v,, contains at least one edge, and does not have a repeated
edge, so it is a circuit. Since the vertex vs is repeated in the middle, it is not a simple
circuit.

d. This walk starts and ends at v, contains at least one edge, does not have a repeated
edge, and does not have a repeated vertex. Thus it is a simple circuit.

e. This is just a closed walk starting and ending at v;. It is not a circuit because edge ¢,
is repeated.

f. The first vertex of this walk is the same as its last vertex, but it does not contain an
edge, and so it is not a circuit. It is a closed walk from v; to v;. (It is also a trail from
vy to vy.) [ |

Because most of the major developments in graph theory have happened relatively recently
and in a variety of different contexts, the terms used in the subject have not been stan-
dardized. For example, what this book calls a graph is sometimes called a multigraph,
what this book calls a simple graph is sometimes called a graph, what this book calls a
vertex is sometimes called a node, and what this book calls an edge is sometimes called
an arc. Similarly, instead of the word trail, the word path is sometimes used; instead of
the word path, the words simple path are sometimes used; and instead of the words sim-
ple circuit, the word cycle is sometimes used. The terminology in this book is among the
most common, but if you consult other sources, be sure to check their definitions.

Connectedness

Itis easy to understand the concept of connectedness on an intuitive level. Roughly speak-
ing, a graph is connected if it is possible to travel from any vertex to any other vertex
along a sequence of adjacent edges of the graph. The formal definition of connectedness
is stated in terms of walks.

o Definition

Let G be a graph. Two vertices v and w of G are connected if, and only if, there is a
walk from v to w. The graph G is connected if, and only if, given any two vertices
v and w in G, there is a walk from v to w. Symbolically,

G is connected <V vertices v, w € V(G), 3 a walk from v to w.

If you take the negation of this definition, you will see that a graph G is not connected
if, and only if, there are two vertices of G that are not connected by any walk.

Example 10.2.3 Connected and Disconnected Graphs

Which of the following graphs are connected?
Uy vy vs Vg vy " v,
V3 Vy
3 Vs ° v
v, V6 1 U3 U1 Vg
vg V7
() (b) ()
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10.2 Trails, Paths, and Circuits 647

Solution  The graph represented in (a) is connected, whereas those of (b) and (¢) are not.
To understand why (c) is not connected, recall that in a drawing of a graph, two edges
may cross at a point that is not a vertex. Thus the graph in (c) can be redrawn as follows:

Vg ]

Some useful facts relating circuits and connectedness are collected in the following
lemma. Proofs of (a) and (b) are left for the exercises. The proof of (c) is in Section 10.5.

Lemma 10.2.1
Let G be a graph.
a. If G is connected, then any two distinct vertices of G can be connected by a path.

b. If vertices v and w are part of a circuit in G and one edge is removed from the
circuit, then there still exists a trail from v to w in G.

c. If G is connected and G contains a circuit, then an edge of the circuit can be
removed without disconnecting G.

Look back at Example 10.2.3. The graphs in (b) and (c) are both made up of three
pieces, each of which is itself a connected graph. A connected component of a graph is a
connected subgraph of largest possible size.

A graph H is a connected component of a graph G if, and only if,
1. H is subgraph of G;
2. H is connected; and

3. no connected subgraph of G has H as a subgraph and contains vertices or edges
that are not in H.

The fact is that any graph is a kind of union of its connected components.

Example 10.2.4 Connected Components

Find all connected components of the following graph G.

vy Us Ve
€3
& ° €4
vy es
v o€ U3 vg vy
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648 Chapter 10 Graphs and Trees

Solution G has three connected components: Hy, H,, and H; with vertex sets Vi, V,, and
V3 and edge sets E, E,, and E3, where

Vi = {v1, v2, v3}, Ey = {e1, 2},
V2 = {U4}, EZ = ﬂv
V3 = {vs, vs, v7, V8}, E; = {e3, e4, es}. u

Euler Circuits

Now we return to consider general problems similar to the puzzle of the Konigsberg
bridges. The following definition is made in honor of Euler.

o Definition

Let G be a graph. An Euler circuit for G is a circuit that contains every vertex and
every edge of G. That is, an Euler circuit for G is a sequence of adjacent vertices
and edges in G that has at least one edge, starts and ends at the same vertex, uses
every vertex of G at least once, and uses every edge of G exactly once.

The analysis used earlier to solve the puzzle of the Konigsberg bridges generalizes to
prove the following theorem:

Theorem 10.2.2

If a graph has an Euler circuit, then every vertex of the graph has positive even degree.

Proof:

Suppose G is a graph that has an Euler circuit. [We must show that given any vertex
v of G, the degree of v is even.] Let v be any particular but arbitrarily chosen vertex
of G. Since the Euler circuit contains every edge of G, it contains all edges incident
on v. Now imagine taking a journey that begins in the middle of one of the edges
adjacent to the start of the Euler circuit and continues around the Euler circuit to end
in the middle of the starting edge. (See Figure 10.2.3. There is such a starting edge
because the Euler circuit has at least one edge.) Each time v is entered by traveling
along one edge, it is immediately exited by traveling along another edge (since the
journey ends in the middle of an edge).

Start here  First entry/exit

pair of edges In this example, the Euler circuit
vy iS VoV V2V3V4V5V0, and v 1S vy.
v . .
3 Each time v, is entered by one

edge, it is exited by another edge.
V2

v,
Vs \/ 4

Second entry/exit
pair of edges

Figure 10.2.3 Example for the Proof of Theorem 10.2.2
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10.2 Trails, Paths, and Circuits 649

Because the Euler circuit uses every edge of G exactly once, every edge incident on
v is traversed exactly once in this process. Hence the edges incident on v occur in
entry/exit pairs, and consequently the degree of v must be a positive multiple of 2.
But that means that v has positive even degree [as was to be shown].

Recall that the contrapositive of a statement is logically equivalent to the statement.
The contrapositive of Theorem 10.2.2 is as follows:

Contrapositive Version of Theorem 10.2.2

If some vertex of a graph has odd degree, then the graph does not have an Euler
circuit.

This version of Theorem 10.2.2 is useful for showing that a given graph does not have
an Euler circuit.

Example 10.2.5 Showing That a Graph Does Not Have an Euler Circuit

Show that the graph below does not have an Euler circuit.

1)2 e

Solution  Vertices vy and v3 both have degree 3, which is odd. Hence by (the contrapositive
form of) Theorem 10.2.2, this graph does not have an Euler circuit. |

Now consider the converse of Theorem 10.2.2: If every vertex of a graph has even
degree, then the graph has an Euler circuit. Is this true? The answer is no. There is a graph
G such that every vertex of G has even degree but G does not have an Euler circuit. In
fact, there are many such graphs. The illustration below shows one example.

V2 U3
‘1 €3 Every vertex has even degree,
but the graph does not have
) ¢ an Euler circuit.
vy Vy

Note that the graph in the preceding drawing is not connected. It turns out that
although the converse of Theorem 10.2.2 is false, a modified converse is true: If every
vertex of a graph has positive even degree and if the graph is connected, then the graph
has an Euler circuit. The proof of this fact is constructive: It contains an algorithm to find
an Euler circuit for any connected graph in which every vertex has even degree.
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650 Chapter 10 Graphs and Trees

Theorem 10.2.3

If a graph G is connected and the degree of every vertex of G is a positive even
integer, then G has an Euler circuit.

Proof:

Suppose that G is any connected graph and suppose that every vertex of G is a
positive even integer. [We must find an Euler circuit for G.] Construct a circuit C by
the following algorithm:

Step 1: Pick any vertex v of G at which to start.
[This step can be accomplished because the vertex set of G is nonempty by
assumption. |

Step 2: Pick any sequence of adjacent vertices and edges, starting and ending at v
and never repeating an edge. Call the resulting circuit C.
[This step can be performed for the following reasons: Since the degree of each
vertex of G is a positive even integer, as each vertex of G is entered by traveling
on one edge, either the vertex is v itself and there is no other unused edge adja-
cent to v, or the vertex can be exited by traveling on another previously unused
edge. Since the number of edges of the graph is finite (by definition of graph),
the sequence of distinct edges cannot go on forever. The sequence can eventu-
ally return to v because the degree of v is a positive even integer, and so if an
edge connects v to another vertex, there must be a different edge that connects
back to v.]

Step 3: Check whether C contains every edge and vertex of G. If so, C is an Euler
circuit, and we are finished. If not, perform the following steps.

Step 3a: Remove all edges of C from G and also any vertices that become

isolated when the edges of C are removed. Call the resulting
subgraph G'.
[Note that G' may not be connected (as illustrated in Figure 10.2.4), but
every vertex of G' has positive, even degree (since removing the edges
of C removes an even number of edges from each vertex, the difference
of two even integers is even, and isolated vertices with degree 0 were
removed.)]|

AN

G
Figure 10.2.4

Step 3b: Pick any vertex w common to both C and G'.
[There must be at least one such vertex since G is connected. (See exercise
44.) (In Figure 10.2.4 there are two such vertices: u and w.)]

Step 3c: Pick any sequence of adjacent vertices and edges of G’, starting and
ending at w and never repeating an edge. Call the resulting circuit C’.
[This can be done since each vertex of G' has positive, even degree and
G’ is finite. See the justification for step 2.]
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10.2 Trails, Paths, and Circuits 651

Step 3d: Patch C and C’ together to create a new circuit C” as follows: Start at
v and follow C all the way to w. Then follow C’ all the way back to w.
After that, continue along the untraveled portion of C to return to v.
[The effect of executing steps 3¢ and 3d for the graph of Figure 10.2.4 is
shown in Figure 10.2.5.]

c

\f/

Figure 10.2.5

Step 3e: Let C = C” and go back to step 3.

Since the graph G is finite, execution of the steps outlined in this algorithm must
eventually terminate. At that point an Euler circuit for G will have been constructed.
(Note that because of the element of choice in steps 1, 2, 3b, and 3c, a variety of
different Euler circuits can be produced by using this algorithm.)

Example 10.2.6 Finding an Euler Circuit

Use Theorem 10.2.3 to check that the graph below has an Euler circuit. Then use the
algorithm from the proof of the theorem to find an Euler circuit for the graph.

Solution  Observe that
deg(a) = deg(b) = deg(c) = deg(f) = deg(g) = deg(i) = deg(j) =2

and that deg(d) = deg(e) = deg(h) = 4. Hence all vertices have even degree. Also, the
graph is connected. Thus, by Theorem 10.2.3, the graph has an Euler circuit.

To construct an Euler circuit using the algorithm of Theorem 10.2.3, let v = a and let
C be

C: abcda.

C is represented by the labeled edges shown below.
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652 Chapter 10 Graphs and Trees
Observe that C is not an Euler circuit for the graph but that C intersects the rest of the
graph at d. Let C’ be
C': deghjid.
Patch C’ into C to obtain
C": abcdeghjida.
Set C = C”. Then C is represented by the labeled edges shown below.

Observe that C is not an Euler circuit for the graph but that it intersects the rest of the
graph at e. Let C’ be

C': efhe.
Patch C’ into C to obtain
C": abcdefheghjida.
Set C = C”. Then C is represented by the labeled edges shown below.

Since C includes every edge of the graph exactly once, C is an Euler circuit for the graph.
|

In exercise 45 at the end of this section you are asked to show that any graph with
an Euler circuit is connected. This result can be combined with Theorems 10.2.2 and
10.2.3 to give a complete characterization of graphs that have Euler circuits, as stated in
Theorem 10.2.4.

Theorem 10.2.4

A graph G has an Euler circuit if, and only if, G is connected and every vertex of G
has positive even degree.

A corollary to Theorem 10.2.4 gives a criterion for determining when it is possible
to find a walk from one vertex of a graph to another, passing through every vertex of the
graph at least once and every edge of the graph exactly once.

o Definition

Let G be a graph, and let v and w be two distinct vertices of G. An Euler trail from
v to w is a sequence of adjacent edges and vertices that starts at v, ends at w, passes
through every vertex of G at least once, and traverses every edge of G exactly once.
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10.2 Trails, Paths, and Circuits 653

Corollary 10.2.5

Let G be a graph, and let v and w be two distinct vertices of G. There is an Euler
path from v to w if, and only if, G is connected, v and w have odd degree, and all
other vertices of G have positive even degree.

The proof of this corollary is left as an exercise.

Example 10.2.7 Finding an Euler Trail

The floor plan shown below is for a house that is open for public viewing. Is it possible
to find a trail that starts in room A, ends in room B, and passes through every interior
doorway of the house exactly once? If so, find such a trail.

I P S

H
~
._{

Solution  Let the floor plan of the house be represented by the graph below.

Each vertex of this graph has even degree except for A and B, each of which has degree 1.
Hence by Corollary 10.2.5, there is an Euler path from A to B. One such trail is

AGHFEIHEKJDCB. |

Hamiltonian Circuits

Theorem 10.2.4 completely answers the following question: Given a graph G, is it pos-
sible to find a circuit for G in which all the edges of G appear exactly once? A related
question is this: Given a graph G, is it possible to find a circuit for G in which all the
vertices of G (except the first and the last) appear exactly once?

In 1859 the Irish mathematician Sir William Rowan Hamilton introduced a puzzle in
the shape of a dodecahedron (DOH-dek-a-HEE-dron). (Figure 10.2.6 contains a drawing
of a dodecahedron, which is a solid figure with 12 identical pentagonal faces.)

Bettmann/CORBIS

Sir Wm. Hamilton
(1805-1865)

Figure 10.2.6 Dodecahedron
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654 Chapter 10 Graphs and Trees

Each vertex was labeled with the name of a city—London, Paris, Hong Kong, New York,
and so on. The problem Hamilton posed was to start at one city and tour the world by
visiting each other city exactly once and returning to the starting city. One way to solve
the puzzle is to imagine the surface of the dodecahedron stretched out and laid flat in the
plane, as follows:

The circuit denoted with black lines is one solution. Note that although every city is
visited, many edges are omitted from the circuit. (More difficult versions of the puzzle
required that certain cities be visited in a certain order.)

The following definition is made in honor of Hamilton.

o Definition

Given a graph G, a Hamiltonian circuit for G is a simple circuit that includes every
vertex of G. That is, a Hamiltonian circuit for G is a sequence of adjacent vertices
and distinct edges in which every vertex of G appears exactly once, except for the
first and the last, which are the same.

Note that although an Euler circuit for a graph G must include every vertex of G, it
may visit some vertices more than once and hence may not be a Hamiltonian circuit. On
the other hand, a Hamiltonian circuit for G does not need to include all the edges of G
and hence may not be an Euler circuit.

Despite the analogous-sounding definitions of Euler and Hamiltonian circuits, the
mathematics of the two are very different. Theorem 10.2.4 gives a simple criterion for
determining whether a given graph has an Euler circuit. Unfortunately, there is no anal-
ogous criterion for determining whether a given graph has a Hamiltonian circuit, nor is
there even an efficient algorithm for finding such a circuit. There is, however, a simple
technique that can be used in many cases to show that a graph does not have a Hamilto-
nian circuit. This follows from the following considerations:

Suppose a graph G with at least two vertices has a Hamiltonian circuit C given con-
cretely as

C: vpejviey -+ - v,_1€,Vy,.

Since C is a simple circuit, all the e; are distinct and all the v; are distinct except that
vo = v,. Let H be the subgraph of G that is formed using the vertices and edges of C.
An example of such an H is shown below.

H is indicated by the black lines.

Note that H has the same number of edges as it has vertices since all its n edges are
distinct and so are its n vertices vy, vy, . . ., U,. Also, by definition of Hamiltonian circuit,
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10.2 Trails, Paths, and Circuits 655

every vertex of G is a vertex of H, and H is connected since any two of its vertices lie on
a circuit. In addition, every vertex of H has degree 2. The reason for this is that there are
exactly two edges incident on any vertex. These are ¢; and e;; for any vertex v; except
vg = vy, and they are e; and e, for vy (= v,). These observations have established the
truth of the following proposition in all cases where G has at least two vertices.

Proposition 10.2.6

If a graph G has a Hamiltonian circuit, then G has a subgraph H with the following
properties:

1. H contains every vertex of G.
2. H is connected.
3. H has the same number of edges as vertices.

4. Every vertex of H has degree 2.

Note that if G contains only one vertex and G has a Hamiltonian circuit, then the circuit
has the form v e v, where v is the vertex of G and e is an edge incident on v. In this case,
the subgraph H consisting of v and e satisfies conditions (1)—(4) of Proposition 10.2.6.

Recall that the contrapositive of a statement is logically equivalent to the statement.
The contrapositive of Proposition 10.2.6 says that if a graph G does not have a subgraph
H with properties (1)—(4), then G does not have a Hamiltonian circuit.

Example 10.2.8 Showing That a Graph Does Not Have a Hamiltonian Circuit

Prove that the graph G shown below does not have a Hamiltonian circuit.

e d

Solution  If G has a Hamiltonian circuit, then by Proposition 10.2.6, G has a subgraph H
that (1) contains every vertex of G, (2) is connected, (3) has the same number of edges
as vertices, and (4) is such that every vertex has degree 2. Suppose such a subgraph H
exists. In other words, suppose there is a connected subgraph H of G such that H has
five vertices (a, b, ¢, d, e) and five edges and such that every vertex of H has degree 2.
Since the degree of b in G is 4 and every vertex of H has degree 2, two edges incident
on b must be removed from G to create H. Edge {a, b} cannot be removed because if it
were, vertex a would have degree less than 2 in H. Similar reasoning shows that edges
{e, b}, {b, a}, and {b, d} cannot be removed either. It follows that the degree of b in H
must be 4, which contradicts the condition that every vertex in H has degree 2 in H.
Hence no such subgraph H exists, and so G does not have a Hamiltonian circuit. |

The next example illustrates a type of problem known as a traveling salesman prob-
lem. It is a variation of the problem of finding a Hamiltonian circuit for a graph.
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656 Chapter 10 Graphs and Trees

Example 10.2.9 A Traveling Salesman Problem

Imagine that the drawing below is a map showing four cities and the distances in kilome-
ters between them. Suppose that a salesman must travel to each city exactly once, starting
and ending in city A. Which route from city to city will minimize the total distance that
must be traveled?

Solution  This problem can be solved by writing all possible Hamiltonian circuits starting
and ending at A and calculating the total distance traveled for each.

Route Total Distance (In Kilometers)
ABCDA 304304254+40=125
ABDCA 30+ 35425+ 50 = 140
ACBDA 50 430435440 =155

ACDBA 140  [ABDC A backwards]
ADBCA 155 [AC B D A backwards]
ADCBA 125 [ABC D A backwards]

Thus either route ABCDA or ADCBA gives a minimum total distance of 125
kilometers. u

The general traveling salesman problem involves finding a Hamiltonian circuit to
minimize the total distance traveled for an arbitrary graph with n vertices in which each
edge is marked with a distance. One way to solve the general problem is to use the
method of Example 10.2.9: Write down all Hamiltonian circuits starting and ending at
a particular vertex, compute the total distance for each, and pick one for which this total
is minimal. However, even for medium-sized values of n this method is impractical. For
a complete graph with 30 vertices, there would be (29!)/2 = 4.42 x 10’ Hamiltonian
circuits starting and ending at a particular vertex to check. Even if each circuit could be
found and its total distance computed in just one nanosecond, it would require approx-
imately 1.4 x 10'* years to finish the computation. At present, there is no known algo-
rithm for solving the general traveling salesman problem that is more efficient. However,
there are efficient algorithms that find “pretty good” solutions—that is, circuits that, while
not necessarily having the least possible total distances, have smaller total distances than
most other Hamiltonian circuits.

Test Yourself

1. Let G be a graph and let v and w be vertices in G. (e) Acircuitis
(a) Awalkfromvtowis_____. (f) A simple circuitis
(b) Atrail fromvtowis____ . (g) Atrivial walkis .
(c) Apathfromvtowis . (h) Vertices v and w are connected if, and only if,

(d) A closed walk is .
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. An Euler circuit in a graph is

. A graph has an Euler circuit if, and only if,

A L kA W

. Given vertices v and w in a graph, there is an Euler path from
v to w if, and only if,

Exercise Set 10.2

1. In the graph below, determine whether the following walks
are trails, paths, closed walks, circuits, simple circuits, or

. A graph is connected if, and only if, . 7. A Hamiltonian circuit in a graph is
. Removing an edge from a circuit in a graph does not . 8. Ifa graph G has a Hamiltonian circuit, then G has a subgraph
H with the following properties: and

9. A traveling salesman problem involves finding a that

minimizes the total distance traveled for a graph in which
each edge is marked with a distance.

a. How many paths are there from v; to v4?
b. How many trails are there from v; to v4?

just walks. c. How many walks are there from v; to v4?
a. Vo€ V1€1pVs5€9V2€7V b. V4€7V2€9V5€10V1€3V2€9V5 5. Consider the following graph

C. Uy d. v5V2V3V4V405 : :

€. V2V3V4V502V4V30; f. esegejpes

2. In the graph below, determine whether the following walks
are trails, paths, closed walks, circuits, simple circuits, or

€]
S T
——7"
€4

a. How many paths are there from a to ¢?
b. How many trails are there from a to c?
c. How many walks are there from a to ¢?

6. An edge whose removal disconnects the graph of which it

just walks. is a part is called a bridge. Find all bridges for each of the
a. Viervre3vzesvsesrev1€Vg b VaU3U4V50) following graphs.
C. V4VUV3V4V5V2V4 d. VUV V5VU20V3V4V2
€. VgUsUaU304V,0) f. vsvsvov) a. vy Uy b. Vo Yy Y2
v3 V3
vy Uy
vg
Vs vy vg vs
¢ v v, vy e
3 "
. v
Vo b ey
Ug

and consider the walk v;ejv,e,v;.

a. Can this walk be written unambiguously as v;v,v,?
Why?

b. Can this walk be written unambiguously as e;e,? Why?

4. Consider the following graph.

€

€ m es
vy UUs vy

€y

Vg

7. Given any positive integer n, (a) find a connected graph
with n edges such that removal of just one edge discon-
nects the graph; (b) find a connected graph with n edges
that cannot be disconnected by the removal of any single
edge.
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8. Find the number of connected components for each of the 14. a 15. 13 v
following graphs. .
b s v "
a. b g
e /\
L]
‘ r z x
a c f h f c y
d
e d
b. v
u w 16. vy 17. A B
z X Yo V3
C D
y Vs v3
c. d. L] vy E F
V1 U3 18. Is it possible to take a walk around the city whose map

is shown below, starting and ending at the same point and
crossing each bridge exactly once? If so, how can this be
done?

Uy

9. Each of (a)—(c) describes a graph. In each case answer yes,
no, or not necessarily to this question: Does the graph have
an Euler circuit? Justify your answers.

a. G is a connected graph with five vertices of degrees 2,
2,3,3,and 4.

b. G is a connected graph with five vertices of degrees 2,
2,4, 4, and 6.

c. G is a graph with five vertices of degrees 2, 2, 4,4,
and 6.

10. The solution for Example 10.2.5 shows a graph for which
every vertex has even degree but which does not have an
Euler circuit. Give another example of a graph satisfying
these properties.

For each of the graphs in 19-21, determine whether there is an

11. Is it possible for a citizen of Konigsberg to make a tour Euler path from 1 to w. If there is, find such a path.

of the city and cross each bridge exactly twice? (See
Figure 10.2.1.) Why?
Determine which of the graphs in 12—17 have Euler circuits. If 19. b0 20.
the graph does not have an Euler circuit, explain why not. If it b
does have an Euler circuit, describe one.

12. vy 13. v f

v
o a u f
e ey vy V6 v,
Uy h w
v v
vy v3 5 3
v

5 V3 Vy
! ) k b w )

vy v; Vg
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27. B
vy vy
A C
vy
u
Vg G D

21.

V3 Uy
In 28-31 find Hamiltonian circuits for those graphs that have
v V4 them. Explain why the other graphs do not.
Vs H 28. 29.

a b b

22. The following is a floor plan of a house. Is it possible to a ‘ ¢
enter the house in room A, travel through every interior e c ' ‘
doorway of the house exactly once, and exit out of room g ‘ e

8

f

b

E? If so, how can this be done? 7

A B
v

C
| 1
‘ J) 30. 31. l
1 v v
. T 0 - 2 a . c
U3 b

Find Hamiltonian circuits for each of the graphs in 23 and 24.

Z

Q
— H—

23. 24. H 32. Give two examples of graphs that have Euler circuits but
a not Hamiltonian circuits.

H 33. Give two examples of graphs that have Hamiltonian circuits

Yo
k h , but not Euler circuits.
l >
Y6 vy H 34. Give two examples of graphs that have circuits that are both
; § Euler circuits and Hamiltonian circuits.
A ‘ H 35. Give two examples of graphs that have Euler circuits and

Us U3 I ¢ Hamiltonian circuits that are not the same.

vy J d

Show that none of the graphs in 25-27 has a Hamiltonian cir-
cuit.

H 25. b d 26. a ¢
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36. A traveler in Europe wants to visit each of the cities shown 39. Prove Lemma 10.2.1(b): If vertices v and w are part of
on the map exactly once, starting and ending in Brussels. a circuit in a graph G and one edge is removed from the
The distance (in kilometers) between each pair of cities is circuit, then there still exists a trail from v to w in G.

given in the table. Find a Hamiltonian circuit that mini-
mizes the total distance traveled. (Use the map to narrow
the possible circuits down to just a few. Then use the table
to find the total distance for each of those.)

40. Draw a picture to illustrate Lemma 10.2.1(c): If a graph G
is connected and G contains a circuit, then an edge of the
circuit can be removed without disconnecting G.

41. Prove that if there is a trail in a graph G from a vertex v to
a vertex w, then there is a trail from w to v.

H 42. If a graph contains a circuit that starts and ends at a vertex
v, does the graph contain a simple circuit that starts and

=7 ends at v? Why?

43. Prove that if there is a circuit in a graph that starts and ends
at a vertex v and if w is another vertex in the circuit, then
there is a circuit in the graph that starts and ends at w.

44. Let G be a connected graph, and let C be any circuit in

G that does not contain every vertex of C. Let G’ be the

° ® Diisseldorf subgraph obtained by removing all the edges of C from G

e vels and also any vertices that become isolated when the edges

o of C are removed. Prove that there exists a vertex v such
that v is in both C and G’.

® Berlin

© Munich ~ . .
45. Prove that any graph with an Euler circuit is connected.
46. Prove Corollary 10.2.5.
Berlin - Brussels Disseldorf  Luxembourg Munich 47. For what values of n does the complete graph K, with n

Brussels 783 vertices have (a) an Euler circuit? (b) a Hamiltonian circuit?
Diisseldorf 564 223 Justify your answers.
Luxe.mbourg 764 219 224 *48. For what values of m and n does the complete bipartite
Mu_mCh 385 7 613 >17 graph on (m, n) vertices have (a) an Euler circuit? (b) a
Paris 1,057 308 497 375 832

Hamiltonian circuit? Justify your answers.

37. a. Prove that if a walk in a graph contains a repeated edge, ~ *49. What is the maximum number of edges a simple dis-
then the walk contains a repeated vertex. connected graph with n vertices can have? Prove your
b. Explain how it follows from part (a) that any walk with answer.

ted vertex h ted edge.
110 repeafod vertex has no fepeated ecge *50. Show that a graph is bipartite if, and only if, it does not have

38. Prove Lemma 10.2.1(a): If G is a connected graph, then a circuit with an odd number of edges. (See exercise 37 of
any two distinct vertices of G can be connected by a path. Section 10.1 for the definition of bipartite graph.)

Answers for Test Yourself

1. (a) a finite alternating sequence of adjacent vertices and edges of G (b) a walk that does not contain a repeated edge (c) a
trail that does not contain a repeated vertex (d) a walk that starts and ends at the same vertex (e) a closed walk that contains at
least one edge and does not contain a repeated edge (f) a circuit that does not have any repeated vertex other than the first and the
last (g) a walk consisting of a single vertex and no edge (h) there is a walk from v to w 2. given any two vertices in the graph,
there is a walk from one to the other 3. disconnect the graph 4. a circuit that contains every vertex and every edge of the graph
5. the graph is connected, and every vertex has positive, even degree 6. the graph is connected, v and w have odd degree, and all
other vertices have positive even degree 7. a simple circuit that includes every vertex of the graph 8. H contains every vertex of
G; H is connected; H has the same number of edges as vertices; every vertex of H has degree 2 9. Hamiltonian circuit
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