
764 Chapter 11 Analysis of Algorithm Efficiency

37. 2+ 2 ·32 + 2 ·34 + · · · + 2 ·32n is �(32n).

38.
1

5
+ 4

52
+ 42

53
+ · · · + 4n

5n+1
is �(1).

39. n + n

2
+ n

4
+ · · · + n

2n
is �(n).

40.
2n

3
+ 2n

32
+ 2n

33
+ · · · + 2n

3n
is �(n).

41. Quantities of the form

kn + kn log2 n for positive integers k1 ·k2, and n
arise in the analysis of the merge sort algorithm in computer
science. Show that for any positive integer k,

k1n + k2n log2 n is �(n log2 n).

42. Calculate the values of the harmonic sums

1+ 1

2
+ 1

3
+ · · · + 1

n
for n = 2, 3, 4, and 5.

43. Use part (d) of Example 11.4.7 to show that

n + n

2
+ n

3
+ · · · + n

n
is �(n ln n).

44. Use the fact that log2 x =
(

1

loge 2

)
loge x and loge x =

ln x , for all positive numbers x , and part (c) of Example
11.4.7 to show that

1+ 1

2
+ 1

3
+ · · · + 1

n
is �(log2 n).

45. a. Show that �log2 n� is �(log2 n).
b. Show that �log2 n� + 1 is �(log2 n).

46. Prove by mathematical induction that n ≤ 10n for all inte-
gers n ≥ 1.

47.H Prove by mathematical induction that log2 n ≤ n for all inte-
gers n ≥ 1.

48.H Show that if n is a variable that takes positive integer values,
then 2n is O(n!).

49. Let n be a variable that takes positive integer values.
a. Show that n! is O(nn).

b. Use part (a) to show that log2(n!) is O(n log2 n).
c.H Show that nn ≤ (n!)2 for all integers n ≥ 2.
d. Use part (c) to show that log2(n!) is �(n log2 n).
e. Use parts (b) and (d) to find an order for log2(n!).

50.✶ a. For all positive real numbers u, log2 u < u. Use this fact
to show that for any positive integer n, log2 x < nx1/n

for all real numbers x > 0.
b. Interpret the statement of part (a) using O-notation.

51. a. For all real numbers x, x < 2x . Use this fact to show that
for any positive integer n, xn < nn2x for all real numbers
x > 0.

b. Interpret the statement of part (a) using O-notation.

52.✶ For all positive real numbers u, log2 u < u. Use this fact
and the result of exercise 21 in Section 11.1 to prove the
following: For all integers n ≥ 1, log2 x < x1/n for all real
numbers x > (2n)2n .

53. Use the result of exercise 52 above to prove the follow-
ing: For all integers n ≥ 1, xn < 2x for all real numbers
x > (2n)2n .

Exercises 54 and 55 use L’Hôpital’s rule from calculus.

54. a. Let b be any real number greater than 1. Use L’Hôpital’s
rule and mathematical induction to prove that for all
integers n ≥ 1,

lim
x→∞

xn

bx
= 0.

b. Use the result of part (a) and the definitions of limit and
of O-notation to prove that xn is O(bx) for any integer
n ≥ 1.

55. a. Let b be any real number greater than 1. Use L’Hôpital’s
rule to prove that for all integers n ≥ 1,

lim
x→∞

logb x

x1/n
= 0.

b. Use the result of part (a) and the definitions of limit and
of O-notation to prove that logb x is O(x1/n) for any
integer n ≥ 1.

56. Complete the proof in Example 11.4.4.

Answers for Test Yourself
1. the set of all real numbers; the set of all positive real numbers 2. the set of all positive real numbers; the set of all real numbers
3. k 4. logb x < x < x logb x < x2 5. ln x (or, equivalently, log2 x)

11.5 Application: Analysis of Algorithm Efficiency II
Pick a Number, Any Number — Donal O’Shea, 2007

Have you ever played the “guess my number” game? A person thinks of a number
between two other numbers, say 1 and 10 or 1 and 100 for example, and you try to
figure out what it is, using the least possible number of guesses. Each time you guess a
number, the person tells you whether you are correct, too low, or too high.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.5 Application: Analysis of Algorithm Efficiency II 765

If you have played this game, you have probably already hit upon the most efficient
strategy: Begin by guessing a number as close to the middle of the two given numbers
as possible. If your guess is too high, then the number is between the lower of the two
given numbers and the one you first chose. If your guess is too low, then the number is
between the number you first chose and the higher of the two given numbers. In either
case, you take as your next guess a number as close as possible to the middle of the new
range in which you now know the number lies. You repeat this process as many times as
necessary until you have found the person’s number.

The technique described previously is an example of a general strategy called divide
and conquer, which works as follows: To solve a problem, reduce it to a fixed number of
smaller problems of the same kind, which can themselves be reduced to the same fixed
number of smaller problems of the same kind, and so forth until easily resolved problems
are obtained. In this case, the problem of finding a particular number in a given range of
numbers is reduced at each stage to finding a particular number in a range of numbers
approximately half as long.

It turns out that algorithms using a divide-and-conquer strategy are generally quite
efficient and nearly always have orders involving logarithmic functions. In this section
we define the binary search algorithm, which is the formalization of the “guess my num-
ber” game described previously, and we compare the efficiency of binary search to the
sequential search discussed in Section 11.3. Then we develop a divide-and-conquer algo-
rithm for sorting, merge sort, and compare its efficiency with that of insertion sort and
selection sort, which were also discussed in Section 11.3.

Binary Search
Whereas a sequential search can be performed on an array whose elements are in any
order, a binary search can be performed only on an array whose elements are arranged in
ascending (or descending) order. Given an array a[1], a[2], . . . , a[n] of distinct elements
arranged in ascending order, consider the problem of trying to find a particular element x
in the array.

To use binary search, first compare x to the “middle element” of the array. If the
two are equal, the search is successful. If the two are not equal, then because the array
elements are in ascending order, comparing the values of x and the middle array element
narrows the search either to the lower subarray (consisting of all the array elements below
the middle element) or to the upper subarray (consisting of all array elements above the
middle element).

The search continues by repeating this basic process over and over on successively
smaller subarrays. It terminates either when a match occurs or when the subarray to which
the search has been narrowed contains no elements. The efficiency of the algorithm is a
result of the fact that at each step, the length of the subarray to be searched is roughly half
the length of the array of the previous step. This process is illustrated in Figure 11.5.1.

left subarray middle element right subarray

a[r] a[s]a[mid – 1] a[mid + 1]a[mid]

x > a[mid]x < a[mid]

Compare x to a[mid]. If the two
are equal, the search ends.

Search the left subarray
a[r], . . . , a[mid – 1] for x.

Search the right subarray
a[mid + 1], . . . , a[s] for x.

Figure 11.5.1 One lteration of the Binary Search Process

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

766 Chapter 11 Analysis of Algorithm Efficiency

To write down a formal algorithm for binary search, we introduce a variable index
whose final value will tell us whether or not x is in the array and, if so, will indicate
the location of x . Since the array goes from a[1] to a[n], we intialize index to be 0. If
and when x is found, the value of index is changed to the subscript of the array element
equaling x . If index still has the value 0 when the algorithm is complete, then x is not one
of the elements in the array. Figure 11.5.2 shows the action of a particular binary search.

a[5] = x ?

index = 5

a[6] = x ?

a[4] = x ? no: x > a[4]

no: x < a[6]

yes

a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Figure 11.5.2 Binary Search of a[1], a[2], . . . , a[7] for x where x = a[5]

Formalizing a binary search algorithm also requires that we be more precise about
the meaning of the “middle element” of an array. (This issue was side-stepped by careful
choice of n in Figure 11.5.2.) If the array consists of an even number of elements, there
are two elements in the middle. For instance, both a[6] and a[7] are equally in the middle
of the following array.

a[3] a[4] a[5]︸ ︷︷ ︸ a[6] a[7]︸ ︷︷ ︸ a[8] a[9] a[10]︸ ︷︷ ︸
three elements two middle three elements

elements

In a case such as this, the algorithm must choose which of the two middle elements to
take, the smaller or the larger. The choice is arbitrary—either would do. We will write the
algorithm to choose the smaller. The index of the smaller of the two middle elements is
the floor of the average of the top and bottom indices of the array. That is, if

bot = the bottom index of the array,

top = the top index of the array, and

mid = the lower of the two middle indices of the array,

then

mid =
⌊
bot+ top

2

⌋
.

In this case, bot = 3 and top = 10, so the index of the “middle element” is

mid =
⌊
3+ 10

2

⌋
=

⌊
13

2

⌋
= �6.5� = 6.

The following is a formal algorithm for a binary search.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.5 Application: Analysis of Algorithm Efficiency II 767

Algorithm 11.5.1 Binary Search

[The aim of this algorithm is to search for an element x in an ascending array of elements
a[1], a[2], . . . , a[n]. If x is found, the variable index is set equal to the index of the array
element where x is located. If x is not found, index is not changed from its initial value,
which is 0. The variables bot and top denote the bottom and top indices of the array
currently being examined.]

Input: n [a positive integer], a[1], a[2], . . . , a[n] [an array of data items given in
ascending order], x [a data item of the same data type as the elements of the array]

Algorithm Body:

index := 0, bot := 1, top := n
[Compute the middle index of the array, mid. Compare x to a[mid]. If the two are
equal, the search is successful. If not, repeat the process either for the lower or for the
upper subarray, either giving top the new value mid − 1 or giving bot the new value
mid + 1. Each iteration of the loop either decreases the value of top or increases
the value of bot. Thus, if the looping is not stopped by success in the search process,
eventually the value of top will become less than the value of bot. This occurrence
stops the looping process and indicates that x is not an element of the array.]

while (top ≥ bot and index = 0)

mid :=
⌊
bot + top

2

⌋
if a[mid] = x then index := mid

if a[mid] > x

then top := mid − 1

else bot := mid + 1

end while

[If index has the value 0 at this point, then x is not in the array. Otherwise, index
gives the index of the array where x is located.]

Output: index [a nonnegative integer]

Example 11.5.1 Tracing the Binary Search Algorithm

Trace the action of Algorithm 11.5.1 on the variables index, bot, top, mid, and the values
of x given in (a) and (b) below for the input array

a[1] = Ann, a[2] = Dawn, a[3] = Erik, a[4] = Gail, a[5] = Juan,

a[6] = Matt, a[7] = Max, a[8] = Rita, a[9] = Tsuji, a[10] = Yuen

where alphabetical ordering is used to compare elements of the array.

a. x = Max b. x = Sara

Solution

a.
index 0 7

bot 1 6 7

top 10 7

mid 5 8 6 7

b. index 0

bot 1 6 9

top 10 8

mid 5 8 9

■

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

768 Chapter 11 Analysis of Algorithm Efficiency

The Efficiency of the Binary Search Algorithm
The idea of the derivation of the efficiency of the binary search algorithm is not dif-
ficult. Here it is in brief. At each stage of the binary search process, the length of the
new subarray to be searched is approximately half that of the previous one, and in the
worst case, every subarray down to a subarray with a single element must be searched.
Consequently, in the worst case, the maximum number of iterations of the while loop in
the binary search algorithm is 1 more than the number of times the original input array
can be cut approximately in half. If the length n of this array is a power of 2 (n = 2k

for some integer k), then n can be halved exactly k = log2 n = �log2 n� times before an
array of length 1 is reached. If n is not a power of 2, then n = 2k + m for some integer k
(where m < 2k), and so n can be split approximately in half k times also. So in this case,
k = �log2 n� also. Thus in the worst case, the number of iterations of the while loop in
the binary search algorithm, which is proportional to the number of comparisons required
to execute it, is �log2 n� + 1. The derivation is concluded by noting that �log2 n� + 1 is
O(log2 n).

The details of the derivation are developed in Examples 11.5.2–11.5.6. Throughout
the derivation, for each integer n ≥ 1, let

wn = the number of iterations of the while loop
in a worst-case execution of the binary search
algorithm for an input array of length n.

The first issue to consider is this. If the length of the input array for one iteration of
the while loop is known, what is the greatest possible length of the array input to the next
iteration?

Example 11.5.2 The Length of the Input Array to the Next Iteration of the Loop

Prove that if an array of length k is input to the while loop of the binary search algorithm,
then after one unsuccessful iteration of the loop, the input to the next iteration is an array
of length at most �k/2�.

Solution Consider what occurs when an array of length k is input to the while loop in the
case where x �= a[mid]:

a[bot], a[bot+ 1], . . . , a[mid− 1]︸ ︷︷ ︸ , a[mid], a[mid+ 1], . . . , a[top− 1], a[top].︸ ︷︷ ︸,⏐
new input to the while
loop if x < a[mid] “middle

element”

new input to the while
loop if x > a[mid]

Since the input array has length k, the value of mid depends on whether k is odd or
even. In both cases we match up the array elements with the integers from 1 to k and
analyze the lengths of the left and right subarrays. In case k is odd, both the left and the
right subarrays have length �k/2�. In case k is even, the left subarray has length �k/2� − 1
and the right subarray has length �k/2�. The reasoning behind these results is shown in
Figure 11.5.3.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.5 Application: Analysis of Algorithm Efficiency II 769

k odd: a[bot] a[top]a[mid – 1] a[mid + 1]a[mid]

(

(((((

((((

k even: a[bot] a[top]a[mid – 1] a[mid + 1]a[mid]

1

1

k

k

k + 1
2

k + 1
2

– 1 k + 1
2

+ 1

k – 1
2

k + 1
2

– 1length = = = k
2

k
2

k
2

k
2

middle
element

k + 1
2

+ 1length = k – + 1 = k – 1
2

= k
2()

k
2

+ 1length = k – + 1 = = k
2

k
2()

– 1 + 1

↑

middle
element

↑
length = k

2
– 1 – 1= k

2

Figure 11.5.3 Lengths of the Left and Right Subarrays

Because the maximum of the numbers �k/2� and �k/2� − 1 is �k/2�, in the worst case
this will be the length of the array input to the next iteration of the loop. ■

To find the order of the algorithm, a formula for w1, w2, w3, . . . is needed. The next
example derives a recurrence relation for the sequence.

Example 11.5.3 A Recurrence Relation for w1, w2, w3, . . .

Prove that the sequence w1, w2, . . . , wn, . . . satisfies the recurrence relation and initial
condition

w1 = 1,

wk = 1+ w�k/2� for all integers k > 1.

Solution Example 11.5.2 showed that given an input array of length k to the while loop,
the worst that can happen is that the next iteration of the loop will have to search an array
of length �k/2�. Hence the maximum number of iterations of the loop is 1 more than the
maximum number necessary to execute it for an input array of length �k/2�. In symbols,

wk = 1+ w�k/2�.

Also w1 = 1

because for an input array of length 1 (bot = top), the while loop iterates only one time.
■

Now that a recurrence relation for w1, w2, w3, . . . has been found, iteration can be
used to come up with a good guess for an explicit formula.

Example 11.5.4 An Explicit Formula for w1, w2, w3, . . .

Apply iteration to the recurrence relation found in Example 11.5.3 to conjecture an
explicit formula for w1, w2, w3,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

770 Chapter 11 Analysis of Algorithm Efficiency

Solution Begin by iterating to find the values of the first few terms of the sequence.

→w 1© =
�
�

�
�1 1 = 20; 1 = 0+ 1

→w 2© = 1+ w�2/2� = 1+ w1 = 1+ 1 = �
�

�
�2

w3 = 1+ w�3/2� = 1+ w1 = 1+ 1 = 2

}
2 = 21; 2 = 1+ 1

→w 4© = 1+ w�4/2� = 1+ w2 = 1+ 2 = �
�

�
�3

w5 = 1+ w�5/2� = 1+ w2 = 1+ 2 = 3

w6 = 1+ w�6/2� = 1+ w3 = 1+ 2 = 3

w7 = 1+ w�7/2� = 1+ w3 = 1+ 2 = 3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

4 = 22; 3 = 2+ 1

→w 8© = 1+ w�8/2� = 1+ w4 = 1+ 3 = �
�

�
�4

w9 = 1+ w�9/2� = 1+ w4 = 1+ 3 = 4
...

...

w15 = 1+ w�15/2� = 1+ w7 = 1+ 3 = 4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

8 = 23; 4 = 3+ 1

w16©= 1+ w�16/2� = 1+ w8 = 1+ 4 = �
�

�
�5

→...
...

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

16 = 24; 5 = 4+ 1

Note that in each case when the subscript n is between two powers of 2, wn is 1 more
than the exponent of the lower power of 2. In other words:

If 2i ≤ n < 2i+1, then wn = i + 1. 11.5.1

But if 2i ≤ n < 2i+1,

then [by property (11.4.2) of Example 11.4.1]

i = �log2 n�.
Substitution into statement (11.5.1) gives the conjecture that

wn = �log2 n� + 1. ■

Now mathematical induction can be used to verify the correctness of the formula
found in Example 11.5.4.

Example 11.5.5 Verifying the Correctness of the Formula

Use strong mathematical induction to show that if w1, w2, w3, . . . is a sequence of num-
bers that satisfies the recurrence relation and initial condition

w1 = 1 and wk = 1+ w�k/2� for all integers k > 1,

then w1, w2, w3, . . . satisfies the formula

wn = �log2 n� + 1 for all integers n ≥ 1.

Solution Let w1, w2, w3, . . . be the sequence defined by specifying that w1 = 1 and wk =
1+ w�k/2� for all integers k ≥ 2, and let the property P(n) be the equation

wn = �log2 n� + 1. ← P(n)

We will use mathematical induction to prove that for all integers n ≥ 1, P(n) is true.

Show that P(1) is true: By definition of w1, w2, w3, . . . , we have that w1 = 1. But it is
also the case that �log2 1� + 1 = 0+ 1 = 1. Thus w1 = �log2 1� + 1 and P(1) is true.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.5 Application: Analysis of Algorithm Efficiency II 771

Show that for all integers k ≥ 1, if P(i) is true for all integers i from 1 through k, then
P(k + 1) is also true: Let k be any integer with k ≥ 1, and suppose that

wi = �log2 i� + 1 for all integers i with 1 ≤ i ≤ k. ← inductive hypothesis

We must show that

wk+1 = �log2(k + 1)� + 1 ← P(k + 1)

Consider the two cases: k is even and k is odd.

Case 1 (k is even): In this case, k + 1 is odd, and

wk+1 = 1+ w�(k+1)/2� by definition of w1 , w2 , w3 , . . .

= 1+ w�k/2� because �(k + 1)/2� = k/2� since k + 1 is odd

= 1+ (⌊
log2(k/2)

⌋+ 1
) by inductive hypothesis because, since k is even,

k ≥ 2, and so 1 ≤ �k/2� ≤ k/2 < k

= �log2(k)− log2 2� + 2 by substituting into the identity
logb(x/y) = logb x − logb y from
Theorem 7.2.1

= �log2(k)− 1� + 2 since log2 2 = 1

= (�log2(k)� − 1)+ 2 by substituting x = log2(k) into the identity
�x − 1� = �x� − 1 derived in exercise 15 of Section 4.5

= �log2(k + 1)� + 1 by property (11.4.3) in Example 11.4.2

Case 2 (k is odd): In this case, it can also be shown that wk = �log2 k� + 1. The analysis
is very similar to that of case 1 and is left as exercise 16 at the end of the section.

Hence regardless of whether k is even or k is odd,

wk+1 = �log2(k + 1)� + 1,

as was to be shown. [Since both the basis and the inductive steps have been demonstrated,
the proof by strong mathematical induction is complete.] ■

The final example shows how to use the formula for w1, w2, w3, . . . to find a worst-
case order for the algorithm.

Example 11.5.6 The Binary Search Algorithm Is Logarithmic

Given that by Example 11.5.5, for all positive integers n,

wn = �log2 n� + 1,

show that in the worst case, the binary search algorithm is �(log2 n).

Solution For any integer n > 2,

wn = �log2 n� + 1 by Example 11.5.5

⇒ log2 n ≤ wn ≤ log2 n + 1
because x < �x� + 1 and �x� ≤ x
for all real numbers x

⇒ log2 n ≤ wn ≤ log2 n + log2 n since the logorithm with base 2 is increas-
ing, if 2 < n, then 1 = log2 2 < log2 n

⇒ log2 n ≤ wn ≤ 2 log2 n.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

772 Chapter 11 Analysis of Algorithm Efficiency

Both wn and log2 n are positive for n > 2. Therefore,

| log2 n| ≤ |wn| ≤ 2| log2 n| for all integers n > 2.

Let A = 1, B = 2, and k = 2. Then

A| log2 n| ≤ |wn| ≤ B| log2 n| for all integers n > k.

Hence by definition of �-notation,

wn is �(log2 n).

But wn , the number of iterations of the while loop, is proportional to the number of
comparisons performed when the binary search algorithm is executed. Thus the binary
search algorithm is �(log2 n). ■

Examples 11.5.2–11.5.6 show that in the worst case, the binary search algorithm has
order log2 n. As noted in Section 11.3, in the worst case the sequential search algorithm
has order n. This difference in efficiency becomes increasingly more important as n gets
larger and larger. Assuming one loop iteration is performed each nanosecond, then per-
forming n iterations for n = 100,000,000 requires 0.1 second, whereas performing log2 n
iterations requires 0.000000027 second. For n = 100,000,000,000 the times are 1.67
minutes and 0.000000037 second, respectively. And for n = 100,000,000,000,000 the
respective times are 27.78 hours and 0.000000047 second.

Merge Sort
Note that it is much easier to write a detailed algorithm for sequential search than for
binary search. Yet binary search is much more efficient than sequential search. Such
trade-offs often occur in computer science. Frequently, the straightforward “obvious”
solution to a problem is less efficient than a clever solution that is more complicated to
describe.

In the text and exercises for Section 11.3, we gave two methods for sorting, insertion
sort and selection sort, both of which are formalizations of methods human beings often
use in ordinary situations. Can a divide-and-conquer approach be used to find a sorting
method more efficient than these? It turns out that the answer is an emphatic “yes.” In
fact, over the past few decades, computer scientists have developed several divide-and-
conquer sorting methods all of which are somewhat more complex to describe but are
significantly more efficient than either insertion sort or selection sort.

One of these methods, merge sort, is obtained by thinking recursively. Imagine that
an efficient way for sorting arrays of length less than k is already known. How can such
knowledge be used to sort an array of length k? One way is to suppose the array of length
k is split into two roughly equal parts and each part is sorted using the known method. Is
there an efficient way to combine the parts into a sorted array? Sure. Just “merge” them.

Figure 11.5.4 illustrates how a merge works. Imagine that the elements of two ordered
subarrays, 2, 5, 6, 8 and 3, 6, 7, 9, are written on slips of paper (to make them easy to
move around). Place the slips for each subarray in two columns on a tabletop, one at the
left and one at the right. Along the bottom of the tabletop, set up eight positions into
which the slips will be moved. Then, one-by-one, bring down the slips from the bottoms
of the columns. At each stage compare the numbers on the slips currently at the column
bottoms, and move the slip containing the smaller number down into the next position in
the array as a whole. If at any stage the two numbers are equal, take, say, the slip on the
left to move into the next position. And if one of the columns is empty at any stage, just
move the slips from the other column into position one-by-one in order.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.5 Application: Analysis of Algorithm Efficiency II 773

1 2 3 4 5 6 7 8

2 3 5 6 6 7 8 9

2

5

6

8

3

6

7

9

Tabletop

Figure 11.5.4 Merging Two Sorted Subarrays to Obtain a Sorted Array

One important observation about the merging algorithm described previously: It
requires memory space to move the array elements around. A second set of array posi-
tions as long as the original one is needed into which to place the elements of the two
subarrays in order. In Figure 11.5.4 this second set of array positions is represented by
the positions set up at the bottom of the tabletop. Of course, once the elements of the
original array have been placed into this new array, they can be moved back in order into
the original array positions.

In terms of time, however, merging is efficient because the total number of compar-
isons needed to merge two subarrays into an array of length k is just k − 1. You can see
why by analyzing Figure 11.5.4. Observe that at each stage, the decision about which slip
to move is made by comparing the numbers on the slips currently at the bottoms of the
two columns—execpt when one of the columns is empty, in which case no comparisons
are made at all. Thus in the worst case there will be one comparison for each of the k
positions in the final array except the very last one (because when the last slip is placed
into position, the other column is sure to be empty), or a total of k − 1 comparisons
in all.

The merge sort algorithm is recursive: Its defining statements include references to
itself. The algorithm is well defined, however, because at each stage the length of the array
that is input to the algorithm is shorter than at the previous stage, so that, ultimately, the
algorithm has to deal only with arrays of length 1, which are already sorted. Specifically,
merge sort works as follows.

Given an array of elements that can be put into order, if the array consists of a single
element, leave it as it is. It is already sorted. Otherwise:

1. Divide the array into two subarrays of as nearly equal length as possible.

2. Use merge sort to sort each subarray.

3. Merge the two subarrays together.

Figure 11.5.5 illustrates a merge sort in a particular case.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

774 Chapter 11 Analysis of Algorithm Efficiency

5 2

5

5

5

5

2

2

2

2

4 6

4

4

4

4

6

6

6

6

5 2 4 6

1 3 2 6

1 2 2 3 4 5 6 6

1

1

3

3

3

3

1

1

2

2

2

2

6

6

6

6

1 3 2 6

Initial array:

Sorted array:

split

split split

split

merge

merge merge

merge

split split

split

merge merge

merge

Figure 11.5.5 Applying Merge Sort to the Array 5, 2, 4, 6, 1, 3, 2, 6

As in the case of the binary search algorithm, in order to formalize merge sort we
must decide at exactly what point to split each array. Given an array denoted by a[bot],
a[bot + 1], . . . , a[top], let mid = �(bot + top)/2�. Take the left subarray to be a[bot],
a[bot + 1], . . . , a[mid] and the right subarray to be a[mid + 1], a[mid + 2], . . . , a[top].
The following is a formal version of merge sort.

Algorithm 11.5.2 Merge Sort

[The aim of this algorithm is to take an array of elements a[r], a[r + 1], . . . , a[s] (where
r ≤ s) and to order it. The output array is denoted a[r], a[r + 1], . . . , a[s] also. It has
the same values as the input array, but they are in ascending order. The input array is
split into two nearly equal-length subarrays, each of which is ordered using merge sort.
Then the two subarrays are merged together.]

Input: r and s, [positive integers with r < s] a[r], a[r + 1], . . . , a[s] [an array of
data items that can be ordered]

Algorithm Body:

bot := r, top := s

while (bot < top)

mid :=
⌊
bot + top

2

⌋
call merge sort with input bot, mid, and

a[bot], a[bot + 1], . . . , a[mid]
call merge sort with input mid + 1, top and

a[mid + 1], a[mid + 2], . . . , a[top]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.5 Application: Analysis of Algorithm Efficiency II 775

[After these steps are completed, the arrays a[bot], a[bot + 1], . . . , a[mid] and
a[mid + 1], a[mid + 2], . . . , a[top] are both in order.]

merge a[bot], a[bot + 1], . . . , a[mid] and
a[mid+ 1], a[mid+ 2], . . . , a[top]

[This step can be done with a call to a merge algorithm. To put the final array in
ascending order, the merge algorithm must be written so as to take two arrays in
ascending order and merge them into an array in ascending order.]

end while

Output: a[r], a[r + 1], . . . , a[s] [an array with the same elements as the input array
but in ascending order]

To derive the efficiency of merge sort, let

mn = the maximum number of comparisons used
when merge sort is applied to an array of length n.

Then m1 = 0 because no comparisons are used when merge sort is applied to an array
of length 1. Also for any integer k > 1, consider an array a[bot], a[bot + 1], . . . , a[top]
of length k that is split into two subarrays, a[bot], a[bot + 1], . . . , a[mid] and
a[mid + 1], a[mid + 2], . . . , a[top], where mid = �(bot + top)/2�. In exercise 24 you
are asked to show that the right subarray has length �k/2� and the left subarray has length
�k/2�. From the previous discussion of the merge process, it is known that to merge two
subarrays into an array of length k, at most k − 1 comparisons are needed.

Consequently,⎡
⎣the number of comparisons
when merge sort is applied
to an array of length k

⎤
⎦ =

⎡
⎣the number of comparisons
when merge sort is applied
to an array of length �k/2�

⎤
⎦

+
⎡
⎣the number of comparisons
when merge sort is applied
to an array of length �k/2�

⎤
⎦+

⎡
⎣the number of comparisons
used to merge two subarrays
into an array of length k

⎤
⎦ .

Or, in other words,

mk = m�k/2� + m�k/2� + (k − 1) for all integers k > 1.

In exercise 25 you are asked to use this recurrence relation to show that

1

2
n log2 n ≤ mn ≤ 2n log2 n for all integers n ≥ 1.

It follows that merge sort is �(n log2 n).
In the text and exercises for Section 11.3, we showed that insertion sort and selection

sort are both �(n2). How much difference can it make that merge sort is �(n log2 n)? If
n = 100,000,000 and a computer is used that performs one operation each nanosecond,
the time needed to perform n log2 n operations is about 2.7 seconds, whereas the time
needed to perform n2 operations is over 115 days.

Tractable and Intractable Problems
At an opposite extreme from an algorithm such as binary search, which has logarithmic
order, is an algorithm with exponential order. For example, consider an algorithm to direct

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

776 Chapter 11 Analysis of Algorithm Efficiency

the movement of each of the 64 disks in the Tower of Hanoi puzzle as they are transferred
one by one from one pole to another. In Section 5.7 we showed that such a transfer
requires 264 − 1 steps. If a computer took a nanosecond to calculate each transfer step,
the total time to calculate all the steps would be

(264 − 1) ·
(

1

109

)
·
(

1

60

)
·
(

1

60

)
·
(

1

24

)
·
(

1

365.25

)
∼= 584 years.

↑
number of
moves

moves
per
second

seconds
per
minute

minutes
per
hour

hours
per
day

days
per
year

Problems whose solutions can be found with algorithms whose worst-case order with
respect to time is a polynomial are said to belong to class P. They are called polynomial-
time algorithms and are said to be tractable. Problems that cannot be solved in poly-
nomial time are called intractable. For certain problems, it is possible to check the
correctness of a proposed solution with a polynomial-time algorithm, but it may not be
possible to find a solution in polynomial time. Such problems are said to belong to class
NP.∗ The biggest open question in theoretical computer science is whether every problem
in class NP belongs to class P. This is known as the P vs. NP problem. The Clay Institute,
in Cambridge, Massachusetts, has offered a prize of $1,000,000 to anyone who can either
prove or disprove that P = NP.

In recent years, computer scientists have identified a fairly large set of problems,
called NP-complete, that all belong to class NP but are widely believed not to belong
to class P. What is known for sure is that if any one of these problems is solvable in
polynomial time, then so are all the others. One of the NP-complete problems, commonly
known as the traveling salesman problem, was discussed in Section 10.2.

A Final Remark on Algorithm Efficiency
This section and the previous one on algorithm efficiency have offered only a partial view
of what is involved in analyzing a computer algorithm. For one thing, it is assumed that
searches and sorts take place in the memory of the computer. Searches and sorts on disk-
based files require different algorithms, though the methods for their analysis are similar.
For another thing, as mentioned at the beginning of Section 11.3, time efficiency is not
the only factor that matters in the decision about which algorithm to choose. The amount
of memory space required is also important, and there are mathematical techniques to
estimate space efficiency very similar to those used to estimate time efficiency. Further-
more, as parallel processing of data becomes increasingly prevalent, current methods of
algorithm analysis are being modified and extended to apply to algorithms designed for
this new technology.

Test Yourself
1. To solve a problem using a divide-and-conquer algorithm,

you reduce it to a fixed number of smaller problems of the
same kind, which can themselves be _____, and so forth
until _____.

2. To search an array using the binary search algorithm in each
step, you compare a middle element of the array to _____.
If the middle element is less than _____, you _____, and if
the middle element is greater than _____, you _____.

3. The worst case order of the binary search algorithm
is _____.

4. To sort an array using the merge sort algorithm, in each step
until the last one you split the array into approximately two
equal sections and sort each section using ____. Then you
_____ the two sorted sections.

5. The worst case order of the merge sort algorithm is _____.

∗Technically speaking, a problem whose solution can be verified on an ordinary computer (or deterministic sequential machine) with a
polynomial-time algorithm can be solved on a nondeterministic sequential machine with a polynomial-time algorithm. Such problems
are called NP, which stands for nondeterministic polynomial-time algorithm.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.5 Application: Analysis of Algorithm Efficiency II 777

Exercise Set 11.5
1. Use the facts that log2 10 ∼= 3.32 and that for all real

numbers a, log2(10
a) = a log2 10 to find log2(1,000),

log2(1,000,000), and log2(1,000,000,000,000).

2. Suppose an algorithm requires c�log2 n� operations when
performed with an input of size n (where c is a
constant).
a. By what factor will the number of operations increase

when the input size is increased from m to m2 (where m
is a positive integer power of 2)?

b. By what factor will the number of operations increase
when the input size is increased from m to m10 (where
m is a positive integer power of 2)?

c. When n increases from 128 (= 27) to 268,435,456
(= 228), by what factor is c�log2 n� increased?

Exercises 3 and 4 illustrate that for relatively small values of n,
algorithms with larger orders can be more efficient than algo-
rithms with smaller orders. Use a graphing calculator or com-
puter to answer these questions.

3. For what values of n is an algorithm that requires n
operations more efficient than an algorithm that requires
�50 log2 n� operations?

4. For what values of n is an algorithm that requires �n2/10�
operations more efficient than an algorithm that requires
�n log2 n� operations?

In 5 and 6, trace the action of the binary search algorithm (Algo-
rithm 11.5.1) on the variables index, bot, top, mid, and the
given values of x for the input array a[1] = Chia, a[2] = Doug,
a[3] = Jan, a[4] = Jim, a[5] = José, a[6] =Mary, a[7] = Rob,
a[8] = Roy, a[9] = Sue, a[10] = Usha, where alphabetical
ordering is used to compare elements of the array.

5. a. x = Chia b. x = Max

6. a. x = Amanda b. x = Roy

7. Suppose bot and top are positive integers with bot ≤ top.
Consider the array

a[bot], a[bot + 1], . . . , a[top].
a. How many elements are in this array?
b. Show that if the number of elements in the array is odd,

then the quantity bot + top is even.
c. Show that if the number of elements in the array is even,

then the quantity bot + top is odd.

Exercises 8–11 refer to the following algorithm segment. For
each positive integer n, let an be the number of iterations of the
while loop. while (n > 0)

n := n div 2

end while

8. Trace the action of this algorithm segment on n when the
initial value of n is 27.

9. Find a recurrence relation for an .

10. Find an explicit formula for an .

11. Find an order for this algorithm segment.

Exercises 12–15 refer to the following algorithm segment. For
each positive integer n, let bn be the number of iterations of the
while loop.

while (n > 0)
n := n div 3

end while

12. Trace the action of this algorithm segment on n when the
initial value of n is 424.

13. Find a recurrence relation for bn .

14.H a. Use iteration to guess an explicit formula for bn .
b. Prove that if k is an integer and x is a real number with

3k ≤ x < 3k , then �log3 x� = k.
c. Prove that for all integers m ≥ 1,

�log3(3m)� = �log3(3m + 1)� = �log3(3m + 2)�.
d. Prove the correctness of the formula you found in

part (a).

15. Find an order for the algorithm segment.

16. Complete the proof of case 2 of the strong induction argu-
ment in Example 11.5.5. In other words, show that if k is
an odd integer and wi = �log2 i� + 1 for all integers i with
1 ≤ i ≤ k, then wk+1 = �log2 k + 1� + 1.

For 17–19, modify the binary search algorithm (Algorithm
11.5.1) to take the upper of the two middle array elements in
case the input array has even length. In other words, in Algo-
rithm 11.5.1 replace

mid :=
⌊
bot + top

2

⌋
with mid :=

⌈
bot + top

2

⌉
.

17. Trace the modified binary search algorithm for the same
input as was used in Example 11.5.1.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

778 Chapter 11 Analysis of Algorithm Efficiency

18. Suppose an array of length k is input to the while loop of
the modified binary search algorithm. Show that after one
iteration of the loop, if a[mid] �= x , the input to the next
iteration is an array of length at most �k/2�.

19. Let wn be the number of iterations of the while loop in a
worst-case execution of the modified binary search algo-
rithm for an input array of length n. Show that wk = 1+
w�k/2� for k ≥ 2.

In 20 and 21, draw a diagram like Figure 11.5.4 to show how to
merge the given subarrays into a single array in ascending order.

20. 3, 5, 6, 9, 12 and 2, 4, 7, 9, 11

21. F, K, L, R, U and C, E, L, P, W (alphabetical order)

In 22 and 23, draw a diagram like Figure 11.5.5 to show how
merge sort works for the given input arrays.

22. R, G, B, U, C, F, H, G (alphabetical order)

23. 5, 2, 3, 9, 7, 4, 3, 2

24. Show that given an array a[bot], a[bot + 1], . . . , a[top] of
length k, if mid = �(bot + top)/2� then
a. the subarray a[mid + 1], a[mid + 2], . . . , a[top] has

length �k/2�.
b. the subarray a[bot], a[bot + 1], . . . , a[mid] has length
�k/2�.

25.H The recurrence relation form1,m2,m3, . . . ,which arises in
the calculation of the efficiency of merge sort, is

m1 = 0

mk = m�k/2� + m�k/2� + k − 1.

Show that for all integers n ≥ 1,
a. 1

2n log2 n ≤ mn b. mn ≤ 2n log2 n

26. You might think that n − 1 multiplications are needed to
compute xn , since

xn = x · x · · · x .︸ ︷︷ ︸
n−1 multiplications

But observe that, for instance, since 6 = 4+ 2,

x6 = x4x2 = (x2)2x2.

Thus x6 can be computed using three multiplications: one
to compute x2, one to compute (x2)2, and one to multiply
(x2)2 times x2. Similarly, since 11 = 8 + 2 + 1,

x11 = x8x2x1 = ((x2)2)2x2x

and so x11 can be computed using five multiplications:
one to compute x2, one to compute (x2)2, one to compute
((x2)2)2, one to multiply ((x2)2)2 times x2, and one to mul-
tiply that product by x .
a. Write an algorithm to take a real number x and a positive

integer n and compute xn by
(i) calling Algorithm 5.1.1 to find the binary represen-

tation of n:

(r [k] r [k − 1] · · · r [0])2,
where each r [i] is 0 or 1;

(ii) computing x2, x2
2
, x2

3
, . . . , x2

k
by squaring, then

squaring again, and so forth,
(iii) computing xn using the fact that

xn = xr [k]2
k+···+r [2]22+r [1]21+r [0]20

= xr [k]2
k · · · xr [2]22 · xr [1]21 · xr [0]20

b. Show that the number of multiplications performed by
the algorithm of part (a) is less than or equal to
2�log2 n�.

Answers for Test Yourself
1. reduced to the same finite number of smaller problems of the same kind; easily resolved problems are obtained 2. the element you
are looking for; the element you are looking for; apply the binary search algorithm to the lower half of the array; the element you are
looking for; apply the binary search algorithm to the upper half of the array 3. log2 n, where n is the length of the array 4. merge
sort; merge 5. n log2 n

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

