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Prove that each of the properties in 21–29 is an invariant for
graph isomorphism. Assume that n,m, and k are all nonnega-
tive integers.

21. Has n vertices 22. Has m edges

23. Has a circuit of length k

24. Has a simple circuit of length k

25.H Has m vertices of degree k

26. Has m simple circuits of length k

27.H Is connected 28. Has an Euler circuit

29. Has a Hamiltonian circuit

30. Show that the following two graphs are not isomorphic by
supposing they are isomorphic and deriving a contradiction.

v1 v2 v3 v4 v5 v6

e1 e2
e3

e4

e5 e6

w1 w2 w3 w4 w5 w6

f1 f2 f3
f4

f5

f6

G

G'

Answers for Test Yourself
1. g(v) is an endpoint of h(e) 2. G

′
has property P 3. has n vertices; has m edges; has a vertex of degree k; has m vertices of

degree k; has a circuit of length k; has a simple circuit of length k; has m simple circuits of length k; is connected; has an Euler circuit;
has a Hamiltonian circuit

10.5 Trees
We are not very pleased when we are forced to accept a mathematical truth
by virtue of a complicated chain of formal conclusions and computations, which we
traverse blindly, link by link, feeling our way by touch. We want first an overview of the
aim and of the road; we want to understand the idea of the proof, the deeper context.
— Hermann Weyl, 1885–1955

If a friend asks what you are studying and you answer “trees,” your friend is likely to infer
you are taking a course in botany. But trees are also a subject for mathematical investi-
gation. In mathematics, a tree is a connected graph that does not contain any circuits.
Mathematical trees are similar in certain ways to their botanical namesakes.

• Definition

A graph is said to be circuit-free if, and only if, it has no circuits. A graph is called
a tree if, and only if, it is circuit-free and connected. A trivial tree is a graph that
consists of a single vertex. A graph is called a forest if, and only if, it is circuit-free
and not connected.

Example 10.5.1 Trees and Non-Trees

All the graphs shown in Figure 10.5.1 are trees, whereas those in Figure 10.5.2 are not.

(a) (b) (c) (d)

Figure 10.5.1 Trees. All the graphs in (a)–(d) are connected and circuit-free.
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684 Chapter 10 Graphs and Trees

(a) (b) (c) (d)

Figure 10.5.2 Non-Trees. The graphs in (a), (b), and (c) all have circuits, and the graph in (d) is not connected. ■

Examples of Trees
The following examples illustrate just a few of the many and varied situations in which
mathematical trees arise.

Example 10.5.2 A Decision Tree

During orientation week, a college administers an exam to all entering students to deter-
mine placement in the mathematics curriculum. The exam consists of two parts, and
placement recommendations are made as indicated by the tree shown in Figure 10.5.3.
Read the tree from left to right to decide what course should be recommended for a stu-
dent who scored 9 on part I and 7 on part II.

Score on
part I

Score on
part II

Math 100

Math 100

Math 110

Math 110

Math 120
Score on
part II

>10

<8

= 8, 9, 10

>10

≤

≤

10

>6

6

Figure 10.5.3

Solution Since the student scored 9 on part I, the score on part II is checked. Since it is
greater than 6, the student should be advised to take Math 110. ■

Example 10.5.3 A Parse Tree

In the last 30 years, Noam Chomsky and others have developed new ways to describe the
syntax (or grammatical structure) of natural languages such as English. As is discussed
briefly in Chapter 12, this work has proved useful in constructing compilers for high-
level computer languages. In the study of grammars, trees are often used to show the
derivation of grammatically correct sentences from certain basic rules. Such trees are
called syntactic derivation trees or parse trees.
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10.5 Trees 685

A very small subset of English grammar, for example, specifies that

1. a sentence can be produced by writing first a noun phrase and then a verb phrase;

2. a noun phrase can be produced by writing an article and then a noun;

3. a noun phrase can also be produced by writing an article, then an adjective, and then
a noun;

4. a verb phrase can be produced by writing a verb and then a noun phrase;

5. one article is “the”;

6. one adjective is “young”;

7. one verb is “caught”;

8. one noun is “man”;

9. one (other) noun is “ball.”

The rules of a grammar are called productions. It is customary to express them using
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John Backus
(1924–1998)

the shorthand notation illustrated below. This notation, introduced by John Backus in
1959 and modified by Peter Naur in 1960, was used to describe the computer language
Algol and is called the Backus-Naur notation. In the notation, the symbol | represents
the word or, and angle brackets 〈 〉 are used to enclose terms to be defined (such as a
sentence or noun phrase).

1. 〈sentence〉 → 〈noun phrase〉〈verb phrase〉
2., 3. 〈noun phrase〉 → 〈article〉〈noun〉 | 〈article〉〈adjective〉〈noun〉
4. 〈verb phrase〉 → 〈verb〉〈noun phrase〉
5. 〈article〉 → the

6. 〈adjective〉 → young

7, 8. 〈noun〉 → man | ball
9. 〈verb〉 → caught

The derivation of the sentence “The young man caught the ball” from the above rules

C
ou

rt
es

y
of

P
et

er
N

au
r

Peter Naur
(born 1928)

is described by the tree shown below.

〈sentence〉

〈noun phrase 〈〉 verb phrase〉

〈article〉 〈adjective〉 〈noun〉 〈verb〉

caught

〈noun phrase〉

〈article〉 〈noun〉

the ball

the young man

In the study of linguistics, syntax refers to the grammatical structure of sentences, and
semantics refers to the meanings of words and their interrelations. A sentence can be syn-
tactically correct but semantically incorrect, as in the nonsensical sentence “The young
ball caught the man,” which can be derived from the rules given above. Or a sentence can
contain syntactic errors but not semantic ones, as, for instance, when a two-year-old child
says, “Me hungry!” ■
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686 Chapter 10 Graphs and Trees

Example 10.5.4 Structure of Hydrocarbon Molecules

The German physicist Gustav Kirchhoff (1824–1887) was the first to analyze the behav-
ior of mathematical trees in connection with the investigation of electrical circuits. Soon
after (and independently), the English mathematician Arthur Cayley used the mathemat-
ics of trees to enumerate all isomers for certain hydrocarbons. Hydrocarbon molecules
are composed of carbon and hydrogen; each carbon atom can form up to four chemical
bonds with other atoms, and each hydrogen atom can form one bond with another atom.
Thus the structure of hydrocarbon molecules can be represented by graphs such as those
shown following, in which the vertices represent atoms of hydrogen and carbon, denoted
H and C, and the edges represent the chemical bonds between them.

H

H

H

H

H

H HH

HH CC

C

C

H

H

H HC

H

H

C

H

H

C

H

H

C

IsobutaneButane

Note that each of these graphs has four carbon atoms and ten hydrogen atoms, but the
two graphs show different configurations of atoms. When two molecules have the same
chemical formulae (in this case C4H10) but different chemical bonds, they are called
isomers.

Certain saturated hydrocarbon molecules contain the maximum number of hydro-
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Arthur Cayley
(1821–1895)

gen atoms for a given number of carbon atoms. Cayley showed that if such a saturated
hydrocarbon molecule has k carbon atoms, then it has 2k + 2 hydrogen atoms. The first
step in doing so is to prove that the graph of such a saturated hydrocarbon molecule is
a tree. Prove this using proof by contradiction. (You are asked to finish the derivation of
Cayley’s result in exercise 4 at the end of this section.)

Solution Suppose there is a hydrocarbon molecule that contains the maximum number of
hydrogen atoms for the number of its carbon atoms and whose graph G is not a tree.
[We must derive a contradiction.] Since G is not a tree, G is not connected or G has a
circuit. But the graph of any molecule is connected (all the atoms in a molecule must be
connected to each other), and so G must have a nontrivial circuit. Now the edges of the
circuit can link only carbon atoms because every vertex of a circuit has degree at least 2
and a hydrogen atom vertex has degree 1. Delete one edge of the circuit and add two new
edges to join each of the newly disconnected carbon atom vertices to a hydrogen atom
vertex as shown below.

C

C

C

C

H

H

Add
Delete

Rest of circuit
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10.5 Trees 687

The resulting molecule has two more hydrogen atoms than the given molecule, but the
number of carbon atoms is unchanged. This contradicts the supposition that the given
molecule has the maximum number of hydrogen atoms for the given number of carbon
atoms. Hence the supposition is false, and so G is a tree. ■

Characterizing Trees
There is a somewhat surprising relation between the number of vertices and the number of
edges of a tree. It turns out that if n is a positive integer, then any tree with n vertices (no
matter what its shape) has n − 1 edges. Perhaps even more surprisingly, a partial converse
to this fact is also true—namely, any connected graph with n vertices and n − 1 edges is
a tree. It follows from these facts that if even one new edge (but no new vertex) is added
to a tree, the resulting graph must contain a circuit. Also, from the fact that removing an
edge from a circuit does not disconnect a graph, it can be shown that every connected
graph has a subgraph that is a tree. It follows that if n is a positive integer, any graph with
n vertices and fewer than n − 1 edges is not connected.

A small but very important fact necessary to derive the first main theorem about trees
is that any nontrivial tree must have at least one vertex of degree 1.

Lemma 10.5.1

Any tree that has more than one vertex has at least one vertex of degree 1.

A constructive way to understand this lemma is to imagine being given a tree T with
more than one vertex. You pick a vertex v at random and then search outward along a
path from v looking for a vertex of degree 1. As you reach each new vertex, you check
whether it has degree 1. If it does, you are finished. If it does not, you exit from the vertex
along a different edge from the one you entered on. Because T is circuit-free, the vertices
included in the path never repeat. And since the number of vertices of T is finite, the
process of building a path must eventually terminate. When that happens, the final vertex
v′ of the path must have degree 1. This process is illustrated below.

Start here Search outward from v to
find vertex v' of degree 1.

e
e'

v

v'

This discussion is made precise in the following proof.

Proof:

Let T be a particular but arbitrarily chosen tree that has more than one vertex, and
consider the following algorithm:

Step 1: Pick a vertex v of T and let e be an edge incident on v.
[If there were no edge incident on v, then v would be an isolated vertex. But this
would contradict the assumption that T is connected (since it is a tree) and has
at least two vertices.]

Step 2: While deg(v) > 1, repeat steps 2a, 2b, and 2c:

continued on page 688
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688 Chapter 10 Graphs and Trees

Step 2a: Choose e′ to be an edge incident on v such that e′ �= e. [Such an edge
exists because deg(v) > 1 and so there are at least two edges incident on
v.]

Step 2b: Let v′ be the vertex at the other end of e′ from v. [Since T is a tree, e′

cannot be a loop and therefore e′ has two distinct endpoints.]

Step 2c: Let e = e′ and v = v′. [This is just a renaming process in preparation
for a repetition of step 2.]

The algorithm just described must eventually terminate because the set of ver-
tices of the tree T is finite and T is circuit-free. When it does, a vertex v of degree 1
will have been found.

Using Lemma 10.5.1 it is not difficult to show that, in fact, any tree that has more
than one vertex has at least two vertices of degree 1. This extension of Lemma 10.5.1 is
left to the exercises at the end of this section.

• Definition

Let T be a tree. If T has only one or two vertices, then each is called a terminal
vertex. If T has at least three vertices, then a vertex of degree 1 in T is called a
terminal vertex (or a leaf ), and a vertex of degree greater than 1 in T is called an
internal vertex (or a branch vertex).

Example 10.5.5 Terminal and Internal Vertices

Find all terminal vertices and all internal vertices in the following tree:

v8

v0

v7

v6

v1

v5

v3

v2

v4

Solution The terminal vertices are v0, v2, v4, v5, v7, and v8. The internal vertices are v6, v1,
and v3. ■

The following is the first of the two main theorems about trees:

Theorem 10.5.2

For any positive integer n, any tree with n vertices has n − 1 edges.

The proof is by mathematical induction. To do the inductive step, you assume the
theorem is true for a positive integer k and then show it is true for k + 1. Thus you assume
you have a tree T with k + 1 vertices, and you must show that T has (k + 1)− 1 = k
edges. As you do this, you are free to use the inductive hypothesis that any tree with k
vertices has k − 1 edges. To make use of the inductive hypothesis, you need to reduce the
tree T with k + 1 vertices to a tree with just k vertices. But by Lemma 10.5.1, T has a
vertex v of degree 1, and since T is connected, v is attached to the rest of T by a single
edge e as sketched on the next page.
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10.5 Trees 689

e
v

T:

Rest of T

Now if e and v are removed from T , what remains is a tree T ′ with (k + 1)− 1 = k
vertices. By inductive hypothesis, then, T ′ has k − 1 edges. But the original tree T has
one more vertex and one more edge than T ′. Hence T must have (k − 1)+ 1 = k edges,
as was to be shown. A formal version of this argument is given below.

Proof (by mathematical induction):

Let the property P(n) be the sentence

Any tree with n vertices has n − 1 edges. ← P(n)

We use mathematical induction to show that this property is true for all integers
n ≥ 1.

Show that P(1) is true: Let T be any tree with one vertex. Then T has zero edges
(since it contains no loops). But 0 = 1− 1, so P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k + 1) is true:
Suppose k is any positive integer for which P(k) is true. In other words, suppose
that

Any tree with k vertices has k - 1 edges. ← P(k)
inductive hypothesis

We must show that P(k + 1) is true. In other words, we must show that

Any tree with k + 1 vertices has (k + 1)− 1 = k edges. ← P(k + 1)

Let T be a particular but arbitrarily chosen tree with k + 1 vertices. [We must show
that T has k edges.] Since k is a positive integer, (k + 1) ≥ 2, and so T has more
than one vertex. Hence by Lemma 10.5.1, T has a vertex v of degree 1. Also, since
T has more than one vertex, there is at least one other vertex in T besides v. Thus
there is an edge e connecting v to the rest of T . Define a subgraph T ′ of T so that

V (T ′) = V (T )− {v}
Then

E(T ′) = E(T )− {e}.
1. The number of vertices of T ′ is (k + 1)− 1 = k.

2. T ′ is circuit-free (since T is circuit-free, and removing an edge and a vertex
cannot create a circuit).

3. T ′ is connected (see exercise 24 at the end of this section).

Hence, by the definition of tree, T ′ is a tree. Since T ′ has k vertices, by inductive
hypothesis

the number of edges of T ′ = (the number of vertices of T ′)− 1

= k − 1.

continued on page 690
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690 Chapter 10 Graphs and Trees

But then

the number of edges of T = (the number of edges of T ′)+ 1

= (k − 1)+ 1

= k.

[This is what was to be shown.]

Example 10.5.6 Determining Whether a Graph Is a Tree

A graph G has ten vertices and twelve edges. Is it a tree?

Solution No. By Theorem 10.5.2, any tree with ten vertices has nine edges, not twelve.
■

Example 10.5.7 Finding Trees Satisfying Given Conditions

Find all nonisomorphic trees with four vertices.

Solution By Theorem 10.5.2, any tree with four vertices has three edges. Thus the total
degree of a tree with four vertices must be 6. Also, every tree with more than one vertex
has at least two vertices of degree 1 (see the comment following Lemma 10.5.1 and
exercises 5 and 29 at the end of this section). Thus the following combinations of degrees
for the vertices are the only ones possible:

1, 1, 1, 3 and 1, 1, 2, 2.

There are two nonisomorphic trees corresponding to both of these possibilities, as shown
below.

and
■

To prove the second major theorem about trees, we need another lemma.

Lemma 10.5.3

If G is any connected graph, C is any circuit in G, and any one of the edges of C is
removed from G, then the graph that remains is connected.

Essentially, the reason why Lemma 10.5.3 is true is that any two vertices in a circuit
are connected by two distinct paths. It is possible to draw the graph so that one of these
goes “clockwise” and the other goes “counterclockwise” around the circuit. For example,
in the circuit shown on the next page, the clockwise path from v2 to v3 is

v2e3v3

and the counterclockwise path from v2 to v3 is

v2e2v1e1v0e6v5e5v4e4v3.
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v2 v3

v0 v5

v1 v4

e2

e1

e4

e5

e3

e6

 Clockwise

 Counterclockwise

Proof:

Suppose G is a connected graph, C is a circuit in G, and e is an edge of C . Form a
subgraph G ′ of G by removing e from G. Thus

V (G ′) = V (G)

E(G ′) = E(G)− {e}.
We must show that G ′ is connected. [To show a graph is connected, we must show that
if u and w are any vertices of the graph, then there exists a walk in G ′ from u to w.]
Suppose u and w are any two vertices of G ′. [We must find a walk from u to w.] Since
the vertex sets of G and G ′ are the same, u and w are both vertices of G, and since
G is connected, there is a walk W in G from u to w.

Case 1 (e is not an edge of W): The only edge in G that is not in G ′ is e, so in this
case W is also a walk in G ′. Hence u is connected to w by a walk in G ′.

Case 2 (e is an edge of W): In this case the walk W from u to w includes a section
of the circuit C that contains e. Let C be denoted as follows:

C: v0e1v1e2v2 · · · envn (= v0).

Now e is one of the edges of C , so, to be specific, let e = ek . Then the walk W
contains either the sequence

vk−1ekvk or vkekvk−1.

If W contains vk−1ekvk , connect vk−1 to vk by taking the “counterclockwise” walk
W ′ defined as follows:

W ′: vk−1ek−1vk−2 · · · v0envn−1 · · · ek+1vk .
An example showing how to go from u to w while avoiding ek is given in Fig-
ure 10.5.4.

u

vk–1

vk+1

vk

vk–2

ek–1 ek+1 To go from u to w
while avoiding ek , go
counterclockwise
around the circuit.

ek

w

Figure 10.5.4 An Example of a Walk from u to w That Does Not Include Edge ek

If W contains vkekvk−1, connect vk to vk−1 by taking the “clockwise” walk W ′′
defined as follows:

W ′′: vkek+1vk+1 · · · vne1v1e2 · · · ek−1vk−1.
continued on page 692
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692 Chapter 10 Graphs and Trees

Now patch either W ′ or W ′′ into W to form a new walk from u to w. For instance, to
patch W ′ into W , start with the section of W from u to vk−1, then take W ′ from vk−1
to vk , and finally take the section of W from vk to w. If this new walk still contains
an occurrence of e, just repeat the process described previously until all occurrences
are eliminated. [This must happen eventually since the number of occurrences of e in C
is finite.] The result is a walk from u to w that does not contain e and hence is a walk
in G ′.

The previous arguments show that both in case 1 and in case 2 there is a walk in
G ′ from u to w. Since the choice of u and w was arbitrary, G ′ is connected.

The second major theorem about trees is a modified converse to Theorem 10.5.2.

Theorem 10.5.4

For any positive integer n, if G is a connected graph with n vertices and n − 1 edges,
then G is a tree.

Proof:

Let n be a positive integer and suppose G is a particular but arbitrarily chosen graph
that is connected and has n vertices and n − 1 edges. [We must show that G is a tree.
Now a tree is a connected, circuit-free graph. Since we already know G is connected, it
suffices to show that G is circuit-free.] Suppose G is not circuit-free. That is, suppose
G has a circuit C . [We must derive a contradiction.] By Lemma 10.5.3, an edge of C
can be removed from G to obtain a graph G ′ that is connected. If G ′ has a circuit,
then repeat this process: Remove an edge of the circuit from G ′ to form a new con-
nected graph. Continue repeating the process of removing edges from circuits until
eventually a graph G ′′ is obtained that is connected and is circuit-free. By definition,
G ′′ is a tree. Since no vertices were removed from G to form G ′′,G ′′ has n vertices
just as G does. Thus, by Theorem 10.5.2, G ′′ has n − 1 edges. But the supposition
that G has a circuit implies that at least one edge of G is removed to form G ′′. Hence
G ′′ has no more than (n − 1)− 1 = n − 2 edges, which contradicts its having n − 1
edges. So the supposition is false. Hence G is circuit-free, and therefore G is a tree
[as was to be shown].

Theorem 10.5.4 is not a full converse of Theorem 10.5.2. Although it is true that every
connected graph with n vertices and n − 1 edges (where n is a positive integer) is a tree,
it is not true that every graph with n vertices and n − 1 edges is a tree.

Example 10.5.8 A Graph with n Vertices and n − 1 Edges That Is Not a Tree

Give an example of a graph with five vertices and four edges that is not a tree.

Solution By Theorem 10.5.4, such a graph cannot be connected. One example of such an
unconnected graph is shown below.

v1 v4

v5v2 v3

e2

e3

e1 e4

■
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10.5 Trees 693

Test Yourself
1. A circuit-free graph is a graph with _____.

2. A forest is a graph that is _____, and a tree is a graph that is
_____.

3. A trivial tree is a graph that consists of _____.

4. Any tree with at least two vertices has at least one vertex of
degree _____.

5. If a tree T has at least two vertices, then a terminal vertex (or
leaf) in T is a vertex of degree _____ and an internal vertex
(or branch vertex) in T is a vertex of degree _____.

6. For any positive integer n, any tree with n vertices has _____.

7. For any positive integer n, if G is a connected graph with n
vertices and n − 1 edges then _____.

Exercise Set 10.5
1. Read the tree in Example 10.5.2 from left to right to answer

the following questions:
a. What course should a student who scored 12 on part I

and 4 on part II take?
b. What course should a student who scored 8 on part I and

9 on part II take?

2. Draw trees to show the derivations of the following sen-
tences from the rules given in Example 10.5.3.
a. The young ball caught the man.
b. The man caught the young ball.

3.H What is the total degree of a tree with n vertices? Why?

4. Let G be the graph of a hydrocarbon molecule with the
maximum number of hydrogen atoms for the number of its
carbon atoms.
a. Draw the graph of G if G has three carbon atoms and

eight hydrogen atoms.
b. Draw the graphs of three isomers of C5H12.
c. Use Example 10.5.4 and exercise 3 to prove that if the

vertices of G consist of k carbon atoms and m hydrogen
atoms, then G has a total degree of 2k + 2m − 2.

d.H Prove that if the vertices of G consist of k carbon atoms
and m hydrogen atoms, then G has a total degree of
4k + m.

e. Equate the results of (c) and (d) to prove Cayley’s result
that a saturated hydrocarbon molecule with k carbon
atoms and a maximum number of hydrogen atoms has
2k + 2 hydrogen atoms.

5.H Extend the argument given in the proof of Lemma 10.5.1 to
show that a tree with more than one vertex has at least two
vertices of degree 1.

6. If graphs are allowed to have an infinite number of vertices
and edges, then Lemma 10.5.1 is false. Give a counterex-
ample that shows this. In other words, give an example of
an “infinite tree” (a connected, circuit-free graph with an
infinite number of vertices and edges) that has no vertex of
degree 1.

7. Find all terminal vertices and all internal vertices for the
following trees.

a.

v1 v4

v2

v3

v5

v7

v6

b. v1 v4
v2

v3
v5

v7

v6 v8

In each of 8–21, either draw a graph with the given specifica-
tions or explain why no such graph exists.

8. Tree, nine vertices, nine edges

9. Graph, connected, nine vertices, nine edges

10. Graph, circuit-free, nine vertices, six edges

11. Tree, six vertices, total degree 14

12. Tree, five vertices, total degree 8

13. Graph, connected, six vertices, five edges, has a nontrivial
circuit

14. Graph, two vertices, one edge, not a tree

15. Graph, circuit-free, seven vertices, four edges

16. Tree, twelve vertices, fifteen edges

17. Graph, six vertices, five edges, not a tree

18. Tree, five vertices, total degree 10

19. Graph, connected, ten vertices, nine edges, has a nontrivial
circuit
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20. Simple graph, connected, six vertices, six edges

21. Tree, ten vertices, total degree 24

22. A connected graph has twelve vertices and eleven edges.
Does it have a vertex of degree 1? Why?

23. A connected graph has nine vertices and twelve edges.
Does it have a nontrivial circuit? Why?

24. Suppose that v is a vertex of degree 1 in a connected graph
G and that e is the edge incident on v. Let G ′ be the sub-
graph of G obtained by removing v and e from G. Must G ′

be connected? Why?

25. A graph has eight vertices and six edges. Is it connected?
Why?

26.H If a graph has n vertices and n − 2 or fewer edges, can it be
connected? Why?

27. A circuit-free graph has ten vertices and nine edges. Is it
connected? Why?

28.H Is a circuit-free graph with n vertices and at least n − 1
edges connected? Why?

29. Prove that every nontrivial tree has at least two vertices of
degree 1 by filling in the details and completing the follow-
ing argument: Let T be a nontrivial tree and let S be the set
of all paths from one vertex to another of T . Among all the
paths in S, choose a path P with the most edges. (Why is
it possible to find such a P?) What can you say about the
initial and final vertices of P? Why?

30. Find all nonisomorphic trees with five vertices.

31. a. Prove that the following is an invariant for graph iso-
morphism: A vertex of degree i is adjacent to a vertex of
degree j .

b.H Find all nonisomorphic trees with six vertices.

Answers for Test Yourself
1. no circuits 2. circuit-free and not connected; connected and circuit-free 3. a single vertex (and no edges) 4. 1 5. 1; greater
than 1 (Or: at least 2) 6. n − 1 edges 7. G is a tree

10.6 Rooted Trees

Let us grant that the pursuit of mathematics is a divine madness of the human spirit, a
refuge from the goading urgency of contingent happenings. — Alfred North Whitehead,

1861–1947

An outdoor tree is rooted and so is the kind of family tree that shows all the descendants of
one particular person. The terminology and notation of rooted trees blends the language
of botanical trees and that of family trees. In mathematics, a rooted tree is a tree in which
one vertex has been distinguished from the others and is designated the root. Given any
other vertex v in the tree, there is a unique path from the root to v. (After all, if there were
two distinct paths, a circuit could be constructed.) The number of edges in such a path is
called the level of v, and the height of the tree is the length of the longest such path. It is
traditional in drawing rooted trees to place the root at the top (as is done in family trees)
and show the branches descending from it.

• Definition

A rooted tree is a tree in which there is one vertex that is distinguished from the
others and is called the root. The level of a vertex is the number of edges along the
unique path between it and the root. The height of a rooted tree is the maximum
level of any vertex of the tree. Given the root or any internal vertex v of a rooted
tree, the children of v are all those vertices that are adjacent to v and are one level
farther away from the root than v. If w is a child of v, then v is called the parent
of w, and two distinct vertices that are both children of the same parent are called
siblings. Given two distinct vertices v and w, if v lies on the unique path between w

and the root, then v is an ancestor of w and w is a descendant of v.
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