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Find the mistakes in the proof fragments in 33–35.

33.H Theorem: For any integer n ≥ 1,

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6
.

“Proof (by mathematical induction): Certainly the
theorem is true for n = 1 because 12 = 1 and

1(1+ 1)(2 ·1+ 1)

6
= 1. So the basis step is true.

For the inductive step, suppose that for some integer k ≥ 1,

k2 = k(k + 1)(2k + 1)

6
. We must show that

(k + 1)2 = (k + 1)((k + 1)+ 1)(2(k + 1)+ 1)

6
.”

34.H Theorem: For any integer n ≥ 0,

1+ 2+ 22 + · · · + 2n = 2n+ 1 − 1.

“Proof (by mathematical induction): Let the property
P(n) be 1+ 2+ 22 + · · · + 2n = 2n+ 1 − 1.
Show that P(0) is true:
The left-hand side of P(0) is 1+ 2+ 22 + · · · + 20 = 1
and the right-hand side is 20+ 1 − 1 = 2− 1 = 1 also. So
P(0) is true.”

35.H Theorem: For any integer n ≥ 1,

n∑
i=1

i(i !) = (n + 1)! − 1.

“Proof (by mathematical induction): Let the property

P(n) be
n∑

i=1
i(i !) = (n + 1)! − 1.

Show that P(1) is true: When n = 1

1∑
i=1

i(i !) = (1+ 1)! − 1

So 1(1!) = 2! − 1

and 1 = 1

Thus P(1) is true.”

36.✶ Use Theorem 5.2.2 to prove that if m and n are any positive
integers and m is odd, then

∑m−1
k=0 (n + k) is divisible by m.

Does the conclusion hold if m is even? Justify your answer.

37.✶H Use Theorem 5.2.2 and the result of exercise 10 to prove
that if p is any prime number with p ≥ 5, then the sum of
squares of any p consecutive integers is divisible by p.

Answers for Test Yourself
1. greater than or equal to some initial value 2. (a) P(a) is true (b) P(k) is true; inductive hypothesis; P(k + 1) is true

5.3 Mathematical Induction II
A good proof is one which makes us wiser.— I. Manin, A Course in Mathematical Logic, 1977

In natural science courses, deduction and induction are presented as alternative modes
of thought—deduction being to infer a conclusion from general principles using the
laws of logical reasoning, and induction being to enunciate a general principle after
observing it to hold in a large number of specific instances. In this sense, then,
mathematical induction is not inductive but deductive. Once proved by mathematical
induction, a theorem is known just as certainly as if it were proved by any other mathe-
matical method. Inductive reasoning, in the natural sciences sense, is used in mathemat-
ics, but only to make conjectures, not to prove them. For example, observe that

1− 1

2
= 1

2(
1− 1

2

)(
1− 1

3

)
= 1

3(
1− 1

2

)(
1− 1

3

)(
1− 1

4

)
= 1

4

This pattern seems so unlikely to occur by pure chance that it is reasonable to conjecture
(though it is by no means certain) that the pattern holds true in general. In a case like
this, a proof by mathematical induction (which you are asked to write in exercise 1 at
the end of this section) gets to the essence of why the pattern holds in general. It reveals
the mathematical mechanism that necessitates the truth of each successive case from the
previous one. For instance, in this example observe that if
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(
1− 1

2

)(
1− 1

3

)
· · ·

(
1− 1

k

)
= 1

k
,

then by substitution(
1− 1

2

)(
1− 1

3

)
· · ·

(
1− 1

k

)(
1− 1

k + 1

)

= 1

k

(
1− 1

k + 1

)
= 1

k

(
k + 1− 1

k + 1

)
= 1

k

(
k

k + 1

)
= 1

k + 1
.

Thus mathematical induction makes knowledge of the general pattern a matter of
mathematical certainty rather than vague conjecture.

In the remainder of this section we show how to use mathematical induction to
prove additional kinds of statements such as divisibility properties of the integers and
inequalities. The basic outlines of the proofs are the same in all cases, but the details of
the basis and inductive steps differ from one to another.

Example 5.3.1 Proving a Divisibility Property

Use mathematical induction to prove that for all integers n ≥ 0, 22n − 1 is divisible by 3.

Solution As in the previous proofs by mathematical induction, you need to identify the
property P(n). In this example, P(n) is the sentence

22n − 1 is divisible by 3. ← the property (P(n))

By substitution, the statement for the basis step, P(0), is

22 ·0 − 1 is divisible by 3. ← basis (P(0))

The supposition for the inductive step, P(k), is

22k − 1 is divisible by 3, ← inductive hypothesis (P(k))

and the conclusion to be shown, P(k + 1), is

22(k+1) − 1 is divisible by 3. ← to show (P(k + 1))

Recall that an integer m is divisible by 3 if, and only if, m = 3r for some integer r .
Now the statement P(0) is true because 22 ·0 − 1 = 20 − 1 = 1− 1 = 0, which is divis-
ible by 3 because 0 = 3 ·0.

To prove the inductive step, you suppose that k is any integer greater than or equal to 0
such that P(k) is true. This means that 22k − 1 is divisible by 3. You must then prove the
truth of P(k + 1). Or, in other words, you must show that 22(k+1) − 1 is divisible by 3. But

22(k+1) − 1 = 22k+2 − 1

= 22k·22 − 1 by the laws of exponents

= 22k·4− 1.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



260 Chapter 5 Sequences, Mathematical Induction, and Recursion

The aim is to show that this quantity, 22k·4− 1, is divisible by 3. Why should that be so?
By the inductive hypothesis, 22k − 1 is divisible by 3, and 22k·4− 1 resembles 22k − 1.
Observe what happens, if you subtract 22k − 1 from 22k·4− 1:

22k·4− 1︸ ︷︷ ︸ − (22k − 1)︸ ︷︷ ︸ = 22k·3.︸ ︷︷ ︸,⏐ ,⏐ ,⏐
divisible by 3? divisible by 3 divisible by 3

Adding 22k − 1 to both sides gives

22k·4− 1︸ ︷︷ ︸ = 22k ·3︸ ︷︷ ︸ + 22k − 1.︸ ︷︷ ︸,⏐ ,⏐ ,⏐
divisible by 3? divisible by 3 divisible by 3

Both terms of the sum on the right-hand side of this equation are divisible by 3; hence
the sum is divisible by 3. (See exercise 15 of Section 4.3.) Therefore, the left-hand side
of the equation is also divisible by 3, which is what was to be shown.

This discussion is summarized as follows:

Proposition 5.3.1

For all integers n ≥ 0, 22n − 1 is divisible by 3.

Proof (by mathematical induction):

Let the property P(n) be the sentence “22n − 1 is divisible by 3.”

22n − 1 is divisible by 3. ← P(n)

Show that P(0) is true:
To establish P(0), we must show that

22 ·0 − 1 is divisible by 3. ← P(0)

But

22 ·0 − 1 = 20 − 1 = 1− 1 = 0

and 0 is divisible by 3 because 0 = 3 ·0. Hence P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then P(k+ 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 0. That is:]
Let k be any integer with k ≥ 0, and suppose that

22k − 1 is divisible by 3. ← P(k)
inductive hypothesis

By definition of divisibility, this means that

22k − 1 = 3r for some integer r .

[We must show that P(k + 1) is true. That is:] We must show that

22(k+ 1) − 1 is divisible by 3. ← P(k + 1)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.3 Mathematical Induction II 261

But

22(k+1) − 1 = 22k+ 2 − 1

= 22k ·22 − 1 by the laws of exponents

= 22k ·4− 1

= 22k(3+ 1)− 1

= 22k ·3+ (22k − 1) by the laws of algebra

= 22k ·3+ 3r by inductive hypothesis

= 3(22k + r) by factoring out the 3.

But 22k + r is an integer because it is a sum of products of integers, and so, by
definition of divisibility, 22(k+1) − 1 is divisible by 3 [as was to be shown].
[Since we have proved the basis step and the inductive step, we conclude that the propo-
sition is true.]

■

The next example illustrates the use of mathematical induction to prove an inequality.

Example 5.3.2 Proving an Inequality

Use mathematical induction to prove that for all integers n ≥ 3,

2n + 1 < 2n.

Solution In this example the property P(n) is the inequality

2n + 1 < 2n. ← the property (P(n))

By substitution, the statement for the basis step, P(3), is

2 ·3+ 1 < 23. ← basis (P(3))

The supposition for the inductive step, P(k), is

2k + 1 < 2k, ← inductive hypothesis (P(k))

and the conclusion to be shown is

2(k + 1)+ 1 < 2k+1. ← to show (P(k + 1))

To prove the basis step, observe that the statement P(3) is true because 2 ·3+ 1 = 7,
23 = 8, and 7 < 8.

To prove the inductive step, suppose the inductive hypothesis, that P(k) is true for an
integer k ≥ 3. This means that 2k + 1 < 2k is assumed to be true for a particular but arbi-
trarily chosen integer k ≥ 3. Then derive the truth of P(k + 1). Or, in other words, show
that the inequality 2(k + 1)+ 1 < 2k+1 is true. But by multiplying out and regrouping,

2(k + 1)+ 1 = 2k + 3 = (2k + 1)+ 2, 5.3.1
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262 Chapter 5 Sequences, Mathematical Induction, and Recursion

and by substitution from the inductive hypothesis,

(2k + 1)+ 2 < 2k + 2. 5.3.2

Hence

2(k + 1)+ 1 < 2k + 2 The left-most part of equation (5.3.1) is less
than the right-most part of inequality (5.3.2).

Note Properties of
order are listed in
Appendix A.

If it can be shown that 2k + 2 is less than 2k+1, then the desired inequality will have been
proved. But since the quantity 2k can be added to or subtracted from an inequality without
changing its direction,

2k + 2 < 2k+1 ⇔ 2 < 2k+1 − 2k = 2k(2− 1) = 2k .

And since multiplying or dividing an inequality by 2 does not change its direction,

2 < 2k ⇔ 1 = 2

2
<

2k

2
= 2k−1 by the laws of exponents.

This last inequality is clearly true for all k ≥ 2. Hence it is true that 2(k + 1)+ 1 < 2k+1.
This discussion is made more flowing (but less intuitive) in the following formal

proof:

Proposition 5.3.2

For all integers n ≥ 3, 2n + 1 < 2n .

Proof (by mathematical induction):

Let the property P(n) be the inequality

2n + 1 < 2n. ← P(n)

Show that P(3) is true:
To establish P(3), we must show that

2 ·3+ 1 < 23. ← P(3)

But

2 ·3+ 1 = 7 and 23 = 8 and 7 < 8.

Hence P(3) is true.

Show that for all integers k ≥ 3, if P(k) is true then P(k+ 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 3. That is:]
Suppose that k is any integer with k ≥ 3 such that

2k + 1 < 2k . ← P(k)
inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

2(k + 1)+ 1 < 2(k+1),

or, equivalently,

2k + 3 < 2(k+1). ← P(k + 1)
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5.3 Mathematical Induction II 263

But

2k + 3 = (2k + 1)+ 2 by algebra

< 2k + 2k because 2k + 1 < 2k by the inductive hypothesis
and because 2 < 2k for all integers k ≥ 2

∴ 2k + 3 < 2 ·2k = 2k+1 by the laws of exponents.

[This is what we needed to show.]
[Since we have proved the basis step and the inductive step, we conclude that the propo-
sition is true.]

■

The next example demonstrates how to use mathematical induction to show that the
terms of a sequence satisfy a certain explicit formula.

Example 5.3.3 Proving a Property of a Sequence

Define a sequence a1, a2, a3, . . . as follows.∗

a1 = 2

ak = 5ak−1 for all integers k ≥ 2.

a. Write the first four terms of the sequence.

b. It is claimed that for each integer n ≥ 0, the nth term of the sequence has the same
value as that given by the formula 2 ·5n− 1. In other words, the claim is that the terms
of the sequence satisfy the equation an = 2 ·5n− 1. Prove that this is true.

Solution

a. a1 = 2.
a2 = 5a2−1 = 5a1 = 5 ·2 = 10
a3 = 5a3−1 = 5a2 = 5 ·10 = 50
a4 = 5a4−1 = 5a3 = 5 ·50 = 250.

b. To use mathematical induction to show that every term of the sequence satisfies the
equation, begin by showing that the first term of the sequence satisfies the equation.
Then suppose that an arbitrarily chosen term ak satisfies the equation and prove that
the next term ak+ 1 also satisfies the equation.

Proof:

Let a1, a2, a3, . . . be the sequence defined by specifying that a1 = 2 and ak = 5ak−1 for
all integers k ≥ 2, and let the property P(n) be the equation

an = 2 ·5n−1. ← P(n)

We will use mathematical induction to prove that for all integers n ≥ 1, P(n) is true.

Show that P(1) is true:
To establish P(1), we must show that

a1 = 2 ·51−1. ← P(1)

∗This is another example of a recursive definition. The general subject of recursion is discussed in
Section 5.6.
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264 Chapter 5 Sequences, Mathematical Induction, and Recursion

But the left-hand side of P(1) is

a1 = 2 by definition of a1, a2, a3, . . .,

and the right-hand side of P(1) is

2 ·51−1 = 2 ·50 = 2 ·1 = 2.

Thus the two sides of P(1) are equal to the same quantity, and hence P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k + 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 1. That is:] Let
k be any integer with k ≥ 0, and suppose that

ak = 2 ·5k−1. ← P(k)
inductive hypothesis

By definition of divisibility, this means that

ak = 2 ·5k−1.
[We must show that P(k + 1) is true. That is:] We must show that

ak+1 = 2 ·5(k+1)−1,

or, equivalently,

ak+1 = 2 ·5k . ← P(k + 1)

But the left-hand side of P(k + 1) is

ak+1 = 5a(k+1)−1 by definition of a1, a2, a3, . . .

= 5ak since (k + 1)− 1 = k

= 5 ·(2 ·5k−1) by inductive hypothesis

= 2 ·(5 ·5k−1) by regrouping

= 2 ·5k by the laws of exponents

which is the right-hand side of the equation [as was to be shown.]

[Since we have proved the basis step and the inductive step, we conclude that the formula
holds for all terms of the sequence.] ■

A Problem with Trominoes
The word polyomino, a generalization of domino, was introduced by Solomon Golomb in
1954 when he was a 22-year-old student at Harvard. Subsequently, he and others proved
many interesting properties about them, and they became the basis for the popular com-
puter game Tetris. A particular type of polyomino, called a tromino, is made up of three
attached squares, which can be of two types:

straight and L-shaped

Call a checkerboard that is formed using m squares on a side an m × m (“m by m”)
checkerboard. Observe that if one square is removed from a 4× 4 checkerboard, the
remaining squares can be completely covered by L-shaped trominoes. For instance, a
covering for one such board is illustrated in the figure to the left.
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5.3 Mathematical Induction II 265

In his first article about polyominoes, Golomb included a proof of the following theorem.
It is a beautiful example of an argument by mathematical induction.

Theorem Covering a Board with Trominoes

For any integer n ≥ 1, if one square is removed from a 2n × 2n checkerboard, the
remaining squares can be completely covered by L-shaped trominoes.

The main insight leading to a proof of this theorem is the observation that because
2k+ 1 = 2 ·2k , when a 2k+ 1 × 2k+ 1 board is split in half both vertically and hori-
zontally, each half side will have length 2k and so each resulting quadrant will be a
2k × 2k checkerboard.

Proof (by mathematical induction):

Let the property P(n) be the sentence

If any square is removed from a 2n × 2n checkerboard,
then the remaining squares can be completely covered.
by L-shaped trominoes

← P(n)

Show that P(1) is true:
A 21 × 21 checkerboard just consists of four squares. If one square is removed, the
remaining squares form an L, which can be covered by a single L-shaped tromino,
as illustrated in the figure to the left. Hence P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k+ 1) is also true:

[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 3. That is:]
Let k be any integer such that k ≥ 1, and suppose that

If any square is removed from a 2k × 2kcheckerboard,
then the remaining squares can be completely covered
by L-shaped trominoes.

← P(k)

P(k) is the inductive hypothesis.
[We must show that P (k + 1) is true. That is:] We must show that

If any square is removed from a 2k+1 × 2k+1 checkerboard,
then the remaining squares can be completely covered
by L-shaped trominoes.

← P(k + 1)

2k 2k

2k + 2k = 2k + 1 Consider a 2k+ 1 × 2k+ 1 checkerboard with one square removed. Divide it into four
equal quadrants: Each will consist of a 2k × 2k checkerboard. In one of the quad-
rants, one square will have been removed, and so, by inductive hypothesis, all the
remaining squares in this quadrant can be completely covered by L-shaped tromi-
noes. The other three quadrants meet at the center of the checkerboard, and the
center of the checkerboard serves as a corner of a square from each of those quad-
rants. An L-shaped tromino can, therefore, be placed on those three central squares.
This situation is illustrated in the figure to the left. By inductive hypothesis, the
remaining squares in each of the three quadrants can be completely covered by L-
shaped trominoes. Thus every square in the 2k+ 1 × 2k+ 1 checkerboard except the
one that was removed can be completely covered by L-shaped trominoes [as was to
be shown].
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Test Yourself
1. Mathematical induction differs from the kind of induction

used in the natural sciences because it is actually a form of
____ reasoning.

2. Mathematical induction can be used to _____ conjectures
that have been made using inductive reasoning.

Exercise Set 5.3
1. Based on the discussion of the product

(
1− 1

2

) (
1− 1

3

)(
1− 1

4

) · · · (1− 1
n

)
at the beginning of this section, con-

jecture a formula for general n. Prove your conjecture by
mathematical induction.

2. Experiment with computing values of the product(
1+ 1

1

) (
1+ 1

2

) (
1+ 1

3

) · · · (1+ 1
n

)
for small values of n

to conjecture a formula for this product for general n. Prove
your conjecture by mathematical induction.

3. Observe that

1

1 ·3 =
1

3

1

1 ·3 +
1

3 ·5 =
2

5

1

1 ·3 +
1

3 ·5 +
1

5 ·7 =
3

7

1

1 ·3 +
1

3 ·5 +
1

5 ·7 +
1

7 ·9 =
4

9

Guess a general formula and prove it by mathematical
induction.

4.H Observe that

1 = 1,

1− 4 = −(1+ 2),

1− 4+ 9 = 1+ 2+ 3,

1− 4+ 9− 16 = −(1+ 2+ 3+ 4),

1− 4+ 9− 16+ 25 = 1+ 2+ 3+ 4+ 5.

Guess a general formula and prove it by mathematical
induction.

5. Evaluate the sum
n∑

k=1

k

(k + 1)! for n = 1, 2, 3, 4, and 5.

Make a conjecture about a formula for this sum for general
n, and prove your conjecture by mathematical induction.

6. For each positive integer n, let P(n) be the property

5n − 1 is divisible by 4.

a. Write P(0). Is P(0) true?
b. Write P(k).
c. Write P(k + 1).
d. In a proof by mathematical induction that this divisibil-

ity property holds for all integers n ≥ 0, what must be
shown in the inductive step?

7. For each positive integer n, let P(n) be the property

2n < (n + 1)!.
a. Write P(2). Is P(2) true?
b. Write P(k).
c. Write P(k + 1).
d. In a proof by mathematical induction that this inequality

holds for all integers n ≥ 2, what must be shown in the
inductive step?

Prove each statement in 8–23 by mathematical induction.

8. 5n − 1 is divisible by 4, for each integer n ≥ 0.

9. 7n − 1 is divisible by 6, for each integer n ≥ 0.

10. n3 − 7n + 3 is divisible by 3, for each integer n ≥ 0.

11. 32n − 1 is divisible by 8, for each integer n ≥ 0.

12. For any integer n ≥ 0, 7n − 2n is divisible by 5.

13.H For any integer n ≥ 0, xn − yn is divisible by x − y, where
x and y are any integers with x �= y.

14.H n3 − n is divisible by 6, for each integer n ≥ 0.

15. n(n2 + 5) is divisible by 6, for each integer n ≥ 0.

16. 2n < (n + 1)!, for all integers n ≥ 2.

17. 1+ 3n ≤ 4n , for every integer n ≥ 0.

18. 5n + 9 < 6n , for all integers n ≥ 2.

19. n2 < 2n , for all integers n ≥ 5.

20. 2n < (n + 2)!, for all integers n ≥ 0.

21.
√
n <

1√
1
+ 1√

2
+ · · · + 1√

n
, for all integers n ≥ 2.

22. 1+ nx ≤ (1+ x)n , for all real numbers x > −1 and
integers n ≥ 2.

23. a. n3 > 2n + 1, for all integers n ≥ 2.
b. n! > n2, for all integers n ≥ 4.

24. A sequence a1, a2, a3, . . . is defined by letting a1 = 3 and
ak = 7ak−1 for all integers k ≥ 2. Show that an = 3 ·7n−1
for all integers n ≥ 1.

25. A sequence b0, b1, b2, . . . is defined by letting b0 = 5 and
bk = 4+ bk−1 for all integers k ≥ 1. Show that bn > 4n for
all integers n ≥ 0.
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5.3 Mathematical Induction II 267

26. A sequence c0, c1, c2, . . . is defined by letting c0 = 3 and
ck = (ck−1)2 for all integers k ≥ 1. Show that cn = 32

n
for

all integers n ≥ 0.

27. A sequence d1, d2, d3, . . . is defined by letting d1 = 2 and

dk = dk−1
k

for all integers k ≥ 2. Show that for all integers

n ≥ 1, dn = 2

n! .
28. Prove that for all integers n ≥ 1,

1

3
= 1+ 3

5+ 7
= 1+ 3+ 5

7+ 9+ 11
= · · ·

= 1+ 3+ · · · + (2n − 1)

(2n + 1)+ · · · + (4n − 1)
.

29. As each of a group of businesspeople arrives at a meeting,
each shakes hands with all the other people present. Use
mathematical induction to show that if n people come to
the meeting then [n(n − 1)]/2 handshakes occur.

In order for a proof by mathematical induction to be valid, the
basis statement must be true for n = a and the argument of
the inductive step must be correct for every integer k ≥ a. In
30 and 31 find the mistakes in the “proofs” by mathematical
induction.

30. “Theorem:” For any integer n ≥ 1, all the numbers in a
set of n numbers are equal to each other.

“Proof (by mathematical induction): It is obviously true
that all the numbers in a set consisting of just one number
are equal to each other, so the basis step is true. For the
inductive step, let A = {a1, a2, . . . , ak, ak+1} be any set of
k + 1 numbers. Form two subsets each of size k:

B = {a1, a2, a3, . . . , ak} and

C = {a1, a3, a4, . . . , ak+1}.

(B consists of all the numbers in A except ak+1, and C
consists of all the numbers in A except a2.) By induc-
tive hypothesis, all the numbers in B equal a1 and all
the numbers in C equal a1 (since both sets have only k
numbers). But every number in A is in B or C , so all
the numbers in A equal a1; hence all are equal to each
other.”

31.H “Theorem:” For all integers n ≥ 1, 3n − 2 is even.

“Proof (by mathematical induction): Suppose the
theorem is true for an integer k, where k ≥ 1. That is,
suppose that 3k − 2 is even. We must show that 3k+1 − 2 is
even. But

3k+1 − 2 = 3k ·3− 2 = 3k(1+ 2)− 2

= (3k − 2)+ 3k ·2.

Now 3k − 2 is even by inductive hypothesis and 3k ·2 is
even by inspection. Hence the sum of the two quantities is
even (by Theorem 4.1.1). It follows that 3k+1 − 2 is even,
which is what we needed to show.”

32.H Some 5× 5 checkerboards with one square removed can be
completely covered by L-shaped trominoes, whereas other
5× 5 checkerboards cannot. Find examples of both kinds
of checkerboards. Justify your answers.

33. Consider a 4× 6 checkerboard. Draw a covering of the
board by L-shaped trominoes.

34.H a. Use mathematical induction to prove that any checker-
board with dimensions 3× 2n can be completely
covered with L-shaped trominoes for any integer n ≥ 1.

b. Let n be any integer greater than or equal to 1. Use the
result of part (a) to prove by mathematical induction
that for all integers m, any checkerboard with dimen-
sions 2m × 3n can be completely covered with L-shaped
trominoes.

35. Let m and n be any integers that are greater than or equal
to 1.
a. Prove that a necessary condition for an m × n checker-

board to be completely coverable by L-shaped trominoes
is that mn be divisible by 3.

H b. Prove that having mn be divisible by 3 is not a sufficient
condition for an m × n checkerboard to be completely
coverable by L-shaped trominoes.

36. In a round-robin tournament each team plays every other
team exactly once. If the teams are labeled T1, T2, . . . , Tn,
then the outcome of such a tournament can be represented
by a drawing, called a directed graph, in which the teams
are represented as dots and an arrow is drawn from one
dot to another if, and only if, the team represented by the
first dot beats the team represented by the second dot. For
example, the directed graph below shows one outcome of
a round-robin tournament involving five teams, A, B, C, D,
and E.

A
B

C

D
E

Use mathematical induction to show that in any round-
robin tournament involving n teams, where n ≥ 2, it is
possible to label the teams T1, T2, . . . , Tn so that Ti beats
Ti+1 for all i = 1, 2, . . . , n − 1. (For instance, one such
labeling in the example above is T1 = A, T2 = B, T3 =
C, T4 = E, T5 = D.) (Hint: Given k + 1 teams, pick one—
say T ′—and apply the inductive hypothesis to the remain-
ing teams to obtain an ordering T1, T2, . . . , Tk . Consider
three cases: T

′
beats T1, T

′
loses to the firstm teams (where

1 ≤ m ≤ k − 1) and beats the (m + 1)st team, and T
′
loses

to all the other teams.)

37.✶H On the outside rim of a circular disk the integers from
1 through 30 are painted in random order. Show that no
matter what this order is, there must be three successive
integers whose sum is at least 45.
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38.H Suppose that n a’s and n b’s are distributed around the out-
side of a circle. Use mathematical induction to prove that
for all integers n ≥ 1, given any such arrangement, it is
possible to find a starting point so that if one travels around
the circle in a clockwise direction, the number of a’s one
has passed is never less than the number of b’s one has
passed. For example, in the diagram shown below, one
could start at the a with an asterisk.

a
a

a

b

b

b
b

b

a*

a

a

b

39. For a polygon to be convex means that all of its inte-
rior angles are less than 180 degrees. Use mathematical
induction to prove that for all integers n ≥ 3, the angles
of any n-sided convex polygon add up to 180(n − 2)
degrees.

40. a. Prove that in an 8× 8 checkerboard with alternating
black and white squares, if the squares in the top right
and bottom left corners are removed the remaining board
cannot be covered with dominoes. (Hint: Mathematical
induction is not needed for this proof.)

b. Use mathematical induction to prove that for all
integers n, if a 2n × 2n checkerboard with alternat-
ing black and white squares has one white square
and one black square removed anywhere on the
board, the remaining squares can be covered with
dominoes.

Answers for Test Yourself
1. deductive 2. prove

5.4 Strong Mathematical Induction
and the Well-Ordering Principle for the Integers
Mathematics takes us still further from what is human into the region of absolute
necessity, to which not only the actual world, but every possible world, must conform.
—Bertrand Russell, 1902

Strong mathematical induction is similar to ordinary mathematical induction in that it is
a technique for establishing the truth of a sequence of statements about integers. Also,
a proof by strong mathematical induction consists of a basis step and an inductive step.
However, the basis step may contain proofs for several initial values, and in the inductive
step the truth of the predicate P(n) is assumed not just for one value of n but for all
values through k, and then the truth of P(k + 1) is proved.

Principle of Strong Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a and b be fixed integers
with a ≤ b. Suppose the following two statements are true:

1. P(a), P(a + 1), . . . , and P(b) are all true. (basis step)

2. For any integer k ≥ b, if P(i) is true for all integers i from a through k, then
P(k + 1) is true. (inductive step)

Then the statement
for all integers n ≥ a, P(n)

is true. (The supposition that P(i) is true for all integers i from a through k is called
the inductive hypothesis. Another way to state the inductive hypothesis is to say
that P(a), P(a + 1), . . . , P(k) are all true.)
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