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40. Trace Algorithm 11.3.4 for the input n = 3, a[0] =
2, a[1] = 1, a[2] = −1, a[3] = 3, and x = 2.

41. Trace Algorithm 11.3.4 for the input n = 2, a[0] =
5, a[1] = −1, a[2] = 2, and x = 3.

42.H Let tn = the number of additions and multiplications that

must be performed when Algorithm 11.3.4 is executed for
a polynomial of degree n. Express tn as a function of n.

43. Use the theorem on polynomial orders to find an order for
Algorithm 11.3.4. How does this order compare with that
of Algorithm 11.3.3?

Answers for Test Yourself
1. one iteration of the innermost loop 2. n 3. n2; n2

11.4 Exponential and Logarithmic Functions:
Graphs and Orders
We ought never to allow ourselves to be persuaded of the truth of anything unless on the
evidence of our own reason. — René Descartes, 1596–1650

Exponential and logarithmic functions are of great importance in mathematics in gen-
eral and in computer science in particular. Several important computer algorithms have
execution times that involve logarithmic functions of the size of the input data (which
means they are relatively efficient for large data sets), and some have execution times
that are exponential functions of the size of the input data (which means they are quite
inefficient for large data sets). In addition, since exponential and logarithmic functions
arise naturally in the descriptions of many growth and decay processes and in the compu-
tation of many kinds of probabilities, these functions are used in the analysis of computer
operating systems, in queuing theory, and in the theory of information.

Graphs of Exponential Functions
As defined in Section 7.2, the exponential function with base b > 0 is the function that
sends each real number x to bx . The graph of the exponential function with base 2
(together with a partial table of its values) is shown in Figure 11.4.1. Note that the values
of this function increase with extraordinary rapidity. If we tried to continue drawing the
graph using the scale shown in Figure 11.4.1, we would have to plot the point (10, 210)
more than 21 feet above the horizontal axis. And the point (30, 230) would be located
more than 610,080 miles above the axis—well beyond the moon!
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Figure 11.4.1 The Exponential Function with Base 2
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752 Chapter 11 Analysis of Algorithm Efficiency

The graph of any exponential function with base b > 1 has a shape that is similar to
the graph of the exponential function with base 2. If 0 < b < 1, then 1/b > 0 and the
graph of the exponential function with base b is the reflection across the vertical axis of
the exponential function with base 1/b. These facts are illustrated in Figure 11.4.2.
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Figure 11.4.2 Graphs of Exponential Functions

Graphs of Logarithmic Functions
Logarithms were first introduced by the Scotsman John Napier. Astronomers and naviga-
tors found them so useful for reducing the time needed to do multiplication and division
that they quickly gained wide acceptance and played a crucial role in the remarkable
development of those areas in the seventeenth century. Nowadays, however, electronic
calculators and computers are available to handle most computations quickly and conve-
niently, and logarithms and logarithmic functions are used primarily as conceptual tools.
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Recall the definition of the logarithmic function with base b from Section 7.1. We
state it formally below.

• Definition

If b is a positive real number not equal to 1, then the logarithmic function with
base b, log b: R+ → R, is the function that sends each positive real number x to the
number logb x , which is the exponent to which b must be raised to obtain x .

The logarithmic function with base b is, in fact, the inverse of the exponential function
with base b. (See exercise 10 at the end of this section.) It follows that the graphs of the
two functions are symmetric with respect to the line y = x . The graph of the logarithmic
function with base b > 1 is shown in Figure 11.4.3 on the next page.
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Figure 11.4.3 The Graph of the Logarithmic Function with Base b > 1

If its base b is greater than 1, the logarithmic function is increasing. Analytically, this
means that

if b > 1, then for all positive numbers x1 and x2,

if x1 < x2, then logb(x1) < logb(x2). 11.4.1

Corresponding to the rapid growth of the exponential function, however, is the very
slow growth of the logarithmic function. Thus you must go very far out on the horizontal
axis to find points whose logarithms are large numbers.

Note As examples,
log2(1,024) is only 10
and log2(1,048,576) is
just 20.

The following example shows how to make use of the increasing nature of the loga-
rithmic function with base 2 to derive a remarkably useful property.

Example 11.4.1 Base 2 Logarithms of Numbers between Two Consecutive Powers of 2

Prove the following property:

a.

If k is an integer and x is a real number with

2k ≤ x < 2k+1, then �log2 x� = k. 11.4.2

b. Describe property (11.4.2) in words and give a graphical interpretation of the property
for x > 1.

Solution

a. Suppose that k is an integer and x is a real number with

2k ≤ x < 2k+1.

Because the logarithmic function with base 2 is increasing, this implies that

log2(2
k) ≤ log2 x < log2(2

k+1).

But log2(2
k) = k [the exponent to which you must raise 2 to get 2k is k] and log2(2

k+1) =
k + 1 [for a similar reason]. Hence

k ≤ log2 x < k + 1.
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754 Chapter 11 Analysis of Algorithm Efficiency

By definition of the floor function, then,

�log2 x� = k.

b. Recall that the floor of a positive number is its integer part. For instance, �2.82� =
2. Hence property (11.4.2) can be described in words as follows:

If x is a positive number that lies between two consecutive integer powers of 2,
the floor of the logarithm with base 2 of x is the exponent of the smaller power
of 2.

A graphical interpretation follows:

y = log2 x

0

1

2

3

k

k + 1

1 2 22 = 4 23 = 8 2k 2k+1
If x lies in here

 then log2 x lies in here:

■

One consequence of property (11.4.2) does not appear particularly interesting in its
own right but is frequently needed as a step in the analysis of algorithm efficiency.

Example 11.4.2 When �log2(n − 1)� = �log2 n�
Prove the following property:

For any odd integer n > 1, �log2(n − 1)� = �log2 n�. 11.4.3

Solution If n is an odd integer that is greater than 1, then n lies strictly between two suc-
cessive powers of 2:

2k < n < 2k+1 for some integer k > 0. 11.4.4

It follows that 2k ≤ n − 1 because 2k < n and both 2k and n are integers. Consequently,

2k ≤ n − 1 < 2k+1. 11.4.5

Applying property (11.4.2) to both (11.4.4) and (11.4.5) gives

�log2 n� = k and also �log2(n − 1)� = k.

Hence �log2 n� = �log2(n − 1)�. ■
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Application: Number of Bits Needed to Represent
an Integer in Binary Notation

Given a positive integer n, how many binary digits are needed to represent n? To answer
this question, recall from Section 5.4 that any positive integer n can be written in a unique
way as

n = 2k + ck−1·2k−1 + · · · + c2·22 + c1·2+ c0,

where k is a nonnegative integer and each c0, c1, c2, . . . ck−1 is either 0 or 1. Then the
binary representation of n is

1ck−1ck−2 · · · c2c1c0,
and so the number of binary digits needed to represent n is k + 1.

What is k + 1 as a function of n? Observe that since each ci ≤ 1,

n = 2k + ck−1·2k−1 + · · · + c2·22 + c1·2+ c0 ≤ 2k + 2k−1 + · · · + 22 + 2+ 1.

But by the formula for the sum of a geometric sequence (Theorem 5.2.3),

2k + 2k−1 + · · · + 22 + 2+ 1 = 2k+1 − 1

2− 1
= 2k+1 − 1.

Hence, by transitivity of order,

n ≤ 2k+1 − 1 < 2k+1 11.4.6

In addition, because each ci ≥ 0,

2k ≤ 2k + ck−1·2k−1 + · · · + c2·22 + c1·2+ c0 = n. 11.4.7

Putting inequalities (11.4.6) and (11.4.7) together gives the double inequality

2k ≤ n < 2k+1.

But then, by property (11.4.2),

k = �log2 n�.
Thus the number of binary digits needed to represent n is �log2 n� + 1.

Example 11.4.3 Number of Bits in a Binary Representation

How many binary digits are needed to represent 52,837 in binary notation?

Solution If you compute the logarithm with base 2 using the formula in part (a) of
Theorem 7.2.1 and a calculator that gives you approximate values of logarithms with
base 10, you find that

log2(52,837) ∼=
log10(52,837)

log10(2)
∼= 4.722938151

0.3010299957
∼= 15.7.

Thus the binary representation of 52,837 has �15.7� + 1 = 15+ 1 = 16 binary
digits. ■

Application: Using Logarithms to Solve
Recurrence Relations

In Chapter 5 we discussed methods for solving recurrence relations. One class of recur-
rence relations that is very important in computer science has solutions that can be
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756 Chapter 11 Analysis of Algorithm Efficiency

expressed in terms of logarithms. One such recurrence relation is discussed in the next
example.

Example 11.4.4 A Recurrence Relation with a Logarithmic Solution

Define a sequence a1, a2, a3, . . . recursively as follows:

a1 = 1,

ak = 2a�k/2� for all integers k ≥ 2.

a. Use iteration to guess an explicit formula for this sequence.

b. Use strong mathematical induction to confirm the correctness of the formula obtained
in part (a).

Solution

a. Begin by iterating to find the values of the first few terms of the sequence.

→a1 = 1 1 = 20

a2 = 2a�2/2� = 2a1 = 2 ·1 = 2
→
a3 = 2a�3/2� = 2a1 = 2 ·1 = 2

}
2 = 21

a4 = 2a�4/2� = 2a2 = 2 ·2 = 4
→
a5 = 2a�5/2� = 2a2 = 2 ·2 = 4

a6 = 2a�6/2� = 2a3 = 2 ·2 = 4

a7 = 2a�7/2� = 2a3 = 2 ·2 = 4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

4 = 22

a8 = 2a�8/2� = 2a4 = 2 ·4 = 8
→
a9 = 2a�9/2� = 2a4 = 2 ·4 = 8
...

...

a15 = 2a�15/2� = 2a7 = 2 ·4 = 8

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

8 = 23

a16 = 2a�16/2� = 2a8 = 2 ·8 = 16
→...

...

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

16 = 24

Note that in each case when the subscript n is between two powers of 2, an equals the
smaller power of 2. More precisely:

If 2i ≤ n < 2i+1, then an = 2i . 11.4.8

But since n satisfies the inequality

2i ≤ n < 2i+1,

then (by property 11.4.2)

i = �log2 n�.
Substituting into statement (11.4.8) gives

an = 2�log2 n�.

b. The following proof shows that if a1, a2, a3, . . . is a sequence of numbers that satisfies

a1 = 1, and ak = 2a�k/2� for all integers k ≥ 2,

then the sequence satisfies the formula

an = 2�log2 n� for all integers n ≥ 1.
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Proof:

Let a1, a2, a3, . . . be the sequence defined by specifying that a1 = 1 and ak = 2�ak/2�
for all integers k ≥ 2, and let the property P(n) be the equation

an = 2�log2 n�. ← P(n)

We will use strong mathematical induction to prove that for all integers n ≥ 1, P(n)
is true.

Show that P (1) is true: By definition of a1, a2, a3, . . . , we have that a1 = 1. But it is
also the case that 2�log2 1� = 20 = 1. Thus a1 = 2�log2 1� and P(1) is true.

Show that for all integers k ≥ 1, if P(i) is true for all integers i from 1 through k,
then P(k+ 1) is also true: Let k be any integer with k ≥ 1, and suppose that

ai = 2�log2 i� for all integers i with 1 ≤ i ≤ k. ←inductive hypothesis

We must show that

ak+1 = 2�log2(k+1)� ← P(k + 1)

Consider the two cases: k is even and k is odd.

Case 1 (k is even): In this case, k + 1 is odd, and

ak+1 = 2a�(k+1)/2� by definition of a1, a2, a3, . . .

= 2ak/2 because �(k + 1)/2� = k/2 since k + 1 is odd

= 2 ·2�log2(k/2)� by inductive hypothesis because, since k is even,

k ≥ 2, and so k/2 ≥ 1

= 2�log2(k/2)�+1 by the laws of exponents from algebra (7.2.1)

= 2�log2 k−log2 2�+1 by the identity logb(x/y) = logb x − logb y

from Theorem 7.2.1

= 2�log2 k−1�+1 since log2 2 = 1

= 2�log2 k�−1+1
by substituting x = log2 k into the identity

�x − 1� = �x� − 1 derived in exercise 15 of Section 4.5

= 2�log2 k�

= 2�log2(k+1)� by property (11.4.3)

Case 2 (k is odd): The analysis of this case is very similar to that of case 1 and is left
as exercise 56 at the end of the section.

Thus in either case, an = 2�log2(k+1)�, as was to be shown. ■

Exponential and Logarithmic Orders
Now consider the question “How do graphs of logarithmic and exponential functions
compare with graphs of power functions?” It turns out that for large enough values of x ,
the graph of the logarithmic function with any base b > 1 lies below the graph of any pos-
itive power function, and the graph of the exponential function with any base b > 1 lies
above the graph of any positive power function. In analytic terms, this says the following:

For all real numbers b and r with b > 1 and r > 0,

logb x ≤ xr for all sufficiently large real numbers x . 11.4.9

and xr ≤ bx for all sufficiently large real numbers x . 11.4.10
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758 Chapter 11 Analysis of Algorithm Efficiency

These statements have the following implications for O-notation.

For all real numbers b and r with b > 1 and r > 0,

logb x is O(xr ) 11.4.11

and xr is O(bx ) 11.4.12

Another important function in the analysis of algorithms is the function f defined by
the formula

f (x) = x logb x for all real numbers x > 0.

For large values of x , the graph of this function fits in between the graph of the identity
function and the graph of the squaring function. More precisely:

For all real numbers b with b > 1 and for all sufficiently large real numbers x ,

x ≤ x logb x ≤ x2. 11.4.13

The O-notation versions of these facts are as follows:

For all real numbers b > 1,

x is O(x logb x) and x logb x is O(x2). 11.4.14

Although proofs of some of these facts require calculus, proofs of some cases can be
obtained using the algebra of inequalities. (See the exercises at the end of this section.)
Figure 11.4.4 illustrates the relationships among some power functions, the logarithmic
function with base 2, the exponential function with base 2, and the function defined by
the formula x → x log2 x . Note that different scales are used on the horizontal and verti-
cal axes.

Example 11.4.5 shows how to use inequalities such as (11.4.9), (11.4.10), and (11.4.13)
to derive additional orders involving the logarithmic function.

Example 11.4.5 Deriving an Order from Logarithmic Inequalities

Show that x + x log2 x is �(x log2 x).

Solution First observe that x + x log2 x is �(x log2 x) because for all real numbers x > 1,

x log2 x ≤ x + x log2 x,

and since all quantities are positive,

|x log2 x | ≤ |x + x log2 x |.
Let A = 1 and a = 1. Then

A|x log2 x | ≤ |x + x log2 x | for all x > a.

Hence, by definition of �-notation,

x + x log2 x is �(x log2 x).
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Figure 11.4.4 Graphs of Some Logarithmic, Exponential, and Power Functions

To show that x + x log2 x is O(x log2 x), note that according to property (11.4.13)
with b = 2, there is a number b such that for all x > b,

x < x log2 x

⇒ x + x log2 x < 2x log2 x by adding x log2 x to both sides

Thus, if b is taken to be greater than 2, then

|x + x log2 x | < 2|x log2 x | because when x > 2, x log2 x > 0, and so
|x + x log2 x | = x + x log2 x and
log2 x = |x log2 x |.

Let B = 2. Then

|x + x log2 x | ≤ B|x log2 x | for all x > b.

Hence, by definition of O-notation

x + x log2 x is O(x log2 x).

Therefore, since x + x log2 x is �(x log2 x) and x + x log2 x is O(x log2 x), by
Theorem 11.2.1,

x + x log2 x is �(x log2 x). ■

Example 11.4.5 illustrates a special case of a useful general fact about O-notation:
If one function “dominates” another (in the sense of being larger for large values of the
variable), then the sum of the two is big-O of the dominating function. (See exercise 49a
in Section 11.2.)

Example 11.4.6 shows that any two logarithmic functions with bases greater
than 1 have the same order.
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Example 11.4.6 Logarithm with Base b Is Big-Theta of Logarithm with Base c

Show that if b and c are real numbers such that b > 1 and c > 1, then logb x is �(logc x).

Solution Suppose b and c are real numbers and b > 1 and c > 1. To show that logb x is
�(logc x), positive real numbers A, B, and k must be found such that

A| logc x | ≤ | logb x | ≤ B| logc x | for all real numbers x > k.

By part (d) of Theorem 7.2.1,

logb x =
logc x

logc b
=

(
1

logc b

)
logc x . (∗)

Since b > 1 and the logarithmic function with base c is strictly increasing, then logc b >

logc 1 = 0, and so
1

logc b
> 0 also. Furthermore, if x > 1, then logb x > 0 and logc x > 0.

It follows from equation (∗), therefore, that(
1

logc b

)
logc x ≤ logb x ≤

(
1

logc b

)
logc x (∗∗)

for all real numbers x > 1. Accordingly, let A = 1

logc b
, B = 1

logc b
, and k = 1. Then,

since all quantities in (∗∗) are positive,
A| logc x | ≤ | logb x | ≤ B| logc x | for all real numbers x > k.

Hence, by definition of �-notation,

logb x is �(logc x). ■

Example 11.4.7 shows how a logarithmic order can arise from the computation of a
certain kind of sum. It requires the following fact from calculus:

The area underneath the graph of y = 1/x between x = 1 and x = n equals ln n,
where ln n = loge n. This fact is illustrated in Figure 11.4.5.

x

y

n1

1

Graph of y = 1
x

Area of shaded region = ln n

Figure 11.4.5 Area Under Graph of y = 1
x

Between x = 1 and x = n

Example 11.4.7 Order of a Harmonic Sum

Sums of the form 1+ 1

2
+ · · · + 1

n
are called harmonic sums. They occur in the analysis

of various computer algorithms such as quick sort. Show that 1+ 1

2
+ 1

3
+ · · · + 1

n
is

�(ln n) by performing the steps on the next page:
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a. Interpret Figure 11.4.6 to show that

1

2
+ 1

3
+ · · · + 1

n
≤ ln n.

and

ln n ≤ 1+ 1

2
+ 1

3
+ · · · + 1

n
.

b. Show that if n is an integer that is at least 3, then 1 ≤ ln n.

c. Deduce from (a) and (b) that if the integer n is greater than or equal to 3, then

ln n ≤ 1+ 1

2
+ 1

3
+ · · · + 1

n
≤ 2 ln n.

d. Deduce from (c) that

1+ 1

2
+ 1

3
+ · · · + 1

n
is �(ln n).

Solution

a. Figure 11.4.6(a) shows rectangles whose bases are the intervals between each pair
of integers from 1 to n and whose heights are the heights of the graph of y = 1/x
above the right-hand endpoints of the intervals. Figure 11.4.6(b) shows rectangles
with the same bases but whose heights are the heights of the graph above the left-hand
endpoints of the intervals.

x

y

1 2 3 4 n – 1 n

(1, 1) Total area under graph
from 1 to n = ln n

(2,   )1
2

(3,   )1
3 (4,   )1

4 (n – 1,         )1
n – 1 (n,   )1

n
(n – 1,         )1

n – 1

x

y

1 2 3 4 n – 1 n

(1, 1)

Graph of y = 1
xGraph of y = 1

x

Total area under graph
from 1 to n = ln n

(2,   )1
2 (3,   )1

3 (4,   )1
4 (n,   )1

n

(a) (b)

1 1

Figure 11.4.6

Now the area of each rectangle is its base times its height. Since all the rectangles
have base 1, the area of each rectangle equals its height. Thus in Figure 11.4.6(a),

the area of the rectangle from 1 to 2 is
1

2
;

the area of the rectangle from 2 to 3 is
1

3
;

...

the area of the rectangle from n − 1 to n is
1

n
.

So the sum of the areas of all the rectangles is
1

2
+ 1

3
+ · · · + 1

n
. From the picture it

is clear that this sum is less than the area underneath the graph of f between x = 1
and x = n, which is known to equal ln n. Hence

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



762 Chapter 11 Analysis of Algorithm Efficiency

1

2
+ 1

3
+ · · · + 1

n
≤ ln n.

A similar analysis of the areas of the combined blue and gray rectangles in
Figure 11.4.6(b) shows that

ln n ≤ 1+ 1

2
+ 1

3
+ · · · + 1

n
.

b. Suppose n is an integer and n ≥ 3. Since e ∼= 2.718, then n ≥ e. Now the logarithmic
function with base e is strictly increasing. Thus since e ≤ n, then 1 = ln e ≤ ln n.

c. By part (a),

1

2
+ 1

3
+ · · · + 1

n
≤ ln n,

and by part (b),

1 ≤ ln n.

Adding these two inequalities together gives

1+ 1

2
+ 1

3
+ · · · + 1

n
≤ 2 ln n for any integer n ≥ 3.

d. Putting together the results of parts (a) and (c) leads to the conclusion that for all
integers n ≥ 3,

ln n ≤ 1+ 1

2
+ 1

3
+ · · · + 1

n
≤ 2 ln n.

And because all the quantities are positive for n ≥ 3,

| ln n| ≤
∣∣∣∣1+ 1

2
+ 1

3
+ · · · + 1

n

∣∣∣∣ ≤ 2| ln n|.

Let A = 1, B = 2, and k = 3. Then

A| ln n| ≤
∣∣∣∣1+ 1

2
+ 1

3
+ · · · + 1

n

∣∣∣∣ ≤ B| ln n| for all n > k.

Hence by definition of �-notation,

1+ 1

2
+ 1

3
+ · · · + 1

n
is �(ln n). ■

Test Yourself
1. The domain of any exponential function is _____, and its

range is _____.

2. The domain of any logarithmic function is _____, and its
range is _____.

3. If k is an integer and 2k ≤ x < 2k+1, then �log2 x� = _____.

4. If b is a real number with b > 1 and if x is a sufficiently large
real number, then when the quantities x, x2, logb x , and
x logb x are arranged in order of increasing size, the result is
_____.

5. If n is a positive integer, then 1+ 1
2 + 1

3 + · · · + 1
n has order

_____.

Exercise Set 11.4
Graph each function defined in 1–8.

1. f (x) = 3x for all real numbers x

2. g(x) = (
1
3

)x
for all real numbers x

3. h(x) = log10 x for all positive real numbers x

4. k(x) = log2 x for all positive real numbers x

5. F(x) = �log2 x� for all positive real numbers x
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6. G(x) = �log2 x� for all positive real numbers x

7. H(x) = x log2 x for all positive real numbers x

8. K (x) = x log10 x for all positive real numbers x

9. The scale of the graph shown in Figure 11.4.1 is one-fourth
inch to each unit. If the point (2, 264) is plotted on the graph
of y = 2x , how many miles will it lie above the horizontal
axis? What is the ratio of the height of the point to the dis-
tance of the earth from the sun? (There are 12 inches per
foot and 5,280 feet per mile. The earth is approximately
93,000,000 miles from the sun on average.)
( 14 inch ∼= 0.635 cm, 1 mile ∼= 0.62 km)

10. a. Use the definition of logarithm to show that logbb
x = x

for all real numbers x .
b. Use the definition of logarithm to show that blogbx = x

for all positive real numbers x .
c. By the result of exercise 25 in Section 7.3, if f : X → Y

and g: Y→ X are functions and g◦ f = IX and f ◦g=
IY , then f and g are inverse functions. Use this result to
show that logb and expb (the exponential function with
base b) are inverse functions.

11. Let b > 1.
a. Use the fact that u = logb v ⇔ v = bu to show that a

point (u, v) lies on the graph of the logarithmic function
with base b if, and only if, (v, u) lies on the graph of the
exponential function with base b.

b. Plot several pairs of points of the form (u, v) and (v, u)
on a coordinate system. Describe the geometric relation-
ship between the locations of the points in each pair.

c. Draw the graphs of y = log2 x and y = 2x . Describe the
geometric relationship between these graphs.

12. Give a graphical interpretation for property (11.4.2) in
Example 11.4.1(a) for 0 < x < 1.

13.H Suppose a positive real number x satisfies the inequal-
ity 10m ≤ x < 10m+1 where m is an integer. What can be
inferred about �log10 x�? Justify your answer.

14. a. Prove that if x is a positive real number and k is
a nonnegative integer such that 2k−1 < x ≤ 2k , then
�log2 x� = k.

b. Describe in words the statement proved in part (a).

15. If n is an odd integer and n > 1, is �log2(n − 1)� =
�log2(n)�? Justify your answer.

16.H If n is an odd integer and n > 1, is �log2(n + 1)� =
�log2(n)�? Justify your answer.

17. If n is an odd integer and n > 1, is �log2(n + 1)� =
�log2(n)�? Justify your answer.

In 18 and 19, indicate how many binary digits are needed to rep-
resent the numbers in binary notation. Use the method shown in
Example 11.4.3.

18. 148,206 19. 5,067,329

20. It was shown in the text that the number of binary digits
needed to represent a positive integer n is �log2 n� + 1. Can
this also be given as �log2 n�? Why or why not?

In each of 21 and 22, a sequence is specified by a recurrence
relation and initial conditions. In each case, (a) use iteration to
guess an explicit formula for the sequence; (b) use strong math-
ematical induction to confirm the correctness of the formula you
obtained in part (a).

21. ak = a�k/2� + 2, for all integers k ≥ 2
a1 = 1

22. bk = b�k/2� + 1, for all integers k ≥ 2
b1 = 1.

23.H Define a sequence c1, c2, c3, . . . , recursively as follows:

c1 = 0,

ck = 2c�k/2� + k, for all integers k ≥ 2.

Use strong mathematical induction to show that cn ≤ n2 for
all integers n ≥ 1.

24.H✶ Use strong mathematical induction to show that for the
sequence of exercise 23, cn ≤ n log2 n, for all integers
n ≥ 4.

Exercises 25–28 refer to properties 11.4.9 and 11.4.10. To solve
them, think big!

25. Find a real number x > 3 such that log2 x < x1/10.

26. Find a real number x > 1 such that x50 < 2x .

27. Find a real number x > 2 such that x < 1.0001x .

28. Use a graphing calculator or computer graphing program
to find two distinct approximate values of x such that x =
1.0001x . On what approximate intervals is x > 1.0001x?
On what approximate intervals is x < 1.0001x?

29. Use �-notation to express the following statement:

|x2| ≤ |7x2 + 3x log2 x | ≤ 10|x2|,
for all real numbers x > 2.

Derive each statement in 30–33.

30. 2x + log2 x is �(x).

31. x2 + 5x log2 x is �(x2).

32. n2 + 2n is �(2n).

33.H 2n+1 is �(2n).

34.H Show that 4n is not O(2n).

Prove each of the statements in 35–40, assuming n is an integer
variable that takes positive integer values. Use identities from
Section 5.2 as needed.

35. 1+ 2+ 22 + 23 + · · · + 2n is �(2n).

36.H 4+ 42 + 43 + · · · + 4n is �(4n).
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37. 2+ 2 ·32 + 2 ·34 + · · · + 2 ·32n is �(32n).

38.
1

5
+ 4

52
+ 42

53
+ · · · + 4n

5n+1
is �(1).

39. n + n

2
+ n

4
+ · · · + n

2n
is �(n).

40.
2n

3
+ 2n

32
+ 2n

33
+ · · · + 2n

3n
is �(n).

41. Quantities of the form

kn + kn log2 n for positive integers k1 ·k2, and n
arise in the analysis of the merge sort algorithm in computer
science. Show that for any positive integer k,

k1n + k2n log2 n is �(n log2 n).

42. Calculate the values of the harmonic sums

1+ 1

2
+ 1

3
+ · · · + 1

n
for n = 2, 3, 4, and 5.

43. Use part (d) of Example 11.4.7 to show that

n + n

2
+ n

3
+ · · · + n

n
is �(n ln n).

44. Use the fact that log2 x =
(

1

loge 2

)
loge x and loge x =

ln x , for all positive numbers x , and part (c) of Example
11.4.7 to show that

1+ 1

2
+ 1

3
+ · · · + 1

n
is �(log2 n).

45. a. Show that �log2 n� is �(log2 n).
b. Show that �log2 n� + 1 is �(log2 n).

46. Prove by mathematical induction that n ≤ 10n for all inte-
gers n ≥ 1.

47.H Prove by mathematical induction that log2 n ≤ n for all inte-
gers n ≥ 1.

48.H Show that if n is a variable that takes positive integer values,
then 2n is O(n!).

49. Let n be a variable that takes positive integer values.
a. Show that n! is O(nn).

b. Use part (a) to show that log2(n!) is O(n log2 n).
c.H Show that nn ≤ (n!)2 for all integers n ≥ 2.
d. Use part (c) to show that log2(n!) is �(n log2 n).
e. Use parts (b) and (d) to find an order for log2(n!).

50.✶ a. For all positive real numbers u, log2 u < u. Use this fact
to show that for any positive integer n, log2 x < nx1/n

for all real numbers x > 0.
b. Interpret the statement of part (a) using O-notation.

51. a. For all real numbers x, x < 2x . Use this fact to show that
for any positive integer n, xn < nn2x for all real numbers
x > 0.

b. Interpret the statement of part (a) using O-notation.

52.✶ For all positive real numbers u, log2 u < u. Use this fact
and the result of exercise 21 in Section 11.1 to prove the
following: For all integers n ≥ 1, log2 x < x1/n for all real
numbers x > (2n)2n .

53. Use the result of exercise 52 above to prove the follow-
ing: For all integers n ≥ 1, xn < 2x for all real numbers
x > (2n)2n .

Exercises 54 and 55 use L’Hôpital’s rule from calculus.

54. a. Let b be any real number greater than 1. Use L’Hôpital’s
rule and mathematical induction to prove that for all
integers n ≥ 1,

lim
x→∞

xn

bx
= 0.

b. Use the result of part (a) and the definitions of limit and
of O-notation to prove that xn is O(bx ) for any integer
n ≥ 1.

55. a. Let b be any real number greater than 1. Use L’Hôpital’s
rule to prove that for all integers n ≥ 1,

lim
x→∞

logb x

x1/n
= 0.

b. Use the result of part (a) and the definitions of limit and
of O-notation to prove that logb x is O(x1/n) for any
integer n ≥ 1.

56. Complete the proof in Example 11.4.4.

Answers for Test Yourself
1. the set of all real numbers; the set of all positive real numbers 2. the set of all positive real numbers; the set of all real numbers
3. k 4. logb x < x < x logb x < x2 5. ln x (or, equivalently, log2 x)

11.5 Application: Analysis of Algorithm Efficiency II
Pick a Number, Any Number — Donal O’Shea, 2007

Have you ever played the “guess my number” game? A person thinks of a number
between two other numbers, say 1 and 10 or 1 and 100 for example, and you try to
figure out what it is, using the least possible number of guesses. Each time you guess a
number, the person tells you whether you are correct, too low, or too high.
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