
10.7 Spanning Trees and Shortest Paths 701

2. Consider the tree shown below with root v0.
a. What is the level of v8?
b. What is the level of v0?
c. What is the height of this rooted tree?
d. What are the children of v10?
e. What is the parent of v5?
f. What are the siblings of v1?
g. What are the descendants of v12?

v7

v1

v3 v4

v0

v2

v6

v12

v17

v19v18

v16v15v14v13

v10
v11v8 v9

v5

3. Draw binary trees to represent the following expressions:
a. a ·b − (c/(d + e)) b. a/(b − c ·d)

In each of 4–20 either draw a graph with the given specifications
or explain why no such graph exists.

4. Full binary tree, five internal vertices

5. Full binary tree, five internal vertices, seven terminal ver-
tices

6. Full binary tree, seven vertices, of which four are internal
vertices

7. Full binary tree, twelve vertices

8. Full binary tree, nine vertices

9. Binary tree, height 3, seven terminal vertices

10. Full binary tree, height 3, six terminal vertices

11. Binary tree, height 3, nine terminal vertices

12. Full binary tree, eight internal vertices, seven terminal
vertices.

13. Binary tree, height 4, eight terminal vertices

14. Full binary tree, seven vertices

15. Full binary tree, nine vertices, five internal vertices

16. Full binary tree, four internal vertices

17. Binary tree, height 4, eighteen terminal vertices

18. Full binary tree, sixteen vertices

19. Full binary tree, height 3, seven terminal vertices

20. What can you deduce about the height of a binary tree if
you know that it has the following properties?
a. Twenty-five terminal vertices
b. Forty terminal vertices
c. Sixty terminal vertices

Answers for Test Yourself
1. one vertex is distinguished from the others and is called the root; the number of edges along the unique path between it and the
root; the maximum level of any vertex of the tree 2. every parent has at most two children 3. every parent has exactly two children
4. 2k + 1; k + 1 5. t ≤ 2h , or, equivalently, log2 t ≤ h

10.7 Spanning Trees and Shortest Paths
I contend that each science is a real science insofar as it is mathematics.
— Immanuel Kant, 1724–1804

An East Coast airline company wants to expand service to the Midwest and has received
permission from the Federal Aviation Authority to fly any of the routes shown in Fig-
ure 10.7.1.

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

Figure 10.7.1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

702 Chapter 10 Graphs and Trees

The company wishes to legitimately advertise service to all the cities shown but, for
reasons of economy, wants to use the least possible number of individual routes to connect
them. One possible route system is given in Figure 10.7.2.

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

Figure 10.7.2

Clearly this system joins all the cities. Is the number of individual routes minimal? The
answer is yes, and the reason may surprise you.

The fact is that the graph of any system of routes that satisfies the company’s wishes
is a tree, because if the graph were to contain a circuit, then one of the routes in the circuit
could be removed without disconnecting the graph (by Lemma 10.5.3), and that would
give a smaller total number of routes. But any tree with eight vertices has seven edges.
Therefore, any system of routes that connects all eight vertices and yet minimizes the
total number of routes consists of seven routes.

• Definition

A spanning tree for a graph G is a subgraph of G that contains every vertex of G
and is a tree.

The preceding discussion contains the essence of the proof of the following
proposition:

Proposition 10.7.1

1. Every connected graph has a spanning tree.

2. Any two spanning trees for a graph have the same number of edges.

Proof of (1):

Suppose G is a connected graph. If G is circuit-free, then G is its own spanning tree
and we are done. If not, then G has at least one circuit C1. By Lemma 10.5.3, the
subgraph of G obtained by removing an edge from C1 is connected. If this subgraph
is circuit-free, then it is a spanning tree and we are done. If not, then it has at least
one circuit C2, and, as above, an edge can be removed from C2 to obtain a connected
subgraph. Continuing in this way, we can remove successive edges from circuits,
until eventually we obtain a connected, circuit-free subgraph T of G. [This must
happen at some point because the number of edges of G is finite, and at no stage does
removal of an edge disconnect the subgraph.] Also, T contains every vertex of G
because no vertices of G were removed in constructing it. Thus T is a spanning tree
for G.

The proof of part (2) is left as an exercise.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.7 Spanning Trees and Shortest Paths 703

Example 10.7.1 Spanning Trees

Find all spanning trees for the graph G pictured below.

v5

v0

v4

v1

v3

v2

Solution The graph G has one circuit v2v1v4v2, and removal of any edge of the circuit
gives a tree. Thus, as shown below, there are three spanning trees for G.

v5

v0

v4

v1

v3

v2

v5

v0

v4

v1

v3

v2

v5

v0

v4

v1

v3

v2 ■

Minimum Spanning Trees
The graph of the routes allowed by the Federal Aviation Authority shown in Figure 10.7.1
can be annotated by adding the distances (in miles) between each pair of cities. This is
done in Figure 10.7.3.

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

355

695
74

262

242

348

151

83

230

269
306

Figure 10.7.3

Now suppose the airline company wants to serve all the cities shown, but with a route
system that minimizes the total mileage. Note that such a system is a tree, because if the
system contained a circuit, removal of an edge from the circuit would not affect a person’s
ability to reach every city in the system from every other (again, by Lemma 10.5.3), but
it would reduce the total mileage of the system.

More generally, a graph whose edges are labeled with numbers (known as weights) is
called aweighed graph. Aminimum-weight spanning tree, or simply aminimum spanning
tree, is a spanning tree for which the sum of the weights of all the edges is as small as
possible.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

704 Chapter 10 Graphs and Trees

• Definition

A weighted graph is a graph for which each edge has an associated positive real
number weight. The sum of the weights of all the edges is the total weight of the
graph. A minimum spanning tree for a connected weighted graph is a spanning
tree that has the least possible total weight compared to all other spanning trees for
the graph.

If G is a weighed graph and e is an edge of G, then w(e) denotes the weight of e and
w(G) denotes the total weight of G.

The problem of finding a minimum spanning tree for a graph is certainly solvable.
One solution is to list all spanning trees for the graph, compute the total weight of each,
and choose one for which this total is a minimum. (Note that the well-ordering principle
for the integers guarantees the existence of such a minimum total.) This solution, how-
ever, is inefficient in its use of computing time because the number of distinct spanning
trees is so large. For instance, a complete graph with n vertices has nn−2 spanning trees.
Even using the fastest computers available today, examining all such trees in a graph with
approximately 100 vertices would require more time than is estimated to remain in the
life of the universe.

In 1956 and 1957 Joseph B. Kruskal and Robert C. Prim each described much more
efficient algorithms to construct minimum spanning trees. Even for large graphs, both
algorithms can be implemented so as to take relatively short computing times.

Kruskal’s Algorithm
In Kruskal’s algorithm, the edges of a connected weighted graph are examined one by

C
ou

rt
es

y
of

Jo
se

ph
K

ru
sk

al

Joseph Kruskal
(born 1928)

one in order of increasing weight. At each stage the edge being examined is added to
what will become the minimum spanning tree, provided that this addition does not create
a circuit. After n − 1 edges have been added (where n is the number of vertices of the
graph), these edges, together with the vertices of the graph, form a minimum spanning
tree for the graph.

Algorithm 10.7.1 Kruskal

Input: G [a connected weighted graph with n vertices, where n is a positive integer]

Algorithm Body:
[Build a subgraph T of G to consist of all the vertices of G with edges added in order of
increasing weight. At each stage, let m be the number of edges of T .]

1. Initialize T to have all the vertices of G and no edges.

2. Let E be the set of all edges of G, and let m := 0.

3. while (m < n − 1)

3a. Find an edge e in E of least weight.
3b. Delete e from E .
3c. if addition of e to the edge set of T does not produce a circuit

then add e to the edge set of T and set m := m + 1

end while
Output: T [T is a minimum spanning tree for G.]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.7 Spanning Trees and Shortest Paths 705

The following example shows how Kruskal’s algorithm works for the graph of the
airline route system.

Example 10.7.2 Action of Kruskal’s Algorithm

Describe the action of Kruskal’s algorithm on the graph shown in Figure 10.7.4, where
n = 8.

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

355

695
74

262

242

348

151

83

230

269
306

Figure 10.7.4

Solution Iteration Number Edge Considered Weight Action Taken

1 Chicago–Milwaukee 74 added
2 Louisville–Cincinnati 83 added
3 Louisville–Nashville 151 added
4 Cincinnati–Detroit 230 added
5 St. Louis–Louisville 242 added
6 St. Louis–Chicago 262 added
7 Chicago–Louisville 269 not added
8 Louisville–Detroit 306 not added
9 Louisville–Milwaukee 348 not added

10 Minneapolis–Chicago 355 added

The tree produced by Kruskal’s algorithm is shown in Figure 10.7.5.

Minneapolis

Milwaukee

Chicago

355

74

262

St. Louis
242

Nashville

Louisville

Cincinnati

Detroit

151

83

230

Figure 10.7.5 ■

When Kruskal’s algorithm is used on a graph in which some edges have the same
weight as others, more than one minimum spanning tree can occur as output. To make

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

706 Chapter 10 Graphs and Trees

the output unique, the edges of the graph can be placed in an array and edges having the
same weight can be added in the order they appear in the array.

It is not obvious from the description of Kruskal’s algorithm that it does what it is
supposed to do. To be specific, what guarantees that it is possible at each stage to find an
edge of least weight whose addition does not produce a circuit? And if such edges can
be found, what guarantees that they will all eventually connect? And if they do connect,
what guarantees that the resulting tree has minimum weight? Of course, the mere fact
that Kruskal’s algorithm is printed in this book may lead you to believe that everything
works out. But the questions above are real, and they deserve serious answers.

Theorem 10.7.2 Correctness of Kruskal’s Algorithm

When a connected, weighted graph is input to Kruskal’s algorithm, the output is a
minimum spanning tree.

Proof:

Suppose that G is a connected, weighted graph with n vertices and that T is a sub-
graph of G produced when G is input to Kruskal’s algorithm. Clearly T is circuit-
free [since no edge that completes a circuit is ever added to T]. Also T is connected.
For as long as T has more than one connected component, the set of edges of G that
can be added to T without creating a circuit is nonempty. [The reason is that since G
is connected, given any vertex v1 in one connected component C1 of T and any vertex
v2 in another connected component C2, there is a path in G from v1 to v2. Since C1 and
C2 are distinct, there is an edge e of this path that is not in T . Adding e to T does not
create a circuit in T , because deletion of an edge from a circuit does not disconnect a
graph and deletion of e would.] The preceding arguments show that T is circuit-free
and connected. Since by construction T contains every vertex of G, T is a spanning
tree for G.

Next we show that T has minimum weight. Let T1 be any minimum spanning
tree for G such that the number of edges T1 and T have in common is a maximum.
Suppose that T �= T1. Then there is an edge e in T that is not an edge of T1. [Since
trees T and T1 both have the same vertex set, if they differ at all, they must have different,
but same-size, edge sets.] Now adding e to T1 produces a graph with a unique circuit
(see exercise 19 at the end of this section). Let e′ be an edge of this circuit such
that e′ is not in T . [Such an edge must exist because T is a tree and hence circuit-free.]
Let T2 be the graph obtained from T1 by removing e′ and adding e. This situation is
illustrated below.

e (add to T1 to form T2.)

e' (remove from T1 to form T2.)

The entire graph is G. T1
has black edges. e is in T
but not T1. e′ is in T1 but
not T .

Note that T2 has n − 1 edges and n vertices and that T2 is connected [since by Lemma
10.5.3 the subgraph obtained by removing an edge from a circuit in a connected graph
is connected]. Consequently, T2 is a spanning tree for G. In addition,

w(T2) = w(T1)− w(e′)+ w(e).

Now w(e) ≤ w(e′) because at the stage in Kruskal’s algorithm when e was added
to T , e′ was available to be added [since it was not already in T , and at that stage its

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.7 Spanning Trees and Shortest Paths 707

addition could not produce a circuit since e was not in T], and e′ would have been added
had its weight been less than that of e. Thus

w(T2) = w(T1)− [w(e′)− w(e)]︸ ︷︷ ︸
≥0

≤ w(T1).

But T1 is a minimum spanning tree. Since T2 is a spanning tree with weight less than
or equal to the weight of T1, T2 is also a minimum spanning tree for G.

Finally, note that by construction, T2 has one more edge in common with T than
T1 does, which contradicts the choice of T1 as a minimum spanning tree for G with
a maximum number of edges in common with T . Thus the supposition that T �= T1

is false, and hence T itself is a minimum spanning tree for G.

Prim’s Algorithm
Prim’s algorithm works differently from Kruskal’s. It builds a minimum spanning tree T

C
ou

rt
es

y
of

A
lc

at
el

-L
uc

en
t

Te
ch

no
lo

gi
es

Robert Prim
(born 1921)

by expanding outward in connected links from some vertex. One edge and one vertex are
added at each stage. The edge added is the one of least weight that connects the vertices
already in T with those not in T , and the vertex is the endpoint of this edge that is not
already in T .

Algorithm 10.7.2

Input: G [a connected weighted graph with n vertices where n is a positive integer]

Algorithm Body:
[Build a subgraph T of G by starting with any vertex v of G and attaching edges (with
their endpoints) one by one to an as-yet-unconnected vertex of G, each time choosing an
edge of least weight that is adjacent to a vertex of T .]

1. Pick a vertex v of G and let T be the graph with one vertex, v, and no edges.

2. Let V be the set of all vertices of G except v.

3. for i := 1 to n − 1

3a. Find an edge e of G such that (1) e connects T to one of the vertices in
V , and (2) e has the least weight of all edges connecting T to a vertex
in V . Let w be the endpoint of e that is in V .

3b. Add e and w to the edge and vertex sets of T , and delete w from V .

next i

Output: T [T is a minimum spanning tree for G.]

The following example shows how Prim’s algorithm works for the graph of the airline
route system.

Example 10.7.3 Action of Prim’s Algorithm

Describe the action of Prim’s algorithm for the graph in Figure 10.7.6 using the Min-
neapolis vertex as a starting point.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

708 Chapter 10 Graphs and Trees

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

355

695
74

262

242

348

151

83

230

269
306

Figure 10.7.6

Solution Iteration Number Vertex Added Edge Added Weight

0 Minneapolis
1 Chicago Minneapolis–Chicago 355
2 Milwaukee Chicago–Milwaukee 74
3 St. Louis Chicago–St. Louis 262
4 Louisville St. Louis–Louisville 242
5 Cincinnati Louisville–Cincinnati 83
6 Nashville Louisville–Nashville 151
7 Detroit Cincinnati–Detroit 230 ■

Note that the tree obtained is the same as that obtained by Kruskal’s algorithm, but
the edges are added in a different order.

As with Kruskal’s algorithm, in order to ensure a unique output, the edges of the
graph could be placed in an array and those with the same weight could be added in the
order they appear in the array. It is not hard to see that when a connected graph is input to
Prim’s algorithm, the result is a spanning tree. What is not so clear is that this spanning
tree is a minimum. The proof of the following theorem establishes that it is.

Theorem 10.7.3 Correctness of Prim’s Algorithm

When a connected, weighted graph G is input to Prim’s algorithm, the output is a
minimum spanning tree for G.

Proof:

Let G be a connected, weighted graph, and suppose G is input to Prim’s algorithm.
At each stage of execution of the algorithm, an edge must be found that connects a
vertex in a subgraph to a vertex outside the subgraph. As long as there are vertices
outside the subgraph, the connectedness of G ensures that such an edge can always
be found. [For if one vertex in the subgraph and one vertex outside it are chosen, then
by the connectedness of G there is a walk in G linking the two. As one travels along
this walk, at some point one moves along an edge from a vertex inside the subgraph to a
vertex outside the subgraph.]

Now it is clear that the output T of Prim’s algorithm is a tree because the edge
and vertex added to T at each stage are connected to other edges and vertices of T

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.7 Spanning Trees and Shortest Paths 709

and because at no stage is a circuit created since each edge added connects vertices
in two disconnected sets. [Consequently, removal of a newly added edge produces a
disconnected graph, whereas by Lemma 10.5.3, removal of an edge from a circuit
produces a connected graph.] Also, T includes every vertex of G because T , being
a tree with n − 1 edges, has n vertices [and that is all G has]. Thus T is a spanning
tree for G.

Next we show that T has minimum weight. Let T1 be a minimum spanning tree
for G such that the number of edges T1 and T have in common is a maximum.
Suppose that T �= T1. Then there is an edge e in T that is not an edge of T1. [Since
trees T and T1 both have the same vertex set if they differ at all, they must have different,
same-size edge sets.] Of all such edges, let e be the last that was added when T was
constructed using Prim’s algorithm. Let S be the set of vertices of T just before the
addition of e. Then one endpoint, say v of e, is in S and the other, say w, is not.
Since T1 is a spanning tree, there is a path in T1 joining v to w. And since v ∈ S
and w �∈ S, as one travels along this path, one must encounter an edge e′ that joins a
vertex in S to one that is not in S and that therefore is not in T because e was the last
edge added to T . Now at the stage when e was added to T, e′ could also have been
added and it would have been added instead of e had its weight been less than that
of e. Since e′ was not added at that stage, we conclude that

w(e′) ≥ w(e).

Let T2 be the graph obtained from T1 by removing e′ and adding e. [Thus T2

has one more edge in common with T than T1 does.] Note that T2 is a tree. The rea-
son is that since e′ is part of a path in T1 from v to w, and e connects v and w,
adding e to T1 creates a circuit. When e′ is removed from this circuit, the resulting
subgraph remains connected. In fact, T2 is a spanning tree for G since no vertices
were removed in forming T2 from T1. The argument showing that w(T2) ≤ w(T1) is
left as an exercise. [It is virtually identical to part of the proof of Theorem 10.7.2.] It
follows that T2 is a minimum spanning tree for G.

By construction, T2 has one more edge in common with T than T1, does which
contradicts the choice of T1 as a minimum spanning tree for G with a maximum
number of edges in common with T . It follows that T = T1, and hence T itself is a
minimum spanning tree for G.

Example 10.7.4 Finding Minimum Spanning Trees

Find all minimum spanning trees for the following graph. Use Kruskal’s algorithm and
Prim’s algorithm starting at vertex a. Indicate the order in which edges are added to form
each tree.

a

b

c

d

e

f

6

5

1

6

4
3

3

2

Solution When Kruskal’s algorithm is applied, edges are added in one of the following two
orders:

1. {d, f }, {a, c}, {a, b}, {c, d}, {d, e}
2. {d, f }, {a, c}, {b, c}, {c, d}, {d, e}

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

710 Chapter 10 Graphs and Trees

When Prim’s algorithm is applied starting at a, edges are added in one of the following
two orders:

1. {a, c}, {a, b}, {c, d}, {d, f }, {d, e}
2. {a, c}, {b, c}, {c, d}, {d, f }, {d, e}
Thus, as shown below, there are two distinct minimum spanning trees for this graph.

aa

c e

dbdb

3

2
c e

2

4 5

11

ff 5
4

3

)b()a(■

Dijkstra’s Shortest Path Algorithm
Although the trees produced by Kruskal’s and Prim’s algorithms have the least pos-

sible total weight compared to all other spanning trees for the given graph, they do not
always reveal the shortest distance between any two points on the graph. For instance,
according to the complete route system shown in Figure 10.7.3, one can fly directly from
Nashville to Minneapolis for a distance of 695 miles, whereas if you use the minimum
spanning tree shown in Figure 10.7.5 the only way to fly from Nashville to Minneapolis
is by going through Louisville, St. Louis, and Chicago, which gives a total distance of
151+ 242+ 262+ 355 = 1, 010 miles and the unpleasantness of three changes of plane.

In 1959 the computing pioneer, Edsgar Dijkstra (see Section 5.5), developed an algo-
rithm to find the shortest path between a starting vertex and an ending vertex in a weighted
graph in which all the weights are positive. It is somewhat similar to Prim’s algorithm in
that it works outward from a starting vertex a, adding vertices and edges one by one to
construct a tree T . However, it differs from Prim’s algorithm in the way it chooses the
next vertex to add, ensuring that for each added vertex v, the length of the shortest path
from a to v has been identified.

At the start of execution of the algorithm, each vertex u of G is given a label L(u),
which indicates the current best estimate of the length of the shortest path from a to u.
L(a) is initially set equal to 0 because the shortest path from a to a has length zero, but,
because there is no previous information about the lengths of the shortest paths from a to
any other vertices of G, the label L(u) of each vertex u other than a is initially set equal
to a number, denoted ∞, that is greater than the sum of the weights of all the edges of
G. As execution of the algorithm progresses, the values of L(u) are changed, eventually
becoming the actual lengths of the shortest paths from a to u in G.

Because T is built up outward from a, at each stage of execution of the algorithm
the only vertices that are candidates to join T are those that are adjacent to at least one
vertex of T . Thus at each stage of Dijkstra’s algorithm, the graph G can be thought of as
divided into three parts: the tree T that is being built up, the set of “fringe” vertices that
are adjacent to at least one vertex of the tree, and the rest of the vertices of G. Each fringe
vertex is a candidate to be the next vertex added to T . The one that is chosen is the one
for which the length of the shortest path to it from a through T is a minimum among all
the vertices in the fringe.

An essential observation underlying Dijkstra’s algorithm is that after each addition of
a vertex v to T , the only fringe vertices for which a shorter path from a might be found
are those that are adjacent to v [because the length of the path from a to v was a minimum
among all the paths from a to vertices in what was then the fringe]. So after each addition
of a vertex v to T , each fringe vertex u adjacent to v is examined and two numbers are

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.7 Spanning Trees and Shortest Paths 711

compared: the current value of L(u) and the value of L(v)+ w(v, u), where L(v) is the
length of the shortest path to v (in T) and w(v, u) is the weight of the edge joining v and
u. If L(v)+ w(v, u) < L(u), then the value of L(u) is changed to L(v)+ w(v, u).

At the beginning of execution of the algorithm, the tree consists only of the vertex
a, and L(a) = 0. When execution terminates, L(z) is the length of a shortest path from
a to z.

As with Kruskal’s and Prim’s algorithms for finding minimum spanning trees, there
is a simple but dramatically inefficient way to find the shortest path from a to z: compute
the lengths of all the paths and choose one that is shortest. The problem is that even for
relatively small graphs using this method to find a shortest path could require billions of
years, whereas Dijkstra’s algorithm could do the job in a few seconds.

Algorithm 10.7.3 Dijkstra

Input: G [a connected simple graph with a positive weight for every edge],∞ [a num-
ber greater than the sum of the weights of all the edges in the graph],w(u, v) [the weight
of edge {u, v}], a [the starting vertex], z [the ending vertex]

Algorithm Body:

1. Initialize T to be the graph with vertex a and no edges. Let V (T) be the set of
vertices of T , and let E(T) be the set of edges of T .

2. Let L(a) = 0, and for all vertices in G except a, let L(u) = ∞.
[The number L(x) is called the label of x.]

3. Initialize v to equal a and F to be {a}.
[The symbol v is used to denote the vertex most recently added to T.]

4. while (z �∈ V (T))

4a. F := (F − {v})∪ {vertices that are adjacent to v and are not in V (T)}
[The set F is called the fringe. Each time a vertex is added to T, it is removed
from the fringe and the vertices adjacent to it are added to the fringe if they are
not already in the fringe or the tree T.]

4b. For each vertex u that is adjacent to v and is not in V (T),
if L(v)+ w(v, u) < L(u) then

L(u) := L(v)+ w(v, u)

D(u) := v

[Note that adding v to T does not affect the labels of any vertices in the fringe F
except those adjacent to v. Also, when L(u) is changed to a smaller value, the
notation D(u) is introduced to keep track of which vertex in T gave rise to the
smaller value.]

Note The unique path
in the tree T from a to z is
the shortest path in G
from a to z.

4c. Find a vertex x in F with the smallest label
Add vertex x to V (T), and add edge {D(x), x} to E(T)

v := x [This statement sets up the notation for the next iteration of the loop.]

end while

Output: L(z) [L(z), a nonnegative integer, is the length of the shortest path from
a to z.]

The action of Dijkstra’s algorithm is illustrated by the flow of the drawings in
Example 10.7.5.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

712 Chapter 10 Graphs and Trees

Example 10.7.5 Action of Dijkstra’s Algorithm

Show the steps in the execution of Dijkstra’s shortest path algorithm for the graph shown
below with starting vertex a and ending vertex z.

a

b

c

d

e

z

12

7

6

25

3
6

4

Solution
Step 1: Going into the while loop: V (T) = {a}, E(T) = ∅, and F = {a}

a

b

c

d

e

z

12

7

1

6

25

3

4

During iteration:
F = {b, c}, L(b) = 3, L(c) = 4.
Since L(b) < L(c), b is added to
V (T) and {a, b} is added to E(T).

Step 2: Going into the while loop: V (T) = {a, b}, E(T) = {{a, b}}

a

b

c

d

e

z

12

7

1

6

25

3

4

During iteration:
F = {c, d, e}, L(c) = 4, L(d) = 9,
L(e) = 8.
Since L(c) < L(d) and L(c) < L(e), c is
added to V (T) and {a, c} is added to E(T).

Step 3: Going into the while loop: V (T) = {a, b, c}, E(T) = {{a, b}, {a, c}}

a

b

c

d

e

z

12

7

1

6

25

3

4

During iteration:
F = {d, e}, L(d) = 9, L(e) = 5
L(e) becomes 5 because ace, which has
length 5, is a shorter path to e than abe,
which has length 8.
Since L(e) < L(d), e is added
to V (T) and {c, e} is added to E(T).

Step 4: Going into the while loop: V (T) = {a, b, c, e},
E(T) = {{a, b}, {a, c}, {c, e}}

a

b

c

d

e

z

12

7

1

6

25

3

4

During iteration:
F = {d, z}, L(d) = 7, L(z) = 17
L(d) becomes 7 because aced, which has
length 7, is a shorter path to d than abd,
which has length 9.
Since L(d) < L(z), d is added to V (T)

and {e, d} is added to E(T).

Step 5: Going into the while loop: V (T) = {a, b, c, e, d},
E(T) = {{a, b},{a, c}, {c, e}, {e, d}}

a

b

c

d

e

z

12

7

1

6

25

3

4

During iteration: F = {z}, L(z) = 14
L(z) becomes 14 because acedz, which
has length 14, is a shorter path to d than
abdz, which has length 17.
Since z is the only vertex in F , its label
is a minimum, and so z is added to
V (T) and {e, z} is added to E(T).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.7 Spanning Trees and Shortest Paths 713

Execution of the algorithm terminates at this point because z ∈ V (T). The shortest
path from a to z has length L(z) = 14. ■

Keeping track of the steps in a table is a convenient way to show the action of Dijk-
stra’s algorithm. Table 10.7.1 does this for the graph in Example 10.7.5.

Table 10.7.1

Step V (T) E(T) F L(a) L(b) L(c) L(d) L(e) L(z)

0 {a} ∅ {a} 0 ∞ ∞ ∞ ∞ ∞
1 {a} ∅ {b, c} 0 3 4 ∞ ∞ ∞
2 {a, b} {{a, b}} {c, d, e} 0 3 4 9 8 ∞
3 {a, b, c} {{a, b}, {a, c}} {d, e} 0 3 4 9 5 ∞
4 {a, b, c, e} {{a, b}, {a, c}, {c, e}} {d, z} 0 3 4 7 5 17

5 {a, b, c, e, d} {{a, b}, {a, c}, {c, e}, {e, d}} {z} 0 3 4 7 5 14

6 {a, b, c, e, d, z} {{a, b}, {a, c}, {c, e}, {e, d}, {e, z}}

It is clear that Dijkstra’s algorithm keeps adding vertices to I until it has added z. The
proof of the following theorem shows that when the algorithm terminates, the label z goes
the length of the shortest path to it from a.

Theorem 10.7.4 Correctness of Dijkstra’s Algorithm

When a connected, simple graph with a positive weight for every edge is input to
Dijkstra’s algorithm with starting vertex a and ending vertex z, the output is the
length of a shortest path from a to z.

Proof:

Let G be a connected, weighted graph with no loops or parallel edges and with a
positive weight for every edge. Let T be the graph built up by Dijkstra’s algorithm,
and for each vertex u in G, let L(u) be the label given by the algorithm to vertex u.
For each integer n ≥ 0, let the property P(n) be the sentence

After the nth iteration of the while loop in Dijkstra’s algorithm,

(1) T is a tree, and (2) for every vertex v in T, L(v) is the length of a ← P(n)

shortest path in G from a to v.

We will show by mathematical induction that P(n) is true for all integers n from 0
through the termination of the algorithm.

Show that P(0) is true: When n = 0, the graph T is a tree because it is defined
to consist only of the vertex a and no edges. In addition, L(a) is the length of the
shortest path from a to a because the initial value of L(a) is 0.

Show that for all integers k ≥ 0, if P(k) is true then P(k+ 1) is also true: Let k be
any integer with k ≥ 0 and suppose that

After the kth iteration of the while loop in Dijkstra’s algorithm, (1) T ← P(k)

is a tree, and (2) for every vertex v in T, L(v) is the length of a inductive

shortest path in G from a to v.
hypothesis

We must show that

After the (k + 1)st iteration of the while loop in Dijkstra’s
algorithm, (1) T is a tree, and (2) for every vertex v in T, ← P(k + 1)

L(v) is the length of a shortest path in G from a to v.

continued on page 714

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

714 Chapter 10 Graphs and Trees

So suppose that after the (k + 1)st iteration of thewhile loop in Dikjstra’s algorithm,
the vertex v and edge {x, v} have been added to T , where x is in V (T). Clearly the
new value of T is a tree because adding a new vertex and edge to a tree does not
create a circuit and does not disconnect the tree. By inductive hypothesis for each
vertex y in the tree before the addition of v, L(y) is the length of a shortest path
from a to y. So it remains only to show that L(v) is the length of a shortest path
from a to v.

Now, according to the algorithm, the final value of L(v) = L(x)+ w(x, v). Con-
sider any shortest path from a to v, and let {s, t} be the first edge in this path to leave
T , where s ∈ V (T) and t �∈ V (T). This situation is illustrated below.

a
s

x

v

t

Let LSP(a, v) be the length of a shortest path from a to v, and let LSP(a, s) be
the length of a shortest path from a to s. Observe that

LSP(a, v) ≥ LSP(a, s)+ w(s, t) because the path from t to v has length ≥ 0

≥ L(s)+ w(s, t) by inductive hypothesis because s is a vertex in T

≥ L(x)+ w(x, v)
t is in the fringe of the tree, and so if L(s)+w(s, t)
were less than L(x)+w(x, v) then t would have
been added to T instead of v.

On the other hand

L(x)+ w(x, v) ≥ LSP(a, v)
because L(x)+w(x , v) is the length of a path from
a to v and so it is greater than or equal to the length
of the shortest path from a to v.

It follows that LSP(a, v) = L(x)+ w(x, v),

and, since L(v) = L(x)+ w(x, v),

L(v) is the length of a shortest path from a to v. This completes the proof by math-
ematical induction.

The algorithm terminates as soon as z is in T , and, since we have proved that
the label of every vertex in the tree gives the length of the shortest path to it from a,
then, in particular, L(z) is the length of a shortest path from a to z.

Test Yourself
1. A spanning tree for a graph G is _____.

2. A weighted graph is a graph for which _____, and the total
weight of the graph is _____.

3. A minimum spanning tree for a connected, weighted graph
is _____.

4. In Kruskal’s algorithm, the edges of a connected, weighted
graph are examined one by one in order of _____ starting
with _____.

5. In Prim’s algorithm, a minimum spanning tree is built by
expanding outward from an _____ in a sequence of ____.

6. In Dijkstra’s algorithm, a vertex is in the fringe if it is _____
vertex in the tree that is being built up.

7. At each stage of Dijkstra’s algorithm, the vertex that is added
to the tree is a vertex in the fringe whose label is a _____.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.7 Spanning Trees and Shortest Paths 715

Exercise Set 10.7
Find all possible spanning trees for each of the graphs in 1
and 2.

1.
a b

d c

2. v0 v1

v3 v2

Find a spanning tree for each of the graphs in 3 and 4.

3. a

g

b d

c e

f

4.

z

r s t

u

y

x

v
w

Use Kruskal’s algorithm to find a minimum spanning tree for
each of the graphs in 5 and 6. Indicate the order in which edges
are added to form each tree.

5.

a

b c

e

g

d

f

1

8 10

9

7

3
4

2

6
5

6. v1v0

v7v6

v5 v4
v3 v2

12

13

10 2
4 7

8 15

5

18

20

19

Use Prim’s algorithm starting with vertex a or v0 to find a min-
imum spanning tree for each of the graphs in 7 and 8. Indicate
the order in which edges are added to form each tree.

7. The graph of exercise 5. 8. The graph of exercise 6.

For each of the graphs in 9 and 10, find all minimum spanning
trees that can be obtained using (a) Kruskal’s algorithm and (b)
Prim’s algorithm starting with vertex a or t . Indicate the order
in which edges are added to form each tree.

9.

4

4

4

1

5

3

3
7

7
11

12

10

a

g
f

b

c

d
e

10. t

w x y z

u v

3 15 1 8
10

7

7

5 2 5

2

11. A pipeline is to be built that will link six cities. The cost (in
hundreds of millions of dollars) of constructing each poten-
tial link depends on distance and terrain and is shown in the
weighted graph below. Find a system of pipelines to con-
nect all the cities and yet minimize the total cost.

Albuquerque
Phoenix

Salt Lake City Cheyenne

Denver

Amarillo

1.8

2.2

1.6

1.2

1.9
2.5

2.9

0.8

1.5

1.1

1.7

12. Use Dijkstra’s algorithm for the airline route system of Fig-
ure 10.7.3 to find the shortest distance from Nashville to
Minneapolis. Make a table similar to Table 10.7.1 to show
the action of the algorithm.

Use Dijkstra’s algorithm to find the shortest path from a to z for
each of the graphs in 13–16. In each case make tables similar to
Table 10.7.1 to show the action of the algorithm.

13.

a

b

d

c

e

z

2

8

10

3

15

2

1

14.

a

b

e

d

g

z

1

20

f

c

87
1

1 1

4
1 1

15. The graph of exercise 9 with a = a and z = f

16. The graph of exercise 10 with a = u and z = w

17. Prove part (2) of Proposition 10.7.1: Any two spanning
trees for a graph have the same number of edges.

18. Given any two distinct vertices of a tree, there exists a
unique path from one to the other.
a. Give an informal justification for the above statement.
b.✶ Write a formal proof of the above statement.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

716 Chapter 10 Graphs and Trees

19. Prove that if G is a graph with spanning tree T and e is
an edge of G that is not in T , then the graph obtained by
adding e to T contains one and only one set of edges that
forms a circuit.

20. Suppose G is a connected graph and T is a circuit-free sub-
graph of G. Suppose also that if any edge e of G not in T
is added to T , the resulting graph contains a circuit. Prove
that T is a spanning tree for G.

21. a. Suppose T1 and T2 are two different spanning trees for
a graph G. Must T1 and T2 have an edge in common?
Prove or give a counterexample.

b. Suppose that the graph G in part (a) is simple. Must T1

and T2 have an edge in common? Prove or give a coun-
terexample.

22.H Prove that an edge e is contained in every spanning tree for
a connected graph G if, and only if, removal of e discon-
nects G.

23. Consider the spanning trees T1 and T2 in the proof of The-
orem 10.7.3. Prove that w(T2) ≤ w(T1).

24. Suppose that T is a minimum spanning tree for a connected,
weighted graphG and thatG contains an edge e (not a loop)
that is not in T . Let v and w be the endpoints of e. By exer-
cise 18 there is a unique path in T from v to w. Let e′ be
any edge of this path. Prove that w(e′) ≤ w(e).

25.H Prove that if G is a connected, weighted graph and e is an
edge of G (not a loop) that has smaller weight than any
other edge of G, then e is in every minimum spanning tree
for G.

26.✶ If G is a connected, weighted graph and no two edges of G
have the same weight, does there exist a unique minimum
spanning tree for G? Use the result of exercise 19 to help
justify your answer.

27.✶ Prove that if G is a connected, weighted graph and e is an
edge of G that (1) has greater weight than any other edge
of G and (2) is in a circuit of G, then there is no minimum
spanning tree T for G such that e is in T .

28. Suppose a disconnected graph is input to Kruskal’s algo-
rithm. What will be the output?

29. Suppose a disconnected graph is input to Prim’s algorithm.
What will be the output?

30. Prove that if a connected, weighted graph G is input to
Algorithm 10.7.4 (shown below), the output is a minimum
spanning tree for G.

Algorithm 10.7.4

Input: G [a connected graph]

Algorithm Body:

1. T := G.

2. E := the set of all edges of G,m := the number of edges
of G.

3. while (m > 0)

3a. Find an edge e in E that has maximal weight.
3b. Remove e from E and set m := m − 1.
3c. if the subgraph obtained when e is removed from

the edge set of T is connected then remove e from
the edge set of T

end while

Output: T [a minimum spanning tree for G]

31. Modify Algorithm 10.7.3 so that the output consists of the
sequence of edges in the shortest path from a to z.

Answers for Test Yourself
1. a subgraph of G that contains every vertex of G and is a tree. 2. each edge has an associated positive real number weight; the sum
of the weights of all the edges of the graph 3. a spanning tree that has the least possible total weight compared to all other spanning
trees for the graph 4. weight; an edge of least weight 5. initial vertex; adjacent vertices and edges 6. adjacent to a 7. minimum
among all those in the fringe

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

