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68.
((n + 1)!)2

(n!)2 69.
n!

(n − k)! 70.
n!

(n − k + 1)!

71.
(
5
3

)
72.

(
7
4

)
73.

(
3
0

)

74.

(
5
5

)
75.

(
n

n − 1

)
76.

(
n + 1
n − 1

)
77. a. Prove that n! + 2 is divisible by 2, for all integers n ≥ 2.

b. Prove that n! + k is divisible by k, for all integers n ≥ 2
and k = 2, 3, . . . , n.

c.H Given any integerm ≥ 2, is it possible to find a sequence
of m − 1 consecutive positive integers none of which is
prime? Explain your answer.

78. Prove that for all nonnegative integers n and r with

r + 1 ≤ n,

(
n

r + 1

)
= n − r

r + 1

(
n
r

)
.

79. Prove that if p is a prime number and r is an integer with

0 < r < p, then

(
p
r

)
is divisible by p.

80. Suppose a[1], a[2], a[3], . . . , a[m] is a one-dimensional
array and consider the following algorithm segment:

sum := 0

for k := 1 to m

sum := sum + a[k]
next k

Fill in the blanks below so that each algorithm segment per-
forms the same job as the one given previously.
a. sum := 0

for i := 0 to

sum :=
next i

b. sum := 0

for j := 2 to

sum :=
next j

Use repeated division by 2 to convert (by hand) the integers in
81–83 from base 10 to base 2.

81. 90 82. 98 83. 205

Make a trace table to trace the action of Algorithm 5.1.1 on the
input in 84–86.

84. 23 85. 28 86. 44

87. Write an informal description of an algorithm (using
repeated division by 16) to convert a nonnegative inte-
ger from decimal notation to hexadecimal notation
(base 16).

Use the algorithm you developed for exercise 87 to convert the
integers in 88–90 to hexadecimal notation.

88. 287 89. 693 90. 2,301

91. Write a formal version of the algorithm you developed for
exercise 87.

Answers for Test Yourself
1. the summation from k equals m to n of a-sub-k 2. am + am+1 + am+2 + · · · + an 3. a1 + a2 4. the product from k equals m to

n of a-sub-k 5. n · (n − 1) · · · 3 ·2 ·1 (Or: n ·(n − 1)!) 6.
n∑

k=m
(ak + cbk) 7.

n∏
k=m

akbk

5.2 Mathematical Induction I
[Mathematical induction is] the standard proof technique in computer science.
— Anthony Ralston, 1984

Mathematical induction is one of the more recently developed techniques of proof in the
history of mathematics. It is used to check conjectures about the outcomes of processes
that occur repeatedly and according to definite patterns. We introduce the technique with
an example.

Some people claim that the United States penny is such a small coin that it should
be abolished. They point out that frequently a person who drops a penny on the ground
does not even bother to pick it up. Other people argue that abolishing the penny would
not give enough flexibility for pricing merchandise. What prices could still be paid with
exact change if the penny were abolished and another coin worth 3c/ were introduced?
The answer is that the only prices that could not be paid with exact change would be
1c/, 2c/, 4c/, and 7c/. In other words,

Any whole number of cents of at least 8c/ can be obtained using 3c/ and 5c/ coins.

More formally:

For all integers n ≥ 8, n cents can be obtained using 3c/ and 5c/ coins.
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5.2 Mathematical Induction I 245

Even more formally:

For all integers n ≥ 8, P(n) is true, where P(n) is the sentence
“n cents can be obtained using 3c/ and 5c/ coins.”

You could check that P(n) is true for a few particular values of n, as is done in the table
below.

Number of Cents How to Obtain It

8c/ 3c/+ 5c/

9c/ 3c/+ 3c/+ 3c/

10c/ 5c/+ 5c/

11c/ 3c/+ 3c/+ 5c/

12c/ 3c/+ 3c/+ 3c/+ 3c/

13c/ 3c/+ 5c/+ 5c/

14c/ 3c/+ 3c/+ 3c/+ 5c/

15c/ 5c/+ 5c/+ 5c/

16c/ 3c/+ 3c/+ 5c/+ 5c/

17c/ 3c/+ 3c/+ 3c/+ 3c/+ 5c/

The cases shown in the table provide inductive evidence to support the claim that
P(n) is true for general n. Indeed, P(n) is true for all n ≥ 8 if, and only if, it is possible
to continue filling in the table for arbitrarily large values of n.

The kth line of the table gives information about how to obtain kc/ using 3c/ and 5c/
coins. To continue the table to the next row, directions must be given for how to obtain
(k + 1)c/ using 3c/ and 5c/ coins. The secret is to observe first that if kc/ can be obtained
using at least one 5c/ coin, then (k + 1)c/ can be obtained by replacing the 5c/ coin by two
3c/ coins, as shown in Figure 5.2.1.

k¢ (k + 1)¢

3¢ 3¢5¢

Replace a 5¢ coin by
two 3¢ coins.

Remove Add

Figure 5.2.1

If, on the other hand, kc/ is obtained without using a 5c/ coin, then 3c/ coins are used
exclusively. And since the total is at least 8c/, three or more 3c/ coins must be included.
Three of the 3c/ coins can be replaced by two 5c/ coins to obtain a total of (k + 1)c/, as
shown in Figure 5.2.2.

The structure of the argument above can be summarized as follows: To show that
P(n) is true for all integers n ≥ 8, (1) show that P(8) is true, and (2) show that the truth
of P(k + 1) follows necessarily from the truth of P(k) for each k ≥ 8.

Any argument of this form is an argument by mathematical induction. In general,
mathematical induction is a method for proving that a property defined for integers n is
true for all values of n that are greater than or equal to some initial integer.
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246 Chapter 5 Sequences, Mathematical Induction, and Recursion

5¢

k¢ (k + 1)¢

Remove Add

k¢ (k + 1)¢

5¢
3¢ 3¢

3¢

Replace three 3¢ coins
by two 5¢ coins.

Remove Add

Figure 5.2.2

Principle of Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a be a fixed integer.
Suppose the following two statements are true:

1. P(a) is true.

2. For all integers k ≥ a, if P(k) is true then P(k + 1) is true.

Then the statement
for all integers n ≥ a, P(n)

is true.

The first known use of mathematical induction occurs in the work of the Italian sci-
entist Francesco Maurolico in 1575. In the seventeenth century both Pierre de Fermat
and Blaise Pascal used the technique, Fermat calling it the “method of infinite descent.”
In 1883 Augustus De Morgan (best known for De Morgan’s laws) described the process
carefully and gave it the name mathematical induction.

To visualize the idea of mathematical induction, imagine an infinite collection of
dominoes positioned one behind the other in such a way that if any given domino falls
backward, it makes the one behind it fall backward also. (See Figure 5.2.3) Then imagine
that the first domino falls backward. What happens? . . . They all fall down!

1
2

3
4

k k + 1

Figure 5.2.3 If the kth domino falls backward, it pushes the (k + 1)st domino backward also.

To see the connection between this image and the principle of mathematical induction,
let P(n) be the sentence “The nth domino falls backward.” It is given that for each k ≥ 1,
if P(k) is true (the kth domino falls backward), then P(k + 1) is also true (the (k + 1)st
domino falls backward). It is also given that P(1) is true (the first domino falls backward).
Thus by the principle of mathematical induction, P(n) (the nth domino falls backward)
is true for every integer n ≥ 1.
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5.2 Mathematical Induction I 247

The validity of proof by mathematical induction is generally taken as an axiom.
That is why it is referred to as the principle of mathematical induction rather than as a
theorem. It is equivalent to the following property of the integers, which is easy to accept
on intuitive grounds:

Suppose S is any set of integers satisfying (1) a ∈ S, and (2) for all
integers k ≥ a, if k ∈ S then k + 1 ∈ S. Then S must contain every integer
greater than or equal to a.

To understand the equivalence of this formulation and the one given earlier, just let S be
the set of all integers for which P(n) is true.

Proving a statement by mathematical induction is a two-step process. The first step is
called the basis step, and the second step is called the inductive step.

Method of Proof by Mathematical Induction

Consider a statement of the form, “For all integers n ≥ a, a property P(n) is true.”
To prove such a statement, perform the following two steps:

Step 1 (basis step): Show that P(a) is true.

Step 2 (inductive step): Show that for all integers k ≥ a, if P(k) is true then
P(k + 1) is true. To perform this step,

suppose that P(k) is true, where k is any
particular but arbitrarily chosen integer with k ≥ a.

[This supposition is called the inductive hypothesis.]
Then

show that P(k + 1) is true.

Here is a formal version of the proof about coins previously developed informally.

Proposition 5.2.1

For all integers n ≥ 8, nc/ can be obtained using 3c/ and 5c/ coins.

Proof (by mathematical induction):

Let the property P(n) be the sentence

nc/ can be obtained using 3c/ and 5c/ coins. ← P(n)

Show that P(8) is true:
P(8) is true because 8c/ can be obtained using one 3c/ coin and one 5c/ coin.

Show that for all integers k ≥ 8, if P(k) is true then P(k+1) is also true:

[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 8. That is:]
Suppose that k is any integer with k ≥ 8 such that

kc/ can be obtained using 3c/ and 5c/ coins. ← P(k)
inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

(k + 1)c/ can be obtained using 3c/ and 5c/ coins. ← P(k + 1)

Case 1 (There is a 5c/ coin among those used to make up the kc/.): In this case
replace the 5c/ coin by two 3c/ coins; the result will be (k + 1)c/.

continued on page 248
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248 Chapter 5 Sequences, Mathematical Induction, and Recursion

Case 2 (There is not a 5c/ coin among those used to make up the kc/.): In this case,
because k ≥ 8, at least three 3c/ coins must have been used. So remove three 3c/ coins
and replace them by two 5c/ coins; the result will be (k + 1)c/.

Thus in either case (k + 1)c/ can be obtained using 3c/ and 5c/ coins [as was to be
shown].

[Since we have proved the basis step and the inductive step, we conclude that the propo-
sition is true.]

The following example shows how to use mathematical induction to prove a formula
for the sum of the first n integers.

Example 5.2.1 Sum of the First n Integers

Use mathematical induction to prove that

1+ 2+ · · · + n = n(n + 1)

2
for all integers n ≥ 1.

Solution To construct a proof by induction, you must first identify the property P(n). In
this case, P(n) is the equation

1+ 2+ · · · + n = n(n + 1)

2
. ← the property (P(n))

[To see that P(n) is a sentence, note that its subject is “the sum of the integers from 1
to n” and its verb is “equals.”]

In the basis step of the proof, you must show that the property is true for n = 1, or,
in other words that P(1) is true. Now P(1) is obtained by substituting 1 in place of n in
P(n). The left-hand side of P(1) is the sum of all the successive integers starting at 1 and
ending at 1. This is just 1. Thus P(1) is

1 = 1(1+ 1)

2
. ← basis (P(1))

Note To write P(1),
just copy P(n) and
replace each n by 1.

Of course, this equation is true because the right-hand side is

1(1+ 1)

2
= 1 ·2

2
= 1,

which equals the left-hand side.

Note To write P(k),
just copy P(n) and
replace each n by k.

In the inductive step, you assume that P(k) is true, for a particular but arbitrarily cho-
sen integer k with k ≥ 1. [This assumption is the inductive hypothesis.]You must then show
that P(k + 1) is true. What are P(k) and P(k + 1)? P(k) is obtained by substituting k
for every n in P(n). Thus P(k) is

1+ 2+ · · · + k = k(k + 1)

2
. ← inductive hypothesis (P(k))
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5.2 Mathematical Induction I 249

Similarly, P(k + 1) is obtained by substituting the quantity (k + 1) for every n that
appears in P(n). Thus P(k + 1) is

1+ 2+ · · · + (k + 1) = (k + 1)((k + 1)+ 1)

2
,

or, equivalently,

1+ 2+ · · · + (k + 1) = (k + 1)(k + 2)

2
. ← to show (P(k + 1))

Note To write
P(k + 1), just copy P(n)
and replace each n by
(k + 1).

Now the inductive hypothesis is the supposition that P(k) is true. How can this sup-
position be used to show that P(k + 1) is true? P(k + 1) is an equation, and the truth of
an equation can be shown in a variety of ways. One of the most straightforward is to use
the inductive hypothesis along with algebra and other known facts to transform separately
the left-hand and right-hand sides until you see that they are the same. In this case, the
left-hand side of P(k + 1) is

1+ 2+ · · · + (k + 1),
which equals

(1+ 2+ · · · + k)+ (k + 1)
The next-to-last term is k because the terms are

successive integers and the last term is k + 1.

But by substitution from the inductive hypothesis,

(1+ 2+· · · + k)+ (k + 1)

= k(k + 1)

2
+ (k + 1)

since the inductive hypothesis says

that 1+ 2+ · · · + k = k(k + 1)

2

= k(k + 1)

2
+ 2(k + 1)

2

by multiplying the numerator and

denominator of the second term by 2

to obtain a common denominator

= k2 + k

2
+ 2k + 2

2
by multiplying out the two numerators

k2 + 3k + 1

2
by adding fractions with the same

denominator and combining like terms.

So the left-hand side of P(k + 1) is
k2 + 3k + 1

2
. Now the right-hand side of P(k + 1) is

(k + 1)(k + 2)

2
= k2 + 3k + 1

2
by multiplying out the numerator.

Thus the two sides of P(k + 1) are equal to each other, and so the equation P(k + 1) is
true.

This discussion is summarized as follows:

Theorem 5.2.2 Sum of the First n Integers

For all integers n ≥ 1,

1+ 2+ · · · + n = n(n + 1)

2
.

Proof (by mathematical induction):

Let the property P(n) be the equation

1+ 2+ 3+ · · · + n = n(n + 1)

2
. ← P(n)

continued on page 250
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250 Chapter 5 Sequences, Mathematical Induction, and Recursion

Show that P(1) is true:

To establish P(1), we must show that

1 = 1(1+ 1)

2
← P(1)

But the left-hand side of this equation is 1 and the right-hand side is

1(1+ 1)

2
= 2

2
= 1

also. Hence P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k + 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 1.
That is:] Suppose that k is any integer with k ≥ 1 such that

1+ 2+ 3+ · · · + k = k(k + 1)

2
← P(k)
inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

1+ 2+ 3+ · · · + (k + 1) = (k + 1)[(k + 1)+ 1]
2

,

or, equivalently, that

1+ 2+ 3+ · · · + (k + 1) = (k + 1)(k + 2)

2
. ← P(k + 1)

[We will show that the left-hand side and the right-hand side of P(k + 1) are equal to
the same quantity and thus are equal to each other.]

The left-hand side of P(k + 1) is

1+ 2+ 3+ · · · + (k + 1)

= 1+ 2+ 3+ · · · + k + (k + 1) by making the next-to-last
term explicit

= k(k + 1)

2
+ (k + 1) by substitution from the

inductive hypothesis

= k(k + 1)

2
+ 2(k + 1)

2

= k2 + k

2
+ 2k + 2

2

= k2 + 3k + 1

2
by algebra.

And the right-hand side of P(k + 1) is

(k + 1)(k + 2)

2
= k2 + 3k + 1

2
.

Thus the two sides of P(k + 1) are equal to the same quantity and so they are equal
to each other. Therefore the equation P(k + 1) is true [as was to be shown].
[Since we have proved both the basis step and the inductive step, we conclude that the
theorem is true.]

■
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The story is told that one of the greatest mathematicians of all time, Carl Friedrich
Gauss (1777–1855), was given the problem of adding the numbers from 1 to 100 by his
teacher when he was a young child. The teacher had asked his students to compute the
sum, supposedly to gain himself some time to grade papers. But after just a few moments,
Gauss produced the correct answer. Needless to say, the teacher was dumbfounded. How
could young Gauss have calculated the quantity so rapidly? In his later years, Gauss
explained that he had imagined the numbers paired according to the following schema.

1 2 3 . . . . . . 50 51 . . . . . . 98 99 100

→ →

sum is 101

→ →

sum is 101

→ →

sum is 101

→ →

sum is 101

The sum of the numbers in each pair is 101, and there are 50 pairs in all; hence the total
sum is 50 ·101 = 5,050.

• Definition Closed Form

If a sum with a variable number of terms is shown to be equal to a formula that does
not contain either an ellipsis or a summation symbol, we say that it is written in
closed form.

For example, writing 1+ 2+ 3+ · · · + n = n(n + 1)

2
expresses the sum 1+ 2+

3+ · · · + n in closed form.

Example 5.2.2 Applying the Formula for the Sum of the First n Integers

a. Evaluate 2+ 4+ 6+ · · · + 500.

b. Evaluate 5+ 6+ 7+ 8+ · · · + 50.

c. For an integer h ≥ 2, write 1+ 2+ 3+ · · · + (h − 1) in closed form.

Solution

a. 2+ 4+ 6+ · · · + 500 = 2 ·(1+ 2+ 3+ · · · + 250)

= 2 ·
(
250 ·251

2

)
by applying the formula for the sum
of the first n integers with n = 250

= 62,750.

b. 5+ 6+ 7+ 8+ · · · + 50 = (1+ 2+ 3+ · · · + 50)− (1+ 2+ 3+ 4)

= 50 ·51
2
− 10 by applying the formula for the sum

of the first n integers with n = 50

= 1,265

c. 1+ 2+ 3+ · · · + (h − 1) = (h − 1) · [(h − 1)+ 1]
2

by applying the formula for the sum
of the first n integers with
n = h − 1

= (h − 1) ·h
2

since (h − 1)+ 1 = h. ■
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The next example asks for a proof of another famous and important formula in
mathematics—the formula for the sum of a geometric sequence. In a geometric sequence,
each term is obtained from the preceding one by multiplying by a constant factor. If the
first term is 1 and the constant factor is r , then the sequence is 1, r, r2, r3, . . . , rn, . . . .
The sum of the first n terms of this sequence is given by the formula

n∑
i = 0

r i = rn+ 1 − 1

r − 1

for all integers n ≥ 0 and real numbers r not equal to 1. The expanded form of the
formula is

r0 + r1 + r2 + · · · + rn = rn+1 − 1

r − 1
,

and because r0 = 1 and r1 = r , the formula for n ≥ 1 can be rewritten as

1+ r + r2 + · · · + rn = rn+1 − 1

r − 1
.

Example 5.2.3 Sum of a Geometric Sequence

Prove that
n∑

i=0
r i = rn+1 − 1

r − 1
, for all integers n ≥ 0 and all real numbers r except 1.

Solution In this example the property P(n) is again an equation, although in this case it
contains a real variable r :.

n∑
i=0

r i = rn+1 − 1

r − 1
. ← the property (P(n))

Because r can be any real number other than 1, the proof begins by supposing that r is a
particular but arbitrarily chosen real number not equal to 1. Then the proof continues by
mathematical induction on n, starting with n = 0. In the basis step, you must show that
P(0) is true; that is, you show the property is true for n = 0. So you substitute 0 for each
n in P(n):

0∑
i=0

r i = r0+1 − 1

r − 1
. ← basis (P(0))

In the inductive step, you suppose k is any integer with k ≥ 0 for which P(k) is true; that
is, you suppose the property is true for n = k. So you substitute k for each n in P(n):

k∑
i=0

r i = rk+1 − 1

r − 1
. ← inductive hypothesis (P(k))

Then you show that P(k + 1) is true; that is, you show the property is true for n = k + 1.
So you substitute k + 1 for each n in P(n):
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5.2 Mathematical Induction I 253

k+1∑
i=0

r i = r (k+1)+1 − 1

r − 1
,

or, equivalently,

k+1∑
i=0

r i = rk+2 − 1

r − 1
· ← to show (P(k + 1))

In the inductive step for this proof we use another common technique for showing
that an equation is true: We start with the left-hand side and transform it step-by-step
into the right-hand side using the inductive hypothesis together with algebra and other
known facts.

Theorem 5.2.3 Sum of a Geometric Sequence

For any real number r except 1, and any integer n ≥ 0,

n∑
i=0

r i = rn+1 − 1

r − 1
.

Proof (by mathematical induction):

Suppose r is a particular but arbitrarily chosen real number that is not equal to 1,
and let the property P(n) be the equation

n∑
i = 0

r i = r i+1 − 1

r − 1
← P(n)

We must show that P(n) is true for all integers n ≥ 0. We do this by mathematical
induction on n.

Show that P(0) is true:

To establish P(0), we must show that

0∑
i = 0

r i = r0+ 1 − 1

r − 1
← P(0)

The left-hand side of this equation is r0 = 1 and the right-hand side is

r0+ 1 − 1

r − 1
= r − 1

r − 1
= 1

also because r1 = r and r �= 1. Hence P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then P(k+ 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 0. That is:]
Let k be any integer with k ≥ 0, and suppose that

k∑
i = 0

r i = rk+ 1 − 1

r − 1
← P(k)
inductive hypothesis

continued on page 254
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[We must show that P(k + 1) is true. That is:] We must show that

k+1∑
i= 0

r i = r (k+ 1)+ 1 − 1

r − 1
,

or, equivalently, that

k+ 1∑
i = 0

r i = rk+ 2 − 1

r − 1
. ← P(k + 1)

[We will show that the left-hand side of P(k + 1) equals the right-hand side.]
The left-hand side of P(k + 1) is

k+1∑
i= 0

r i =
k∑

i= 0

r i + rk+1 by writing the (k + 1)st term
separately from the first k terms

= rk+1 − 1

r − 1
+ rk+1 by substitution from the

inductive hypothesis

= rk+1 − 1

r − 1
+ rk+1(r − 1)

r − 1

by multiplying the numerator and denominator
of the second term by (r − 1) to obtain a
common denominator

= (rk+1 − 1)+ rk+1(r − 1)

r − 1
by adding fractions

= rk+1 − 1+ rk+2 − rk+1

r − 1
by multiplying out and using the fact
that rk+1 ·r = rk+1 ·r1 = rk+2

= rk+2 − 1

r − 1
by canceling the rk+1’s.

which is the right-hand side of P(k + 1) [as was to be shown.]
[Since we have proved the basis step and the inductive step, we conclude that the theorem
is true.]

Proving an Equality
The proofs of the basis and inductive steps in Examples 5.2.1 and 5.2.3 illustrate two
different ways to show that an equation is true: (1) transforming the left-hand side and
the right-hand side independently until they are seen to be equal, and (2) transforming
one side of the equation until it is seen to be the same as the other side of the equation.

Sometimes people use a method that they believe proves equality but that is
actually invalid. For example, to prove the basis step for Theorem 5.2.3, they perform
the following steps:

!
Caution! Don’t do this!

0∑
i = 0

r i = r0+ 1 − 1

r − 1

r0 = r1 − 1

r − 1

1 = r − 1

r − 1
1 = 1

The problem with this method is that starting from a statement and deducing a true con-
clusion does not prove that the statement is true. A true conclusion can also be deduced
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5.2 Mathematical Induction I 255

from a false statement. For instance, the steps below show how to deduce the true con-
clusion that 1= 1 from the false statement that 1= 0:

1 = 0 ← false

0 = 1

1+ 0 = 0+ 1

1 = 1 ← true

When using mathematical induction to prove formulas, be sure to use a method that
avoids invalid reasoning, both for the basis step and for the inductive step.

Deducing Additional Formulas
The formula for the sum of a geometric sequence can be thought of as a family of different
formulas in r , one for each real number r except 1.

Example 5.2.4 Applying the Formula for the Sum of a Geometric Sequence

In each of (a) and (b) below, assume that m is an integer that is greater than or equal to 3.
Write each of the sums in closed form.

a. 1+ 3+ 32 + · · · + 3m−2

b. 32 + 33 + 34 + · · · + 3m

Solution

a. 1+ 3+ 32 + · · · + 3m−2 = 3(m−2)+1 − 1

3− 1

by applying the formula for the sum of a
geometric sequence with r = 3 and
n = m − 2

= 3m−1 − 1

2
.

b. 32 + 33 + 34 + · · · + 3m = 32 ·(1+ 3+ 32 + · · · + 3m−2) by factoring out 32

= 9 ·
(
3m−1 − 1

2

)
by part (a). ■

As with the formula for the sum of the first n integers, there is a way to think of the
formula for the sum of the terms of a geometric sequence that makes it seem simple and
intuitive. Let

Sn = 1+ r + r2 + · · · + rn.

Then

r Sn = r + r2 + r3 + · · · + rn+1,

and so

r Sn − Sn = (r + r2 + r3 + · · · + rn+1)− (1+ r + r2 + · · · + rn)

= rn+1 − 1. 5.2.1

But

r Sn − Sn = (r − 1)Sn. 5.2.2
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256 Chapter 5 Sequences, Mathematical Induction, and Recursion

Equating the right-hand sides of equations (5.2.1) and (5.2.2) and dividing by r − 1 gives

Sn = rn+1 − 1

r − 1
.

This derivation of the formula is attractive and is quite convincing. However, it is
not as logically airtight as the proof by mathematical induction. To go from one step to
another in the previous calculations, the argument is made that each term among those
indicated by the ellipsis (. . .) has such-and-such an appearance and when these are can-
celed such-and-such occurs. But it is impossible actually to see each such term and each
such calculation, and so the accuracy of these claims cannot be fully checked. With math-
ematical induction it is possible to focus exactly on what happens in the middle of the
ellipsis and verify without doubt that the calculations are correct.

Test Yourself
1. Mathematical induction is a method for proving that a prop-

erty defined for integers n is true for all values of n that are
_____.

2. Let P(n) be a property defined for integers n and consider
constructing a proof by mathematical induction for the state-
ment “P(n) is true for all n ≥ a.”

(a) In the basis step one must show that _____.

(b) In the inductive step one supposes that _____ for some
particular but arbitrarily chosen value of an integer
k ≥ a. This supposition is called the _____. One then
has to show that _____.

Exercise Set 5.2
1. Use mathematical induction (and the proof of Proposi-

tion 5.2.1 as a model) to show that any amount of money
of at least 14c/ can be made up using 3c/ and 8c/ coins.

2. Use mathematical induction to show that any postage of at
least 12c/ can be obtained using 3c/ and 7c/ stamps.

3. For each positive integer n, let P(n) be the formula

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6
.

a. Write P(1). Is P(1) true?
b. Write P(k).
c. Write P(k + 1).
d. In a proof by mathematical induction that the formula

holds for all integers n ≥ 1, what must be shown in the
inductive step?

4. For each integer n with n ≥ 2, let P(n) be the formula

n−1∑
i=1

i(i + 1) = n(n − 1)(n + 1)

3
.

a. Write P(2). Is P(2) true?
b. Write P(k).
c. Write P(k + 1).
d. In a proof by mathematical induction that the formula

holds for all integers n ≥ 2, what must be shown in the
inductive step?

5. Fill in the missing pieces in the following proof that

1+ 3+ 5+ · · · + (2n − 1) = n2

for all integers n ≥ 1.

Proof: Let the property P(n) be the equation

1+ 3+ 5+ · · · + (2n − 1) = n2. ← P(n)

Show that P(1) is true: To establish P(1), we must show
that when 1 is substituted in place of n, the left-hand side
equals the right-hand side. But when n = 1, the left-hand
side is the sum of all the odd integers from 1 to 2 ·1− 1,
which is the sum of the odd integers from 1 to 1, which is
just 1. The right-hand side is (a) , which also equals 1. So
P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then
P(k + 1) is true: Let k be any integer with k ≥ 1.

[Suppose P(k) is true. That is:]

Suppose 1+ 3+ 5+ · · · + (2k − 1) = (b) . ← P(k)

[This is the inductive hypothesis.]

[We must show that P(k + 1) is true. That is:]

We must show that

(c) = (d) . ← P(k + 1)

But the left-hand side of P(k + 1) is

1+ 3+ 5+ · · · + (2(k + 1)− 1)

= 1+ 3+ 5+ · · · + (2k + 1) by algebra

= [1+ 3+ 5+ · · · + (2k − 1)] + (2k + 1)
the next-to-last term is 2k − 1 because (e)

= k2 + (2k + 1) by (f)

= (k + 1)2 by algebra

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.2 Mathematical Induction I 257

which is the right-hand side of P(k + 1) [as was to be
shown.]
[Since we have proved the basis step and the inductive step, we
conclude that the given statement is true.]
The previous proof was annotated to help make its logical
flow more obvious. In standard mathematical writing, such
annotation is omitted.

Prove each statement in 6–9 using mathematical induction. Do
not derive them from Theorem 5.2.2 or Theorem 5.2.3.

6. For all integers n ≥ 1, 2+ 4+ 6+ · · · + 2n = n2 + n.

7. For all integers n ≥ 1,

1+ 6+ 11+ 16+ · · · + (5n − 4) = n(5n − 3)

2
.

8. For all integers n ≥ 0, 1+ 2+ 22 + · · · + 2n = 2n+1 − 1.

9. For all integers n ≥ 3,

43 + 44 + 45 + · · · + 4n = 4(4n − 16)

3
.

Prove each of the statements in 10–17 by mathematical
induction.

10. 12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6
, for all integers

n ≥ 1.

11. 13 + 23 + · · · + n3 =
[
n(n + 1)

2

]2

, for all integers n ≥ 1.

12.
1

1 ·2 +
1

2 ·3 + · · · +
1

n(n + 1)
= n

n + 1
, for all integers

n ≥ 1.

13.
n−1∑
i=1

i(i + 1) = n(n − 1)(n + 1)

3
, for all integers n ≥ 2.

14.
n+1∑
i=1

i ·2i = n ·2n+2 + 2, for all integers n ≥ 0.

15.H
n∑

i=1
i(i !) = (n + 1)! − 1, for all integers n ≥ 1.

16.

(
1− 1

22

)(
1− 1

32

)
· · ·

(
1− 1

n2

)
= n + 1

2n
, for all inte-

gers n ≥ 2.

17.
n∏

i=0

(
1

2i + 1
· 1

2i + 2

)
= 1

(2n + 2)! , for all integers n ≥ 0.

18.✶H If x is a real number not divisible by π , then for all integers
n ≥ 1,

sin x + sin 3x + sin 5x + · · · + sin (2n − 1)x

= 1− cos 2nx

2 sin x
.

19. (For students who have studied calculus) Use mathemati-
cal induction, the product rule from calculus, and the facts

that
d(x)

dx
= 1 and that xk+ 1 = x · xk to prove that for all

integers n ≥ 1,
d(xn)

dx
= nxn− 1.

Use the formula for the sum of the first n integers and/or the for-
mula for the sum of a geometric sequence to evaluate the sums
in 20–29 or to write them in closed form.

20. 4+ 8+ 12+ 16+ · · · + 200

21. 5+ 10+ 15+ 20+ · · · + 300

22. 3+ 4+ 5+ 6+ · · · + 1000

23. 7+ 8+ 9+ 10+ · · · + 600

24. 1+ 2+ 3+ · · · + (k − 1), where k is an integer and k ≥ 2.

25. a. 1+ 2+ 22 + · · · + 225

b. 2+ 22 + 23 + · · · + 226

26. 3+ 32 + 33 + · · · + 3n , where n is an integer with n ≥ 1

27. 53 + 54 + 55 + · · · + 5k , where k is any integer with k ≥ 3.

28. 1+ 1

2
+ 1

22
+ · · · + 1

2n
, where n is a positive integer

29. 1− 2+ 22 − 23 + · · · + (−1)n2n , where n is a positive
integer

30.H Find a formula in n, a,m, and d for the sum (a + md)+
(a + (m + 1)d)+ (a + (m + 2)d)+ · · · + (a + (m + n)d),
where m and n are integers, n ≥ 0, and a and d are real
numbers. Justify your answer.

31. Find a formula in a, r,m, and n for the sum

arm + arm+1 + arm+2 + · · · + arm+n

where m and n are integers, n ≥ 0, and a and r are real
numbers. Justify your answer.

32. You have two parents, four grandparents, eight great-
grandparents, and so forth.
a. If all your ancestors were distinct, what would be

the total number of your ancestors for the past 40
generations (counting your parents’ generation as num-
ber one)? (Hint: Use the formula for the sum of a geo-
metric sequence.)

b. Assuming that each generation represents 25 years, how
long is 40 generations?

c. The total number of people who have ever lived is
approximately 10 billion, which equals 1010 people.
Compare this fact with the answer to part (a). What do
you deduce?
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258 Chapter 5 Sequences, Mathematical Induction, and Recursion

Find the mistakes in the proof fragments in 33–35.

33.H Theorem: For any integer n ≥ 1,

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6
.

“Proof (by mathematical induction): Certainly the
theorem is true for n = 1 because 12 = 1 and

1(1+ 1)(2 ·1+ 1)

6
= 1. So the basis step is true.

For the inductive step, suppose that for some integer k ≥ 1,

k2 = k(k + 1)(2k + 1)

6
. We must show that

(k + 1)2 = (k + 1)((k + 1)+ 1)(2(k + 1)+ 1)

6
.”

34.H Theorem: For any integer n ≥ 0,

1+ 2+ 22 + · · · + 2n = 2n+ 1 − 1.

“Proof (by mathematical induction): Let the property
P(n) be 1+ 2+ 22 + · · · + 2n = 2n+ 1 − 1.
Show that P(0) is true:
The left-hand side of P(0) is 1+ 2+ 22 + · · · + 20 = 1
and the right-hand side is 20+ 1 − 1 = 2− 1 = 1 also. So
P(0) is true.”

35.H Theorem: For any integer n ≥ 1,

n∑
i=1

i(i !) = (n + 1)! − 1.

“Proof (by mathematical induction): Let the property

P(n) be
n∑

i=1
i(i !) = (n + 1)! − 1.

Show that P(1) is true: When n = 1

1∑
i=1

i(i !) = (1+ 1)! − 1

So 1(1!) = 2! − 1

and 1 = 1

Thus P(1) is true.”

36.✶ Use Theorem 5.2.2 to prove that if m and n are any positive
integers and m is odd, then

∑m−1
k=0 (n + k) is divisible by m.

Does the conclusion hold if m is even? Justify your answer.

37.✶H Use Theorem 5.2.2 and the result of exercise 10 to prove
that if p is any prime number with p ≥ 5, then the sum of
squares of any p consecutive integers is divisible by p.

Answers for Test Yourself
1. greater than or equal to some initial value 2. (a) P(a) is true (b) P(k) is true; inductive hypothesis; P(k + 1) is true

5.3 Mathematical Induction II
A good proof is one which makes us wiser.— I. Manin, A Course in Mathematical Logic, 1977

In natural science courses, deduction and induction are presented as alternative modes
of thought—deduction being to infer a conclusion from general principles using the
laws of logical reasoning, and induction being to enunciate a general principle after
observing it to hold in a large number of specific instances. In this sense, then,
mathematical induction is not inductive but deductive. Once proved by mathematical
induction, a theorem is known just as certainly as if it were proved by any other mathe-
matical method. Inductive reasoning, in the natural sciences sense, is used in mathemat-
ics, but only to make conjectures, not to prove them. For example, observe that

1− 1

2
= 1

2(
1− 1

2

)(
1− 1

3

)
= 1

3(
1− 1

2

)(
1− 1

3

)(
1− 1

4

)
= 1

4

This pattern seems so unlikely to occur by pure chance that it is reasonable to conjecture
(though it is by no means certain) that the pattern holds true in general. In a case like
this, a proof by mathematical induction (which you are asked to write in exercise 1 at
the end of this section) gets to the essence of why the pattern holds in general. It reveals
the mathematical mechanism that necessitates the truth of each successive case from the
previous one. For instance, in this example observe that if

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.




