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38.H Suppose that n a’s and n b’s are distributed around the out-
side of a circle. Use mathematical induction to prove that
for all integers n ≥ 1, given any such arrangement, it is
possible to find a starting point so that if one travels around
the circle in a clockwise direction, the number of a’s one
has passed is never less than the number of b’s one has
passed. For example, in the diagram shown below, one
could start at the a with an asterisk.
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39. For a polygon to be convex means that all of its inte-
rior angles are less than 180 degrees. Use mathematical
induction to prove that for all integers n ≥ 3, the angles
of any n-sided convex polygon add up to 180(n − 2)
degrees.

40. a. Prove that in an 8× 8 checkerboard with alternating
black and white squares, if the squares in the top right
and bottom left corners are removed the remaining board
cannot be covered with dominoes. (Hint: Mathematical
induction is not needed for this proof.)

b. Use mathematical induction to prove that for all
integers n, if a 2n × 2n checkerboard with alternat-
ing black and white squares has one white square
and one black square removed anywhere on the
board, the remaining squares can be covered with
dominoes.

Answers for Test Yourself
1. deductive 2. prove

5.4 Strong Mathematical Induction
and the Well-Ordering Principle for the Integers
Mathematics takes us still further from what is human into the region of absolute
necessity, to which not only the actual world, but every possible world, must conform.
—Bertrand Russell, 1902

Strong mathematical induction is similar to ordinary mathematical induction in that it is
a technique for establishing the truth of a sequence of statements about integers. Also,
a proof by strong mathematical induction consists of a basis step and an inductive step.
However, the basis step may contain proofs for several initial values, and in the inductive
step the truth of the predicate P(n) is assumed not just for one value of n but for all
values through k, and then the truth of P(k + 1) is proved.

Principle of Strong Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a and b be fixed integers
with a ≤ b. Suppose the following two statements are true:

1. P(a), P(a + 1), . . . , and P(b) are all true. (basis step)

2. For any integer k ≥ b, if P(i) is true for all integers i from a through k, then
P(k + 1) is true. (inductive step)

Then the statement
for all integers n ≥ a, P(n)

is true. (The supposition that P(i) is true for all integers i from a through k is called
the inductive hypothesis. Another way to state the inductive hypothesis is to say
that P(a), P(a + 1), . . . , P(k) are all true.)
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5.4 Strong Mathematical Induction and the Well-Ordering Principle for the Integers 269

Any statement that can be proved with ordinary mathematical induction can be proved
with strong mathematical induction. The reason is that given any integer k ≥ b, if the
truth of P(k) alone implies the truth of P(k + 1), then certainly the truth of P(a),
P(a + 1), . . . , and P(k) implies the truth of P(k + 1). It is also the case that any
statement that can be proved with strong mathematical induction can be proved with
ordinary mathematical induction. A proof is sketched in exercise 27 at the end of this
section.

Strictly speaking, the principle of strong mathematical induction can be written with-
out a basis step if the inductive step is changed to “∀k ≥ a − 1, if P(i) is true for all
integers i from a through k, then P(k + 1) is true.” The reason for this is that the state-
ment “P(i) is true for all integers i from a through k” is vacuously true for k = a−1.
Hence, if the implication in the inductive step is true, then the conclusion P(a) must also
be true,∗ which proves the basis step. However, in many cases the proof of the implica-
tion for k > b does not work for a ≤ k ≤ b. So it is a good idea to get into the habit of
thinking separately about the cases where a ≤ k ≤ b by explicitly including a basis step.

The principle of strong mathematical induction is known under a variety of different
names including the second principle of induction, the second principle of finite induc-
tion, and the principle of complete induction.

Applying Strong Mathematical Induction
The divisibility-by-a-prime theorem states that any integer greater than 1 is divisible by a
prime number. We prove this theorem using strong mathematical induction.

Example 5.4.1 Divisibility by a Prime

Prove Theorem 4.3.4: Any integer greater than 1 is divisible by a prime number.

Solution The idea for the inductive step is this: If a given integer greater than 1 is not
itself prime, then it is a product of two smaller positive integers, each of which is greater
than 1. Since you are assuming that each of these smaller integers is divisible by a prime
number, by transitivity of divisibility, those prime numbers also divide the integer you
started with.

Proof (by strong mathematical induction):

Let the property P(n) be the sentence

n is divisible by a prime number. ← P(n)

Show that P(2) is true:
To establish P(2), we must show that

2 is divisible by a prime number. ← P(2)

But this is true because 2 is divisible by 2 and 2 is a prime number.

Show that for all integers k ≥ 2, if P(i) is true for all integers i from 2 through k,
then P(k + 1) is also true:

continued on page 270

∗If you have proved that a certain if-then statement is true and if you also know that the hypothesis
is true, then the conclusion must be true.
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270 Chapter 5 Sequences, Mathematical Induction, and Recursion

Let k be any integer with k ≥ 2 and suppose that

i is divisible by a prime number for all integers
i from 2 through k. ← inductive hypothesis

We must show that

k + 1 is divisible by a prime number. ← P(k + 1)

Case 1 (k + 1 is prime): In this case k + 1 is divisible by a prime number, namely
itself.

Case 2 (k + 1 is not prime): In this case k + 1 = ab where a and b are inte-
gers with 1 < a < k + 1 and 1 < b < k + 1. Thus, in particular, 2 ≤ a ≤ k, and
so by inductive hypothesis, a is divisible by a prime number p. In addition because
k + 1 = ab, we have that k + 1 is divisible by a. Hence, since k + 1 is divisible by a
and a is divisible by p, by transitivity of divisibility, k + 1 is divisible by the prime
number p.

Therefore, regardless of whether k + 1 is prime or not, it is divisible by a prime
number [as was to be shown].
[Since we have proved both the basis and the inductive step of the strong mathematical
induction, we conclude that the given statement is true.]

■

Both ordinary and strong mathematical induction can be used to show that the terms
of certain sequences satisfy certain properties. The next example shows how this is done
using strong induction.

Example 5.4.2 Proving a Property of a Sequence with Strong Induction

Define a sequence s0, s1, s2, . . . as follows:

s0 = 0, s1 = 4, sk = 6ak−1 − 5ak−2 for all integers k ≥ 2.

a. Find the first four terms of this sequence.

b. It is claimed that for each integer n ≥ 0, the nth term of the sequence has the same
value as that given by the formula 5n − 1. In other words, the claim is that all the terms
of the sequence satisfy the equation sn = 5n − 1. Prove that this is true.

Solution

a. s0 = 0, s1 = 4, s2 = 6s1 − 5s0 = 6 ·4− 5 ·0 = 24,
s3 = 6s2 − 5s1 = 6 ·24− 5 ·4 = 144− 20 = 124

b. To use strong mathematical induction to show that every term of the sequence satis-
fies the equation, the basis step must show that the first two terms satisfy it. This is
necessary because, according to the definition of the sequence, computing values of
later terms requires knowing the values of the two previous terms. So if the basis step
only shows that the first term satisfies the equation, it would not be possible to use
the inductive step to deduce that the second term satisfies the equation. In the induc-
tive step you suppose that for an arbitrarily chosen integer k ≥ 1, all the terms of the
sequence from s0 through sk satisfy the given equation and you then deduce that sk+1
must also satisfy the equation.
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Proof:

Let s0, s1, s2, . . . be the sequence defined by specifying that s0 = 0, s1 = 4, and
sk = 6ak−1 − 5ak−2 for all integers k ≥ 2, and let the property P(n) be the formula

sn = 5n − 1 ← P(n)

We will use strong mathematical induction to prove that for all integers n ≥ 0, P(n)
is true.

Show that P(0) and P(1) are true:
To establish P(0) and P(1), we must show that

s0 = 50 − 1 and s1 = 51 − 1. ← P(0) and P(1)

But, by definition of s0, s1, s2, . . ., we have that s0 = 0 and s1 = 4. Since 50 − 1 =
1− 1 = 0 and 51 − 1 = 5− 1 = 4, the values of s0 and s1 agree with the values
given by the formula.

Show that for all integers k ≥ 1, if P(i) is true for all integers i from 0 through k,
then P(k+ 1) is also true:
Let k be any integer with k ≥ 1 and suppose that

si = 5i − 1 for all integers i with 0 ≤ i ≤ k. ← inductive hypothesis

We must show that

sk+1 = 5k+1 − 1. ← P(k + 1)

But since k ≥ 1, we have that k + 1 ≥ 2, and so

sk+1 = 6sk − 5sk−1 by definition of s0, s1, s2, . . .

= 6(5k − 1)− 5(5k−1 − 1) by definition hypothesis

= 6 ·5k − 6− 5k + 5 by multiplying out and applying

a law of exponents

= (6− 1)5k − 1 by factoring out 6 and arithmetic

= 5 ·5k − 1 by arithmetic

= 5k+1 − 1 by applying a law of exponents,

[as was to be shown].

[Since we have proved both the basis and the inductive step of the strong mathematical
induction, we conclude that the given statement is true.]

■

Another use of strong induction concerns the computation of products. A product
of four numbers may be computed in a variety of different ways as indicated by the
placement of parentheses. For instance,

((x1x2)x3)x4 means multiply x1 and x2, multiply the result by x3,
and then multiply that number by x4.

And

(x1x2)(x3x4) means multiply x1 and x2, multiply x3 and x4,
and then take the product of the two.

Note that in both examples above, although the factors are multiplied in a different order,
the number of multiplications—three—is the same. Strong mathematical induction is
used to prove a generalization of this fact.
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272 Chapter 5 Sequences, Mathematical Induction, and Recursion

Note Like many
definitions, for extreme
cases this may look
strange but it makes
things work out nicely.

Convention

Let us agree to say that a single number x1 is a product with one factor and can be
computed with zero multiplications.

Example 5.4.3 The Number of Multiplications Needed to Multiply n Numbers

Prove that for any integer n ≥ 1, if x1, x2, . . . , xn are n numbers, then no matter how the
parentheses are inserted into their product, the number of multiplications used to compute
the product is n − 1.

Solution The truth of the basis step follows immediately from the convention about a prod-
uct with one factor. The inductive step is based on the fact that when several numbers are
multiplied together, each step of the process involves multiplying two individual quanti-
ties. For instance, the final step for computing ((x1x2)x3)(x4x5) is to multiply (x1x2)x3
and x4x5. In general, if k + 1 numbers are multiplied, the two quantities in the final step
each consist of fewer than k + 1 factors. This is what makes it possible to use the induc-
tive hypothesis.

Proof (by strong mathematical induction):

Let the property P(n) be the sentence

If x1, x2, . . . , xn are n numbers, then
no matter how parentheses are inserted into their
product, the number of multiplications used to ← P(n)

compute the product is n − 1.

Show that P(1) is true:
To establish P(1), we must show that

The number of multiplications needed to compute
the product of x1 is 1− 1. ← P(1)

This is true because, by convention, x1 is a product that can be computed with 0
multiplications, and 0 = 1− 1.

Show that for all integers k ≥ 1, if P(i) is true for all integers i from 1 through k,
then P(k+ 1) is also true:
Let k by any integer with k ≥ 1 and suppose that

For all integers i from 1 through k, if x1, x2, . . . , xi
are numbers, then no matter how parentheses
are inserted into their product, the number
of multiplications used to compute the
product is i − 1.

← inductive hypothesis

We must show that

If x1, x2, . . . , xk+ 1 are k + 1 numbers, then no
matter how parentheses are inserted into their
product, the number of multiplications used to
compute the product is (k + 1)− 1 = k.

← P(k + 1)

Consider a product of k + 1 factors: x1, x2 . . . , xk+ 1. When parentheses are inserted
in order to compute the product, some multiplication is the final one and each of
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the two factors making up the final multiplication is a product of fewer than k + 1
factors. Let L be the product of the left-hand factors and R be the product of the
right-hand factors, and suppose that L is composed of l factors and R is composed
of r factors. Then l + r = k + 1, the total number of factors in the product, and

1 ≤ l ≤ k and 1 ≤ r ≤ k.

By inductive hypothesis, evaluating L takes l − 1 multiplications and evaluating R
takes r − 1 multiplications. Because one final multiplication is needed to evaluate
L ·R, the number of multiplications needed to evaluate the product of all k + 1 fac-
tors is

(l − 1)+ (r − 1)+ 1 = (l + r)− 1 = (k + 1)− 1 = k.

[This is what was to be shown.]
[Since we have proved the basis step and the inductive step of the strong mathematical
induction, we conclude that the given statement is true.]

■

Strong mathematical induction makes possible a proof of the fact used frequently in com-
puter science that every positive integer n has a unique binary integer representation. The
proof looks complicated because of all the notation needed to write down the various
steps. But the idea of the proof is simple. It is that if smaller integers than n have unique
representations as sums of powers of 2, then the unique representation for n as a sum of
powers of 2 can be found by taking the representation for n/2 (or for (n − 1)/2 if n is
odd) and multiplying it by 2.

Theorem 5.4.1 Existence and Uniqueness of Binary Integer Representations

Given any positive integer n, n has a unique representation in the form

n = cr ·2r + cr−1 ·2r−1 + · · · + c2 ·22 + c1 ·2+ c0,

where r is a nonnegative integer, cr = 1, and c j = 1 or 0 for all j = 0, 1, 2, . . . , r − 1.

Proof:

We give separate proofs by strong mathematical induction to show first the existence
and second the uniqueness of the binary representation.

Existence (proof by strong mathematical induction): Let the property P(n) be the
equation

n = cr ·2r + cr−1 ·2r−1 + · · · + c2 ·22 + c1 ·2+ c0, ← P(n)

where r is a nonnegative integer, cr = 1, and c j = 1 or 0 for all j = 0, 1, 2, . . . , r − 1.

Show that P(1) is true:
Let r = 0 and c0 = 1. Then 1 = cr ·2r , and so n = 1 can be written in the required
form.

Show that for all integers k ≥ 1, if P(i) is true for all integers i from 1 through k,
then P(k+ 1) is also true:

continued on page 274
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Let k be an integer with k ≥ 1. Suppose that for all integers i from 1 through k,

i = cr ·2r + cr−1 ·2r−1 + · · · + c2 ·22 + c1 ·2+ c0, ← inductive hypothesis

where r is a nonnegative integer, cr = 1, and c j = 1 or 0 for all j = 0, 1, 2, . . . , r − 1.
We must show that k + 1 can be written as a sum of powers of 2 in the required
form.

Case 1 (k + 1 is even): In this case (k + 1)/2 is an integer, and by inductive hypoth-
esis, since 1 ≤ (k + 1)/2 ≤ k, then,

k + 1

2
= cr ·2r + cr−1 ·2r−1 + · · · + c2 ·22 + c1 ·2+ c0,

where r is a nonnegative integer, cr = 1, and c j = 1 or 0 for all j = 0, 1, 2, . . . , r − 1.
Multiplying both sides of the equation by 2 gives

k + 1 = cr ·2r+1 + cr−1 ·2r + · · · + c2 ·23 + c1 ·22 + c0 ·2,
which is a sum of powers of 2 of the required form.

Case 2 (k + 1 is odd): In this case k/2 is an integer, and by inductive hypothesis,
since 1 ≤ k/2 ≤ k, then

k

2
= cr ·2r + cr−1 ·2r−1 + · · · + c2 ·22 + c1 ·2+ c0,

where r is a nonnegative integer, cr = 1, and c j = 1 or 0 for all j = 0, 1, 2, . . . , r − 1.
Multiplying both sides of the equation by 2 and adding 1 gives

k + 1 = cr ·2r+1 + cr−1 ·2r + · · · + c2 ·23 + c1 ·22 + c0 ·2+ 1,

which is also a sum of powers of 2 of the required form.

The preceding arguments show that regardless of whether k + 1 is even or odd, k + 1
has a representation of the required form. [Or, in other words, P(k + 1) is true as was
to be shown.]

[Since we have proved the basis step and the inductive step of the strong mathematical
induction, the existence half of the theorem is true.]

Uniqueness: To prove uniqueness, suppose that there is an integer n with two dif-
ferent representations as a sum of nonnegative integer powers of 2. Equating the two
representations and canceling all identical terms gives

2r + cr−1 ·2r−1 + · · · + c1 ·2+ c0 = 2s + ds−1 ·2s−1 + · · · + d1 ·2+ d0 5.4.1

where r and s are nonnegative integers, and each ci and each di equal 0 or 1. Without
loss of generality, we may assume that r < s. But by the formula for the sum of a
geometric sequence (Theorem 5.2.3) and because r < s,

2r + cr−1 ·2r−1 + · · · + c1 ·2+ c0 ≤ 2r + 2r−1 + · · · + 2+ 1 = 2r+1 − 1

< 2s .

Thus

2r + cr−1 ·2r−1 + · · · + c1 ·2+ c0 < 2s + ds−1 ·2s−1 + · · · + d1 ·2+ d0,

which contradicts equation (5.4.1). Hence the supposition is false, so any integer n
has only one representation as a sum of nonnegative integer powers of 2.
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The Well-Ordering Principle for the Integers
The well-ordering principle for the integers looks very different from both the ordinary
and the strong principles of mathematical induction, but it can be shown that all three
principles are equivalent. That is, if any one of the three is true, then so are both of the
others.

Well-Ordering Principle for the Integers

Let S be a set of integers containing one or more integers all of which are greater
than some fixed integer. Then S has a least element.

Note that when the context makes the reference clear, we will write simply “the well-
ordering principle” rather than “the well-ordering principle for the integers.”

Example 5.4.4 Finding Least Elements

In each case, if the set has a least element, state what it is. If not, explain why the well-
ordering principle is not violated.

a. The set of all positive real numbers.

b. The set of all nonnegative integers n such that n2 < n.

c. The set of all nonnegative integers of the form 46− 7k, where k is an integer.

Solution

a. There is no least positive real number. For if x is any positive real number, then x/2 is
a positive real number that is less than x . No violation of the well-ordering principle
occurs because the well-ordering principle refers only to sets of integers, and this set
is not a set of integers.

b. There is no least nonnegative integer n such that n2 < n because there is no nonneg-
ative integer that satisfies this inequality. The well-ordering principle is not violated
because the well-ordering principle refers only to sets that contain at least one element.

c. The following table shows values of 46− 7k for various values of k.

k 0 1 2 3 4 5 6 7 · · · −1 −2 −3 · · ·
46 − 7k 46 39 32 25 18 11 4 −3 · · · 53 60 67 · · ·

The table suggests, and you can easily confirm, that 46− 7k < 0 for k ≥ 7 and that
46− 7k ≥ 46 for k ≤ 0. Therefore, from the other values in the table it is clear that 4
is the least nonnegative integer of the form 46− 7k. This corresponds to k = 6. ■

Another way to look at the analysis of Example 5.4.4(c) is to observe that subtracting
six 7’s from 46 leaves 4 left over and this is the least nonnegative integer obtained by
repeated subtraction of 7’s from 46. In other words, 6 is the quotient and 4 is the remainder
for the division of 46 by 7. More generally, in the division of any integer n by any positive
integer d, the remainder r is the least nonnegative integer of the form n − dk. This is
the heart of the following proof of the existence part of the quotient-remainder theorem
(the part that guarantees the existence of a quotient and a remainder of the division of an
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integer by a positive integer). For a proof of the uniqueness of the quotient and remainder,
see exercise 18 of Section 4.6.

Quotient-Remainder Theorem (Existence Part)

Given any integer n and any positive integer d, there exist integers q and r such that

n = dq + r and 0 ≤ r < d.

Proof:

Let S be the set of all nonnegative integers of the form

n − dk,

where k is an integer. This set has at least one element. [For if n is nonnegative, then

n − 0 ·d = n ≥ 0,

and so n − 0 ·d is in S. And if n is negative, then

n − nd = n(1− d)︸ ︷︷ ︸ ≥ 0,,⏐ →

<0 ≤0 since d is a positive integer

and so n − nd is in S.] It follows by the well-ordering principle for the integers that
S contains a least element r . Then, for some specific integer k = q,

n − dq = r

[because every integer in S can be written in this form]. Adding dq to both sides gives

n = dq + r.

Furthermore, r < d. [For suppose r ≥ d. Then

n − d(q + 1) = n − dq − d = r − d ≥ 0,

and so n − d(q + 1) would be a nonnegative integer in S that would be smaller than r.
But r is the smallest integer in S. This contradiction shows that the supposition r ≥ d
must be false.] The preceding arguments prove that there exist integers r and q for
which

n = dq + r and 0 ≤ r < d.

[This is what was to be shown.]

Another consequence of the well-ordering principle is the fact that any strictly decreas-
ing sequence of nonnegative integers is finite. That is, if r1, r2, r3, . . . is a sequence of
nonnegative integers satisfying

ri > ri+1

for all i ≥ 1, then r1, r2, r3, . . . is a finite sequence. [For by the well-ordering principle such
a sequence would have to have a least element rk . It follows that rk must be the final term of
the sequence because if there were a term rk+1, then since the sequence is strictly decreasing,
rk+1 < rk , which would be a contradiction.] This fact is frequently used in computer science
to prove that algorithms terminate after a finite number of steps.
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Test Yourself
1. In a proof by strong mathematical induction the basis step

may require checking a property P(n) for more _____ value
of n.

2. Suppose that in the basis step for a proof by strong math-
ematical induction the property P(n) was checked for all
integers n from a through b. Then in the inductive step one

assumes that for any integer k ≥ b, the property P(n) is true
for all values of i from _____ through _____ and one shows
that _____ is true.

3. According to the well-ordering principle for the integers, if a
set S of integers contains at least _____ and if there is some
integer that is less than or equal to every _____, then _____.

Exercise Set 5.4
1. Suppose a1, a2, a3, . . . is a sequence defined as follows:

a1 = 1, a2 = 3,

ak = ak−2 + 2ak−1 for all integers k ≥ 3.

Prove that an is odd for all integers n ≥ 1.

2. Suppose b1, b2, b3, . . . is a sequence defined as follows:

b1 = 4, b2 = 12

bk = bk−2 + bk−1 for all integers k ≥ 3.

Prove that bn is divisible by 4 for all integers n ≥ 1.

3. Suppose that c0, c1, c2, . . . is a sequence defined as follows:

c0 = 2, c1 = 2, c2 = 6,

ck = 3ck−3 for all integers k ≥ 3.

Prove that cn is even for all integers n ≥ 0.

4. Suppose that d1, d2, d3, . . . is a sequence defined as follows:

d1 = 9

10
, d2 = 10

11
,

dk = dk−1 ·dk−2 for all integers k ≥ 3.

Prove that 0 < dn ≤ 1 for all integers n ≥ 0.

5. Suppose that e0, e1, e2, . . . is a sequence defined as follows:

e0 = 12, e1 = 29

ek = 5ek−1 − 6ek−2 for all integers k ≥ 2.

Prove that en = 5 ·3n + 7 ·2n for all integers n ≥ 0.

6. Suppose that f0, f1, f2, . . . is a sequence defined as fol-
lows:

f0 = 5, f1 = 16

fk = 7 fk−1 − 10 fk−2 for all integers k ≥ 2.

Prove that fn = 3 ·2n + 2 ·5n for all integers n ≥ 0.

7. Suppose that g1, g2, g3, . . . is a sequence defined as fol-
lows:

g1 = 3, g2 = 5

gk = 3gk−1 − 2gk−2 for all integers k ≥ 3.

Prove that gn = 2n + 1 for all integers n ≥ 1.

8. Suppose that h0, h1, h2, . . . is a sequence defined as fol-
lows:

h0 = 1, h1 = 2, h2 = 3,

hk = hk−1 + hk−2 + hk−3 for all integers k ≥ 3.

a. Prove that hn ≤ 3n for all integers n ≥ 0.
b. Suppose that s is any real number such that

s3 ≥ s2 + s + 1. (This implies that s > 1.83.) Prove that
hn ≤ sn for all n ≥ 2.

9. Define a sequence a1, a2, a3, . . . as follows: a1 = 1, a2 = 3,
and ak = ak−1 + ak−2 for all integers k ≥ 3. (This sequence
is known as the Lucas sequence.) Use strong mathematical

induction to prove that an ≤
(
7
4

)n
for all integers n ≥ 1.

10.H The problem that was used to introduce ordinary mathe-
matical induction in Section 5.2 can also be solved using
strong mathematical induction. Let P(n) be “any collec-
tion of n coins can be obtained using a combination of 3c/
and 5c/ coins.” Use strong mathematical induction to prove
that P(n) is true for all integers n ≥ 14.

11. You begin solving a jigsaw puzzle by finding two pieces
that match and fitting them together. Each subsequent step
of the solution consists of fitting together two blocks made
up of one or more pieces that have previously been assem-
bled. Use strong mathematical induction to prove that the
number of steps required to put together all n pieces of a
jigsaw puzzle is n − 1.

12.H The sides of a circular track contain a sequence of cans of
gasoline. The total amount in the cans is sufficient to enable
a certain car to make one complete circuit of the track, and
it could all fit into the car’s gas tank at one time. Use mathe-
matical induction to prove that it is possible to find an initial
location for placing the car so that it will be able to traverse
the entire track by using the various amounts of gasoline in
the cans that it encounters along the way.

13.H Use strong mathematical induction to prove the existence
part of the unique factorization of integers (Theorem 4.3.5):
Every integer greater than 1 is either a prime number or a
product of prime numbers.

14. Any product of two or more integers is a result of succes-
sive multiplications of two integers at a time. For instance,
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here are a few of the ways in which a1a2a3a4 might be com-
puted: (a1a2)(a3a4) or ((a1a2)a3)a4) or a1((a2a3)a4). Use
strong mathematical induction to prove that any product of
two or more odd integers is odd.

15. Any sum of two or more integers is a result of successive
additions of two integers at a time. For instance, here are a
few of the ways in which a1 + a2 + a3 + a4 might be com-
puted: (a1 + a2)+ (a3 + a4) or ((a1 + a2)+ a3)+ a4) or
a1 + ((a2 + a3)+ a4). Use strong mathematical induction
to prove that any sum of two or more even integers is even.

16.H Use strong mathematical induction to prove that for any
integer n ≥ 2, if n is even, then any sum of n odd integers
is even, and if n is odd, then any sum of n odd integers is
odd.

17. Compute 41, 42, 43, 44, 45, 46, 47, and 48. Make a conjec-
ture about the units digit of 4n where n is a positive
integer. Use strong mathematical induction to prove your
conjecture.

18. Compute 90, 91, 92, 93, 94, and 95. Make a conjecture about
the units digit of 9n where n is a positive integer. Use strong
mathematical induction to prove your conjecture.

19. Find the mistake in the following “proof” that purports
to show that every nonnegative integer power of every
nonzero real number is 1.

“Proof: Let r be any nonzero real number and let the prop-
erty P(n) be the equation rn = 1.

Show that P(0) is true: P(0) is true because r 0 = 1 by def-
inition of zeroth power.
Show that for all integers k ≥ 0, if P(i) is true for all inte-
gers i from 0 through k, then P(k+ 1) is also true: Let k
be any integer with k ≥ 0 and suppose that r i = 1 for all
integers i from 0 through k. This is the inductive hypothe-
sis. We must show that rk+1 = 1. Now

rk+1 = rk+k−(k−1) because k + k − (k − 1)
= k + k − k + 1 = k + 1

= rk ·rk
r k−1

by the laws of exponents

= 1 ·1
1

by inductive hypothesis

= 1.

Thus rk+1 = 1 [as was to be shown].

[Since we have proved the basis step and the inductive step of
the strong mathematical induction, we conclude that the given
statement is true.]”

20. Use the well-ordering principle for the integers to prove
Theorem 4.3.4: Every integer greater than 1 is divisible by
a prime number.

21. Use the well-ordering principle for the integers to prove the
existence part of the unique factorization of integers theo-
rem: Every integer greater than 1 is either prime or a prod-
uct of prime numbers.

22. a. The Archimedean property for the rational numbers
states that for all rational numbers r , there is an integer
n such that n > r . Prove this property.

b. Prove that given any rational number r , the number −r
is also rational.

c. Use the results of parts (a) and (b) to prove that given
any rational number r , there is an integer m such that
m < r .

23.H Use the results of exercise 22 and the well-ordering prin-
ciple for the integers to show that given any rational num-
ber r , there is an integer m such that m ≤ r < m + 1.

24. Use the well-ordering principle to prove that given any inte-
ger n ≥ 1, there exists an odd integer m and a nonnegative
integer k such that n = 2k ·m.

25. Imagine a situation in which eight people, numbered con-
secutively 1–8, are arranged in a circle. Starting from per-
son #1, every second person in the circle is eliminated.
The elimination process continues until only one person
remains. In the first round the people numbered 2, 4, 6, and
8 are eliminated, in the second round the people numbered
3 and 7 are eliminated, and in the third round person #5 is
eliminated. So after the third round only person #1 remains,
as shown below.

1

Initial State After the 1st Round After the 2nd Round After the 3rd Round

2

3

4
5

6

7

8
1

3

5

7

1

5

1

a. Given a set of sixteen people arranged in a circle and
numbered, consecutively 1–16, list the numbers of the
people who are eliminated in each round if every second
person is eliminated and the elimination process contin-
ues until only one person remains. Assume that the start-
ing point is person #1.

b. Use mathematical induction to prove that for all integers
n ≥ 1, given any set of 2n people arranged in a circle and
numbered consecutively 1 through 2n , if one starts from
person #1 and goes repeatedly around the circle succes-
sively eliminating every second person, eventually only
person #1 will remain.

c. Use the result of part (b) to prove that for any non-
negative integers n and m with 2n ≤ 2n + m < 2n+1, if
r = 2n + m, then given any set of r people arranged
in a circle and numbered consecutively 1 through r , if
one starts from person #1 and goes repeatedly around
the circle successively eliminating every second person,
eventually only person #(2m + 1) will remain.
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26. Suppose P(n) is a property such that
1. P(0), P(1), P(2) are all true,
2. for all integers k ≥ 0, if P(k) is true, then P(3k) is true.

Must it follow that P(n) is true for all integers n ≥ 0? If
yes, explain why; if no, give a counterexample.

27. Prove that if a statement can be proved by strong mathe-
matical induction, then it can be proved by ordinary mathe-
matical induction. To do this, let P(n) be a property that is
defined for integers n, and suppose the following two state-
ments are true:
1. P(a), P(a + 1), P(a + 2), . . . , P(b).
2. For any integer k ≥ b, if P(i) is true for all integers i

from a through k, then P(k + 1) is true.
The principle of strong mathematical induction would
allow us to conclude immediately that P(n) is true for all
integers n ≥ a. Can we reach the same conclusion using the
principle of ordinary mathematical induction? Yes! To see
this, let Q(n) be the property

P( j) is true for all integers j with a ≤ j ≤ n.

Then use ordinary mathematical induction to show that
Q(n) is true for all integers n ≥ b. That is, prove
1. Q(b) is true.
2. For any integer k ≥ b, if Q(k) is true then Q(k + 1) is

true.

28. Give examples to illustrate the proof of Theorem 5.4.1.

29.H It is a fact that every integer n ≥ 1 can be written in the
form

cr ·3r + cr−1 ·3r−1 + · · · + c2 ·32 + c1 ·3+ c0,

where cr = 1 or 2 and ci = 0, 1, or 2 for all integers i =
0, 1, 2, . . . , r − 1. Sketch a proof of this fact.

30.✶H Use mathematical induction to prove the existence part of
the quotient-remainder theorem for integers n ≥ 0.

31.✶H Prove that if a statement can be proved by ordinary math-
ematical induction, then it can be proved by the well-
ordering principle.

32.H Use the principle of ordinary mathematical induction to
prove the well-ordering principle for the integers.

Answers for Test Yourself
1. than one 2. a; k; P(k + 1) 3. one integer; integer in S; S contains a least element

5.5 Application: Correctness of Algorithms
[P]rogramming reliably—must be an activity of an undeniably mathematical nature
. . . . You see, mathematics is about thinking, and doing mathematics is always trying to
think as well as possible. — Edsger W. Dijkstra (1981)
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Edsger W. Dijkstra
(1930–2002)

What does it mean for a computer program to be correct? Each program is designed to do
a specific task—calculate the mean or median of a set of numbers, compute the size of the
paychecks for a company payroll, rearrange names in alphabetical order, and so forth. We
will say that a program is correct if it produces the output specified in its accompanying
documentation for each set of input data of the type specified in the documentation.∗

Most computer programmers write their programs using a combination of logical
analysis and trial and error. In order to get a program to run at all, the programmer must
first fix all syntax errors (such as writing ik instead of if, failing to declare a variable,
or using a restricted keyword for a variable name). When the syntax errors have been
removed, however, the program may still contain logical errors that prevent it from pro-
ducing correct output. Frequently, programs are tested using sets of sample data for which
the correct output is known in advance. And often the sample data are deliberately cho-
sen to test the correctness of the program under extreme circumstances. But for most
programs the number of possible sets of input data is either infinite or unmanageably
large, and so no amount of program testing can give perfect confidence that the program
will be correct for all possible sets of legal input data.

∗Consumers of computer programs want an even more stringent definition of correctness. If a user
puts in data of the wrong type, the user wants a decent error message, not a system crash.
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