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9.7 Pascal’s Formula and the Binomial Theorem
I’m very well acquainted, too, with matters mathematical, I understand equations both
the simple and quadratical. About binomial theorem I am teaming with a lot of news,
With many cheerful facts about the square of the hypotenuse.
—William S. Gilbert, The Pirates of Penzance, 1880

In this section we derive several formulas for values of
(n
r

)
The most important is Pascal’s

formula, which is the basis for Pascal’s triangle and is a crucial component of one of the
proofs of the binomial theorem. We offer two distinct proofs for both Pascal’s formula
and the binomial theorem. One of them is called “algebraic” because it relies to a great
extent on algebraic manipulation, and the other is called “combinatorial,” because it is
based on the kind of counting arguments we have been discussing in this chapter.

Example 9.7.1 Values of
(

n
n

)
,

(
n

n − 1

)
,

(
n

n − 2

)
Think of Theorem 9.5.1 as a general template: Regardless of what nonnegative numbers
are placed in the boxes, if the number in the lower box is no greater than the number in
the top box, then (

�
♦

)
= �!
♦!(�− ♦)! .

Use Theorem 9.5.1 to show that for all integers n ≥ 0,(
n
n

)
= 1 9.7.1

(
n

n − 1

)
= n, if n ≥ 1 9.7.2

(
n

n − 2

)
= n(n − 1)

2
, if n ≥ 2. 9.7.3

Solution
(
n
n

)
= n!

n!(n − n)! =
1

0! = 1 since 0! = 1 by definition(
n

n − 1

)
= n!

(n − 1)!(n − (n − 1))!
= n ·(n − 1)!

(n − 1)!(n − n + 1)! =
n

1
= n(

n
n − 2

)
= n!

(n − 2)!(n − (n − 2))!
= n ·(n − 1) ·(n − 2)!

(n − 2)!2! = n(n − 1)

2
■

Note that the result derived algebraically above, that
(n
n

)
equals 1, agrees with the fact

that a set with n elements has just one subset of size n, namely itself. Similarly, exercise
1 at the end of the section asks you to show algebraically that

(n
0

)
= 1, which agrees with

the fact that a set with n elements has one subset, the empty set, of size 0. In exercise
2 you are also asked to show algebraically that

(n
1

)
= n. This result agrees with the fact

that there are n subsets of size 1 that can be chosen from a set with n elements, namely
the subsets consisting of each element taken alone.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.7 Pascal’s Formula and the Binomial Theorem 593

Example 9.7.2
(

n
r

)
=

(
n

n − r

)
In exercise 5 at the end of the section you are asked to verify algebraically that(

n
r

)
=

(
n

n − r

)
for all nonnegative integers n and r with r ≤ n.

An alternative way to deduce this formula is to interpret it as saying that a set A with n
elements has exactly as many subsets of size r as it has subsets of size n − r . Derive the
formula using this reasoning.

Solution Observe that any subset of size r can be specified either by saying which r ele-
ments lie in the subset or by saying which n − r elements lie outside the subset.

A, A Set with n Elements

B, a subset
with r
elements

A – B, a subset
with n – r
elements

Any subset B with r
elements completely
determines a subset,
A – B, with n – r elements.

Suppose A has k subsets of size r : B1, B2, . . . , Bk . Then each Bi can be paired up
with exactly one set of size n − r , namely its complement A − Bi as shown below.

Subsets of Size r Subsets of Size n – r

B1

B2

Bk

A – B1

A – B2

A – Bk

All subsets of size r are listed in the left-hand column, and all subsets of size n − r are
listed in the right-hand column. The number of subsets of size r equals the number of
subsets of size n − r , and so

(n
r

)
=
( n
n−r

)
. ■

The type of reasoning used in this example is called combinatorial, because it is
obtained by counting things that are combined in different ways. A number of theorems
have both combinatorial proofs and proofs that are purely algebraic.

Pascal’s Formula
Pascal’s formula, named after the seventeenth-century French mathematician and philoso-
pher Blaise Pascal, is one of the most famous and useful in combinatorics (which is the

formal term for the study of counting and listing problems). It relates the value of
(n+1

r

)
to the values of

( n
r−1

)
and

(n
r

)
. Specifically, it says that

(
n + 1
r

)
=

(
n

r − 1

)
+
(
n
r

)

whenever n and r are positive integers with r ≤ n. This formula makes it easy to compute
higher combinations in terms of lower ones: If all the values of

(n
r

)
are known, then the

values of
(n+1

r

)
can be computed for all r such that 0 < r ≤ n.

H
ul

to
n-

D
eu

tc
h

C
ol

le
ct

io
n/

C
O

R
B

IS

Blaise Pascal
(1623–1662)
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594 Chapter 9 Counting and Probability

Pascal’s triangle, shown in Table 9.7.1, is a geometric version of Pascal’s formula.
Sometimes it is simply called the arithmetic triangle because it was used centuries before
Pascal by Chinese and Persian mathematicians. But Pascal discovered it independently,
and ever since 1654, when he published a treatise that explored many of its features, it
has generally been known as Pascal’s triangle.

Table 9.7.1 Pascal’s Triangle for
(

Values of
(

n
r

))

r
0 1 2 3 4 5 · · · r − 1 r · · ·

n

0 1 · · . . .

1 1 1 · · . . .

2 1 2 1 · · . . .

3 1 3 3 1 · · . . .

4 1 4 6 + 4 1 · · . . .

5 1 5 10 = 10 5 1 · · . . .
· · · · · · · · · . . .· · · · · · · · · . . .· · · · · · · · · . . .

n
(
n

0

) (
n

1

) (
n

2

) (
n

3

) (
n

4

) (
n

5

)
. . .

(
n

r − 1

)
+

(
n

r

)
. . .

n + 1
(
n + 1

0

) (
n + 1

1

) (
n + 1

2

) (
n + 1

3

) (
n + 1

4

) (
n + 1

5

)
. . . =

(
n + 1

r

)
. . .

· · · · · · · · . . .

· · · · · · · · . . .

· · · · · · · · . . .

Each entry in the triangle is a value of
(n
r

)
. Pascal’s formula translates into the fact that

the entry in row n + 1, column r equals the sum of the entry in row n, column r − 1 plus
the entry in row n, column r . That is, the entry in a given interior position equals the
sum of the two entries directly above and to the above left. The left-most and right-most
entries in each row are 1 because

(n
n

)
= 1 by Example 9.7.1 and

(n
0

)
= 1 by exercise 1 at

the end of this section.

Example 9.7.3 Calculating
(

n
r

)
Using Pascal’s Triangle

Use Pascal’s triangle to compute the values of(
6

2

)
and

(
6

3

)
.

Solution By construction, the value in row n, column r of Pascal’s triangle is the value of(n
r

)
, for every pair of positive integers n and r with r ≤ n. By Pascal’s formula,

(n+1
r

)
can be computed by adding together

( n
r−1

)
and

(n
r

)
, which are located directly above and

above left of
(n+1

r

)
. Thus,(

6
2

)
=

(
5
1

)
+
(
5
2

)
= 5+ 10 = 15 and

(
6
3

)
=

(
5
2

)
+
(
5
3

)
= 10+ 10 = 20. ■
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9.7 Pascal’s Formula and the Binomial Theorem 595

Pascal’s formula can be derived by two entirely different arguments. One is alge-
braic; it uses the formula for the number of r -combinations obtained in Theorem 9.5.1.
The other is combinatorial; it uses the definition of the number of r -combinations as the
number of subsets of size r taken from a set with a certain number of elements. We give
both proofs since both approaches have applications in many other situations.

Theorem 9.7.1 Pascal’s Formula

Let n and r be positive integers and suppose r ≤ n. Then(
n + 1
r

)
=

(
n

r − 1

)
+
(
n
r

)
.

Proof (algebraic version):

Let n and r be positive integers with r ≤ n. By Theorem 9.5.1,(
n

r − 1

)
+
(
n
r

)
= n!

(r − 1)!(n − (r − 1))! +
n!

r !(n − r)!
= n!

(r − 1)!(n − r + 1)! +
n!

r !(n − r)! .
To add these fractions, a common denominator is needed, so multiply the numera-
tor and denominator of the left-hand fraction by r and multiply the numerator and
denominator of the right-hand fraction by (n − r + 1). Then

(
n

r − 1

)
+
(
n
r

)
= n!

(r − 1)!(n − r + 1)! ·
r

r
+ n!

r !(n − r)! ·
(n − r + 1)

(n − r + 1)

= n! ·r
(n − r + 1)!r(r − 1)! +

n ·n! − n! ·r + n!
(n − r + 1)(n − r)!r !

= n! ·r + n! ·n − n! ·r + n!
(n − r + 1)!r ! = n!(n + 1)

(n + 1− r)!r !
= (n + 1)!

((n + 1)− r)!r ! =
(
n + 1
r

)
.

Proof (combinatorial version):

Let n and r be positive integers with r ≤ n. Suppose S is a set with n + 1 elements.
The number of subsets of S of size r can be calculated by thinking of S as consisting
of two pieces: one with n elements {x1, x2, . . . , xn} and the other with one element
{xn+1}.

Any subset of S with r elements either contains xn+1 or it does not. If it contains
xn+1, then it contains r − 1 elements from the set {x1, x2, . . . , xn}. If it does not
contain xn+1, then it contains r elements from the set {x1, x2, . . . , xn}.

continued on page 596
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596 Chapter 9 Counting and Probability

Subsets of Size r of {x1, x2, . . . , xn+1}

subsets of size r
that consist entirely
of elements from
{x1, x2 , . . . , xn}

subsets of size r
that contain xn+1
and r – 1 elements
from {x1, x2 , . . . , xn}

There are
n
r( )of these.

There are
n

r – 1(    )of these.

By the addition rule,⎡
⎣number of subsets of
{x1, x2, . . . , xn, xn+1}
of size r

⎤
⎦ =

⎡
⎣number of subsets of
{x1, x2, . . . , xn}
of size r − 1

⎤
⎦+

⎡
⎣number of subsets of
{x1, x2, . . . , xn}
of size r

⎤
⎦ .

By Theorem 9.5.1, the set {x1, x2, . . . , xn, xn+1} has
(n+1

r

)
subsets of size r , the set

{x1, x2, . . . , xn} has
( n
r−1

)
subsets of size r − 1, and the set {x1, x2, . . . , xn} has

(n
r

)
subsets of size r . Thus (

n + 1
r

)
=

(
n

r − 1

)
+
(
n
r

)
,

as was to be shown.

Example 9.7.4 Deriving New Formulas from Pascal’s Formula

Use Pascal’s formula to derive a formula for
(n+2

r

)
in terms of values of

(n
r

)
,
( n
r−1

)
, and( n

r−2
)
. Assume n and r are nonnegative integers and 2 ≤ r ≤ n.

Solution By Pascal’s formula,(
n + 2
r

)
=

(
n + 1
r − 1

)
+
(
n + 1
r

)
.

Now apply Pascal’s formula to
(n+1
r−1

)
and

(n+1
r

)
and substitute into the above to obtain(

n + 2
r

)
=

[(
n

r − 2

)
+
(

n
r − 1

)]
+
[(

n
r − 1

)
+
(
n
r

)]
.

Combining the two middle terms gives(
n + 2
r

)
=

(
n

r − 2

)
+ 2

(
n

r − 1

)
+
(
n
r

)
for all nonnegative integers n and r such that 2 ≤ r ≤ n. ■

The Binomial Theorem
In algebra a sum of two terms, such as a + b, is called a binomial. The binomial

theorem gives an expression for the powers of a binomial (a + b)n , for each positive
integer n and all real numbers a and b.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.7 Pascal’s Formula and the Binomial Theorem 597

Consider what happens when you calculate the first few powers of a + b. According
to the distributive law of algebra, you take the sum of the products of all combinations of
individual terms:

(a + b)2 = (a + b)(a + b) = aa + ab + ba + bb,

(a + b)3 = (a + b)(a + b)(a + b)

= aaa + aab + aba + abb + baa + bab + bba + bbb,

(a + b)4 = (a + b)︸ ︷︷ ︸(a + b)︸ ︷︷ ︸(a + b)︸ ︷︷ ︸(a + b)︸ ︷︷ ︸
1st 2nd 3rd 4th
factor factor factor factor

= aaaa + aaab + aaba + aabb + abaa + abab + abba + abbb

+ baaa + baab + baba + babb + bbaa + bbab + bbba + bbbb.

Now focus on the expansion of (a + b)4. (It is concrete, and yet it has all the features
of the general case.) A typical term of this expansion is obtained by multiplying one of the
two terms from the first factor times one of the two terms from the second factor times
one of the two terms from the third factor times one of the two terms from the fourth
factor. For example, the term abab is obtained by multiplying the a’s and b’s marked
with arrows below.

↓ ↓ ↓ ↓
(a + b)(a + b)(a + b)(a + b)

Since there are two possible values—a or b—for each term selected from one of the four
factors, there are 24 = 16 terms in the expansion of (a + b)4.

Now some terms in the expansion are “like terms” and can be combined. Consider all
possible orderings of three a’s and one b, for example. By the techniques of Section 9.5,

there are
(4
1

) = 4 of them. And each of the four occurs as a term in the expansion of
(a + b)4:

aaab aaba abaa baaa.

By the commutative and associative laws of algebra, each such term equals a3b, so all
four are “like terms.” When the like terms are combined, therefore, the coefficient of a3b
equals

(4
1

)
.

Similarly, the expansion of (a + b)4 contains the
(4
2

) = 6 different orderings of two
a’s and two b’s,

aabb abab abba baab baba bbaa,

all of which equal a2b2, so the coefficient of a2b2 equals
(4
2

)
. By a similar analysis, the

coefficient of ab3 equals
(4
3

)
. Also, since there is only one way to order four a’s, the

coefficient of a4 is 1 (which equals
(4
0

)
, and since there is only one way to order four

b’s, the coefficient of b4 is 1 (which equals
(4
4

)
). Thus, when all of the like terms are

combined,

(a + b)4 =
(
4
0

)
a4 +

(
4
1

)
a3b +

(
4
2

)
a2b2 +

(
4
3

)
ab3 +

(
4
4

)
b4

= a4 + 4a3b + 6a2b2 + 4ab3 + b4.

The binomial theorem generalizes this formula to an arbitrary nonnegative integer n.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



598 Chapter 9 Counting and Probability

Theorem 9.7.2 Binomial Theorem

Given any real numbers a and b and any nonnegative integer n,

(a + b)n =
n∑

k=0

(
n
k

)
an−kbk

= an +
(
n
1

)
an−1b1 +

(
n
2

)
an−2b2 + · · · +

(
n

n − 1

)
a1bn−1 + bn.

Note that the second expression equals the first because
(n
0

)
= 1 and

(n
n

)
= 1, for all

nonnegative integers n, provided that b0 = 1 and an−n = 1.
It is instructive to see two proofs of the binomial theorem: an algebraic proof and a

combinatorial proof. Both require a precise definition of integer power.

• Definition

For any real number a and any nonnegative integer n, the nonnegative integer
powers of a are defined as follows:

an =
{
1 if n = 0
a ·an−1 if n > 0

In some mathematical contexts, 00 is left undefined. Defining it to be 1, as is done

here, makes it possible to write general formulas such as
n∑

i=0
xi = 1

1−x without having to

exclude values of the variables that result in the expression 00.
The algebraic version of the binomial theorem uses mathematical induction and calls

upon Pascal’s formula at a crucial point.

Note This is the
definition of O0 given by
Donald E. Knuth in The
Art of Computer
Programming, Volume 1:
Fundamental Algorithms,
Third Edition (Reading,
Mass.: Addison-Wesley,
1997), p. 57.

Proof of the Binomial Theorem (algebraic version):

Suppose a and b are real numbers. We use mathematical induction and let the prop-
erty P(n) be the equation

(a + b)n =
n∑

k=0

(
n
k

)
an−kbk . ← P(n)

Show that P(0) is true: When n = 0, the binomial theorem states that:

(a + b)0 =
0∑

k=0

(
0
k

)
a0−kbk . ← P(0)

But the left-hand side is (a + b)0 = 1 [by definition of power], and the right-hand
side is

0∑
k=0

(
0
k

)
a0−kbk =

(
0
0

)
a0−0b0

= 0!
0! ·(0− 0)! ·1 ·1 =

1

1 ·1 = 1

also [since 0! = 1, a0 = 1, and b0 = 1]. Hence P(0) is true.
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9.7 Pascal’s Formula and the Binomial Theorem 599

Show that for all integers m≥0, if P(m) is true then P(m+1) is true: Let an integer
m ≥ 0 be given, and suppose P(m) is true. That is, suppose

(a + b)m =
m∑

k=0

(
m
k

)
am−kbk . P(m)

inductive hypothesis.

We need to show that P(m + 1) is true:

(a + b)m+1 =
m+1∑
k=0

(
m + 1

k

)
a(m+1)−kbk . P(m + 1)

Now, by definition of the (m + 1)st power,

(a + b)m+1 = (a + b) ·(a + b)m,

so by substitution from the inductive hypothesis,

(a + b)m+1 = (a + b) ·
m∑

k=0

(
m
k

)
am−kbk

= a ·
m∑

k=0

(
m
k

)
am−kbk + b ·

m∑
k=0

(
m
k

)
am−kbk

=
m∑

k=0

(
m
k

)
am+1−kbk +

m∑
k=0

(
m
k

)
am−kbk+1

by the generalized distributive
law and the facts that
a ·am−k = a1+m−k = am+1−k
and b ·bk = b1+k = bk+1.

We transform the second summation on the right-hand side by making the change of
variable j = k + 1. When k = 0, then j = 1. When k = m, then j = m + 1. And
since k = j − 1, the general term is(

m
k

)
am−kbk+1 =

(
m

j − 1

)
am−( j−1)b j =

(
m

j − 1

)
am+1− j b j .

Hence the second summation on the right-hand side above is

m+1∑
j=1

(
m

j − 1

)
am+1− j b j .

But the j in this summation is a dummy variable; it can be replaced by the letter k,
as long as the replacement is made everywhere the j occurs:

m+1∑
j=1

(
m

j − 1

)
am+1− j b j =

m+1∑
k=1

(
m

k − 1

)
am+1−kbk .

Substituting back, we get

(a + b)m+1 =
m∑

k=0

(
m
k

)
am+1−kbk +

m+1∑
k=1

(
m

k − 1

)
am+1−kbk .

[The reason for the above maneuvers was to make the powers of a and b agree so that
we can add the summations together term by term, except for the first and the last terms,
which we must write separately.]

continued on page 600
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600 Chapter 9 Counting and Probability

Thus

(a + b)m+1 =
(
m
0

)
am+1−0b0 +

m∑
k=1

[(
m
k

)
+
(

m
k − 1

)]
am+1−kbk

+
(

m
(m + 1)− 1

)
am+1−(m+1)bm+1

= am+1 +
m∑

k=1

[(
m
k

)
+
(

m
k − 1

)]
am+1−kbk + bm+1

since a0 = b0 = 1 and(
m
0

)
=

(
m
m

)
= 1.

But [(
m
k

)
+
(

m
k − 1

)]
=

(
m + 1

k

)
by Pascal’s formula.

Hence

(a + b)m+1 = am+1 +
m∑

k=1

(
m + 1

k

)
a(m+1)−kbk + bm+1

=
m+1∑
k=0

(
m + 1

k

)
a(m+1)−kbk because

(
m + 1

0

)
=

(
m + 1
m + 1

)
= 1

which is what we needed to show.

It is instructive to write out the product (a + b) ·(a + b)m without using the summa-
tion notation but using the inductive hypothesis about (a + b)m :

(a + b)m+1 = (a + b) ·
[
am +

(
m
1

)
am−1b + · · · +

(
m

k − 1

)
am−(k−1)bk−1

+
(
m
k

)
am−kbk + · · · +

(
m

m − 1

)
abm−1 + bm

]
.

You will see that the first and last coefficients are clearly 1 and that the term containing
am+1−kbk is obtained from multiplying am−kbk by a and am−(k−1)bk−1 by b [because
m + 1− k = m − (k − 1)]. Hence the coefficient of am+1−kbk equals the sum of

(m
k

)
and

( m
k−1

)
. This is the crux of the algebraic proof.

If n and r are nonnegative integers and r ≤ n, then
(n
r

)
is called a binomial coefficient

because it is one of the coefficients in the expansion of the binomial expression (a + b)n .
The combinatorial proof of the binomial theorem follows.

Proof of Binomial Theorem (combinatorial version):

[The combinatorial argument used here to prove the binomial theorem works only for
n ≥ 1. If we were giving only this combinatorial proof, we would have to prove the case
n = 0 separately. Since we have already given a complete algebraic proof that includes
the case n = 0, we do not prove it again here.]

Let a and b be real numbers and n an integer that is at least 1. The expression
(a + b)n can be expanded into products of n letters, where each letter is either a or b.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.7 Pascal’s Formula and the Binomial Theorem 601

For each k = 0, 1, 2, . . . , n, the product

an−kbk = a ·a ·a · · · a︸ ︷︷ ︸ ·b ·b ·b · · · b︸ ︷︷ ︸
n − k factors k factors

occurs as a term in the sum the same number of times as there are orderings of
(n − k) a’s and k b’s. But this number is

(n
k

)
, the number of ways to choose k

positions into which to place the b’s. [The other n − k positions will be filled by a′s.]
Hence, when like terms are combined, the coefficient of an−kbk in the sum is

(n
k

)
.

Thus

(a + b)n =
n∑

k=0

(
n
k

)
an−kbk .

This is what was to be proved.

Example 9.7.5 Substituting into the Binomial Theorem

Expand the following expressions using the binomial theorem:

a. (a + b)5 b. (x − 4y)4

Solution

a. (a + b)5 =
5∑

k=0

(
5
k

)
a5−kbk

= a5 +
(
5
1

)
a5−1b1 +

(
5
2

)
a5−2b2 +

(
5
3

)
a5−3b3 +

(
5
4

)
a5−4b4 + b5

= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

b. Observe that (x − 4y)4 = (x + (−4y))4. So let a = x and b = (−4y), and substitute
into the binomial theorem.

(x − 4y)4 =
4∑

k=0

(
4
k

)
x4−k(−4y)k

= x4 +
(
4
1

)
x4−1(−4y)1+

(
4
2

)
x4−2(−4y)2+

(
4
3

)
x4−3(−4y)3+ (−4y)4

= x4 + 4x3(−4y)+ 6x2(16y2)+ 4x1(−64y3)+ (256y4)

= x4 − 16x3y + 96x2y2 − 256xy3 + 256y4 ■

Example 9.7.6 Deriving Another Combinatorial Identity from the Binomial Theorem

Use the binomial theorem to show that

2n =
n∑

k=0

(
n
k

)
=

(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ · · · +

(
n
n

)

for all integers n ≥ 0.

Solution Since 2 = 1+ 1, 2n = (1+ 1)n . Apply the binomial theorem to this expression
by letting a = 1 and b = 1. Then

2n =
n∑

k=0

(
n
k

)
·1n−k ·1k =

n∑
k=0

(
n
k

)
·1 ·1
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since 1n−k = 1 and 1k = 1. Consequently,

2n =
n∑

k=0

(
n
k

)
=

(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ · · · +

(
n
n

)
. ■

Example 9.7.7 Using a Combinatorial Argument to Derive the Identity

According to Theorem 6.3.1, a set with n elements has 2n subsets. Apply this fact to give
a combinatorial argument to justify the identity(

n
0

)
+
(
n
1

)
+
(
n
2

)
+
(
n
3

)
+ · · · +

(
n
n

)
= 2n.

Solution Suppose S is a set with n elements. Then every subset of S has some number of
elements k, where k is between 0 and n. It follows that the total number of subsets of
S, N (P(S)), can be expressed as the following sum:⎡

⎣number of
subsets
of S

⎤
⎦ =

⎡
⎣number of
subsets of
size 0

⎤
⎦+

⎡
⎣number of
subsets of
size 1

⎤
⎦+ · · · +

⎡
⎣number of
subsets of
size n

⎤
⎦ .

Now the number of subsets of size k of a set with n elements is
(n
k

)
. Hence the

number of subsets of S =
(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ · · · +

(
n
n

)
But by Theorem 6.3.1, S has 2n subsets. Hence(

n
0

)
+
(
n
1

)
+
(
n
2

)
+
(
n
3

)
+ · · · +

(
n
n

)
= 2n. ■

Example 9.7.8 Using the Binomial Theorem to Simplify a Sum

Express the following sum in closed form (without using a summation symbol and with-
out using an ellipsis · · · ):

n∑
k=0

(
n
k

)
9k

Solution When the number 1 is raised to any power, the result is still 1. Thus

n∑
k=0

(
n
k

)
9k =

n∑
k=0

(
n
k

)
1n−k9k

= (1+ 9)n by the binomial theorem with a = 1 and b = 9

= 10n . ■

Test Yourself
1. If n and r are nonnegative integers with r ≤ n, then the rela-

tion between
(n
r

)
and

( n
n−r

)
is _____.

2. Pascal’s formula says that if n and r are positive integers
with r ≤ n, then _____.

3. The crux of the algebraic proof of Pascal’s formula is that
to add two fractions you need to express both of them with
a _____.

4. The crux of the combinatorial proof of Pascal’s formula is
that the set of subsets of size r of a set {x1, x2, . . . , xn+1}
can be partitioned into the set of subsets of size r that con-
tain _____ and those that _____.

5. The binomial theorem says that given any real numbers a
and b and any nonnegative integer n, _____.

6. The crux of the algebraic proof of the binomial theorem
is that, after making a change of variable so that two

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.7 Pascal’s Formula and the Binomial Theorem 603

summations have the same lower and upper limits and the
exponents of a and b are the same, you use the fact that(m
k

)
+
( m
k−1

)
= _____.

7. The crux of the combinatorial proof of the binomial theorem
is that the number of ways to arrange k b’s and (n − k) a’s
in order is _____.

Exercise Set 9.7
In 1–4, use Theorem 9.5.1 to compute the values of the indi-
cated quantities. (Assume n is an integer.)

1.
(
n
0

)
, for n ≥ 0 2.

(
n
1

)
, for n ≥ 1

3.
(
n
2

)
, for n ≥ 2 4.

(
n
3

)
, for n ≥ 3

5. Use Theorem 9.5.1 to prove algebraically that
(n
r

)
=
( n
n−r

)
,

for integers n and r with 0 ≤ r ≤ n. (This can be done by
direct calculation; it is not necessary to use mathematical
induction.)

Justify the equations in 6–9 either by deriving them from for-
mulas in Example 9.7.1 or by direct computation from Theo-
rem 9.5.1. Assume m, n, k, and r are integers.

6.
(

m + k
m + k − 1

)
= m + k, for m + k ≥ 1

7.

(
n + 3
n + 1

)
= (n + 3)(n + 2)

2
, for n ≥ −1

8.

(
k − r
k − r

)
= 1, for k − r ≥ 0

9.

(
2n
n

)
for n ≥ 0

10. a. Use Pascal’s triangle given in Table 9.7.1 to compute the

values of
(6
2

)
,
(6
3

)
,
(6
4

)
, and

(6
5

)
.

b. Use the result of part (a) and Pascal’s formula to compute(7
3

)
,
(7
4

)
, and

(7
5

)
.

c. Complete the row of Pascal’s triangle that corresponds to
n = 7.

11. The row of Pascal’s triangle that corresponds to n = 8 is as
follows:

1 8 28 56 70 56 28 8 1.

What is the row that corresponds to n = 9?

12. Use Pascal’s formula repeatedly to derive a formula for(n+3
r

)
in terms of values of

(n
k

)
with k ≤ r . (Assume n and

r are integers with n ≥ r ≥ 3.)

13. Use Pascal’s formula to prove by mathematical induction
that if n is an integer and n ≥ 1, then

n+1∑
i=2

(
i
2

)
=

(
2
2

)
+
(
3
2

)
+ · · · +

(
n + 1
2

)

=
(
n + 2
3

)
.

14.H Prove that if n is an integer and n ≥ 1, then

1 ·2+ 2 ·3+ · · · + n(n + 1) = 2

(
n + 2
3

)
.

15. Prove the following generalization of exercise 13: Let r be a
fixed nonnegative integer. For all integers n with n ≥ r ,

n∑
i=r

(
i
r

)
=

(
n + 1
r + 1

)
.

16. Think of a set with m + n elements as composed of two
parts, one with m elements and the other with n elements.
Give a combinatorial argument to show that(
m + n

r

)
=
(
m
0

)(
n
r

)
+
(
m
1

)(
n

r − 1

)
+ · · · +

(
m
r

)(
n
0

)
,

where m and n are positive integers and r is an integer that
is less than or equal to both m and n.

This identity gives rise to many useful additional identi-

ties involving the quantities
(n
k

)
. Because Alexander Vander-

monde published an influential article about it in 1772, it is
generally called the Vandermonde convolution. However, it
was known at least in the 1300s in China by Chu Shih-chieh.

17.H Prove that for all integers n ≥ 0,(
n
0

)2

+
(
n
1

)2

+ · · · +
(
n
n

)2

=
(
2n
n

)
.

18. Let m be any nonnegative integer. Use mathematical induc-
tion and Pascal’s formula to prove that for all integers n ≥ 0,(
m
0

)
+
(
m + 1

1

)
+ · · · +

(
m + n

n

)
=

(
m + n + 1

n

)
.

Use the binomial theorem to expand the expressions in 19–27.

19. (1+ x)7 20. (p + q)6 21.(1− x)6

22. (u − v)5 23. (p − 2q)4 24. (u2 − 3v)4

25.
(
x + 1

x

)5

26.
(
3

a
− a

3

)5

27.
(
x2 + 1

x

)5

28. In Example 9.7.5 it was shown that

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b35.

Evaluate (a + b)6 by substituting the expression above into
the equation

(a + b)6 = (a + b)(a + b)5

and then multiplying out and combining like terms.
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In 29–34, find the coefficient of the given term when the expres-
sion is expanded by the binomial theorem.

29. x6y3 in (x + y)9 30. x7 in (2x + 3)10

31. a5b7 in (a − 2b)12 32. u16v4 in (u2 − v2)10

33. p16q7 in (3p2 − 2q)15 34. x9y10 in (2x − 3y2)14

35. As in the proof of the binomial theorem, transform the sum-
mation

n∑
k=0

(
m
k

)
am−kbk+1

by making the change of variable j = k + 1.

Use the binomial theorem to prove each statement in 36–41.

36. For all integers n ≥ 1,(
n
0

)
−
(
n
1

)
+
(
n
2

)
− · · · + (−1)n

(
n
n

)
= 0.

(Hint: Use the fact that 1+ (−1) = 0.)

37.H For all integers n ≥ 0,

3n =
(
n
0

)
+ 2

(
n
1

)
+ 22

(
n
2

)
+ · · · + 2n

(
n
n

)
.

38. For all integers m ≥ 0,
m∑
i=0

(−1)i
(
m
i

)
2m−i = 1.

39. For all integers n ≥ 0,
n∑

i=0
(−1)i

(
n
i

)
3n−i = 2n .

40. For all integers n ≥ 0 and for all nonnegative real numbers
x, 1+ nx ≤ (1+ x)n .

41.H For all integers n ≥ 1,(
n
0

)
− 1

2

(
n
1

)
+ 1

22

(
n
2

)
− 1

23

(
n
3

)

+ · · · + (−1)n−1 1

2n−1

(
n

n − 1

)
=

⎧⎨
⎩
0 if n is even
1

2n−1
if n is odd

.

42. Use mathematical induction to prove that for all integers
n ≥ 1, if S is a set with n elements, then S has the same

number of subsets with an even number of elements as with
an odd number of elements. Use this fact to give a combina-
torial argument to justify the identity of exercise 36.

Express each of the sums in 43–54 in closed form (without using
a summation symbol and without using an ellipsis · · · ).

43.
n∑

k=0

(
n
k

)
5k 44.

m∑
i=0

(
m
i

)
4i

45.
n∑

i=0

(
n
i

)
xi 46.

m∑
k=0

(
m
k

)
2m−k xk

47.
2n∑
j=0

(−1) j
(
2n
j

)
x j 48.

n∑
r=0

(
n
r

)
x2r

49.
m∑
i=0

(
m
i

)
pm−i q2i 50.

n∑
k=0

(
n
k

)
1

2k

51.
m∑
i=0

(−1)i
(
m
i

)
1

2i
52.

n∑
k=0

(
n
k

)
32n−2k22k

53.
n∑

i=0
(−1)i

(
n
i

)
5n−i2i 54.

n∑
k=0

(−1)k
(
n
k

)
32n−2k22k

55.✶ (For students who have studied calculus)
a. Explain how the equation below follows from the bino-

mial theorem:

(1+ x)n =
n∑

k=0

(
n
k

)
xk .

b. Write the formula obtained by taking the derivative of
both sides of the equation in part (a) with respect to x .

c. Use the result of part (b) to derive the formulas below.

(i) 2n−1 = 1

n

[(
n
1

)
+ 2

(
n
2

)
+ 3

(
n
3

)
+ · · · + n

(
n
n

)]

(ii)
n∑

k=1
k

(
n
k

)
(−1)k = 0

d. Express
n∑

k=1
k

(
n
k

)
3k in closed form (without using a

summation sign or ellipsis).

Answers for Test Yourself

1.
(n
r

)
=
( n
n−r

)
2.
(n+1

r

)
=
( n
r−1

)
+
(n
r

)
3. common denominator 4. xn+1; do not contain xn+1

5. (a + b)n =
n∑

k=0

(n
k

)
an−kbk 6.

(m+1
k

)
7.
(n
k

)
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