CHAPTER 5

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

One of the most important tasks of mathematics is to discover and characterize regular patterns, such as those associated with processes that are repeated. The main mathematical structure used in the study of repeated processes is the sequence, and the main mathematical tool used to verify conjectures about sequences is mathematical induction. In this chapter we introduce the notation and terminology of sequences, show how to use both ordinary and strong mathematical induction to prove properties about them, illustrate the various ways recursively defined sequences arise, describe a method for obtaining an explicit formula for a recursively defined sequence, and explain how to verify the correctness of such a formula. We also discuss a principle—the well-ordering principle for the integers—that is logically equivalent to the two forms of mathematical induction, and we show how to adapt mathematical induction to prove the correctness of computer algorithms. In the final section we discuss more general recursive definitions, such as the one used for the careful formulation of the concept of Boolean expression, and the idea of recursive function.

5.1 Sequences

A mathematician, like a painter or poet, is a maker of patterns.
—G. H. Hardy, A Mathematician’s Apology, 1940

Imagine that a person decides to count his ancestors. He has two parents, four grandparents, eight great-grandparents, and so forth. These numbers can be written in a row as

\[2, 4, 8, 16, 32, 64, 128, \ldots \]

The symbol “…” is called an *ellipsis*. It is shorthand for “and so forth.”

To express the pattern of the numbers, suppose that each is labeled by an integer giving its position in the row.

<table>
<thead>
<tr>
<th>Position in the row</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of ancestors</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>…</td>
</tr>
</tbody>
</table>

The number corresponding to position 1 is 2, which equals \(2^1\). The number corresponding to position 2 is 4, which equals \(2^2\). For positions 3, 4, 5, 6, and 7, the corresponding
numbers are 8, 16, 32, 64, and 128, which equal 2^3, 2^4, 2^5, 2^6, and 2^7, respectively. For a general value of k, let A_k be the number of ancestors in the kth generation back. The pattern of computed values strongly suggests the following for each k:

$$A_k = 2^k.$$

Note

Strictly speaking, the true value of A_k is less than 2^k when k is large, because ancestors from one branch of the family tree may also appear on other branches of the tree.

Definition

A sequence is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer.

We typically represent a sequence as a set of elements written in a row. In the sequence denoted

$$a_m, a_{m+1}, a_{m+2}, \ldots, a_n,$$

each individual element a_k (read “a sub k”) is called a term. The k in a_k is called a subscript or index, m (which may be any integer) is the subscript of the initial term, and n (which must be greater than or equal to m) is the subscript of the final term. The notation

$$a_m, a_{m+1}, a_{m+2}, \ldots$$

denotes an infinite sequence. An explicit formula or general formula for a sequence is a rule that shows how the values of a_k depend on k.

The following example shows that it is possible for two different formulas to give sequences with the same terms.

Example 5.1.1 Finding Terms of Sequences Given by Explicit Formulas

Define sequences a_1, a_2, a_3, \ldots and b_2, b_3, b_4, \ldots by the following explicit formulas:

$$a_k = \frac{k}{k+1} \text{ for all integers } k \geq 1,$$

$$b_i = \frac{i-1}{i} \text{ for all integers } i \geq 2.$$

Compute the first five terms of both sequences.

Solution

$$a_1 = \frac{1}{1+1} = \frac{1}{2}, \quad b_2 = \frac{2-1}{2} = \frac{1}{2}$$

$$a_2 = \frac{2}{2+1} = \frac{2}{3}, \quad b_3 = \frac{3-1}{3} = \frac{2}{3}$$

$$a_3 = \frac{3}{3+1} = \frac{3}{4}, \quad b_4 = \frac{4-1}{4} = \frac{3}{4}$$

$$a_4 = \frac{4}{4+1} = \frac{4}{5}, \quad b_5 = \frac{5-1}{5} = \frac{4}{5}$$

$$a_5 = \frac{5}{5+1} = \frac{5}{6}, \quad b_6 = \frac{6-1}{6} = \frac{5}{6}$$

As you can see, the first terms of both sequences are $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$; in fact, it can be shown that all terms of both sequences are identical.
The next example shows that an infinite sequence may have a finite number of values.

Example 5.1.2 An Alternating Sequence

Compute the first six terms of the sequence c_0, c_1, c_2, \ldots defined as follows:

$$c_j = (-1)^j \text{ for all integers } j \geq 0.$$

Solution

$$c_0 = (-1)^0 = 1$$
$$c_1 = (-1)^1 = -1$$
$$c_2 = (-1)^2 = 1$$
$$c_3 = (-1)^3 = -1$$
$$c_4 = (-1)^4 = 1$$
$$c_5 = (-1)^5 = -1$$

Thus the first six terms are $1, -1, 1, -1, 1, -1$. By exercises 33 and 34 of Section 4.1, even powers of -1 equal 1 and odd powers of -1 equal -1. It follows that the sequence oscillates endlessly between 1 and -1. ■

In Examples 5.1.1 and 5.1.2 the task was to compute the first few values of a sequence given by an explicit formula. The next example treats the question of how to find an explicit formula for a sequence with given initial terms. Any such formula is a guess, but it is very useful to be able to make such guesses.

Example 5.1.3 Finding an Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the following initial terms:

$$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \frac{1}{36}, \ldots$$

Solution

Denote the general term of the sequence by a_k and suppose the first term is a_1. Then observe that the denominator of each term is a perfect square. Thus the terms can be rewritten as

$$\frac{1}{1^2}, \frac{(-1)}{2^2}, \frac{1}{3^2}, \frac{(-1)}{4^2}, \frac{1}{5^2}, \frac{(-1)}{6^2}, \ldots$$

Note that the denominator of each term equals the square of the subscript of that term, and that the numerator equals ± 1. Hence

$$a_k = \pm \frac{1}{k^2}.$$

Also the numerator oscillates back and forth between $+1$ and -1; it is $+1$ when k is odd and -1 when k is even. To achieve this oscillation, insert a factor of $(-1)^{k+1}$ (or $(-1)^{k-1}$) into the formula for a_k. [For when k is odd, $k + 1$ is even and thus $(-1)^{k+1} = +1$; and when k is even, $k + 1$ is odd and thus $(-1)^{k+1} = -1$.] Consequently, an explicit formula that gives the correct first six terms is

$$a_k = \frac{(-1)^{k+1}}{k^2} \text{ for all integers } k \geq 1.$$
Chapter 5 Sequences, Mathematical Induction, and Recursion

Note that making the first term a_0 would have led to the alternative formula

$$a_k = \frac{(-1)^k}{(k+1)^2} \text{ for all integers } k \geq 0.$$

You should check that this formula also gives the correct first six terms.

Summation Notation

Consider again the example in which $A_k = 2^k$ represents the number of ancestors a person has in the kth generation back. What is the total number of ancestors for the past six generations? The answer is

$$A_1 + A_2 + A_3 + A_4 + A_5 + A_6 = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 = 126.$$

It is convenient to use a shorthand notation to write such sums. In 1772 the French mathematician Joseph Louis Lagrange introduced the capital Greek letter sigma, Σ, to denote the word sum (or summation), and defined the summation notation as follows:

- Definition

If m and n are integers and $m \leq n$, the symbol $\sum_{k=m}^{n} a_k$, read the summation from k equals m to n of a-sub-k, is the sum of all the terms a_m, a_{m+1}, a_{m+2}, ..., a_n. We say that $a_m + a_{m+1} + a_{m+2} + \ldots + a_n$ is the expanded form of the sum, and we write

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \ldots + a_n.$$

We call k the index of the summation, m the lower limit of the summation, and n the upper limit of the summation.

Example 5.1.4 Computing Summations

Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$. Compute the following:

a. $\sum_{k=1}^{5} a_k$

b. $\sum_{k=2}^{2} a_k$

c. $\sum_{k=1}^{2} a_{2k}$

Solution

a. $\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = (-2) + (-1) + 0 + 1 + 2 = 0$

b. $\sum_{k=2}^{2} a_k = a_2 = -1$

c. $\sum_{k=1}^{2} a_{2k} = a_{2 \cdot 1} + a_{2 \cdot 2} = a_2 + a_4 = -1 + 1 = 0$
5.1 Sequences

Oftentimes, the terms of a summation are expressed using an explicit formula. For instance, it is common to see summations such as

\[\sum_{k=1}^{5} k^2 \quad \text{or} \quad \sum_{i=0}^{8} (-1)^i. \]

Example 5.1.5 When the Terms of a Summation Are Given by a Formula

Compute the following summation:

\[\sum_{k=1}^{5} k^2. \]

Solution

\[\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55. \]

When the upper limit of a summation is a variable, an ellipsis is used to write the summation in expanded form.

Example 5.1.6 Changing from Summation Notation to Expanded Form

Write the following summation in expanded form:

\[\sum_{i=0}^{n} \frac{(-1)^i}{i+1}. \]

Solution

\[\sum_{i=0}^{n} \frac{(-1)^i}{i+1} = \frac{(-1)^0}{0+1} + \frac{(-1)^1}{1+1} + \frac{(-1)^2}{2+1} + \frac{(-1)^3}{3+1} + \cdots + \frac{(-1)^n}{n+1} \]

\[= \frac{1}{1} + \frac{(-1)}{2} + \frac{1}{3} + \frac{(-1)}{4} + \cdots + \frac{(-1)^n}{n+1} \]

\[= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + \frac{(-1)^n}{n+1}. \]

Example 5.1.7 Changing from Expanded Form to Summation Notation

Express the following using summation notation:

\[\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \cdots + \frac{n+1}{2n}. \]

Solution

The general term of this summation can be expressed as \(\frac{k+1}{n+k} \) for integers \(k \) from 0 to \(n \). Hence

\[\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \cdots + \frac{n+1}{2n} = \sum_{k=0}^{n} \frac{k+1}{n+k}. \]

For small values of \(n \), the expanded form of a sum may appear ambiguous. For instance, consider

\[1^2 + 2^2 + 3^2 + \cdots + n^2. \]

This expression is intended to represent the sum of squares of consecutive integers starting with \(1^2 \) and ending with \(n^2 \). Thus, if \(n = 1 \) the sum is just \(1^2 \), if \(n = 2 \) the sum is \(1^2 + 2^2 \), and if \(n = 3 \) the sum is \(1^2 + 2^2 + 3^2 \).
Example 5.1.8 Evaluating $a_1, a_2, a_3, \ldots, a_n$ for Small n

What is the value of the expression $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots + \frac{1}{n\cdot (n+1)}$ when $n = 1$? $n = 2$? $n = 3$?

Solution

When $n = 1$, the expression equals $\frac{1}{1\cdot 2} = \frac{1}{2}$.

When $n = 2$, it equals $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}$.

When $n = 3$, it is $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} = \frac{3}{4}$.

A more mathematically precise definition of summation, called a recursive definition, is the following:* If m is any integer, then

$$\sum_{k=m}^{m} a_k = a_m \quad \text{and} \quad \sum_{k=m}^{n} a_k = \sum_{k=m}^{n-1} a_k + a_n \quad \text{for all integers } n > m.$$

When solving problems, it is often useful to rewrite a summation using the recursive form of the definition, either by separating off the final term of a summation or by adding a final term to a summation.

Example 5.1.9 Separating Off a Final Term and Adding On a Final Term

a. Rewrite $\sum_{i=1}^{n+1} \frac{1}{i^2}$ by separating off the final term.

b. Write $\sum_{k=0}^{n} 2^k + 2^{n+1}$ as a single summation.

Solution

a. $\sum_{i=1}^{n+1} \frac{1}{i^2} = \sum_{i=1}^{n} \frac{1}{i^2} + \frac{1}{(n+1)^2}$

b. $\sum_{k=0}^{n} 2^k + 2^{n+1} = \sum_{k=0}^{n} 2^k$

In certain sums each term is a difference of two quantities. When you write such sums in expanded form, you sometimes see that all the terms cancel except the first and the last. Successive cancellation of terms collapses the sum like a telescope.

Example 5.1.10 A Telescoping Sum

Some sums can be transformed into telescoping sums, which then can be rewritten as a simple expression. For instance, observe that

$$\frac{1}{k} - \frac{1}{k+1} = \frac{(k+1) - k}{k(k+1)} = \frac{1}{k(k+1)}.$$

Use this identity to find a simple expression for $\sum_{k=1}^{n} \frac{1}{k(k+1)}$.

*Other recursively defined sequences are discussed later in this section and, in greater detail, in Section 5.6.
5.1 Sequences

Solution

\[
\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) \\
= \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \cdots + \left(\frac{1}{n-1} - \frac{1}{n} \right) + \left(\frac{1}{n} - \frac{1}{n+1} \right) \\
= 1 - \frac{1}{n+1}. \quad \blacksquare
\]

Product Notation

The notation for the product of a sequence of numbers is analogous to the notation for their sum. The Greek capital letter pi, \(\Pi \), denotes a product. For example,

\[
\prod_{k=1}^{5} a_k = a_1 a_2 a_3 a_4 a_5.
\]

Definition

If \(m \) and \(n \) are integers and \(m \leq n \), the symbol \(\prod_{k=m}^{n} a_k \), read the **product from \(m \) to \(n \) of \(a \)-sub-\(k \)**, is the product of all the terms \(a_m, a_{m+1}, a_{m+2}, \ldots, a_n \).

We write

\[
\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdots a_n.
\]

A recursive definition for the product notation is the following: If \(m \) is any integer, then

\[
\prod_{k=m}^{m} a_k = a_m \quad \text{and} \quad \prod_{k=m}^{n} a_k = \left(\prod_{k=m}^{n-1} a_k \right) \cdot a_n \quad \text{for all integers } n > m.
\]

Example 5.1.11 Computing Products

Compute the following products:

a. \(\prod_{k=1}^{5} k \)

b. \(\prod_{k=1}^{1} \frac{k}{k+1} \)

Solution

a. \(\prod_{k=1}^{5} k = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120 \)
b. \(\prod_{k=1}^{1} \frac{k}{k+1} = \frac{1}{1+1} = \frac{1}{2} \quad \blacksquare \)

Properties of Summations and Products

The following theorem states general properties of summations and products. The proof of the theorem is discussed in Section 5.6.
Theorem 5.1.1

If \(a_m, a_{m+1}, a_{m+2}, \ldots \) and \(b_m, b_{m+1}, b_{m+2}, \ldots \) are sequences of real numbers and \(c \) is any real number, then the following equations hold for any integer \(n \geq m \):

1. \[\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k) \]

2. \[c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} c \cdot a_k \text{ generalized distributive law} \]

3. \[\left(\prod_{k=m}^{n} a_k \right) \cdot \left(\prod_{k=m}^{n} b_k \right) = \prod_{k=m}^{n} (a_k \cdot b_k). \]

Example 5.1.12 Using Properties of Summation and Product

Let \(a_k = k + 1 \) and \(b_k = k - 1 \) for all integers \(k \). Write each of the following expressions as a single summation or product:

a. \[\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k \]

b. \[\left(\prod_{k=m}^{n} a_k \right) \cdot \left(\prod_{k=m}^{n} b_k \right) \]

Solution

a. \[\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (k + 1) + 2 \cdot \sum_{k=m}^{n} (k - 1) \]

\[= \sum_{k=m}^{n} (k + 1) + \sum_{k=m}^{n} 2 \cdot (k - 1) \]

\[= \sum_{k=m}^{n} ((k + 1) + 2 \cdot (k - 1)) \]

\[= \sum_{k=m}^{n} (3k - 1) \]

by algebraic simplification

b. \[\left(\prod_{k=m}^{n} a_k \right) \cdot \left(\prod_{k=m}^{n} b_k \right) = \left(\prod_{k=m}^{n} (k + 1) \right) \cdot \left(\prod_{k=m}^{n} (k - 1) \right) \]

\[= \prod_{k=m}^{n} (k + 1) \cdot (k - 1) \]

\[= \prod_{k=m}^{n} (k^2 - 1) \]

by algebraic simplification

Change of Variable

Observe that

\[\sum_{k=1}^{3} k^2 = 1^2 + 2^2 + 3^2 \]

and also that

\[\sum_{j=1}^{3} j^2 = 1^2 + 2^2 + 3^2. \]
Hence

\[\sum_{k=1}^{3} k^2 = \sum_{i=1}^{3} i^2. \]

This equation illustrates the fact that the symbol used to represent the index of a summation can be replaced by any other symbol as long as the replacement is made in each location where the symbol occurs. As a consequence, the index of a summation is called a dummy variable. A dummy variable is a symbol that derives its entire meaning from its local context. Outside of that context (both before and after), the symbol may have another meaning entirely.

The appearance of a summation can be altered by more complicated changes of variable as well. For example, observe that

\[
\sum_{j=2}^{4} (j-1)^2 = (2-1)^2 + (3-1)^2 + (4-1)^2
= 1^2 + 2^2 + 3^2
= \sum_{k=1}^{3} k^2.
\]

A general procedure to transform the first summation into the second is illustrated in Example 5.1.13.

Example 5.1.13 Transforming a Sum by a Change of Variable

Transform the following summation by making the specified change of variable.

\[\sum_{k=0}^{6} \frac{1}{k+1} \]

change of variable: \(j = k + 1 \)

Solution

First calculate the lower and upper limits of the new summation:

When \(k = 0 \), \(j = k + 1 = 0 + 1 = 1 \).

When \(k = 6 \), \(j = k + 1 = 6 + 1 = 7 \).

Thus the new sum goes from \(j = 1 \) to \(j = 7 \).

Next calculate the general term of the new summation. You will need to replace each occurrence of \(k \) by an expression in \(j \):

Since \(j = k + 1 \), then \(k = j - 1 \).

Hence \(\frac{1}{k+1} = \frac{1}{(j-1)+1} = \frac{1}{j} \).

Finally, put the steps together to obtain

\[\sum_{k=0}^{6} \frac{1}{k+1} = \sum_{j=1}^{7} \frac{1}{j}. \]

Equation (5.1.1) can be given an additional twist by noting that because the \(j \) in the right-hand summation is a dummy variable, it may be replaced by any other variable.
name, as long as the substitution is made in every location where \(j \) occurs. In particular, it is legal to substitute \(k \) in place of \(j \) to obtain

\[
\sum_{j=1}^{7} \frac{1}{j} = \sum_{k=1}^{7} \frac{1}{k}.
\]

5.1.2

Putting equations (5.1.1) and (5.1.2) together gives

\[
\sum_{k=0}^{6} \frac{1}{k+1} = \sum_{k=1}^{7} \frac{1}{k}.
\]

Sometimes it is necessary to shift the limits of one summation in order to add it to another. An example is the algebraic proof of the binomial theorem, given in Section 9.7. A general procedure for making such a shift when the upper limit is part of the summand is illustrated in the next example.

Example 5.1.14 When the Upper Limit Appears in the Expression to Be Summed

a. Transform the following summation by making the specified change of variable.

summation: \[\sum_{k=1}^{n+1} \left(\frac{k}{n+k} \right) \]
change of variable: \(j = k - 1 \)

b. Transform the summation obtained in part (a) by changing all \(j \)'s to \(k \)'s.

Solution

a. When \(k = 1 \), then \(j = k - 1 = 1 - 1 = 0 \). (So the new lower limit is 0.) When \(k = n + 1 \), then \(j = k - 1 = (n + 1) - 1 = n \). (So the new upper limit is \(n \).)

Since \(j = k - 1 \), then \(k = j + 1 \). Also note that \(n \) is a constant as far as the terms of the sum are concerned. It follows that

\[
\frac{k}{n+k} = \frac{j+1}{n+(j+1)}
\]

and so the general term of the new summation is

\[
\frac{j+1}{n+(j+1)}.
\]

Therefore,

\[
\sum_{k=1}^{n+1} \frac{k}{n+k} = \sum_{j=0}^{n} \frac{j+1}{n+(j+1)}.
\]

5.1.3

b. Changing all the \(j \)'s to \(k \)'s in the right-hand side of equation (5.1.3) gives

\[
\sum_{j=0}^{n} \frac{j+1}{n+(j+1)} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}
\]

5.1.4

Combining equations (5.1.3) and (5.1.4) results in

\[
\sum_{k=1}^{n+1} \frac{k}{n+k} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}.
\]

\[\Box\]
Factorial and “n Choose r” Notation

The product of all consecutive integers up to a given integer occurs so often in mathematics that it is given a special notation—factorial notation.

Definition

For each positive integer \(n \), the quantity \(n \) factorial denoted \(n! \), is defined to be the product of all the integers from 1 to \(n \):

\[
 n! = n \cdot (n - 1) \cdot \ldots \cdot 3 \cdot 2 \cdot 1.
\]

Zero factorial, denoted 0!, is defined to be 1:

\[
 0! = 1.
\]

The definition of zero factorial as 1 may seem odd, but, as you will see when you read Chapter 9, it is convenient for many mathematical formulas.

Example 5.1.15 The First Ten Factorials

\[
egin{align*}
0! &= 1 \\
1! &= 1 \\
2! &= 2 \cdot 1 = 2 \\
3! &= 3 \cdot 2 \cdot 1 = 6 \\
4! &= 4 \cdot 3 \cdot 2 \cdot 1 = 24 \\
5! &= 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120 \\
6! &= 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720 \\
7! &= 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5,040 \\
8! &= 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 40,320 \\
9! &= 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 362,880 \\
10! &= 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 3,628,800
\end{align*}
\]

As you can see from the example above, the values of \(n! \) grow very rapidly. For instance, \(40! \approx 8.16 \times 10^{47} \), which is a number that is too large to be computed exactly using the standard integer arithmetic of the machine-specific implementations of many computer languages. (The symbol \(\approx \) means “is approximately equal to.”)

A recursive definition for factorial is the following: Given any nonnegative integer \(n \),

\[
 n! = \begin{cases}
 1 & \text{if } n = 0 \\
 \frac{n \cdot (n - 1)!}{n - 1} & \text{if } n \geq 1.
\end{cases}
\]

The next example illustrates the usefulness of the recursive definition for making computations.

Example 5.1.16 Computing with Factorials

Simplify the following expressions:

\[
egin{align*}
a. \quad \frac{8!}{7!} \\
b. \quad \frac{5!}{2! \cdot 3!} \\
c. \quad \frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} \\
d. \quad \frac{(n + 1)!}{n!} \\
e. \quad \frac{n!}{(n - 3)!}
\end{align*}
\]

Solution

\[
egin{align*}
a. \quad \frac{8!}{7!} &= \frac{8 \cdot 7!}{7!} = 8 \\
b. \quad \frac{5!}{2! \cdot 3!} &= \frac{5 \cdot 4 \cdot 3!}{2 \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = 10
\end{align*}
\]
c. \[\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2!} \cdot \frac{3}{3} + \frac{1}{3!} \cdot \frac{4}{4} \]

by multiplying each numerator and denominator by just what is necessary to obtain a common denominator

\[= \frac{3}{3! \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4!} \]

by rearranging factors

\[= \frac{3}{3! \cdot 4!} + \frac{4}{3! \cdot 4!} \]

because \(3 \cdot 2! = 3!\) and \(4 \cdot 3! = 4!\)

\[= \frac{7}{3! \cdot 4!} \]

by the rule for adding fractions with a common denominator

\[= \frac{7}{144} \]

d. \(\frac{(n + 1)!}{n!} = \frac{(n + 1) \cdot n!}{n!} = n + 1 \)

e. \[\frac{n!}{(n - 3)!} = \frac{n \cdot (n - 1) \cdot (n - 2) \cdot (n - 3)!}{(n - 3)!} = n \cdot (n - 1) \cdot (n - 2) \]

\[= n^3 - 3n^2 + 2n \]

An important use for the factorial notation is in calculating values of quantities, called \(n \) choose \(r \), that occur in many branches of mathematics, especially those connected with the study of counting techniques and probability.

Definition
Let \(n \) and \(r \) be integers with \(0 \leq r \leq n \). The symbol

\[\binom{n}{r} \]

is read “\(n \) choose \(r \)” and represents the number of subsets of size \(r \) that can be chosen from a set with \(n \) elements.

Observe that the definition implies that \(\binom{n}{r} \) will always be an integer because it is a number of subsets. In Section 9.5 we will explore many uses of \(n \) choose \(r \) for solving problems involving counting, and we will prove the following computational formula:

Formula for Computing \(\binom{n}{r} \)
For all integers \(n \) and \(r \) with \(0 \leq r \leq n \),

\[\binom{n}{r} = \frac{n!}{r!(n - r)!} \]

In the meantime, we will provide a few experiences with using it. Because \(n \) choose \(r \) is always an integer, you can be sure that all the factors in the denominator of the formula will be canceled out by factors in the numerator. Many electronic calculators have keys for computing values of \(\binom{n}{r} \). These are denoted in various ways such as \(nCr \), \(C(n, r) \), \(^nC_r \), and \(C_n^r \). The letter \(C \) is used because the quantities \(\binom{n}{r} \) are also called combinations. Sometimes they are referred to as binomial coefficients because of the connection with the binomial theorem discussed in Section 9.7.
Example 5.1.17 Computing \(\binom{n}{r} \) by Hand

Use the formula for computing \(\binom{n}{r} \) to evaluate the following expressions:

\[
\begin{align*}
a. \quad \binom{8}{5} & = \frac{8!}{5!(8-5)!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1) \cdot (3 \cdot 2 \cdot 1)} = 56. \\
b. \quad \binom{4}{0} & = \frac{4!}{4!(4-4)!} = \frac{4!}{4! \cdot 0!} = \frac{4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1)(0!)} = 1 \\
c. \quad \binom{n+1}{n} & = \frac{(n+1)!}{n!((n+1)-n)!} = \frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1
\end{align*}
\]

Solution

Sequences in Computer Programming

An important data type in computer programming consists of finite sequences. In computer programming contexts, these are usually referred to as one-dimensional arrays. For example, consider a program that analyzes the wages paid to a sample of 50 workers. Such a program might compute the average wage and the difference between each individual wage and the average. This would require that each wage be stored in memory for retrieval later in the calculation. To avoid the use of entirely separate variable names for all of the 50 wages, each is written as a term of a one-dimensional array:

\[
W[1], W[2], W[3], \ldots, W[50].
\]

Note that the subscript labels are written inside square brackets. The reason is that until relatively recently, it was impossible to type actual dropped subscripts on most computer keyboards.

The main difficulty programmers have when using one-dimensional arrays is keeping the labels straight.

Example 5.1.18 Dummy Variable in a Loop

The index variable for a for-next loop is a dummy variable. For example, the following three algorithm segments all produce the same output:

\[
\begin{align*}
1. \quad & \text{for } i := 1 \text{ to } n \quad 2. \quad \text{for } j := 0 \text{ to } n-1 \\
& \quad \text{print } a[i] \quad \quad \text{print } a[j + 1] \quad \quad \text{print } a[k - 1] \\
& \quad \text{next } i \quad \quad \text{next } j \quad \quad \text{next } k
\end{align*}
\]

The recursive definitions for summation, product, and factorial lead naturally to computational algorithms. For instance, here are two sets of pseudocode to find the sum of \(a[1], a[2], \ldots, a[n] \). The one on the left exactly mimics the recursive definition by...
Chapter 5 Sequences, Mathematical Induction, and Recursion

initializing the sum to equal \(a[1]\); the one on the right initializes the sum to equal 0. In both cases the output is \(\sum_{k=1}^{n} a[k]\).

\[
\begin{align*}
 s &:= a[1] & s &:= 0 \\
 \text{for } k &:= 2 \text{ to } n & \text{for } k &:= 1 \text{ to } n \\
 s &:= s + a[k] & s &:= s + a[k] \\
 \text{next } k & & \text{next } k
\end{align*}
\]

Application: Algorithm to Convert from Base 10 to Base 2 Using Repeated Division by 2

Section 2.5 contains some examples of converting integers from decimal to binary notation. The method shown there, however, is only convenient to use with small numbers. A systematic algorithm to convert any nonnegative integer to binary notation uses repeated division by 2.

Suppose \(a\) is a nonnegative integer. Divide \(a\) by 2 using the quotient-remainder theorem to obtain a quotient \(q[0]\) and a remainder \(r[0]\). If the quotient is nonzero, divide by 2 again to obtain a quotient \(q[1]\) and a remainder \(r[1]\). Continue this process until a quotient of 0 is obtained. At each stage, the remainder must be less than the divisor, which is 2. Thus each remainder is either 0 or 1. The process is illustrated below for \(a = 38\). (Read the divisions from the bottom up.)

\[
\begin{array}{c|c}
0 & \text{remainder } = 1 = r[5] \\
2 & \text{remainder } = 0 = r[4] \\
2 & \text{remainder } = 0 = r[3] \\
2 & \text{remainder } = 1 = r[2] \\
2 & \text{remainder } = 1 = r[1] \\
2 & \text{remainder } = 0 = r[0]
\end{array}
\]

The results of all these divisions can be written as a sequence of equations:

\[
\begin{align*}
38 & = 19 \cdot 2 + 0, \\
19 & = 9 \cdot 2 + 1, \\
9 & = 4 \cdot 2 + 1, \\
4 & = 2 \cdot 2 + 0, \\
2 & = 1 \cdot 2 + 0, \\
1 & = 0 \cdot 2 + 1.
\end{align*}
\]

By repeated substitution, then,

\[
\begin{align*}
38 & = 19 \cdot 2 + 0 \\
& = (9 \cdot 2 + 1) \cdot 2 + 0 \\
& = (4 \cdot 2 + 1) \cdot 2^2 + 1 \cdot 2 + 0 \\
& = (2 \cdot 2 + 0) \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2 + 0 \\
& = 2 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2 + 0 \\
& = (1 \cdot 2 + 0) \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2 + 0 \\
& = 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2 + 0.
\end{align*}
\]
Note that each coefficient of a power of 2 on the right-hand side of the previous page is one of the remainders obtained in the repeated division of 38 by 2. This is true for the left-most 1 as well, because \(1 = 0 \cdot 2 + 1 \). Thus
\[
\]

In general, if a nonnegative integer \(a \) is repeatedly divided by 2 until a quotient of zero is obtained and the remainders are found to be \(r[0], r[1], \ldots, r[k] \), then by the quotient-remainder theorem each \(r[i] \) equals 0 or 1, and by repeated substitution from the theorem,
\[
a = 2^k \cdot r[k] + 2^{k-1} \cdot r[k-1] + \cdots + 2^1 \cdot r[1] + 2^0 \cdot r[0].
\]

Thus the binary representation for \(a \) can be read from equation (5.1.5):
\[
a_{10} = (r[k]r[k-1] \cdots r[2]r[1]r[0])_2.
\]

Example 5.1.19 Converting from Decimal to Binary Notation Using Repeated Division by 2

Use repeated division by 2 to write the number \(29_{10} \) in binary notation.

Solution

\[
\begin{array}{c|c|c}
 \vspace{0.5em} & \vspace{0.5em} & \\
 2 & 29 & \vspace{0.5em} \\
 \vspace{0.5em} & 14 & \vspace{0.5em} \\
 \vspace{0.5em} & 7 & \vspace{0.5em} \\
 \vspace{0.5em} & 3 & \vspace{0.5em} \\
 \vspace{0.5em} & 1 & \vspace{0.5em} \\
 \vspace{0.5em} & 0 & \vspace{0.5em} \\
 \vspace{0.5em} \hline
 & \vspace{0.5em} & \\
 \vspace{0.5em} \hline
\end{array}
\]

remainder = \(r[4] = 1 \)
remainder = \(r[3] = 1 \)
remainder = \(r[2] = 1 \)
remainder = \(r[1] = 0 \)
remainder = \(r[0] = 1 \)

The procedure we have described for converting from base 10 to base 2 is formalized in the following algorithm:

Algorithm 5.1.1 Decimal to Binary Conversion Using Repeated Division by 2

In Algorithm 5.1.1 the input is a nonnegative integer \(n \). The aim of the algorithm is to produce a sequence of binary digits \(r[0], r[1], r[2], \ldots, r[k] \) so that the binary representation of \(a \) is
\[
\]

That is,
\[
n = 2^k \cdot r[k] + 2^{k-1} \cdot r[k-1] + \cdots + 2^1 \cdot r[2] + 2^0 \cdot r[1] + 2^0 \cdot r[0].
\]

continued on page 242
Test Yourself

Answers to Test Yourself questions are located at the end of each section.

1. The notation $\sum_{k=0}^{n} a_k$ is read “_____."

2. The expanded form of $\sum_{k=0}^{n} a_k$ is ______.

3. The value of $a_1 + a_2 + a_3 + \cdots + a_n$ when $n = 2$ is “_____."

4. The notation $\prod_{k=0}^{n} a_k$ is read “_____."

5. If n is a positive integer, then $n! = _____.$

6. $\sum_{k=0}^{n} a_k + \sum_{k=0}^{n} b_k = _____.$

7. $\left(\prod_{k=0}^{n} a_k\right) \left(\prod_{k=0}^{n} b_k\right) = _____.$

Exercise Set 5.1*

Write the first four terms of the sequences defined by the formulas in 1–6.

1. $a_k = \frac{k}{10 + k}$, for all integers $k \geq 1$.

2. $b_j = \frac{5 - j}{5 + j}$, for all integers $j \geq 1$.

3. $c_i = \frac{(i - 1)^i}{3}$, for all integers $i \geq 0$.

4. $d_m = 1 + \left(\frac{1}{2}\right)^m$, for all integers $m \geq 0$.

5. $e_n = \left\lceil\frac{n}{2}\right\rceil \cdot 2$, for all integers $n \geq 0$.

6. $f_n = \left\lfloor\frac{n}{4}\right\rfloor \cdot 4$, for all integers $n \geq 1$.

7. Let $a_k = 2k + 1$ and $b_k = (k - 1)^3 + k + 2$ for all integers $k \geq 0$. Show that the first three terms of these sequences are identical but that their fourth terms differ.

Compute the first fifteen terms of each of the sequences in 8 and 9, and describe the general behavior of these sequences in words. (A definition of logarithm is given in Section 7.1.)

8. $g_n = \lfloor\log_2 n\rfloor$ for all integers $n \geq 1$.

9. $h_n = n\lfloor\log_2 n\rfloor$ for all integers $n \geq 1$.

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol \ast indicates that only a hint or a partial solution is given. The symbol $\ast\ast$ signals that an exercise is more challenging than usual.
Find explicit formulas for sequences of the form $a_n = \frac{2n + (-1)^n - 1}{4}$ for all integers $n \geq 0$. Find an alternative explicit formula for a_n that uses the floor notation.

Let $a_0 = 2$, $a_1 = 3$, $a_2 = -2$, $a_3 = 1$, $a_4 = 0$, $a_5 = -1$, and $a_6 = -2$. Compute each of the summations and products below.

- **a.** $\sum_{i=0}^{4} a_i$
- **b.** $\sum_{i=0}^{4} a_i^2$
- **c.** $\prod_{i=0}^{4} a_i$
- **d.** $\prod_{k=0}^{2} a_k$
- **e.** $\sum_{k=2}^{2} a_k$

Compute the summations and products in 19–28.

- **19.** $\sum_{k=0}^{4} (k + 1)$
- **20.** $\prod_{k=0}^{2} k^2$
- **21.** $\sum_{k=2}^{2} \frac{1}{2^k}$

- **22.** $\prod_{j=0}^{2} (-1)^j$
- **23.** $\sum_{i=0}^{4} i(i + 1)$
- **24.** $\sum_{j=0}^{4} (j + 1) \cdot 2^j$

- **25.** $\prod_{k=2}^{2} \left(1 - \frac{1}{k} \right)$
- **26.** $\sum_{k=1}^{2} (k^2 + 3)$

- **27.** $\prod_{n=1}^{10} \left(1 - \frac{1}{n + 1} \right)$
- **28.** $\sum_{i=2}^{5} i(i + 2)$

Write the summations in 29–32 in expanded form.

- **29.** $\sum_{i=1}^{n} (-2)^i$
- **30.** $\sum_{j=1}^{n} j(j + 1)$
- **31.** $\sum_{k=0}^{n-1} \frac{1}{k!}$
- **32.** $\sum_{i=1}^{k+1} i(i!)$

Evaluate the summations and products in 33–36 for the indicated values of the variable.

- **33.** $\frac{1}{12} + \frac{1}{27} + \frac{1}{32} + \ldots + \frac{1}{n^3}; n = 1$
- **34.** $1(1!) + 2(2!) + 3(3!) + \ldots + m(m!); m = 2$

- **35.** $\left(\frac{1}{1+1} \right) \left(\frac{2}{2+1} \right) \left(\frac{3}{3+1} \right) \cdots \left(\frac{k}{k+1} \right); k = 3$
- **36.** $\left(\frac{1-2}{3} \right) \left(\frac{4-5}{6} \right) \left(\frac{6-7}{8} \right) \cdots \left(\frac{m \cdot (m+1)}{(m+2) \cdot (m+3)} \right); m = 1$

Rewrite 37–39 by separating off the final term.

- **37.** $\sum_{i=1}^{k+1} i(i!)$
- **38.** $\sum_{i=1}^{m} k^2$
- **39.** $\sum_{m=1}^{n} m(m+1)$

Write each of 40–42 as a single summation.

- **40.** $\sum_{i=1}^{k} (i + 1)^3$
- **41.** $\sum_{k=1}^{m} \frac{k}{k+1} + \frac{m+1}{m+2}$
- **42.** $\sum_{n=0}^{1} (m + 1)2^n + (n + 2)2^{n+1}$

Write each of 43–52 using summation or product notation.

- **43.** $1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + 7^2$
- **44.** $(1^3 - 1) - (2^3 - 1) + (3^3 - 1) - (4^3 - 1) + (5^3 - 1)$
- **45.** $(2^3 - 1) \cdot (3^3 - 1) \cdot (4^3 - 1)$
- **46.** $\frac{2}{3 \cdot 4} + \frac{3}{4 \cdot 5} + \frac{4}{5 \cdot 6} + \frac{5}{6 \cdot 7} + \frac{6}{7 \cdot 8}$
- **47.** $1 - r + r^2 - r^3 + \cdots + r^s$
- **48.** $(1 - t)(1 - t^2)(1 - t^3)(1 - t^4)$
- **49.** $1^3 + 2^3 + 3^3 + \cdots + n^3$
- **50.** $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{n}{(n+1)!}$
- **51.** $n + (n-1) + (n-2) + \cdots + 1$
- **52.** $n + \frac{n-1}{2!} + \frac{n-2}{3!} + \frac{n-3}{4!} + \cdots + \frac{1}{n!}$

Transform each of 53 and 54 by making the change of variable $i = k + 1$.

- **53.** $\sum_{k=0}^{5} k(k - 1)$
- **54.** $\prod_{k=1}^{n} k^2 + 4$

Transform each of 55–58 by making the change of variable $j = i - 1$.

- **55.** $\sum_{i=1}^{n} \frac{(i-1)^2}{i \cdot n}$
- **56.** $\sum_{i=1}^{n} \frac{i + n - 1}{i \cdot n}$
- **57.** $\sum_{i=1}^{n-1} \frac{i}{(n-1)^2}$
- **58.** $\prod_{i=1}^{2n} n - i + 1$

Write each of 59–61 as a single summation or product.

- **59.** $3 \cdot \sum_{k=1}^{n} (2k - 3) + \sum_{k=1}^{n} (4 - 5k)$
- **60.** $2 \cdot \sum_{k=1}^{n} (3k^2 + 4) + 5 \cdot \sum_{k=1}^{n} (2k^2 - 1)$

- **61.** $\left(\sum_{k=1}^{n} \frac{k}{k+1} \right) \cdot \left(\sum_{k=1}^{n} \frac{k+1}{k+2} \right)$

Compute each of 62–76. Assume the values of the variables are restricted so that the expressions are defined.

- **62.** $\frac{4!}{3!}$
- **63.** $\frac{6!}{8!}$
- **64.** $\frac{4!}{0!}$
- **65.** $\frac{n!}{(n - 1)!}$
- **66.** $\frac{(n - 1)!}{(n + 1)!}$
- **67.** $\frac{n!}{(n - 2)!}$
68. \[
\frac{(n+1)!^2}{(n!)^2} \quad \frac{n!}{(n-k)!} \quad \frac{n!}{(n-k+1)!}
\]
69. \[
\sum_{k=0}^{n} \frac{1}{k!}
\]
70. \[
\frac{n!}{(n-k)!}
\]

71. \[
\binom{5}{3}
\]
72. \[
\binom{7}{4}
\]
73. \[
\binom{3}{0}
\]
74. \[
\sum_{k=0}^{n} \frac{1}{k!}
\]
75. \[
\binom{n}{n-1}
\]
76. \[
\frac{n+1}{n-1}
\]

77. a. Prove that \(n! + 2\) is divisible by 2, for all integers \(n \geq 2\).
b. Prove that \(n! + k\) is divisible by \(k\), for all integers \(n \geq 2\) and \(k = 2, 3, \ldots, n\).

78. Prove that for all nonnegative integers \(n\) and \(r\) with \(r + 1 \leq n\), \[
\binom{n}{r+1} = \frac{n-r}{r+1} \binom{n}{r}
\]

79. Prove that if \(p\) is a prime number and \(r\) is an integer with \(0 < r < p\), then \(
\binom{p}{r}
\) is divisible by \(p\).

80. Suppose \(a[1], a[2], a[3], \ldots, a[m]\) is a one-dimensional array and consider the following algorithm segment:

\[
\text{for } k := 1 \text{ to } m \\
\quad \text{sum} := \text{sum} + a[k] \\
\quad \text{next } k
\]

81. a. \(\text{sum} := 0\)
 b. \(\text{sum} := 0\)

 for \(i := 0\) to _____

 for \(j := 2\) to _____

 \(\text{sum} := _____\)

 \(\text{next } i\)

 \(\text{next } j\)

82. 90
83. 98
84. 3
85. 28
86. 44
87. Write an informal description of an algorithm (using repeated division by 16) to convert a nonnegative integer from decimal notation to hexadecimal notation (base 16).

88. 287
89. 693
90. 2,301
91. Write a formal version of the algorithm you developed for exercise 87 to convert the integers in 88–90 to hexadecimal notation.

5.2 Mathematical Induction I

[Mathematical induction is] the standard proof technique in computer science.

— Anthony Ralston, 1984

Mathematical induction is one of the more recently developed techniques of proof in the history of mathematics. It is used to check conjectures about the outcomes of processes that occur repeatedly and according to definite patterns. We introduce the technique with an example.

Some people claim that the United States penny is such a small coin that it should be abolished. They point out that frequently a person who drops a penny on the ground does not even bother to pick it up. Other people argue that abolishing the penny would not give enough flexibility for pricing merchandise. What prices could still be paid with exact change if the penny were abolished and another coin worth 3¢ were introduced? The answer is that the only prices that could not be paid with exact change would be 1¢, 2¢, 4¢, and 7¢. In other words,

Any whole number of cents of at least 8¢ can be obtained using 3¢ and 5¢ coins.

More formally:

For all integers \(n \geq 8\), \(n\) cents can be obtained using 3¢ and 5¢ coins.