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CHAPTER 9

COUNTING AND PROBABILITY

“It’s as easy as 1–2–3.”
That’s the saying. And in certain ways, counting is easy. But other aspects of counting

aren’t so simple. Have you ever agreed to meet a friend “in three days” and then realized
that you and your friend might mean different things? For example, on the European
continent, to meet in eight days means to meet on the same day as today one week hence;
on the other hand, in English-speaking countries, to meet in seven days means to meet
one week hence. The difference is that on the continent, all days including the first and
the last are counted. In the English-speaking world, it’s the number of 24-hour periods
that are counted.

Continental countries 1 2 3 4 5 6 7 8
( ( ( ( ↓ ( ( (
Sun Mon Tue Wed Thu Fri Sat Sun︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

English-speaking countries 1 2 3 4 5 6 7

The English convention for counting days follows the almost universal convention
for counting hours. If it is 9 A.M. and two people anywhere in the world agree to meet in
three hours, they mean that they will get back together again at 12 noon.

Musical intervals, on the other hand, are universally reckoned the way the Conti-
nentals count the days of a week. An interval of a third consists of two tones with a
single tone in between, and an interval of a second consists of two adjacent tones. (See
Figure 9.1.1.)

C E C D

Interval of a third Interval of a second

Figure 9.1.1

Of course, the complicating factor in all these examples is not how to count but rather
what to count. And, indeed, in the more complex mathematical counting problems dis-
cussed in this chapter, it is what to count that is the central issue. Once one knows exactly
what to count, the counting itself is as easy as 1–2–3.
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9.1 Introduction
Imagine tossing two coins and observing whether 0, 1, or 2 heads are obtained. It would
be natural to guess that each of these events occurs about one-third of the time, but in
fact this is not the case. Table 9.1.1 below shows actual data obtained from tossing two
quarters 50 times.

Table 9.1.1 Experimental Data Obtained from Tossing Two Quarters 50 Times

Frequency Relative Frequency
(Number of times (Fraction of times

Event Tally the event occurred) the event occurred)

2 heads obtained |||| |||| | 11 22%

1 head obtained |||| |||| |||| |||| |||| || 27 54%

0 heads obtained |||| |||| || 12 24%

As you can see, the relative frequency of obtaining exactly 1 head was roughly twice
as great as that of obtaining either 2 heads or 0 heads. It turns out that the mathematical
theory of probability can be used to predict that a result like this will almost always occur.
To see how, call the two coins A and B, and suppose that each is perfectly balanced.
Then each has an equal chance of coming up heads or tails, and when the two are tossed
together, the four outcomes pictured in Figure 9.1.2 are all equally likely.

A B A B A B A B

2 heads obtained 1 head obtained 0 heads obtained

Figure 9.1.2 Equally Likely Outcomes from Tossing Two Balanced Coins

Figure 9.1.2 shows that there is a 1 in 4 chance of obtaining two heads and a 1 in
4 chance of obtaining no heads. The chance of obtaining one head, however, is 2 in 4
because either A could come up heads and B tails or B could come up heads and A tails.
So if you repeatedly toss two balanced coins and record the number of heads, you should
expect relative frequencies similar to those shown in Table 9.1.1.

To formalize this analysis and extend it to more complex situations, we introduce the
notions of random process, sample space, event and probability. To say that a process
is random means that when it takes place, one outcome from some set of outcomes is
sure to occur, but it is impossible to predict with certainty which outcome that will be.
For instance, if an ordinary person performs the experiment of tossing an ordinary coin
into the air and allowing it to fall flat on the ground, it can be predicted with certainty
that the coin will land either heads up or tails up (so the set of outcomes can be denoted
{heads, tails}), but it is not known for sure whether heads or tails will occur. We restricted
this experiment to ordinary people because a skilled magician can toss a coin in a way
that appears random but is not, and a physicist equipped with first-rate measuring devices
may be able to analyze all the forces on the coin and correctly predict its landing position.
Just a few of many examples of random processes or experiments are choosing winners
in state lotteries, selecting respondents in public opinion polls, and choosing subjects to
receive treatments or serve as controls in medical experiments. The set of outcomes that
can result from a random process or experiment is called a sample space.
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518 Chapter 9 Counting and Probability

• Definition

A sample space is the set of all possible outcomes of a random process or experiment.
An event is a subset of a sample space.

In case an experiment has finitely many outcomes and all outcomes are equally likely
to occur, the probability of an event (set of outcomes) is just the ratio of the number
of outcomes in the event to the total number of outcomes. Strictly speaking, this result
can be deduced from a set of axioms for probability formulated in 1933 by the Russian
mathematician A. N. Kolmogorov. In Section 9.8 we discuss the axioms and show how to
derive their consequences formally. At present, we take a naïve approach to probability
and simply state the result as a principle.

Equally Likely Probability Formula

If S is a finite sample space in which all outcomes are equally likely and E is an
event in S, then the probability of E, denoted P(E), is

P(E) = the number of outcomes in E

the total number of outcomes in S
.

• Notation

For any finite set A, N (A) denotes the number of elements in A.

With this notation, the equally likely probability formula becomes

P(E) = N (E)

N (S)
.

Example 9.1.1 Probabilities for a Deck of Cards

An ordinary deck of cards contains 52 cards divided into four suits. The red suits are
diamonds (�) and hearts ( ) and the black suits are clubs (♣) and spades (♠). Each
suit contains 13 cards of the following denominations: 2, 3, 4, 5, 6, 7, 8, 9, 10, J (jack),
Q (queen), K (king), and A (ace). The cards J, Q, and K are called face cards.

Mathematician Persi Diaconis, working with David Aldous in 1986 and Dave Bayer
in 1992, showed that seven shuffles are needed to “thoroughly mix up” the cards in an
ordinary deck. In 2000 mathematician Nick Trefethen, working with his father, Lloyd
Trefethen, a mechanical engineer, used a somewhat different definition of “thoroughly
mix up” to show that six shuffles will nearly always suffice. Imagine that the cards in a
deck have become—by some method—so thoroughly mixed up that if you spread them
out face down and pick one at random, you are as likely to get any one card as any other.

a. What is the sample space of outcomes?

b. What is the event that the chosen card is a black face card?

c. What is the probability that the chosen card is a black face card?
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Solution

a. The outcomes in the sample space S are the 52 cards in the deck.

b. Let E be the event that a black face card is chosen. The outcomes in E are the jack,
queen, and king of clubs and the jack, queen, and king of spades. Symbolically,

E = {J♣,Q♣,K♣, J♠,Q♠,K♠}.
c. By part (b), N (E) = 6, and according to the description of the situation, all 52 out-

comes in the sample space are equally likely. Therefore, by the equally likely proba-
bility formula, the probability that the chosen card is a black face card is

P(E) = N (E)

N (S)
= 6

52
∼= 11.5%. ■

Example 9.1.2 Rolling a Pair of Dice

A die is one of a pair of dice. It is a cube with six sides, each containing from one to six
dots, called pips. Suppose a blue die and a gray die are rolled together, and the numbers
of dots that occur face up on each are recorded. The possible outcomes can be listed as
follows, where in each case the die on the left is blue and the one on the right is gray.

A more compact notation identifies, say, with the notation 24, with 53,
and so forth.

a. Use the compact notation to write the sample space S of possible outcomes.

b. Use set notation to write the event E that the numbers showing face up have a sum of
6 and find the probability of this event.

Solution

a. S = {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 41, 42, 43,
44, 45, 46, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}.

b. E = {15, 24, 33, 42, 51}.
The probability that the sum of the numbers is 6 = P(E) = N (E)

N (S)
= 5

36
. ■

The next example is called the Monty Hall problem after the host of an old game
show, “Let’s Make A Deal.” When it was originally publicized in a newspaper column
and on a radio show, it created tremendous controversy. Many highly educated people,
even some with Ph.D.’s, submitted incorrect solutions or argued vociferously against the
correct solution. Before you read the answer, think about what your own response to the
situation would be.
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520 Chapter 9 Counting and Probability

Example 9.1.3 The Monty Hall Problem

There are three doors on the set for a game show. Let’s call them A, B, and C . If you pick
the right door you win the prize. You pick door A. The host of the show, Monty Hall,
then opens one of the other doors and reveals that there is no prize behind it. Keeping
the remaining two doors closed, he asks you whether you want to switch your choice to
the other closed door or stay with your original choice of door A. What should you do if
you want to maximize your chance of winning the prize: stay with door A or switch—or
would the likelihood of winning be the same either way?

B C B C B C

Case 1 Case 2 Case 3

Solution At the point just before the host opens one of the closed doors, there is no
information about the location of the prize. Thus there are three equally likely possi-
bilities for what lies behind the doors: (Case 1) the prize is behind A (i.e., it is not behind
either B or C), (Case 2) the prize is behind B; (Case 3) the prize is behind C .

Since there is no prize behind the door the host opens, in Case 1 the host could open
either door and you would win by staying with your original choice: door A. In Case 2
the host must open door C , and so you would win by switching to door B. In Case 3 the
host must open door B, and so you would win by switching to door C . Thus, in two of the
three equally likely cases, you would win by switching from A to the other closed door.
In only one of the three equally likely cases would you win by staying with your original
choice. Therefore, you should switch.

A reality note: The analysis used for this solution applies only if the host always opens
one of the closed doors and offers the contestant the choice of staying with the original
choice or switching. In the original show, Monty Hall made this offer only occasionally—
most often when he knew the contestant had already chosen the correct door. ■

Many of the fundamental principles of probability were formulated in the mid-1600s
in an exchange of letters between Pierre de Fermat and Blaise Pascal in response to ques-
tions posed by a French nobleman interested in games of chance. In 1812, Pierre-Simon
Laplace published the first general mathematical treatise on the subject and extended the
range of applications to a variety of scientific and practical problems.
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Pierre-Simon Laplace
(1749–1827)

Counting the Elements of a List
Some counting problems are as simple as counting the elements of a list. For instance,
how many integers are there from 5 through 12? To answer this question, imagine going
along the list of integers from 5 to 12, counting each in turn.

list: 5 6 7 8 9 10 11 12
( ( ( ( ( ( ( (

count: 1 2 3 4 5 6 7 8

So the answer is 8.
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9.1 Introduction 521

More generally, if m and n are integers and m ≤ n, how many integers are there from
m through n? To answer this question, note that n = m + (n − m), where n − m ≥ 0
[since n ≥ m]. Note also that the elementm + 0 is the first element of the list, the element
m + 1 is the second element, the element m + 2 is the third, and so forth. In general, the
element m + i is the (i + 1)st element of the list.

list: m(= m + 0) m + 1 m + 2 . . . n (= m + (n − m))
( ( ( (

count: 1 2 3 . . . (n − m)+ 1

And so the number of elements in the list is n − m + 1.
This general result is important enough to be restated as a theorem, the formal proof of

which uses mathematical induction. (See exercise 28 at the end of this section.) The heart
of the proof is the observation that if the list m,m + 1, . . . , k has k − m + 1 numbers,
then the list m,m + 1, . . . , k, k + 1 has (k − m + 1)+ 1 = (k + 1)− m + 1 numbers.

Theorem 9.1.1 The Number of Elements in a List

If m and n are integers and m ≤ n, then there are n − m + 1 integers from m to n
inclusive.

Example 9.1.4 Counting the Elements of a Sublist

a. How many three-digit integers (integers from 100 to 999 inclusive) are divisible by 5?

b. What is the probability that a randomly chosen three-digit integer is divisible by 5?

Solution

a. Imagine writing the three-digit integers in a row, noting those that are multiples of 5
and drawing arrows between each such integer and its corresponding multiple of 5.

100 101 102 103 104 105 106 107 108 109 110 · · · 994 995 996 997 998 999
( ( ( (

5 ·20 5 ·21 5 ·22 5 ·199

From the sketch it is clear that there are as many three-digit integers that are multi-
ples of 5 as there are integers from 20 to 199 inclusive. By Theorem 9.1.1, there are
199− 20+ 1, or 180, such integers. Hence there are 180 three-digit integers that are
divisible by 5.

b. By Theorem 9.1.1 the total number of integers from 100 through 999 is 999− 100+
1 = 900. By part (a), 180 of these are divisible by 5. Hence the probability that a
randomly chosen three-digit integer is divisible by 5 is 180/900 = 1/5. ■

Example 9.1.5 Application: Counting Elements of a One-Dimensional Array

Analysis of many computer algorithms requires skill at counting the elements of a
one-dimensional array. Let A[1], A[2], . . . , A[n] be a one-dimensional array, where n
is a positive integer.

a. Suppose the array is cut at a middle value A[m] so that two subarrays are formed:

(1) A[1], A[2], . . . , A[m] and (2) A[m + 1], A[m + 2], . . . , A[n].
How many elements does each subarray have?

b. What is the probability that a randomly chosen element of the array has an even
subscript

(i) if n is even? (ii) if n is odd?
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522 Chapter 9 Counting and Probability

Solution

a. Array (1) has the same number of elements as the list of integers from 1 through m. So
by Theorem 9.1.1, it has m, or m − 1+ 1, elements. Array (2) has the same number
of elements as the list of integers from m + 1 through n. So by Theorem 9.1.1, it has
n − m, or n − (m + 1)+ 1, elements.

b. (i) If n is even, each even subscript starting with 2 and ending with n can be matched
up with an integer from 1 to n/2.

1 2 3 4 5 6 7 8 9 10 · · · n
( ( ( ( ( (

2 ·1 2 ·2 2 ·3 2 ·4 2 ·5 2 ·n/2

So there are n/2 array elements with even subscripts. Since the entire array has n
elements, the probability that a randomly chosen element has an even subscript is
n/2

n
= 1

2
.

(ii) If n is odd, then the greatest even subscript of the array is n − 1. So there are as
many even subscripts between 1 and n as there are from 2 through n − 1. Then the
reasoning of (i) can be used to conclude that there are (n − 1)/2 array elements
with even subscripts.

1 2 3 4 5 6 · · · n − 1 n
( ( ( (

2 ·1 2 ·2 2 ·3 · · · 2 ·(n − 1)/2

Since the entire array has n elements, the probability that a randomly chosen

element has an even subscript is
(n − 1)/2

n
= n − 1

2n
. Observe that as n gets larger

and larger, this probability gets closer and closer to 1/2.

Note that the answers to (i) and (ii) can be combined using the floor notation. By
Theorem 4.5.2, the number of array elements with even subscripts is �n/2�, so the prob-

ability that a randomly chosen element has an even subscript is
�n/2�
n

. ■

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. A sample space of a random process or experiment is _____.

2. An event in a sample space is _____.

3. To compute the probability of an event using the equally
likely probability formula, you take the ratio of the _____ to
the _____.

4. If m ≤ n, the number of integers from m to n inclusive is
_____.
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Exercise Set 9.1*
1. Toss two coins 30 times and make a table showing the rel-

ative frequencies of 0, 1, and 2 heads. How do your values
compare with those shown in Table 9.1.1?

2. In the example of tossing two quarters, what is the probabil-
ity that at least one head is obtained? that coin A is a head?
that coins A and B are either both heads or both tails?

In 3–6 use the sample space given in Example 9.1.1. Write each
event as a set, and compute its probability.

3. The event that the chosen card is red and is not a face card.

4. The event that the chosen card is black and has an even
number on it.

5. The event that the denomination of the chosen card is at
least 10 (counting aces high).

6. The event that the denomination of the chosen card is at
most 4 (counting aces high).

In 7–10, use the sample space given in Example 9.1.2. Write
each of the following events as a set and compute its probability.

7. The event that the sum of the numbers showing face up is 8.

8. The event that the numbers showing face up are the same.

9. The event that the sum of the numbers showing face up is
at most 6.

10. The event that the sum of the numbers showing face up is
at least 9.

11. Suppose that a coin is tossed three times and the side show-
ing face up on each toss is noted. Suppose also that on each
toss heads and tails are equally likely. Let HHT indicate the
outcome heads on the first two tosses and tails on the third,
THT the outcome tails on the first and third tosses and heads
on the second, and so forth.
a. List the eight elements in the sample space whose out-

comes are all the possible head–tail sequences obtained
in the three tosses.

b. Write each of the following events as a set and find its
probability:
(i) The event that exactly one toss results in a head.
(ii) The event that at least two tosses result in a head.
(iii) The event that no head is obtained.

12. Suppose that each child born is equally likely to be a boy
or a girl. Consider a family with exactly three children. Let
BBG indicate that the first two children born are boys and
the third child is a girl, let GBG indicate that the first and
third children born are girls and the second is a boy, and so
forth.
a. List the eight elements in the sample space whose out-

comes are all possible genders of the three children.
b. Write each of the events in the next column as a set and

find its probability.

(i) The event that exactly one child is a girl.
(ii) The event that at least two children are girls.
(iii) The event that no child is a girl.

13. Suppose that on a true/false exam you have no idea at all
about the answers to three questions. You choose answers
randomly and therefore have a 50–50 chance of being
correct on any one question. Let CCW indicate that you
were correct on the first two questions and wrong on the
third, let WCW indicate that you were wrong on the first
and third questions and correct on the second, and so
forth.
a. List the elements in the sample space whose outcomes

are all possible sequences of correct and incorrect
responses on your part.

b. Write each of the following events as a set and find its
probability:
(i) The event that exactly one answer is correct.
(ii) The event that at least two answers are correct.
(iii) The event that no answer is correct.

14. Three people have been exposed to a certain illness. Once
exposed, a person has a 50–50 chance of actually becom-
ing ill.
a. What is the probability that exactly one of the people

becomes ill?
b. What is the probability that at least two of the people

become ill?
c. What is the probability that none of the three people

becomes ill?

15. When discussing counting and probability, we often con-
sider situations that may appear frivolous or of little practi-
cal value, such as tossing coins, choosing cards, or rolling
dice. The reason is that these relatively simple examples
serve as models for a wide variety of more complex situ-
ations in the real world. In light of this remark, comment
on the relationship between your answer to exercise 11 and
your answers to exercises 12–14.

16. Two faces of a six-sided die are painted red, two are painted
blue, and two are painted yellow. The die is rolled three
times, and the colors that appear face up on the first, second,
and third rolls are recorded.
a. Let BBR denote the outcome where the color appearing

face up on the first and second rolls is blue and the color
appearing face up on the third roll is red. Because there
are as many faces of one color as of any other, the out-
comes of this experiment are equally likely. List all 27
possible outcomes.

b. Consider the event that all three rolls produce different
colors. One outcome in this event is RBY and another
RYB. List all outcomes in the event. What is the proba-
bility of the event?

∗For exercises with blue numbers or letters, solutions are given in Appendix B. The symbolH indicates that only a hint or a partial
solution is given. The symbol ✶ signals that an exercise is more challenging than usual.
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524 Chapter 9 Counting and Probability

c. Consider the event that two of the colors that appear face
up are the same. One outcome in this event is RRB and
another is RBR. List all outcomes in the event. What is
the probability of the event?

17. Consider the situation described in exercise 16.
a. Find the probability of the event that exactly one of the

colors that appears face up is red.
b. Find the probability of the event that at least one of the

colors that appears face up is red.

18. An urn contains two blue balls (denoted B1 and B2) and
one white ball (denoted W ). One ball is drawn, its color is
recorded, and it is replaced in the urn. Then another ball is
drawn, and its color is recorded.
a. Let B1W denote the outcome that the first ball drawn

is B1 and the second ball drawn is W . Because the first
ball is replaced before the second ball is drawn, the out-
comes of the experiment are equally likely. List all nine
possible outcomes of the experiment.

b. Consider the event that the two balls that are drawn are
both blue. List all outcomes in the event. What is the
probability of the event?

c. Consider the event that the two balls that are drawn are
of different colors. List all outcomes in the event. What
is the probability of the event?

19. An urn contains two blue balls (denoted B1 and B2) and
three white balls (denoted W1,W2, and W3). One ball is
drawn, its color is recorded, and it is replaced in the urn.
Then another ball is drawn and its color is recorded.
a. Let B1W2 denote the outcome that the first ball drawn

is B1 and the second ball drawn is W2. Because the first
ball is replaced before the second ball is drawn, the out-
comes of the experiment are equally likely. List all 25
possible outcomes of the experiment.

b. Consider the event that the first ball that is drawn is blue.
List all outcomes in the event. What is the probability of
the event?

c. Consider the event that only white balls are drawn. List
all outcomes in the event. What is the probability of the
event?

20. Refer to Example 9.1.3. Suppose you are appearing on a
game show with a prize behind one of five closed doors:
A, B,C, D, and E . If you pick the right door, you win the
prize. You pick door A. The game show host then opens one
of the other doors and reveals that there is no prize behind
it. Then the host gives you the option of staying with your
original choice of door A or switching to one of the other
doors that is still closed.
a. If you stick with your original choice, what is the prob-

ability that you will win the prize?
b. If you switch to another door, what is the probability that

you will win the prize?

21. a. Howmany positive two-digit integers are multiples of 3?
b. What is the probability that a randomly chosen positive

two-digit integer is a multiple of 3?
c. What is the probability that a randomly chosen positive

two-digit integer is a multiple of 4?

22. a. How many positive three-digit integers are multiples
of 6?

b. What is the probability that a randomly chosen positive
three-digit integer is a multiple of 6?

c. What is the probability that a randomly chosen positive
three-digit integer is a multiple of 7?

23. Suppose A[1], A[2], A[3], . . . , A[n] is a one-dimensional
array and n ≥ 50.
a. How many elements are in the array?
b. How many elements are in the subarray

A[4], A[5], . . . , A[39]?
c. If 3 ≤ m ≤ n, what is the probability that a randomly

chosen array element is in the subarray

A[3], A[4], . . . , A[m]?
d. What is the probability that a randomly chosen array ele-

ment is in the subarray shown below if n = 39?

A[�n/2�], A[�n/2� + 1], . . . , A[n]
24. Suppose A[1], A[2], . . . , A[n] is a one-dimensional array

and n ≥ 2. Consider the subarray

A[1], A[2], . . . , A[�n/2�].
a. How many elements are in the subarray (i) if n is even?

and (ii) if n is odd?
b. What is the probability that a randomly chosen array

element is in the subarray (i) if n is even? and (ii) if n
is odd?

25. Suppose A[1], A[2], . . . , A[n] is a one-dimensional array
and n ≥ 2. Consider the subarray

A[�n/2�], A[�n/2� + 1], . . . , A[n].
a. How many elements are in the subarray (i) if n is even?

and (ii) if n is odd?
b. What is the probability that a randomly chosen array

element is in the subarray (i) if n is even? and (ii) if n
is odd?

26. What is the 27th element in the one-dimensional array
A[42], A[43], . . . , A[100]?

27. What is the 62nd element in the one-dimensional array
B[29], B[30], . . . , B[100]?

28. If the largest of 56 consecutive integers is 279, what is the
smallest?

29. If the largest of 87 consecutive integers is 326, what is the
smallest?

30. How many even integers are between 1 and 1,001?

31. How many integers that are multiples of 3 are between 1
and 1,001?

32. A certain non-leap year has 365 days, and January 1 occurs
on a Monday.
a. How many Sundays are in the year?
b. How many Mondays are in the year?

33.✶ Prove Theorem 9.1.1. (Let m be any integer and prove the
theorem by mathematical induction on n.)
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