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35.✶H (For students who have studied calculus) Prove that

lim
n→∞

(
Fn+1
Fn

)
exists.

36. (For students who have studied calculus) Define
x0, x1, x2, . . . as follows:

xk =
√
2+ xk−1 for all integers k ≥ 1

x0 = 0

Find limn→∞ xn . (Assume that the limit exists.)

37. Compound Interest: Suppose a certain amount of money
is deposited in an account paying 4% annual interest
compounded quarterly. For each positive integer n, let
Rn = the amount on deposit at the end of the nth quarter,
assuming no additional deposits or withdrawals, and let R0

be the initial amount deposited.
a. Find a recurrence relation for R0, R1, R2, . . . .
b. If R0 = $5000, find the amount of money on deposit at

the end of one year.
c. Find the APR for the account.

38. Compound Interest: Suppose a certain amount of money
is deposited in an account paying 3% annual interest com-
pounded monthly. For each positive integer n, let Sn = the
amount on deposit at the end of the nth month, and let S0
be the initial amount deposited.
a. Find a recurrence relation for S0, S1, S2, . . ., assum-

ing no additional deposits or withdrawals during the
year.

b. If S0 = $10, 000, find the amount of money on deposit
at the end of one year.

c. Find the APR for the account.

39. With each step you take when climbing a staircase, you can
move up either one stair or two stairs. As a result, you can
climb the entire staircase taking one stair at a time, taking
two at a time, or taking a combination of one- and two-stair
increments. For each integer n ≥ 1, if the staircase consists
of n stairs, let cn be the number of different ways to climb
the staircase. Find a recurrence relation for c1, c2, c3, . . . .

40. A set of blocks contains blocks of heights 1, 2, and 4 cen-
timeters. Imagine constructing towers by piling blocks of
different heights directly on top of one another. (A tower of
height 6 cm could be obtained using six 1-cm blocks, three
2-cm blocks one 2-cm block with one 4-cm block on top,
one 4-cm block with one 2-cm block on top, and so forth.)
Let t be the number of ways to construct a tower of height
n cm using blocks from the set. (Assume an unlimited sup-
ply of blocks of each size.) Find a recurrence relation for
t1, t2, t3, . . ..

41. Use the recursive definition of summation, together with
mathematical induction, to prove the generalized distribu-
tive law that for all positive integers n, if a1, a2, . . . , an and
c are real numbers, then

n∑
i=1

cai = c

(
n∑

i=1
ai

)
.

42. Use the recursive definition of product, together with math-
ematical induction, to prove that for all positive integers n,
if a1, a2, . . . , an and b1, b2, . . . , bn are real numbers, then

n∏
i=1

(aibi ) =
(

n∏
i=1

ai

)(
n∏

i=1
bi

)
.

43. Use the recursive definition of product, together with math-
ematical induction, to prove that for all positive integers n,
if a1, a2, . . . , an and c are real numbers, then

n∏
i=1

(cai ) = cn
(

n∏
i=1

ai

)
.

44.H The triangle inequality for absolute value states that for all
real numbers a and b, |a + b| ≤ |a| + |b|. Use the recur-
sive definition of summation, the triangle inequality, the
definition of absolute value, and mathematical induction to
prove that for all positive integers n, if a1, a2, . . . , an are
real numbers, then ∣∣∣∣∣

n∑
i=1

ai

∣∣∣∣∣ ≤
n∑

i=1
|ai |.

Answers for Test Yourself
1. recurrence relation; initial conditions 2. earlier terms 3. values of the first few terms 4. that the smaller subproblems have
already been solved; solve the initial problem 5. sequence

5.7 Solving Recurrence Relations by Iteration

The keener one’s sense of logical deduction, the less often one makes hard and fast
inferences. — Bertrand Russell, 1872–1970

Suppose you have a sequence that satisfies a certain recurrence relation and initial
conditions. It is often helpful to know an explicit formula for the sequence, especially if
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5.7 Solving Recurrence Relations by Iteration 305

you need to compute terms with very large subscripts or if you need to examine general
properties of the sequence. Such an explicit formula is called a solution to the recur-
rence relation. In this section, we discuss methods for solving recurrence relations. For
example, in the text and exercises of this section, we will show that the Tower of Hanoi
sequence of Example 5.6.5 satisfies the formula

mn = 2n − 1,

and that the compound interest sequence of Example 5.6.7 satisfies

An = (1.04)n ·$100, 000.

The Method of Iteration
The most basic method for finding an explicit formula for a recursively defined sequence
is iteration. Iteration works as follows: Given a sequence a0, a1, a2, . . . defined by a
recurrence relation and initial conditions, you start from the initial conditions and calcu-
late successive terms of the sequence until you see a pattern developing. At that point you
guess an explicit formula.

Example 5.7.1 Finding an Explicit Formula

Let a0, a1, a2, . . . be the sequence defined recursively as follows: For all integers k ≥ 1,

(1) ak = ak−1 + 2 recurrence relation

(2) a0 = 1 initial condition.

Use iteration to guess an explicit formula for the sequence.

Solution Recall that to say

ak = ak−1 + 2 for all integers k ≥ 1

means

a� = a�−1 + 2 no matter what positive integer is
placed into the box �.

In particular,

a1 = a0 + 2,

a2 = a1 + 2,

a3 = a2 + 2,

and so forth. Now use the initial condition to begin a process of successive substitutions
into these equations, not just of numbers (as was done in Section 5.6) but of numerical
expressions.

The reason for using numerical expressions rather than numbers is that in these prob-
lems you are seeking a numerical pattern that underlies a general formula. The secret of
success is to leave most of the arithmetic undone. However, you do need to eliminate
parentheses as you go from one step to the next. Otherwise, you will soon end up with
a bewilderingly large nest of parentheses. Also, it is nearly always helpful to use short-
hand notations for regrouping additions, subtractions, and multiplications of numbers that
repeat. Thus, for instance, you would write

5 ·2 instead of 2+ 2+ 2+ 2+ 2

and 25 instead of 2 ·2 ·2 ·2 ·2.
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306 Chapter 5 Sequences, Mathematical Induction, and Recursion

Notice that you don’t lose any information about the number patterns when you use these
shorthand notations.

Here’s how the process works for the given sequence:

a0 = 1 the initial condition

a1 = a0 + 2 = 1+ 2︸ ︷︷ ︸ by substitution

a2 = a1 + 2 =
︷ ︸︸ ︷
(1+ 2)+ 2 = 1+ 2+ 2︸ ︷︷ ︸ eliminate parentheses

a3 = a2 + 2 =
︷ ︸︸ ︷
(1+ 2+ 2)+ 2 = 1+ 2+ 2+ 2︸ ︷︷ ︸ eliminate parentheses again; write

3 ·2 instead of 2+ 2+ 2?

a4 = a3 + 2 =
︷ ︸︸ ︷
(1+ 2+ 2+ 2)+ 2 = 1+ 2+ 2+ 2+ 2 eliminate parentheses again;

definitely write 4 ·2 instead of
2+ 2+ 2+ 2—the length of the
string of 2’s is getting out of hand.

Tip Do no
arithmetic except

• replace n ·1 and
1 ·n by n

• reformat repeated
numbers

• get rid of
parentheses

Since it appears helpful to use the shorthand k ·2 in place of 2+ 2+ · · · + 2 (k times),
we do so, starting again from a0.

a0 = 1 = 1+ 0 ·2 the initial condition

a1 = a0 + 2 = 1+ 2︸ ︷︷ ︸ = 1+ 1 ·2 by substitution

a2 = a1 + 2 =
︷ ︸︸ ︷
(1+ 2)+ 2 = 1+ 2 ·2︸ ︷︷ ︸

a3 = a2 + 2 =
︷ ︸︸ ︷
(1+ 2 ·2)+ 2 = 1+ 3 ·2︸ ︷︷ ︸

a4 = a3 + 2 =
︷ ︸︸ ︷
(1+ 3 ·2)+ 2 = 1+ 4 ·2︸ ︷︷ ︸ At this point it certainly seems likely that

the general pattern is 1+ n ·2; check
whether the next calculation supports this.

a5 = a4 + 2 =
︷ ︸︸ ︷
(1+ 4 ·2)+ 2 = 1+ 5 ·2 It does! So go ahead and write an answer.

It’s only a guess, after all.
...

Guess: an = 1+ n ·2 = 1+ 2n

The answer obtained for this problem is just a guess. To be sure of the correctness of this
guess, you will need to check it by mathematical induction. Later in this section, we will
show how to do this. ■

A sequence like the one in Example 5.7.1, in which each term equals the previous
term plus a fixed constant, is called an arithmetic sequence. In the exercises at the end
of this section you are asked to show that the nth term of an arithmetic sequence always
equals the initial value of the sequence plus n times the fixed constant.
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5.7 Solving Recurrence Relations by Iteration 307

• Definition

A sequence a0, a1, a2, . . . is called an arithmetic sequence if, and only if, there is
a constant d such that

ak = ak−1 + d for all integers k ≥ 1.

It follows that,

an = a0 + dn for all integers n ≥ 0.

Example 5.7.2 An Arithmetic Sequence

Under the force of gravity, an object falling in a vacuum falls about 9.8 meters per second
(m/sec) faster each second than it fell the second before. Thus, neglecting air resistance,
a skydiver’s speed upon leaving an airplane is approximately 9.8m/sec one second after
departure, 9.8+ 9.8 = 19.6m/sec two seconds after departure, and so forth. If air resis-
tance is neglected, how fast would the skydiver be falling 60 seconds after leaving the
airplane?

Solution Let sn be the skydiver’s speed in m/sec n seconds after exiting the airplane if
there were no air resistance. Thus s0 is the initial speed, and since the diver would travel
9.8m/sec faster each second than the second before,

sk = sk−1 + 9.8 m/sec for all integers k ≥ 1.

It follows that s0, s1, s2, . . . is an arithmetic sequence with a fixed constant of 9.8, and thus

sn = s0 + (9.8)n for each integer n ≥ 0.

Hence sixty seconds after exiting and neglecting air resistance, the skydiver would travel
at a speed of

s60 = 0+ (9.8)(60) = 588 m/sec.

Note that 588m/sec is over half a kilometer per second or over a third of a mile per
second, which is very fast for a human being to travel. Happily for the skydiver, taking
air resistance into account cuts the speed considerably. ■

In an arithmetic sequence, each term equals the previous term plus a fixed constant. In
a geometric sequence, each term equals the previous term times a fixed constant. Geomet-
ric sequences arise in a large variety of applications, such as compound interest certain
models of population growth, radioactive decay, and the number of operations needed to
execute certain computer algorithms.

Example 5.7.3 The Explicit Formula for a Geometric Sequence

Let r be a fixed nonzero constant, and suppose a sequence a0, a1, a2, . . . is defined
recursively as follows:

ak = rak−1 for all integers k ≥ 1,

a0 = a.

Use iteration to guess an explicit formula for this sequence.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



308 Chapter 5 Sequences, Mathematical Induction, and Recursion

In the exercises at the end of this section, you are asked to prove that this formula is
correct. ■

• Definition

A sequence a0, a1, a2, . . . is called a geometric sequence if, and only if, there is a
constant r such that

ak = rak−1 for all integers k ≥ 1.

It follows that,

an = a0r
′′ for all integers n ≥ 0.

Example 5.7.4 A Geometric Sequence

As shown in Example 5.6.7, if a bank pays interest at a rate of 4% per year compounded
annually and An denotes the amount in the account at the end of year n, then Ak =
(1.04)Ak−1, for all integers k ≥ 1, assuming no deposits or withdrawals during the year.
Suppose the initial amount deposited is $100,000, and assume that no additional deposits
or withdrawals are made.

a. How much will the account be worth at the end of 21 years?

b. In how many years will the account be worth $1,000,000?

Solution

a. A0, A1, A2, . . . is a geometric sequence with initial value 100,000 and constant
multiplier 1.04. Hence,

An = $100,000 ·(1.04)n for all integers n ≥ 0.

After 21 years, the amount in the account will be

A21 = $100,000 ·(1.04)21 ∼= $227, 876.81.

This is the same answer as that obtained in Example 5.6.7 but is computed much more
easily (at least if a calculator with a powering key, such as ∧ or x y , is used).
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b. Let t be the number of years needed for the account to grow to $1,000,000. Then

$1,000,000 = $100,000 ·(1.04)t .
Dividing both sides by 100,000 gives

10 = (1.04)t ,

and taking natural logarithms of both sides results in

ln(10) = ln(1.04)t .Note Properties of
logarithms are reviewed
in Section 7.2. Then

ln(10) ∼= t ln(1.04) because logb(x
a) = a logb(x)

(see exercise 35 of Section 7.2)

and so

t = ln(10)

ln(1.04)
∼= 58.7

Hence the account will grow to $1,000,000 in approximately 58.7 years. ■

An important property of a geometric sequence with constant multiplier greater than
1 is that its terms increase very rapidly in size as the subscripts get larger and larger.
For instance, the first ten terms of a geometric sequence with a constant multiplier of
10 are

1, 10, 102, 103, 104, 105, 106, 107, 108, 109.

Thus, by its tenth term, the sequence already has the value 109 = 1,000,000,000 = 1
billion. The following box indicates some quantities that are approximately equal to cer-
tain powers of 10.

107 ∼= number of seconds in a year

109 ∼= number of bytes of memory in a personal computer

1011 ∼= number of neurons in a human brain

1017 ∼= age of the universe in seconds (according to one theory)

1031 ∼= number of seconds to process all possible positions of a checkers game if
moves are processed at a rate of 1 per billionth of a second

1081 ∼= number of atoms in the universe

10111 ∼= number of seconds to process all possible positions of a chess game if moves
are processed at a rate of 1 per billionth of a second

Using Formulas to Simplify Solutions Obtained by Iteration
Explicit formulas obtained by iteration can often be simplified by using formulas such
as those developed in Section 5.2. For instance, according to the formula for the sum
of a geometric sequence with initial term 1 (Theorem 5.2.3), for each real number r
except r = 1,

1+ r + r2 + · · · + rn = rn+1 − 1

r − 1
for all integers n ≥ 0.

And according to the formula for the sum of the first n integers (Theorem 5.2.2),

1+ 2+ 3+ · · · + n = n(n + 1)

2
for all integers n ≥ 1.
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Example 5.7.5 An Explicit Formula for the Tower of Hanoi Sequence

Recall that the Tower of Hanoi sequence m1, m2, m3, . . . of Example 5.6.5 satisfies the
recurrence relation

mk = 2mk−1 + 1 for all integers k ≥ 2

and has the initial condition

m1 = 1.

Use iteration to guess an explicit formula for this sequence, and make use of a formula
from Section 5.2 to simplify the answer.

Solution By iteration

m1 = 1

m 2© = 2m1 + 1 = 2 ·1+ 1 = 2 1© + 1︸ ︷︷ ︸,
m 3© = 2m2 + 1 = 2

︷ ︸︸ ︷
(2+ 1) + 1 = 2 2© + 2+ 1︸ ︷︷ ︸,

m 4© = 2m3 + 1 = 2
︷ ︸︸ ︷
(22 + 2+ 1) + 1 = 2 3© + 22 + 2+ 1︸ ︷︷ ︸,

m 5© = 2m4 + 1 = 2
︷ ︸︸ ︷
(23 + 22 + 2+ 1) + 1 = 2 4© + 23 + 22 + 2+ 1.

These calculations show that each term up to m5 is a sum of successive powers of 2,
starting with 20 = 1 and going up to 2k , where k is 1 less than the subscript of the term.
The pattern would seem to continue to higher terms because each term is obtained from
the preceding one by multiplying by 2 and adding 1; multiplying by 2 raises the exponent
of each component of the sum by 1, and adding 1 adds back the 1 that was lost when the
previous 1 was multiplied by 2. For instance, for n = 6,

m6 = 2m5 + 1 = 2(24 + 23 + 22 + 2+ 1)+ 1 = 25 + 24 + 23 + 22 + 2+ 1.

Thus it seems that, in general,

mn = 2n−1 + 2n−2 + · · · + 22 + 2+ 1.

By the formula for the sum of a geometric sequence (Theorem 5.2.3),

2n−1 + 2n−2 + · · · + 22 + 2+ 1 = 2n − 1

2− 1
= 2n − 1.

Hence the explicit formula seems to be

mn = 2n − 1 for all integers n ≥ 1. ■

!
Caution! It is not true
that

2 · (2+ 1)+ 1 = 22 + 1+ 1.

This is crossed out
because it is false.

A common mistake people make when doing problems such as this is to misuse the laws
of algebra. For instance, by the distributive law,

a ·(b + c) = a ·b + a ·c for all real numbers a, b, and c.

Thus, in particular, for a = 2, b = 2, and c = 1,

2 ·(2+ 1) = 2 ·2+ 2 ·1 = 22 + 2.

It follows that

2 ·(2+ 1)+ 1 = (22 + 2)+ 1 = 22 + 2+ 1.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.7 Solving Recurrence Relations by Iteration 311

Example 5.7.6 Using the Formula for the Sum of the First n Positive Integers

Let Kn be the picture obtained by drawing n dots (which we call vertices) and join-
ing each pair of vertices by a line segment (which we call an edge). (In Chapter 10
we discuss these objects in a more general context.) Then K1, K2, K3, and K4 are as
follows:

K1 K2 K3 K4

Observe that K5 may be obtained from K4 by adding one vertex and drawing edges
between this new vertex and all the vertices of K4 (the old vertices). The reason this
procedure gives the correct result is that each pair of old vertices is already joined by an
edge, and adding the new edges joins each pair of vertices consisting of an old one and
the new one.

New vertex

K5

Thus the number of edges of K5 = 4+ the number of edges of K4.

By the same reasoning, for all integers k ≥ 2, the number of edges of Kk is k − 1 more
than the number of edges of Kk−1. That is, if for each integer n ≥ 1

sn = the number of edges of Kn,

then sk = sk−1 + (k − 1) for all integers k ≥ 2.

Note that s1, is the number of edges in K1, which is 0, and use iteration to find an explicit
formula for s1, s2, s3, . . . .

Solution Because

sk = sk−1 + (k − 1) for all integers k ≥ 2

and

s 1© =
�
�

�
�0

→ 1 − 1

then, in particular,

s 2© = s1 + 1 = 0+ �
�

�
�1︸ ︷︷ ︸ ,

→ 2 − 1

s 3© = s2 + 2 =
︷ ︸︸ ︷
(0+ 1)+ 2 = 0+ 1+ �

�
�
�2︸ ︷︷ ︸ ,

→ 3 − 1

s 4© = s3 + 3 =
︷ ︸︸ ︷
(0+ 1+ 2)+ 3 = 0+ 1+ 2+ �

�
�
�3︸ ︷︷ ︸ ,

→ 4 − 1

s 5© = s4 + 4 =
︷ ︸︸ ︷
(0+ 1+ 2+ 3)+ 4 = 0+ 1+ 2+ 3+ �

�
�
�4 ,

→ 5 − 1

...

Guess: s n© = 0+ 1+ 2+ · · · + (n − 1) .
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But by Theorem 5.2.2,

0+ 1+ 2+ 3+ · · · + (n − 1) = (n − 1)n

2
= n(n − 1)

2
.

Hence it appears that

sn = n(n − 1)

2
.

■

Checking the Correctness of a Formula by Mathematical
Induction

As you can see from some of the previous examples, the process of solving a recurrence
relation by iteration can involve complicated calculations. It is all too easy to make a
mistake and come up with the wrong formula. That is why it is important to confirm your
calculations by checking the correctness of your formula. The most common way to do
this is to use mathematical induction.

Example 5.7.7 Using Mathematical Induction to Verify the Correctness of a Solution
to a Recurrence Relation

In Example 5.6.5 we obtained a formula for the Tower of Hanoi sequence. Use
mathematical induction to show that this formula is correct.

Solution What does it mean to show the correctness of a formula for a recursively defined
sequence? Given a sequence of numbers that satisfies a certain recurrence relation and
initial condition, your job is to show that each term of the sequence satisfies the proposed
explicit formula. In this case, you need to prove the following statement:

If m1,m2,m3, . . . is the sequence defined by

mk = 2mk−1 + 1 for all integers k ≥ 2, and

m1 = 1,

then mn = 2n − 1 for all integers n ≥ 1.

Proof of Correctness:

Letm1, m2, m3, . . . be the sequence defined by specifying thatm1 = 1 andmk = 2mk+1 + 1
for all integers k ≥ 2, and let the property P(n) be the equation

mn = 2n − 1 ← P(n)

We will use mathematical induction to prove that for all integers n ≥ 1, P(n) is true.

Show that P(1) is true:
To establish P(1), we must show that

m1 = 21 − 1. ← P(1)

But the left-hand side of P(1) is

m1 = 1 by definition of m1,m2,m3, . . .,

and the right-hand side of P(1) is

21 − 1 = 2− 1 = 1.
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Thus the two sides of P(1) equal the same quantity, and hence P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P (k+ 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 1. That is:]
Suppose that k is any integer with k ≥ 1 such that

mk = 2k − 1. ← P(k)
inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

mk+1 = 2k+1 − 1. ← P(k + 1)

But the left-hand side of P(k + 1) is

mk+1 = 2m(k+1)−1 + 1 by definition of m1, m2, m3, . . .

= 2mk + 1

= 2(2k − 1)+ 1 by substitution from the inductive hypothesis

= 2k+1 − 2+ 1 by the distributive law and the fact that 2 ·2k = 2k−1

= 2k+1 − 1 by basic algebra

which equals the right-hand side of P(k + 1). [Since the basis and inductive steps have been
proved, it follows by mathematical induction that the given formula holds for all integers
n ≥ 1.] ■

Discovering That an Explicit Formula Is Incorrect
The following example shows how the process of trying to verify a formula by
mathematical induction may reveal a mistake.

Example 5.7.8 Using Verification by Mathematical Induction to Find a Mistake

Let c0, c1, c2, . . . be the sequence defined as follows:

ck = 2ck−1 + k for all integers k ≥ 1,

c0 = 1.

Suppose your calculations suggest that c0, c1, c2, . . . satisfies the following explicit
formula:

cn = 2n + n for all integers n ≥ 0.

Is this formula correct?

Solution Start to prove the statement by mathematical induction and see what develops.
The proposed formula passes the basis step of the inductive proof with no trouble, for on
the one hand, c0 = 1 by definition and on the other hand, 20 + 0 = 1+ 0 = 1 also.

In the inductive step, you suppose

ck = 2k + k for some integer k ≥ 0 This is the inductive hypothesis.

and then you must show that

ck+1 = 2k+1 + (k + 1).
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To do this, you start with ck+1, substitute from the recurrence relation, and then use the
inductive hypothesis as follows:

ck+1= 2ck + (k + 1) by the recurrence relation

= 2(2k + k)+ (k + 1) by substitution from the inductive hypothesis

= 2(k+1) + 3k + 1 by basic algebra

To finish the verification, therefore, you need to show that

2k+1 + 3k + 1 = 2k+1 + (k + 1).

Now this equation is equivalent to

2k = 0 by subtracting 2k+1 + k + 1 from both sides.

which is equivalent to

k = 0 by dividing both sides by 2.

But this is false since k may be any nonnegative integer.
Observe that when k = 0, then k + 1 = 1, and

c1 = 2 ·1+ 1 = 3 and 21 + 1 = 3.

Thus the formula gives the correct value for c1. However, when k = 1, then k + 1 = 2, and

c2 = 2 ·3+ 2 = 8 whereas 22 + 2 = 4+ 2 = 6.

So the formula does not give the correct value for c2. Hence the sequence c0, c1, c2, . . .
does not satisfy the proposed formula. ■

Once you have foud a proposed formula to be false, you should look back at your
calculations to see where you made a mistake, correct it, and try again.

Test Yourself
1. To use iteration to find an explicit formula for a recursively

defined sequence, start with the _____ and use successive
substitution into the _____ to look for a numerical pattern.

2. At every step of the iteration process, it is important
to eliminate _____.

3. If a single number, say a, is added to itself k times in one of
the steps of the iteration, replace the sum by the expression
_____.

4. If a single number, say a, is multiplied by itself k times in
one of the steps of the iteration, replace the product by the
expression _____.

5. A general arithmetic sequence a0, a1, a2, . . . with initial
value a0 and fixed constant d satisfies the recurrence rela-
tion _____ and has the explicit formula _____.

6. A general geometric sequence a0, a1, a2, . . . with initial
value a0 and fixed constant r satisfies the recurrence rela-
tion _____ and has the explicit formula _____.

7. When an explicit formula for a recursively defined sequence
has been obtained by iteration, its correctness can be
checked by _____.

Exercise Set 5.7
1. The formula

1+ 2+ 3+ · · · + n = n(n + 1)

2

is true for all integers n ≥ 1. Use this fact to solve each of
the following problems:
a. If k is an integer and k ≥ 2, find a formula for the

expression 1+ 2+ 3+ · · · + (k − 1).

b. If n is an integer and n ≥ 1, find a formula for the
expression 3+ 2+ 4+ 6+ 8+ · · · + 2n.

c. If n is an integer and n ≥ 1, find a formula for the
expression 3+ 3 ·2+ 3 ·3+ · · · + 3 ·n + n.

2. The formula

1+ r + r2 + · · · + rn = rn+1 − 1

r − 1
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is true for all real numbers r except r = 1 and for all inte-
gers n ≥ 0. Use this fact to solve each of the following
problems:
a. If i is an integer and i ≥ 1, find a formula for the

expression 1+ 2+ 22 + · · · + 2i−1.
b. If n is an integer and n ≥ 1, find a formula for the

expression 3n−1 + 3n−2 + · · · + 32 + 3+ 1.
c. If n is an integer and n ≥ 2, find a formula for the expres-

sion 2n + 2n−2 ·3+ 2n−3 ·3+ · · · + 22 ·3+ 2 ·3+ 3
d. If n is an integer and n ≥ 1, find a formula for the

expression

2n − 2n−1 + 2n−2 − 2n−3 + · · · + (−1)n−1 ·2+ (−1)n .
In each of 3–15 a sequence is defined recursively. Use iteration
to guess an explicit formula for the sequence. Use the formulas
from Section 5.2 to simplify your answers whenever possible.

3. ak = kak−1, for all integers k ≥ 1
a0 = 1

4. bk = bk−1
1 + bk−1

, for all integers k ≥ 1

b0 = 1

5. ck = 3ck−1 + 1, for all integers k ≥ 2
c1 = 1

6.H dk = 2dk−1 + 3, for all integers k ≥ 2
dt = 2

7. ek = 4ek−1 + 5, for all integers k ≥ 1
e0 = 2

8. fk = fk−1 + 2k , for all integers k ≥ 2
f1 = 1

9.H gk = gk−1
gk−1 + 2

, for all integers k ≥ 2

g1 = 1

10. hk = 2k − hk−1, for all integers k ≥ 1
h0 = 1

11. pk = pk−1 + 2 ·3k
p1 = 2

12. sk = sk−1 + 2k, for all integers k ≥ 1
s0 = 3

13. tk = tk−1 + 3k + 1, for all integers k ≥ 1
t0 = 0

14.✶ xk = 3xk−1 + k, for all integers k ≥ 2
x1 = 1

15. yk = yk−1 + k2, for all integers k ≥ 2
y1 = 1

16. Solve the recurrence relation obtained as the answer to
exercise 18(c) of Section 5.6.

17. Solve the recurrence relation obtained as the answer to
exercise 21(c) of Section 5.6.

18. Suppose d is a fixed constant and a0, a1, a2, . . . is a sequence
that satisfies the recurrence relation ak = ak−1 + d, for all
integers k ≥ 1. Use mathematical induction to prove that
an = a0 + nd, for all integers n ≥ 0.

19. A worker is promised a bonus if he can increase his produc-
tivity by 2 units a day every day for a period of 30 days. If
on day 0 he produces 170 units, how many units must he
produce on day 30 to qualify for the bonus?

20. A runner targets herself to improve her time on a certain
course by 3 seconds a day. If on day 0 she runs the course
in 3 minutes, how fast must she run it on day 14 to stay on
target?

21. Suppose r is a fixed constant and a0, a1, a2 . . . is a sequence
that satisfies the recurrence relation ak = rak−1, for all
integers k ≥ 1 and a0 = a. Use mathematical induction to
prove that an = arn , for all integers n ≥ 0.

22. As shown in Example 5.6.8, if a bank pays interest at a
rate of i compounded m times a year, then the amount of
money Pk at the end of k time periods (where one time
period = 1/mth of a year) satisfies the recurrence relation
Pk = [1+ (i/m)]Pk−1 with initial condition P0 = the initial
amount deposited. Find an explicit formula for Pn .

23. Suppose the population of a country increases at a steady rate
of 3% per year. If the population is 50 million at a certain
time, what will it be 25 years later?

24. A chain letter works as follows: One person sends a copy of
the letter to five friends, each of whom sends a copy to five
friends, each of whom sends a copy to five friends, and so
forth. How many people will have received copies of the let-
ter after the twentieth repetition of this process, assuming no
person receives more than one copy?

25. A certain computer algorithm executes twice as many oper-
ations when it is run with an input of size k as when it
is run with an input of size k − 1 (where k is an integer
that is greater than 1). When the algorithm is run with an
input of size 1, it executes seven operations. How many
operations does it execute when it is run with an input of
size 25?

26. A person saving for retirement makes an initial deposit of
$1,000 to a bank account earning interest at a rate of 3%
per year compounded monthly, and each month she adds an
additional $200 to the account.
a. For each nonnegative integer n, let An be the amount in

the account at the end of n months. Find a recurrence rela-
tion relating Ak to Ak−1.

b.H Use iteration to find an explicit formula for An .

c. Use mathematical induction to prove the correctness of
the formula you obtained in part (b).

d. How much will the account be worth at the end of 20
years? At the end of 40 years?

e.H In how many years will the account be worth $10,000?
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316 Chapter 5 Sequences, Mathematical Induction, and Recursion

27. A person borrows $3,000 on a bank credit card at a nominal
rate of 18% per year, which is actually charged at a rate of
1.5% per month.
a.H What is the annual percentage rate (APR) for the card?

(See Example 5.6.8 for a definition of APR.)
b. Assume that the person does not place any additional

charges on the card and pays the bank $150 each
month to pay off the loan. Let Bn be the balance owed
on the card after n months. Find an explicit formula
for Bn .

c.H How long will be required to pay off the debt?
d. What is the total amount of money the person will have

paid for the loan?

In 28–42 use mathematical induction to verify the correctness
of the formula you obtained in the referenced exercise.

28. Exercise 3 29. Exercise 4 30. Exercise 5

31. Exercise 6 32. Exercise 7 33. Exercise 8

34. Exercise 9 35.H Exercise 10 36. Exercise 11

37.H Exercise 12 38. Exercise 13 39. Exercise 14

40. Exercise 15 41. Exercise 16 42. Exercise 17

In each of 43–49 a sequence is defined recursively. (a) Use itera-
tion to guess an explicit formula for the sequence. (b) Use strong
mathematical induction to verify that the formula of part (a) is
correct.

43. ak = ak−1
2ak−1 − 1

, for all integers k ≥ 1

a0 = 2

44. bk = 2

bk−1
, for all integers k ≥ 2

b1 = 1

45. vk = v�k/2� + v�(k+1)/2� + 2, for all integers k ≥ 2,
v1 = 1.

46.H sk = 2sk−2, for all integers k ≥ 2,
s0 = 1, s1 = 2.

47. tk = k − tk−1, for all integers k ≥ 1,
t0 = 0.

48.H wk = wk−2 + k, for all integers k ≥ 3,
w1 = 1, w2 = 2.

49.H uk = uk−2 ·uk−1, for all integers k ≥ 2,
u0 = u1 = 2.

In 50 and 51 determine whether the given recursively defined
sequence satisfies the explicit formula an = (n − 1)2, for all
integers n ≥ 1.

50. ak = 2ak−1 + k − 1, for all integers k ≥ 2
a1 = 0

51. ak = (ak−1 + 1)2, for all integers k ≥ 2
a1 = 0

52. A single line divides a plane into two regions. Two lines (by
crossing) can divide a plane into four regions; three lines
can divide it into seven regions (see the figure). Let Pn be
the maximum number of regions into which n lines divide a
plane, where n is a positive integer.

Line 3

Line 2

Line 1

5
1 2

3 4

6

7

a. Derive a recurrence relation for Pk in terms of Pk−1, for
all integers k ≥ 2.

b. Use iteration to guess an explicit formula for Pn .

53. Compute

[
1 1
1 0

]n

for small values of n (up to about 5 or 6).

Conjecture explicit formulas for the entries in this matrix,
and prove your conjecture using mathematical induction.

54. In economics the behavior of an economy from one period to
another is often modeled by recurrence relations. Let Yk be
the income in period k and Ck be the consumption in period
k. In one economic model, income in any period is assumed
to be the sum of consumption in that period plus investment
and government expenditures (which are assumed to be con-
stant from period to period), and consumption in each period
is assumed to be a linear function of the income of the pre-
ceding period. That is,

Yk = Ck + E where E is the sum of investment
plus government expenditures

Ck = c + mYk−1 where c and m are constants.

Substituting the second equation into the first gives
Yk = E + c + mYk−1.
a. Use iteration on the above recurrence relation to obtain

Yn = (E + c)

(
mn − 1

m − 1

)
+ mnY0

for all integers n≥1.
b. (For students who have studied calculus) Show that if

0 < m < 1, then lim
n→∞ Yn = E + c

1− m
.

Answers for Test Yourself
1. initial conditions; recurrence relation 2. parentheses 3. k·a 4. ak 5. ak = ak−1 + d; an = a0 + dn 6. ak = rak−1;
an = a0rn 7. mathematical induction
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