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5.6 Defining Sequences Recursively

So, Nat’ralists observe, a Flea/Hath smaller Fleas that on him prey,/And these have
smaller Fleas to bite ’em,/And so proceed ad infinitum. — Jonathan Swift, 1733

A sequence can be defined in a variety of different ways. One informal way is to write
the first few terms with the expectation that the general pattern will be obvious. We might
say, for instance, “consider the sequence 3, 5, 7, . . ..” Unfortunately, misunderstandings
can occur when this approach is used. The next term of the sequence could be 9 if we
mean a sequence of odd integers, or it could be 11 if we mean the sequence of odd prime
numbers.

The second way to define a sequence is to give an explicit formula for its nth term.
For example, a sequence a0, a1, a2 . . . can be specified by writing

an = (−1)n
n + 1

for all integers n ≥ 0.

The advantage of defining a sequence by such an explicit formula is that each term of the
sequence is uniquely determined and can be computed in a fixed, finite number of steps,
by substitution.

The third way to define a sequence is to use recursion, as was done in Examples 5.3.3
and 5.4.2. This requires giving both an equation, called a recurrence relation, that defines
each later term in the sequence by reference to earlier terms and also one or more initial
values for the sequence.

Sometimes it is very difficult or impossible to find an explicit formula for a sequence,
but it is possible to define the sequence using recursion. Note that defining sequences
recursively is similar to proving theorems by mathematical induction. The recurrence
relation is like the inductive step and the initial conditions are like the basis step. Indeed,
the fact that sequences can be defined recursively is equivalent to the fact that mathemat-
ical induction works as a method of proof.

• Definition

A recurrence relation for a sequence a0, a1, a2, . . . is a formula that relates each
term ak to certain of its predecessors ak−1, ak−2, . . . , ak−i , where i is an integer with
k − i ≥ 0. The initial conditions for such a recurrence relation specify the values
of a0, a1, a2, . . . , ai−1, if i is a fixed integer, or a0, a1, . . . , am , where m is an integer
with m ≥ 0, if i depends on k.

Example 5.6.1 Computing Terms of a Recursively Defined Sequence

Define a sequence c0, c1, c2, . . . recursively as follows: For all integers k ≥ 2,

(1) ck = ck−1 + kck−2 + 1 recurrence relation

(2) c0 = 1 and c1 = 2 initial conditions.

Find c2, c3, and c4.

Solution c2 = c1 + 2c0 + 1
= 2+ 2 ·1+ 1

by substituting k = 2 into (1)
since c1 = 2 and c0 = 1 by (2)
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5.6 Defining Sequences Recursively 291

(3) ∴ c2 = 5
c3 = c2 + 3c1 + 1
= 5+ 3 ·2+ 1

by substituting k = 3 into (1)
since c2 = 5 by (3) and c1 = 2 by (2)

(4) ∴ c3 = 12
c4 = c3 + 4c2 + 1
= 12+ 4 ·5+ 1

(5) ∴ c4 = 33

by substituting k = 4 into (1)
since c3 = 12 by (4) and c2 = 5 by (3)

■

A given recurrence relation may be expressed in several different ways.

Example 5.6.2 Writing a Recurrence Relation in More Than One Way

Let s0, s1, s2, . . . be a sequence that satisfies the following recurrence relation:

for all integers k ≥ 1, sk = 3sk−1 − 1.

Explain why the following statement is true:

for all integers k ≥ 0, sk+1 = 3sk − 1.

Note Think of the
recurrence relation as
s�= 3s�−1 − 1, where
any positive integer
expression may be placed
in the box.

Solution In informal language, the recurrence relation says that any term of the sequence
equals 3 times the previous term minus 1. Now for any integer k ≥ 0, the term previous
to sk+1 is sk . Thus for any integer k ≥ 0, sk+1 = 3sk − 1. ■

A sequence defined recursively need not start with a subscript of zero. Also, a given
recurrence relation may be satisfied by many different sequences; the actual values of the
sequence are determined by the initial conditions.

Example 5.6.3 Sequences That Satisfy the Same Recurrence Relation

Let a1, a2, a3, . . . and b1, b2, b3, . . . satisfy the recurrence relation that the kth term equals
3 times the (k − 1)st term for all integers k ≥ 2:

(1) ak = 3ak−1 and bk = 3bk−1.

But suppose that the initial conditions for the sequences are different:

(2) a1 = 2 and b1 = 1.

Find (a) a2, a3, a4 and (b) b2, b3, b4.

Solution

a. a2 = 3a1 = 3 ·2 = 6
a3 = 3a2 = 3 ·6 = 18
a4 = 3a3 = 3 ·18 = 54

b. b2 = 3b1 = 3 ·1 = 3
b3 = 3b2 = 3 ·3 = 9
b4 = 3b3 = 3 ·9 = 27

Thus a1, a2, a3, . . . begins 2, 6, 18, 54, . . . and

b1, b2, b3, . . . begins 1, 3, 9, 27, . . . .

■
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292 Chapter 5 Sequences, Mathematical Induction, and Recursion

Example 5.6.4 Showing That a Sequence Given by an Explicit Formula Satisfies a Certain
Recurrence Relation

The sequence of Catalan numbers, named after the Belgian mathematician Eugène
Catalan (1814–1894), arises in a remarkable variety of different contexts in discrete math-
ematics. It can be defined as follows: For each integer n ≥ 1,

Cn = 1

n + 1

(
2n
n

)
.

a. Find C1,C2, and C3.

b. Show that this sequence satisfies the recurrence relation Ck = 4k − 2

k + 1
Ck−1 for all

integers k ≥ 2
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Eugène Catalan
(1814–1894)

Solution

a. C1 = 1

2

(
2
1

)
= 1

2
·2 = 1, C2 = 1

3

(
4
2

)
= 1

3
·6 = 2, C3 = 1

4

(
6
3

)
= 1

4
·20 = 5

b. To obtain the kth and (k − 1)st terms of the sequence, just substitute k and k − 1 in
place of n in the explicit formula for C1,C2,C3, . . . .

Ck = 1

k + 1

(
2k
k

)

Ck+1 = 1

(k − 1)+ 1

(
2(k − 1)
k − 1

)
= 1

k

(
2k − 2)
k − 1

)
.

Then start with the right-hand side of the recurrence relation and transform it into the
left-hand side: For each integer k ≥ 2,

4k − 2

k + 1
Ck−1 = 4k − 2

k + 1

[
1

k

(
2k − 2)
k − 1

)]
by substituting

= 2(2k − 1)

k + 1
· 1
k
· (2k − 2)!
(k − 1)!(2k − 2− (k − 1))! by the formula for n choose r

= 1

k + 1
·(2(2k − 1)) · (2k − 2)!

(k(k − 1)!)(k − 1)! by rearranging the factors

= 1

k + 1
·(2(2k − 1)) · 1

k!(k − 1)! ·(2k − 2)! · 1
2
· 1
k
·2k. because 1

2 · 1k ·2k = 1

= 1

k + 1
· 2
2
· 1
k! ·

1

(k − 1)! ·
1

k
·(2k) ·(2k − 1) ·(2k − 2)! by rearranging the factors

= 1

k + 1
· (2k)!
k!k!

because k(k − 1)! = k!,
2
2 = 1, and
2k · (2k − 1) · (2k − 2)! = (2k)!

= 1

k + 1

(
2k
k

)
by the formula for n choose r

= Ck by defintion of C1,C2,C3, . . . .

■

Examples of Recursively Defined Sequences
Recursion is one of the central ideas of computer science. To solve a problem recursively
means to find a way to break it down into smaller subproblems each having the same form
as the original problem—and to do this in such a way that when the process is repeated
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5.6 Defining Sequences Recursively 293

many times, the last of the subproblems are small and easy to solve and the solutions of
the subproblems can be woven together to form a solution to the original problem.

Probably the most difficult part of solving problems recursively is to figure out how
knowing the solution to smaller subproblems of the same type as the original problem
will give you a solution to the problem as a whole. You suppose you know the solutions
to smaller subproblems and ask yourself how you would best make use of that knowledge
to solve the larger problem. The supposition that the smaller subproblems have already
been solved has been called the recursive paradigm or the recursive leap of faith. Once
you take this leap, you are right in the middle of the most difficult part of the prob-
lem, but generally, the path to a solution from this point, though difficult, is short. The
recursive leap of faith is similar to the inductive hypothesis in a proof by mathematical
induction.

Example 5.6.5 The Tower of Hanoi

In 1883 a French mathematician, Édouard Lucas, invented a puzzle that he called The
Tower of Hanoi (La Tour D’Hanoï). The puzzle consisted of eight disks of wood with
holes in their centers, which were piled in order of decreasing size on one pole in a row
of three. A facsimile of the cover of the box is shown in Figure 5.6.1. Those who played
the game were supposed to move all the disks one by one from one pole to another, never
placing a larger disk on top of a smaller one. The directions to the puzzle claimed it was
based on an old Indian legend:
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Édouard Lucas
(1842–1891)

On the steps of the altar in the temple of Benares, for many, many years Brahmins
have been moving a tower of 64 golden disks from one pole to another; one by one, never
placing a larger on top of a smaller. When all the disks have been transferred the Tower
and the Brahmins will fall, and it will be the end of the world.

Figure 5.6.1
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The puzzle offered a prize of ten thousand francs (about $34,000 US today) to anyone
who could move a tower of 64 disks by hand while following the rules of the game. (See
Figure 5.6.2 on the following page.) Assuming that you transferred the disks as efficiently
as possible, how many moves would be required to win the prize?
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296 Chapter 5 Sequences, Mathematical Induction, and Recursion

Note that the numbers mn are independent of the labeling of the poles; it takes the
same minimum number of moves to transfer n disks from pole A to pole C as to transfer
n disks from pole A to pole B, for example. Also the values of mn are independent of
the number of larger disks that may lie below the top n, provided these remain stationary
while the top n are moved. Because the disks on the bottom are all larger than the ones
on the top, the top disks can be moved from pole to pole as though the bottom disks were
not present.

Going from position (a) to position (b) requires mk−1 moves, going from position (b)
to position (c) requires just one move, and going from position (c) to position (d) requires
mk−1 moves. By substitution into equation (5.6.1), therefore,

mk = mk−1 + 1+ mk−1
= 2mk−1 + 1 for all integers k ≥ 2.

The initial condition, or base, of this recursion is found by using the definition of the
sequence. Because just one move is needed to move one disk from one pole to another,

m1 =
[

the minimum number of moves needed to move
a tower of one disk from one pole to another

]
= 1.

Hence the complete recursive specification of the sequence m1,m2,m3, . . . is as follows:
For all integers k ≥ 2,

(1) mk = 2mk−1 + 1 recurrence relation

(2) m1 = 1 initial conditions

Here is a computation of the next five terms of the sequence:

(3) m2 = 2m1 + 1 = 2 ·1+ 1 = 3 by (1) and (2)

(4) m3 = 2m2 + 1 = 2 ·3+ 1 = 7 by (1) and (3)

(5) m4 = 2m3 + 1 = 2 ·7+ 1 = 15 by (1) and (4)

(6) m5 = 2m4 + 1 = 2 ·15+ 1 = 31 by (1) and (5)

(7) m6 = 2m5 + 1 = 2 ·31+ 1 = 63 by (1) and (6)

Going back to the legend, suppose the priests work rapidly and move one disk every
second. Then the time from the beginning of creation to the end of the world would be
m64 seconds. In the next section we derive an explicit formula for mn . Meanwhile, we
can compute m64 on a calculator or a computer by continuing the process started above
(Try it!). The approximate result is

1.844674× 1019 seconds ∼= 5.84542× 1011 years
∼= 584.5 billion years,

which is obtained by the estimate of

60 · 60 · 24 · (365.25) = 31, 557, 600

↑ ↑ ↖ ↖ ↑

seconds per

minute

minutes

per

hour

hours

per

day

days

per

year

seconds

per

year

seconds in a year (figuring 365.25 days in a year to take leap years into account). Surpris-
ingly, this figure is close to some scientific estimates of the life of the universe! ■
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5.6 Defining Sequences Recursively 297

Example 5.6.6 The Fibonacci Numbers

One of the earliest examples of a recursively defined sequence arises in the writings
of Leonardo of Pisa, commonly known as Fibonacci, who was the greatest European
mathematician of the Middle Ages. In 1202 Fibonacci posed the following problem:

A single pair of rabbits (male and female) is born at the beginning of a year. Assume
the following conditions:

1. Rabbit pairs are not fertile during their first month of life but thereafter give birth to
one new male/female pair at the end of every month.

2. No rabbits die.

How many rabbits will there be at the end of the year?
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Fibonacci (Leonardo of Pisa)
(ca. 1175–1250)

Solution One way to solve this problem is to plunge right into the middle of it using recur-
sion. Suppose you know howmany rabbit pairs there were at the ends of previous months.
How many will there be at the end of the current month?

The crucial observation is that the number of rabbit pairs born at the end of month k
is the same as the number of pairs alive at the end of month k − 2. Why? Because it is
exactly the rabbit pairs that were alive at the end of month k − 2 that were fertile during
month k. The rabbits born at the end of month k − 1 were not.

month k − 2 k − 1 k
———————|———————-|—————–

Each pair alive here ↑ gives birth to a pair here ↑
Now the number of rabbit pairs alive at the end of month k equals the ones alive at the
end of month k − 1 plus the pairs newly born at the end of the month. Thus⎡

⎢⎢⎢⎢⎣
the number
of rabbit
pairs alive
at the end
of month k

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

the number
of rabbit
pairs alive
at the end
of month k − 1

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

the number
of rabbit
pairs born
at the end
of month k

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

the number
of rabbit
pairs alive
at the end
of month k − 1

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

the number
of rabbit
pairs alive
at the end
of month k − 2

⎤
⎥⎥⎥⎥⎦ 5.6.2

Note It is essential to
rephrase this observation
in terms of a sequence.

For each integer n ≥ 1, let

Fn =
[

the number of rabbit pairs
alive at the end of month n

]
and let

F0 = the initial number of rabbit pairs

= 1.

Then by substitution into equation (5.6.2), for all integers k ≥ 2,

Fk = Fk−1 + Fk−2.

Now F0 = 1, as already noted, and F1 = 1 also, because the first pair of rabbits is not
fertile until the second month. Hence the complete specification of the Fibonacci sequence
is as follows: For all integers k ≥ 2,
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(1) Fk = Fk−1 + Fk−2 recurrence relation

(2) F0 = 1, F1 = 1 initial conditions.

To answer Fibonacci’s question, compute F2, F3, and so forth through F12:

(3) F2 = F1 +F0 = 1+ 1 = 2 by (1) and (2)

(4) F3 = F2 +F1 = 2+ 1 = 3 by (1), (2) and (3)

(5) F4 = F3 +F2 = 3+ 2 = 5 by (1), (3) and (4)

(6) F5 = F4 +F3 = 5+ 3 = 8 by (1), (4) and (5)

(7) F6 = F5 +F4 = 8+ 5 = 13 by (1), (5) and (6)

(8) F7 = F6 +F5 = 13+ 8 = 21 by (1), (6) and (7)

(9) F8 = F7 +F6 = 21+ 13 = 34 by (1), (7) and (8)

(10) F9 = F8 +F7 = 34+ 21 = 55 by (1), (8) and (9)

(11) F10= F9 +F8 = 55+ 34 = 89 by (1), (9) and (10)

(12) F11= F10+F9 = 89+ 55 = 144 by (1), (10) and (11)

(13) F12= F11+F10= 144+ 89= 233 by (1), (11) and (12)

At the end of the twelfth month there are 233 rabbit pairs, or 466 rabbits in all. ■

Example 5.6.7 Compound Interest

On your twenty-first birthday you get a letter informing you that on the day you were
born an eccentric rich aunt deposited $100,000 in a bank account earning 4% interest
compounded annually and she now intends to turn the account over to you, provided you
can figure out how much it is worth. What is the amount currently in the account?

Solution To approach this problem recursively, observe that⎡
⎢⎢⎣

the amount in
the account at
the end of any
particular year

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

the amount in
the account at
the end of the
previous year

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

the interest
earned on the
account during
the year

⎤
⎥⎥⎦.

Now the interest earned during the year equals the interest rate, 4% = 0.04 times the
amount in the account at the end of the previous year. Thus⎡

⎢⎢⎣
the amount in
the account at
the end of any
particular year

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

the amount in
the account at
the end of the
previous year

⎤
⎥⎥⎦+ (0.04) ·

⎡
⎢⎢⎣

the amount in
the account at
the end of the
previous year

⎤
⎥⎥⎦. 5.6.3

For each positive integer n, let

An =
[

the amount in the account
at the end of year n

]
and let

Note Again, a crucial
step is to define the
sequence explicitly.

A0 =
[

the initial amount
in the account

]
= $100, 000.
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Then for any particular year k, substitution into equation (5.6.3) gives

Ak = Ak−1 + (0.04) · Ak−1
= (1+ 0.04) · Ak−1 = (1.04) · Ak−1 by factoring out Ak−1.

Consequently, the values of the sequence A0, A1, A2, . . . are completely specified as
follows: for all integers k ≥ 1,

(1) Ak = (1.04) · Ak−1 recurrence relation

(2) A0 = $100, 000 initial condition.

The number 1.04 is called the growth factor of the sequence.
In the next section we derive an explicit formula for the value of the account in any

year n. The value on your twenty-first birthday can also be computed by repeated substi-
tution as follows:

(3) A1 = 1.04 · A0 = (1.04) ·$100, 000 = $104, 000 by (1) and (2)

(4) A2 = 1.04 · A1 = (1.04) ·$104, 000 = $108, 160 by (1) and (3)

(5) A3 = 1.04 · A2 = (1.04) ·$108, 160 = $112, 486.40 by (1) and (4)

...
...

(22) A20 = 1.04 · A19
∼= (1.04) ·$210, 684.92 ∼= $219, 112.31 by (1) and (21)

(23) A21 = 1.04 · A20
∼= (1.04) ·$219, 112.31 ∼= $227, 876.81 by (1) and (22)

The amount in the account is $227,876.81 (to the nearest cent). Fill in the dots (to check
the arithmetic) and collect your money! ■

Example 5.6.8 Compound Interest with Compounding Several Times a Year

When an annual interest rate of i is compounded m times per year, the interest rate paid
per period is i/m. For instance, if 3% = 0.03 annual interest is compounded quarterly,
then the interest rate paid per quarter is 0.03/4 = 0.0075.

For each integer k ≥ 1, let Pk = the amount on deposit at the end of the kth period,
assuming no additional deposits or withdrawals. Then the interest earned during the kth
period equals the amount on deposit at the end of the (k − 1)st period times the interest
rate for the period:

interest earned during kth period = Pk−1
(
i

m

)
.

The amount on deposit at the end of the kth period, Pk , equals the amount at the end of
the (k − 1)st period, Pk−1, plus the interest earned during the kth period:

Pk = Pk−1 + Pk−1
(
i

m

)
= Pk−1

(
1+ i

m

)
. 5.6.4

Suppose $10,000 is left on deposit at 3% compounded quarterly.

a. How much will the account be worth at the end of one year, assuming no additional
deposits or withdrawals?

b. The annual percentage rate (APR) is the percentage increase in the value of the
account over a one-year period. What is the APR for this account?

Solution

a. For each integer n ≥ 1, let Pn = the amount on deposit after n consecutive quarters,
assuming no additional deposits or withdrawals, and let P0 be the initial $10,000. Then
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by equation (5.6.4) with i = 0.03 and m = 4, a recurrence relation for the sequence
P0, P1, P2, . . . is

(1) Pk = Pk−1(1+ 0.0075) = (1.0075) · Pk−1 for all integers k≥ 1.

The amount on deposit at the end of one year (four quarters), P4, can be found by
successive substitution:

(2) P0 = $10, 000

(3) P1 = 1.0075 · P0 = (1.0075) ·$10, 000.00 = $10, 075.00 by (1) and (2)

(4) P2 = 1.0075 · P1 = (1.0075) ·$10, 075.00 = $10, 150.56 by (1) and (3)

(5) P3 = 1.0075 · P2 ∼= (1.0075) ·$10, 150.56 = $10, 226.69 by (1) and (4)

(6) P4 = 1.0075 · P3 ∼= (1.0075) ·$10, 226.69 = $10, 303.39 by (1) and (5)

Hence after one year there is $10,303.39 (to the nearest cent) in the account.

b. The percentage increase in the value of the account, or APR, is

10303.39− 10000

10000
= 0.03034 = 3.034%. ■

Recursive Definitions of Sum and Product
Addition and multiplication are called binary operations because only two numbers can
be added or multiplied at a time. Careful definitions of sums and products of more than
two numbers use recursion.

• Definition

Given numbers a1, a2, . . . , an , where n is a positive integer, the summation from
i = 1 to n of the ai, denoted

∑n
i=1 ai , is defined as follows:

1∑
i=1

ai = a1 and
n∑

i=1
ai =

(
n−1∑
i=1

ai

)
+ an, if n > 1.

The product from i = 1 to n of the ai, denoted
∏n

i=1 ai , is defined by

1∏
i=1

ai = a1 and
n∏

i=1
ai =

(
n−1∏
i=1

ai

)
·an, if n > 1.

The effect of these definitions is to specify an order in which sums and products of
more than two numbers are computed. For example,

4∑
i=1

ai =
(

3∑
i=1

ai

)
+ a4 =

((
2∑

i=1
ai

)
+ a3

)
+ a4 = ((a1 + a2)+ a3)+ a4.

The recursive definitions are used with mathematical induction to establish various
properties of general finite sums and products.
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Example 5.6.9 A Sum of Sums

Prove that for any positive integer n, if a1, a2, . . . , an and b1, b2, . . . , bn are real numbers,
then

n∑
i=1

(ai + bi ) =
n∑

i=1
ai +

n∑
i=1

bi .

Solution The proof is by mathematical induction. Let the property P(n) be the equation
n∑

i = 1

(ai + bi ) =
n∑

i = 1

ai +
n∑

i = 1

bi . ← P(n)

We must show that P(n) is true for all integers n ≥ 0. We do this by mathematical induc-
tion on n.

Show that P(1) is true: To establish P(1), we must show that

1∑
i = 1

(ai + bi ) =
1∑

i = 1

ai +
1∑

i = 1

bi . ← P(1)

But
1∑

i=1
(ai + bi ) = a1 + b1 by definition of �

=
1∑

i=1
ai +

1∑
i=1

bi also by definition of �.

Hence P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k+ 1) is also true:
Suppose a1, a2, . . . , ak, ak+1 and b1, b2, . . . , bk, bk+1 are real numbers and that for some
k ≥ 1

k∑
i=1

(ai + bi ) =
k∑

i=1
ai +

k∑
i=1

bi .
← P(k)
inductive hypothesis

We must show that
k+1∑
i=1

(ai + bi ) =
k+1∑
i=1

ai +
k+1∑
i=1

bi . ← P(k + 1)

[We will show that the left-hand side of this equation equals the right-hand side.]

But the left-hand side of the equation is

k+1∑
i=1

(ai + bi ) =
k∑

i=1
(ai + bi )+ (ak+1 + bk+1) by definition of �

=
(

k∑
i=1

ai +
k∑

i=1
bi

)
+ (ak+1 + bk+1) by inductive hypothesis

=
(

k∑
i=1

ai + ak+1
)
+
(

k∑
i=1

bi + bk+1
)

by the associative and cummutative
laws of algebra

=
k+1∑
i=1

ai +
k+1∑
i=1

bi by definition of �

which equals the right-hand side of the equation. [This is what was to be shown.] ■
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Test Yourself
1. A recursive definition for a sequence consists of a

_____ and _____.

2. A recurrence relation is an equation that defines each
later term of a sequence by reference to _____ in the
sequence.

3. Initial conditions for a recursive definition of a sequence con-
sist of one or more of the _____ of the sequence.

4. To solve a problem recursively means to divide the prob-
lem into smaller subproblems of the same type as the initial
problem, to suppose _____, and to figure out how to use the
supposition to _____.

5. A crucial step for solving a problem recursively is to define
a _____ in terms of which the recurrence relation and initial
conditions can be specified.

Exercise Set 5.6
Find the first four terms of each of the recursively defined
sequences in 1–8.

1. ak = 2ak−1 + k, for all integers k ≥ 2
a1 = 1

2. bk = bk−1 + 3k, for all integers k ≥ 2
b1 = 1

3. ck = k(ck−1)2, for all integers k ≥ 1
c0 = 1

4. dk = k(dk−1)2, for all integers k ≥ 1
d0 = 3

5. sk = sk−1 + 2sk−2, for all integers k ≥ 2
s0 = 1, s1 = 1

6. tk = tk−1 + 2tk−2, for all integers k ≥ 2
t0 = −1, t1 = 2

7. uk = kuk−1 − uk−2, for all integers k ≥ 3
u1 = 1, u2 = 1

8. vk = vk−1 + vk−2 + 1, for all integers k ≥ 3
v1 = 1, v2 = 3

9. Let a0, a1, a2, . . . be defined by the formula an = 3n + 1,
for all integers n ≥ 0. Show that this sequence satisfies the
recurrence relation ak = ak−1 + 3, for all integers k ≥ 1.

10. Let b0, b1, b2, . . . be defined by the formula bn = 4n , for all
integers n ≥ 0. Show that this sequence satisfies the recur-
rence relation bk = 4bk−1, for all integers k ≥ 1.

11. Let c0, c1, c2, . . . be defined by the formula cn = 2n − 1
for all integers n ≥ 0. Show that this sequence satisfies the
recurrence relation

ck = 2ck−1 + 1.

12. Let s0, s1, s2, . . . be defined by the formula sn = (−1)n
n!

for all integers n ≥ 0. Show that this sequence satisfies the
recurrence relation

sk = −sk−1
k

.

13. Let t0, t1, t2, . . . be defined by the formula tn = 2+ n for
all integers n ≥ 0. Show that this sequence satisfies the
recurrence relation

tk = 2tk−1 − tk−2.

14. Let d0, d1, d2, . . . be defined by the formula dn = 3n − 2n

for all integers n ≥ 0. Show that this sequence satisfies the
recurrence relation

dk = 5dk−1 − 6dk−2.

15.H For the sequence of Catalan numbers defined in
Example 5.6.4, prove that for all integers n ≥ 1,

Cn = 1

4n + 2

(
2n + 2
n + 1

)
.

16. Use the recurrence relation and values for the Tower
of Hanoi sequence m1,m2,m3, . . . discussed in Exam-
ple 5.6.5 to compute m7 and m8.

17. Tower of Hanoi with Adjacency Requirement: Suppose that
in addition to the requirement that they never move a larger
disk on top of a smaller one, the priests who move the disks
of the Tower of Hanoi are also allowed only to move disks
one by one from one pole to an adjacent pole. Assume
poles A and C are at the two ends of the row and pole B is
in the middle. Let

an =
⎡
⎣ the minimum number of moves

needed to transfer a tower of n
disks from pole A to pole C

⎤
⎦ .

a. Find a1, a2, and a3. b. Find a4.
c. Find a recurrence relation for a1, a2, a3, . . . .

18. Tower of Hanoi with Adjacency Requirement: Suppose the
same situation as in exercise 17. Let

bn =
⎡
⎣ the minimum number of moves

needed to transfer a tower of n
disks from pole A to pole B

⎤
⎦ .

a. Find b1, b2, and b3. b. Find b4.
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c. Show that bk = ak−1 + 1+ bk−1 for all integers k ≥
2, where a1, a2, a3, . . . is the sequence defined in
exercise 17.

d. Show that bk ≤ 3bk−1 + 1 for all integers k ≥ 2.
e.✶H Show that bk = 3bk−1 + 1 for all integers k ≥ 2.

19. Four-Pole Tower of Hanoi: Suppose that the Tower of
Hanoi problem has four poles in a row instead of three.
Disks can be transferred one by one from one pole to any
other pole, but at no time may a larger disk be placed on
top of a smaller disk. Let sn be the minimum number of
moves needed to transfer the entire tower of n disks from
the left-most to the right-most pole.
a. Find s1, s2, and s3. b. Find s4.
c. Show that sk ≤ 2sk−2 + 3 for all integers k ≥ 3.

20. Tower of Hanoi Poles in a Circle: Suppose that instead of
being lined up in a row, the three poles for the original
Tower of Hanoi are placed in a circle. The monks move
the disks one by one from one pole to another, but they may
only move disks one over in a clockwise direction and they
may never move a larger disk on top of a smaller one. Let
cn be the minimum number of moves needed to transfer a
pile of n disks from one pole to the next adjacent pole in
the clockwise direction.
a. Justify the inequality ck ≤ 4ck−1 + 1 for all integers

k ≥ 2.
b. The expression 4ck−1 + 1 is not the minimum number

of moves needed to transfer a pile of k disks from one
pole to another. Explain, for example, why
c3 �= 4c2 + 1.

21. Double Tower of Hanoi: In this variation of the Tower of
Hanoi there are three poles in a row and 2n disks, two of
each of n different sizes, where n is any positive integer.
Initially one of the poles contains all the disks placed on
top of each other in pairs of decreasing size. Disks are
transferred one by one from one pole to another, but at
no time may a larger disk be placed on top of a smaller
disk. However, a disk may be placed on top of one of
the same size. Let tn be the minimum number of moves
needed to transfer a tower of 2n disks from one pole to
another.
a. Find t1 and t2. b. Find t3.
c. Find a recurrence relation for t1, t2, t3, . . . .

22. Fibonacci Variation: A single pair of rabbits (male and
female) is born at the beginning of a year. Assume
the following conditions (which are more realistic than
Fibonacci’s):
(1) Rabbit pairs are not fertile during their first month of

life but thereafter give birth to four new male/female
pairs at the end of every month.

(2) No rabbits die.
a. Let rn = the number of pairs of rabbits alive at the end

of month n, for each integer n ≥ 1, and let r0 = 1. Find
a recurrence relation for r0, r1, r2, . . . .

b. Compute r0, r1, r2, r3, r4, r5, and r6.
c. How many rabbits will there be at the end of the year?

23. Fibonacci Variation: A single pair of rabbits (male and
female) is born at the beginning of a year. Assume the fol-
lowing conditions:
(1) Rabbit pairs are not fertile during their first two

months of life, but thereafter give birth to three new
male/female pairs at the end of every month.

(2) No rabbits die.
a. Let sn = the number of pairs of rabbits alive at the end

of month n, for each integer n ≥ 1, and let s0 = 1. Find
a recurrence relation for s0, s1, s2, . . . .

b. Compute s0, s1, s2, s3, s4, and s5.
c. How many rabbits will there be at the end of the year?

In 24–34, F0, F1, F2, . . . is the Fibonacci sequence.

24. Use the recurrence relation and values for F0, F1, F2, . . .

given in Example 5.6.6 to compute F13 and F14.

25. The Fibonacci sequence satisfies the recurrence relation
Fk = Fk−1 + Fk−2, for all integers k ≥ 2.
a. Explain why the following is true:

Fk+1 = Fk + Fk−1 for all integers k ≥ 1.

b. Write an equation expressing Fk+2 in terms of Fk+1
and Fk .

c. Write an equation expressing Fk+3 in terms of Fk+2 and
Fk+1

26. Prove that Fk = 3Fk−3 + 2Fk−4 for all integers k ≥ 4.

27. Prove that F2
k − F2

k−1 = Fk Fk−1 − Fk+1Fk−1, for all
integers k ≥ 1.

28. Prove that F2
k+1 − F2

k − F2
k−1 = 2Fk Fk−1, for all integers

k ≥ 1.

29. Prove that F2
k+1 − F2

k = Fk−1Fk+2, for all integers k ≥ 1.

30. Use mathematical induction to prove that for all integers
n ≥ 0, Fn+2Fn − F2

n+1 = (−1)n .
31.✶ Use strong mathematical induction to prove that Fn < 2n

for all integers n ≥ 1.

32.✶H Let F0, F1, F2, . . . be the Fibonacci sequence defined
in Section 5.6. Prove that for all integers n ≥ 0,
gcd (Fn+1, Fn) = 1.

33. It turns out that the Fibonacci sequence satisfies the fol-
lowing explicit formula: For all integers Fn ≥ 0,

Fn = 1√
5

⎡
⎣(1+√5

2

)n+1
−
(
1−√5

2

)n+1⎤⎦
Verify that the sequence defined by this formula satisfies
the recurrence relation Fk = Fk−1 + Fk−2 for all integers
k ≥ 2.

34.H (For students who have studied calculus) Find

lim
n→∞

(
Fn+1
Fn

)
, assuming that the limit exists.
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35.✶H (For students who have studied calculus) Prove that

lim
n→∞

(
Fn+1
Fn

)
exists.

36. (For students who have studied calculus) Define
x0, x1, x2, . . . as follows:

xk =
√
2+ xk−1 for all integers k ≥ 1

x0 = 0

Find limn→∞ xn . (Assume that the limit exists.)

37. Compound Interest: Suppose a certain amount of money
is deposited in an account paying 4% annual interest
compounded quarterly. For each positive integer n, let
Rn = the amount on deposit at the end of the nth quarter,
assuming no additional deposits or withdrawals, and let R0

be the initial amount deposited.
a. Find a recurrence relation for R0, R1, R2, . . . .
b. If R0 = $5000, find the amount of money on deposit at

the end of one year.
c. Find the APR for the account.

38. Compound Interest: Suppose a certain amount of money
is deposited in an account paying 3% annual interest com-
pounded monthly. For each positive integer n, let Sn = the
amount on deposit at the end of the nth month, and let S0
be the initial amount deposited.
a. Find a recurrence relation for S0, S1, S2, . . ., assum-

ing no additional deposits or withdrawals during the
year.

b. If S0 = $10, 000, find the amount of money on deposit
at the end of one year.

c. Find the APR for the account.

39. With each step you take when climbing a staircase, you can
move up either one stair or two stairs. As a result, you can
climb the entire staircase taking one stair at a time, taking
two at a time, or taking a combination of one- and two-stair
increments. For each integer n ≥ 1, if the staircase consists
of n stairs, let cn be the number of different ways to climb
the staircase. Find a recurrence relation for c1, c2, c3, . . . .

40. A set of blocks contains blocks of heights 1, 2, and 4 cen-
timeters. Imagine constructing towers by piling blocks of
different heights directly on top of one another. (A tower of
height 6 cm could be obtained using six 1-cm blocks, three
2-cm blocks one 2-cm block with one 4-cm block on top,
one 4-cm block with one 2-cm block on top, and so forth.)
Let t be the number of ways to construct a tower of height
n cm using blocks from the set. (Assume an unlimited sup-
ply of blocks of each size.) Find a recurrence relation for
t1, t2, t3, . . ..

41. Use the recursive definition of summation, together with
mathematical induction, to prove the generalized distribu-
tive law that for all positive integers n, if a1, a2, . . . , an and
c are real numbers, then

n∑
i=1

cai = c

(
n∑

i=1
ai

)
.

42. Use the recursive definition of product, together with math-
ematical induction, to prove that for all positive integers n,
if a1, a2, . . . , an and b1, b2, . . . , bn are real numbers, then

n∏
i=1

(aibi ) =
(

n∏
i=1

ai

)(
n∏

i=1
bi

)
.

43. Use the recursive definition of product, together with math-
ematical induction, to prove that for all positive integers n,
if a1, a2, . . . , an and c are real numbers, then

n∏
i=1

(cai ) = cn
(

n∏
i=1

ai

)
.

44.H The triangle inequality for absolute value states that for all
real numbers a and b, |a + b| ≤ |a| + |b|. Use the recur-
sive definition of summation, the triangle inequality, the
definition of absolute value, and mathematical induction to
prove that for all positive integers n, if a1, a2, . . . , an are
real numbers, then ∣∣∣∣∣

n∑
i=1

ai

∣∣∣∣∣ ≤
n∑

i=1
|ai |.

Answers for Test Yourself
1. recurrence relation; initial conditions 2. earlier terms 3. values of the first few terms 4. that the smaller subproblems have
already been solved; solve the initial problem 5. sequence

5.7 Solving Recurrence Relations by Iteration

The keener one’s sense of logical deduction, the less often one makes hard and fast
inferences. — Bertrand Russell, 1872–1970

Suppose you have a sequence that satisfies a certain recurrence relation and initial
conditions. It is often helpful to know an explicit formula for the sequence, especially if
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