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APPENDIX B

SOLUTIONS AND HINTS
TO SELECTED EXERCISES

Section 1.1
1. a. x2 = −1 (Or: the square of x is −1)

b. A real number x

3. a. Between a and b

b. Real numbers a and b; there is a real number c

5. a. r is positive

b. Positive; the reciprocal of r is positive (Or: positive; 1/r
is positive)

c. Is positive; 1/r is positive (Or: is positive; the reciprocal
of r is positive)

7. a. There are real numbers whose sum is less than their dif-
ference.

True. For example, 1+ (−1)= 0, 1− (−1)= 1+ 1= 2,
and 0 < 2.

c. The square of any positive integer is greater than the
integer.

True. If n is any positive integer, then n ≥ 1. Multiply-
ing both sides by the positive number n does not change
the direction of the inequality (see Appendix A, T20),
and so n2 ≥ n.

8. a. Have four sides

b. Has four sides

c. Has four sides

d. Is a square; J has four sides

e. J has four sides

10. a. Have a reciprocal

b. A reciprocal

c. s is a reciprocal for r

12. a. Real number; product with every number leaves the
number unchanged

b. With every number leaves the number unchanged

c. rs = s

Section 1.2
1. A = C and B = D

2. a. The set of all positive real numbers x such that 0 is less
than x and x is less than 1

c. The set of all integers n such that n is a factor of 6

3. a. No, {4} is a set with one element, namely 4, whereas 4
is just a symbol that represents the number 4

b. Three: the elements of the set are 3, 4, and 5.

c. Three: the elements are the symbol 1, the set {1}, and
the set {1,{1}}

5. Hint: R is the set of all real numbers, Z is the set of all
integers, and Z+ is the set of all positive integers

6. Hint: T0 and T1 do not have the same number of elements
as T2 and T−3.

7. a. {1,−1}
c. ∅ (the set has no elements)

d. Z (every integer is in the set)

8. a. No, B � A :. j ∈ B and j �∈A
d. Yes, C is a proper subset of A. Both elements of C are

in A, but A contains elements (namely c and f ) that are
not in C .

9. a. Yes

b. No

f. No

i. Yes

10. a. No. Observe that (−2)2 = (−2)(−2) = 4 whereas
−22 = −(22) = −4. So ((−2)2,−22) = (4,−4), (−22,
(−2)2) = (−4, 4), and (4,−4) �= (−4, 4) because
−4 �= 4.

c. Yes. Note that 8− 9 = −1 and 3
√−1 = −1, and so

(8− 9, 3
√−1) = (−1,−1).
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2.1 Solutions and Hints to Selected Exercises A-5

11. a. {(w, a), (w, b), (x, a), (x, b), (y, a), (y, b), (z, a),
(z, b)}

b. {(a, w), (b, w), (a, x), (b, x), (a, y), (b, y), (a, z),
(b, z)}

c. {(w,w), (w, x), (w, y), (w, z), (x, w), (x, x), (x, y),
(x, z), (y, w), (y, x), (y, y), (y, z), (z, w), (z, x),
(z, y), (z, z)}

d. {(a, a), (a, b), (b, a), (b, b)}

Section 1.3
1. a. No. Yes. No. Yes.

b. R = {(2, 6), (2, 8), (2, 10), (3, 6), (4, 8)}
c. Domain of R = A = {2, 3, 4}, co-domain of R = B =
{6, 8, 10}

d. R
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4

3. a. 3 T 0 because 3−0
3 =

3
3 = 1, which is an integer.

1 T/ (−1) because 1−(−1)
3 = 2

3 , which is not an integer.

(2,−1) ∈ T because
2−(−1)

3 = 3
3 = 1, which is an

integer.

(3,−2) �∈ T because
3−(−2)

3 = 5
3 , which is not an

integer.

b. T = {(1,−2), (2,−1), (3, 0)}
c. Domain of T = E = {1, 2, 3}, co-domain of T = F =
{−2,−1, 0}

d. T
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3

5. a. (2, 1) ∈ S because 2 ≥ 1. (2, 2) ∈ S because 2 ≥ 2.

2 S/ 3 because 2 � ≥3. (−1) S/ (−2) because (−1) �≥(−2).

b.

x
1

x ≥ y in shaded region graph of S

7. a. R

5

6

7

4

5

6

A B

4
5
6

5
6
7

S TA B

4
5
6

5
6
7

b. R is not a function because it satisfies neither property
(1) nor property (2) of the definition. It fails property (1)
because (4, y) �∈ R, for any y in B. It fails property (2)
because (6, 5) ∈ R and (6, 6) ∈ R and 5 �= 6.

S is not a function because (5, 5) ∈ S and (5, 7) ∈ S
and 5 �= 7. So S does not satisfy property (2) of the def-
inition of function.

T is not a function both because (5, x) �∈ T for any x
in B and because (6, 5) ∈ T and (6, 7) ∈ T and 5 �= 7.
So T does not satisfy either property (1) or property (2)
of the definition of function.

9. a. ∅, {(0, 1)}, {(1, 1)}, {(0, 1), (1, 1)}
b. {(0, 1), (1, 1)}
c. 1/4

11. No, P is not a function because, for example, (4, 2) ∈ P
and (4,−2) ∈ P but 2 �= −2.

13. a. Domain= A={−1, 0, 1}, co-domain= B={t, u, v, w}
b. F(−1) = u, F(0) = w, F(1) = u

15. a. This diagram does not determine a function because 2 is
related to both 2 and 6.

b. This diagram does not determine a function because 5 is
in the domain but it is not related to any element in the
co-domain.

16. f (−1) = (−1)2 = 1, f (0) = 02 = 0, f
(
1
2

)
=
(
1
2

)2= 1
4 .

19. For all x ∈ R, g(x) = 2x3+2x
x2+1 =

2x(x2+1)
x2+1 = 2x = f (x).

Therefore, by definition of equality of functions, f = g.

Section 2.1
1. Common form: If p then q.

p.
Therefore, q.

(a + 2b)(a2 − b) can be written in prefix notation.
All algebraic expressions can be written in prefix notation.

3. Common form: p ∨ q.
∼p.
Therefore, q.

My mind is shot. Logic is confusing.

5. a. It is a statement because it is a true sentence. 1,024
is a perfect square because 1,024 = 322, and the next
smaller perfect square is 312 = 961, which has less than
four digits.
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A-6 Appendix B Solutions and Hints to Selected Exercises

6. a. s ∧ i b. ∼s ∧ ∼i
8. a. (h ∧ w) ∧ ∼s d. (∼w ∧ ∼s) ∧ h

10. a. p ∧ q ∧ r c. p ∧ (∼q ∨ ∼r)
11. Inclusive or. For instance, a team could win the playoff by

winning games 1, 3, and 4 and losing game 2. Such an out-
come would satisfy both conditions.

12.
p q ∼p ∼p ∧ q

T T F F

T F F F

F T T T

F F T F

14.
p q r q ∧ r p ∧ (q ∧ r)

T T T T T

T T F F F

T F T F F

T F F F F

F T T T F

F T F F F

F F T F F

F F F F F

16.
p q p ∧ q p ∨ ( p ∧ q) p

T T T T T

T F F T T

F T F F F

F F F F F

↑ ↑
p ∨ (p ∧ q) and p always have
the same truth values, so they are
logically equivalent. (This proves
one of the absorption laws.)

18.
p t p ∨ t

T T T

F T T

↑ ↑
p ∨ t and t always have the same truth values,
so they are logically equivalent. (This proves
one of the universal bound laws.)

21.
p q r p ∧ q q ∧ r ( p ∧ q) ∧ r p ∧ (q ∧ r)

T T T T T T T

T T F T F F F

T F T F F F F

T F F F F F F

F T T F T F F

F T F F F F F

F F T F F F F

F F F F F F F

↑ ↑
(p∧ q)∧ r and p∧ (q ∧ r) always have the same truth values, so they
are logically equivalent. (This proves the associative law for∧.)

23.
p q r p ∧ q q ∨ r ( p ∧ q) ∨ r p ∧ (q ∨ r)

T T T T T T T

T T F T T T T

T F T F T T T

T F F F F F F

F T T F T T F

F T F F T F F

F F T F T T F

F F F F F F F

↑ ↑
(p ∧ q) ∨ r and p ∧ (q ∨ r) have different truth values in the fifth
and seventh rows, so they are not logically equivalent. (This proves
that parentheses are needed with∧ and∨.)

25. Hal is not a math major or Hal’s sister is not a computer
science major.

27. The connector is not loose and the machine is not
unplugged.

32. −2 ≥ x or x ≥ 7

34. 2 ≤ x ≤ 5

36. 1 ≤ x or x < −3
38. This statement’s logical form is (p ∧ q) ∨ r , so its

negation has the form∼((p ∧ q) ∨ r) ≡∼(p ∧ q) ∧ ∼r ≡
(∼p ∨ ∼q) ∧ ∼r . Thus a negation for the statement
is (num−orders ≤ 100 or num−instock > 500) and
num−instock ≥ 200.
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2.1 Solutions and Hints to Selected Exercises A-7

40.
p q ∼p ∼q p ∧ q p ∧ ∼q ∼p ∨ ( p ∧ ∼q) ( p ∧ q) ∨ (∼p ∨ ( p ∧ ∼q))

T T F F T F F T

T F F T F T T T

F T T F F F T T

F F T T F F T T

↑
Its truth values are all T’s, so (p ∧ q)
∨ (∼p ∨ (p∧ ∼q)) is a tautology.

41. p q ∼p ∼q p ∧ ∼q ∼p ∨ q ( p ∧ ∼q) ∧ (∼p ∨ q)

T T F F F T F

T F F T T F F

F T T F F T F

F F T T F T F

↑
Its truth values are all F’s, so (p ∧ ∼q) ∧ (∼p ∨ q) is a contradiction.

44. Let p be ‘x < 2’, q be ‘1 < x’, and r be ‘x < 3’. Then the sentences in (a) and (b) are symbolized as p ∨ ∼(q ∧ r) and
∼q ∨ (p ∨ ∼r), respectively.

p q r ∼q ∼r q ∧ r ∼(q ∧ r) p ∨ ∼r p ∨ ∼(q ∧ r) ∼q ∨ ( p ∨ ∼r)
T T T F F T F T T T
T T F F T F T T T T
T F T T F F T T T T
T F F T T F T T T T
F T T F F T F F F F
F T F F T F T T T T
F F T T F F T F T T
F F F T T F T T T T

↑ ↑
The statement forms p ∨ ∼(q ∧ r) and ∼q ∨ (p ∨ ∼r) always have the
same truth values, so they are logically equivalent.

Therefore the statements in (a) and (b) are logically equivalent.

46. a. Solution 1: Construct a truth table for p ⊕ p using the
truth values for exclusive or.

p p ⊕ p

T F

F F

because an exclusive or statement is
false when both components are true
and when both components are false.

Since all its truth values are false, p ⊕ p ≡ c, a contra-
diction.

Solution 2: Replace q by p in the logical equivalence
p ⊕ q ≡ (p ∨ q)∧ ∼(p ∧ q), and simplify the result.

p ⊕ p ≡ (p ∨ q) ∧ ∼(p ∧ p) by defintion of ⊕
≡ p ∧ ∼p by the identity laws
≡ c by the negation law for ∧

47. There is a famous story about a philosopher who once
gave a talk in which he observed that whereas in English
and many other languages a double negative is equiva-
lent to a positive, there is no language in which a dou-
ble positive is equivalent to a negative. To this, another
philosopher, SidneyMorgenbesser, responded sarcastically,
“Yeah, yeah.”

[Strictly speaking, sarcasm functions like negation. When
spoken sarcastically, the words “Yeah, yeah” are not a true
double positive; they just mean “no.”]

48. a. The distributive law

b. The commutative law for ∨
c. The negation law for ∨
d. The identity law for ∧

50. (p∧ ∼q) ∨ p ≡ p ∨ (p∧ ∼q) by the commutative
law for ∨

≡ p by the absorption law
(with ∼q in place of q)

53. ∼((∼p ∧ q) ∨ (∼p ∧ ∼q)) ∨ (p ∧ q)
≡∼[∼p ∧ (q ∨ ∼q)] ∨ (p ∧ q) by the distributive law
≡∼(∼p ∧ t) ∨ (p ∧ q) by the negation law for ∨
≡∼(∼p) ∨ (p ∧ q) by the identity law for ∧
≡ p ∨ (p ∧ q) by the double negative law
≡ p by the absorption law
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A-8 Appendix B Solutions and Hints to Selected Exercises

Section 2.2
1. If this loop does not contain a stop or a go to, then it will

repeat exactly N times.

3. If you do not freeze, then I’ll shoot.

5. conclusion︷ ︸︸ ︷ hypothesis︷ ︸︸ ︷
p q ∼p ∼q ∼p ∨ q ∼p ∨ q → ∼q

T T F F T F

T F F T F T

F T T F T F

F F T T T T

7. conclusion︷ ︸︸ ︷ hypothesis︷ ︸︸ ︷
p q r ∼q p ∧ ∼q p ∧ ∼q → r

T T T F F T

T T F F F T

T F T T T T

T F F T T F

F T T F F T

F T F F F T

F F T T F T

F F F T F T

9.
p q r ∼r p ∧ ∼r q ∨ r p ∧ ∼r ↔ q ∨ r

T T T F F T F

T T F T T T T

T F T F F T F

T F F T T F F

F T T F F T F

F T F T F T F

F F T F F T F

F F F T F F T

12. If x > 2 then x2 > 4, and if x < −2 then x2 > 4.

13. a. p q ∼p p → q ∼p ∨ q

T T F T T

T F F F F

F T T T T

F F T T T

↑ ↑
p→ q and∼p ∨ q always have the same
truth values, so they are logically equivalent.

14. a. Hint: p→ q ∨ r is true in all cases except when p is
true and both q and r are false.

16. Let p represent “You paid full price” and q represent “You
didn’t buy it at Crown Books.” Thus, “If you paid full price,
you didn’t buy it at Crown Books” has the form p→ q .
And “You didn’t buy it at Crown Books or you paid full
price” has the form q ∨ p.

p q p → q q ∨ p

T T T T

T F F T

F T T T

F F T F

These two statements are
not logically equivalent
because their forms have
different truth values in
rows 2 and 4.

(An alternative representation for the forms of the two
statements is p→∼q and ∼q ∨ p. In this case, the truth
values differ in rows 1 and 3.)

19. False. The negation of an if-then statement is not an if-then
statement. It is an and statement.

20. a. P is a square and P is not a rectangle.

d. n is prime and both n is not odd and n is not 2.

Or: n is prime and n is neither odd nor 2.

f. Tom is Ann’s father and either Jim is not her uncle or
Sue is not her aunt.

21. a. Because p→ q is false, p is true and q is false. Hence
∼p is false, and so ∼p→ q is true.

22. a. If P is not a rectangle, then P is not a square.

d. If n is not odd and n is not 2, then n is not prime.

f. If either Jim is not Ann’s uncle or Sue is not her aunt,
then Tom is not her father.

23. a. Converse: If P is a rectangle, then P is a square.
Inverse: If P is not a square, then P is not a rectangle.

d. Converse: If n is odd or n is 2, then n is prime.
Inverse: If n is not prime, then n is not odd and n is

not 2.
f. Converse: If Jim is Ann’s uncle and Sue is her aunt,

then Tom is her father.
Inverse: If Tom is not Ann’s father, then Jim is not her

uncle or Sue is not her aunt.

24.
p q p → q q → p

T T T T

T F F T

F T T F

F F T T

↑ ↑
p→ q and q → p have different truth values in the second
and third rows, so they are not logically equivalent.
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2.2 Solutions and Hints to Selected Exercises A-9

26.
p q ∼q ∼p ∼q → ∼p p → q

T T F F T T

T F T F F F

F T F T T T

F F T T T T

↑ ↑
∼q →∼p and p→ q always have the same
truth values, so they are logically equivalent.

28. Hint: A person who says “I mean what I say” claims to
speak sincerely. A person who says “I say what I mean”
claims to speak with precision.

29. (p→ (q ∨ r))↔ ((p∧ ∼q)→ r)

p q r ∼q q ∨ r p ∧ ∼q p → (q ∨ r) p ∧ ∼q → r ( p → (q ∨ r)) ↔ (( p ∧ ∼q) → r)

T T T F T F T T T

T T F F T F T T T

T F T T T T T T T

T F F T F T F F T

F T T F T F T T T

F T F F T F T T T

F F T T T F T T T

F F F T F F T T T

↑
(p→ (q ∨ r))↔ ((p∧ ∼q)→ r) is a tautology
because all of its truth values are T.

32. If this quadratic equation has two distinct real roots, then its
discriminant is greater than zero, and if the discriminant of
this quadratic equation is greater than zero, then the equa-
tion has two real roots.

34. If the Cubs do not win tomorrow’s game, then they will not
win the pennant.
If the Cubs win the pennant, then they will have won tomor-
row’s game.

37. If a new hearing is not granted, payment will be made on
the fifth.

40. If I catch the 8:05 bus, then I am on time for work.

42. If this number is not divisible by 3, then it is not divisible
by 9.
If this number is divisible by 9, then it is divisible by 3.

44. If Jon’s team wins the rest of its games, then it will win the
championship.

46. a. This statement is the converse of the given statement,
and so it is not necessarily true. For instance, if the actual
boiling point of compound X were 200◦C, then the given
statement would be true but this statement would be
false.

b. This statement must be true. It is the contrapositive of
the given statement.

47. a. p ∧ ∼q → r ≡ ∼(p ∧ ∼q) ∨ r

b. Result of (a) ≡∼[∼(∼(p∧ ∼q))∧ ∼r ]
an acceptable answer

≡∼[(p∧ ∼q)∧ ∼r ]
by the double negative law
(another acceptable answer)

49. a. (p→ r)↔ (q → r) ≡ (∼p ∨ r)↔ (∼q ∨ r)

≡∼(∼p ∨ r) ∨ (∼q ∨ r)] ∧ [∼(∼q ∨ r) ∨ (∼p ∨ r)]
an acceptable answer

≡ [(p∧ ∼r) ∨ (∼q ∨ r)] ∧ [(q ∧ ∼r) ∨ (∼p ∨ r)]
by De Morgan’s law
(another acceptable answer)

b. Result of (a) ≡∼[∼(p∧ ∼r)∧ ∼(∼q ∨ r)] ∧
∼[∼(q ∧ ∼r)∧ ∼(∼p ∨ r)]

by De Morgan’s law

≡∼[∼(p∧ ∼r) ∧ (q ∧ ∼r)] ∧
∼[∼(q ∧ ∼r) ∧ (p∧ ∼r)]

by De Morgan’s law
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A-10 Appendix B Solutions and Hints to Selected Exercises

Section 2.3
1.
√
2 is not rational. 3. Logic is not easy.

6. premises︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q p → q q → p p ∨ q

T T T T T

T F F T

F T T F

F F T T F ←
This row shows that it is possible for an argument
of this form to have true premises and a false
conclusion. Thus this argument form is invalid.

7. premises︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q r ∼q p p → q ∼q ∨ r r

T T T F T T T T

T T F F T T F

T F T T T F T

←

This row describes the only situation in which all the premises
are true. Because the conclusion is also true here, the argument
form is valid.

T F F T T F T

F T T F F T T

F T F F F T F

F F T T F T T

F F F T F T T

8. premises︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q r ∼q p ∨ q p → ∼q p → r r

T T T F T F T

T T F F T F F

T F T T T T T T

T F F T T T F

F T T F T T T T

←

This row shows that it is possible for
an argument of this form to have true
premises and a false conclusion. Thus
this argument form is invalid.

F T F F T T T F

F F T T F T T

F F F T F T T

12. a. premises︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q p → q q p

T T T T T

T F F F

F T T T F ←

This row shows that it is possible for an argument
of this form to have true premises and a false
conclusion. Thus this argument form is invalid.

F F T F

14. premise︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q p p ∨ q

T T T T

T F T T

F T F

←
←

These two rows show that in all
situations where the premise is true,
the conclusion is also true. Thus the
argument form is valid.

F F F

18. premises︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q p ∨ q ∼q p

T T T F

T F T T T ←

This row represents the only situation in which
both premises are true. Because the conclusion is
also true here the argument form is valid.

F T T F

F F F T

22. Let p represent “Tom is on team A” and q represent “Hua is
on team B.” Then the argument has the form

∼p→ q

∼q → p

∴ ∼p∨ ∼q
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2.3 Solutions and Hints to Selected Exercises A-11

premises︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q ∼p ∼q ∼p → q ∼q → p ∼p ∨ ∼q

T T F F T T F

T F F T T T T

←

This row shows that it is possible for an argument
of this form to have true premises and a false con-
clusion. Thus this argument form is invalid.

F T T F T T T

F F T T F F

24. p→ q
q

∴ p invalid: converse error
25. p ∨ q

∼p
∴ q valid: elimination

26. p→ q
q → r

∴ p→ r valid: transitivity

27. p→ q
∼p

∴ ∼q invalid: inverse error
36. The program contains an undeclared variable.

One explanation:
1. There is not a missing semicolon and there is not a mis-

spelled variable name. (by (c) and (d) and definition
of ∧)

2. It is not the case that there is a missing semicolon or
a misspelled variable name. (by (1) and De Morgan’s
laws)

3. There is not a syntax error in the first five lines. (by (b)
and (2) and modus tollens)

4. There is an undeclared variable. (by (a) and (3) and
elimination)

37. The treasure is buried under the flagpole.
One explanation:
1. The treasure is not in the kitchen. (by (c) and (a) and

modus ponens)
2. The tree in the front yard is not an elm. (by (b) and (1)

and modus tollens)
3. The treasure is buried under the flagpole. (by (d) and (2)

and elimination)

38. a. A is a knave and B is a knight.
One explanation:
1. Suppose A is a knight.
2. ∴ What A says is true. (by definition of knight)
3. ∴ B is a knight also. (That’s what A said.)
4. ∴ What B says is true. (by definition of knight)
5. ∴ A is a knave. (That’s what B said.)
6. ∴ We have a contradiction: A is a knight and a

knave. (by (1) and (5))
7. ∴ The supposition that A is a knight is false. (by the

contradiction rule)
8. ∴ A is a knave. (negation of supposition)

9. ∴ What B says is true. (B said A was a knave,
which we now know to be true.)

10. ∴ B is a knight. (by definition of knight)

d. Hint: W and Y are knights; the rest are knaves.

39. The chauffeur killed Lord Hazelton.
One explanation:
1. Suppose the cook was in the kitchen at the time of the

murder.

2. ∴ The butler killed Lord Hazelton with strychnine. (by
(c) and (1) and modus ponens)

3. ∴ We have a contradiction: Lord Hazelton was killed
by strychnine and a blow on the head. (by (2) and (a))

4. ∴ The supposition that the cook was in the kitchen is
false. (by the contradiction rule)

5. ∴ The cook was not in the kitchen at the time of the
murder. (negation of supposition)

6. ∴ Sara was not in the dining room when the murder was
committed. (by (e) and (5) and modus ponens)

7. ∴ Lady Hazelton was in the dining room when the
murder was committed. (by (b) and (6) and
elimination)

8. ∴ The chauffeur killed Lord Hazelton. (by (d) and (7)
and modus ponens)

41. (1) p→ t by premise (d )
∼t by premise (c)

∴ ∼p by modus tollens
(2) ∼p by (1)

∴ ∼p ∨ q by generalization
(3) ∼p ∨ q → r by premise (a)

∼p ∨ q by (2)
∴ r by modus ponens

(4) ∼p by (1)
r by (3)

∴ ∼p ∧ r by conjunction
(5) ∼p ∧ r →∼s by premise (e)

∼p ∧ r by (4)
∴ ∼s by modus ponens

(6) s ∨ ∼q by premise (b)
∼s by (5)

∴ ∼q by elimination

43. (1) ∼w by premise (d )
u ∨ w by premise (e)

∴ u by elimination
(2) u →∼p by premise (c)

u by (1)
∴ ∼p by modus ponens

(3) ∼p→ r ∧ ∼s by premise (a)
∼p by (2)

∴ r ∧ ∼s by modus ponens
(4) r ∧ ∼s by (3)

∴ ∼s by specialization
(5) t → s by premise (b)

∼s by (4)
∴ ∼t by modus tollens
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A-12 Appendix B Solutions and Hints to Selected Exercises

Section 2.4
1. R = 1 3. S = 1

5.
Input Output

P Q R

1 1 1

1 0 1

0 1 0

0 0 1

7.
Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 0

9. P ∨ ∼Q 11. (P ∧ ∼Q) ∨ R

13.

OR
NOTP

Q

16.

OR

NOT

P

Q

R

AND

18. a. (P ∧ Q ∧ ∼R) ∨ (∼P ∧ Q ∧ R)

b. P

Q

R NOT

NOT

AND

OR

AND

20. a. (P ∧ Q ∧ R) ∨ (P ∧ ∼Q ∧ R) ∨ (∼P ∧ ∼Q ∧ ∼R)

b.

AND

P

Q

R

AND

NOT

NOT

NOT

ANDNOT

OR

22. The input/output table is

Input Output

P Q R S

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 0

0 1 0 0

0 0 1 1

0 0 0 0

One circuit (among many) having this input/output table is
shown below.

P

Q

R NOT

NOT

NOT

AND

AND

OR

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.4 Solutions and Hints to Selected Exercises A-13

24. Let P and Q represent the positions of the switches in the
classroom, with 0 being “down” and 1 being “up.” Let R
represent the condition of the light, with 0 being “off” and
1 being “on.” Initially, P = Q = 0 and R = 0. If either
P or Q (but not both) is changed to 1, the light turns on.
So when P = 1 and Q = 0, then R = 1, and when P = 0
and Q = 1, then R = 1. Thus when one switch is up and
the other is down the light is on, and hence moving the
switch that is down to the up position turns the light off.
So when P = 1 and Q = 1, then R = 0. It follows that the
input/output table has the following appearance:

Input Output

P Q R

1 1 0

1 0 1

0 1 1

0 0 0

One circuit (among many) having this input/output table is
the following:

P

Q
AND

OR

NOT

AND
NOT

R

26. The Boolean expression for (a) is (P ∧ Q) ∨ Q, and for
(b) it is (P ∨ Q) ∧ Q. We must show that if these expres-
sions are regarded as statement forms, then they are logi-
cally equivalent. But

(P ∧ Q) ∨ Q

≡ Q ∨ (P ∧ Q) by the commutative law for ∨
≡ (Q ∨ P) ∧ (Q ∨ Q) by the distributive law

≡ (Q ∨ P) ∧ Q by the idempotent law

≡ (P ∨ Q) ∧ Q by the commutative law for ∧
Alternatively, by the absorption laws, both statement forms
are logically equivalent to Q.

28. The Boolean expression for (a) is

(P ∧ Q) ∨ (P ∧ ∼Q) ∨ (∼P ∧ ∼Q)

and for (b) it is P ∨ ∼Q. We must show that if these expres-
sions are regarded as statement forms, then they are logi-
cally equivalent. But

(P ∧ Q) ∨ (P ∧ ∼Q) ∨ (∼P ∧ ∼Q)

≡ ((P ∧ Q) ∨ (P ∧ ∼Q)) ∨ (∼P ∧ ∼Q)

by inserting parentheses (which
is legal by the associative law)

≡ (P ∧ (Q ∨ ∼Q)) ∨ (∼P ∧ ∼Q)

by the distributive law

≡ (P ∧ t) ∨ (∼P ∧ ∼Q) by the negation law for ∨
≡ P ∨ (∼P ∧ ∼Q) by the identity law for ∧
≡ (P ∨ ∼P) ∧ (P ∨ ∼Q) by the distibutive law

≡ t ∧ (P ∨ ∼Q) by the negation law for ∨
≡ (P ∨ ∼Q) ∧ t by the commutative law for ∧
≡ P ∨ ∼Q by the identity law for ∧

30. (P ∧ Q) ∨ (∼P ∧ Q) ∨ (∼P ∧ ∼Q)

≡ (P ∧ Q) ∨ ((∼P ∧ Q) ∨ (∼P ∧ ∼Q))

by inserting parentheses (which
is legal by the associative law)

≡ (P ∧ Q) ∨ (∼P ∧ (Q ∨ ∼Q))

by the distributive law

≡ (P ∧ Q) ∨ (∼P ∧ t) by the negation law for ∨
≡ (P ∧ Q)∨ ∼P by the identity law for ∧
≡∼P ∨ (P ∧ Q) by the commutative law for ∨
≡ (∼P ∨ P) ∧ (∼P ∨ Q) by the distributive law

≡ (P ∨ ∼P) ∧ (∼P ∨ Q)

by the commutative law for ∨
≡ t ∧ (∼P ∨ Q) by the negation law for ∨
≡ (∼P ∨ Q) ∧ t by the commutative law for ∧
≡∼P ∨ Q by the identity law for ∧
The following is, therefore, a circuit with at most two logic
gates that has the same input/output table as the circuit cor-
responding to the given expression.

OR
NOTP

Q

34. b. (P ↓ Q) ↓ (P ↓ Q)

≡ ∼(P ↓ Q) by part (a)

≡ ∼[∼(P ∨ Q)] by definition of ↓
≡ P ∨ Q by the double negative law

d. Hint: Use the results of exercise 13 of Section 2.2 and
part (a) and (c) of this exercise.
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A-14 Appendix B Solutions and Hints to Selected Exercises

Section 2.5
1. 1910 = 16+ 2+ 1 = 100112
4. 45810 = 256+ 128+ 64+ 8+ 2 = 1110010102
7. 11102 = 8+ 4+ 2 = 1410
10. 11001012 = 64+ 32+ 4+ 1 = 10110
13. 1 1 1

1 0 1 12
+ 1 0 12

1 0 0 0 02

15. 1 1 1 1
1 0 1 1 0 12

+ 1 1 1 0 12
1 0 0 1 0 1 02

17. 1
1 10 10 1

1 0 1 0 02
− 1 1 0 12

1 1 12

19. 0 10
1 0 1 1 0 12

− 1 0 0 1 12
1 1 0 1 02

21. a. S = 0, T = 1

23. 2310 = (16+ 4+ 2+ 1)10 = 000101112 → 11101000→
11101001. So the answer is 11101001.

25. 410 = 000001002 → 11111011→ 11111100. So the answer
is 11111100.

27. Because the leading bit is 1, this is the 8-bit represen-
tation of a negative integer. 11010011→ 00101100→
001011012 ↔ −(32+ 8+ 4+ 1)10 = −4510. So the
answer is −4510.

29. Because the leading bit is 1, this is the 8-bit represen-
tation of a negative integer. 11110010→ 00001101→
000011102 ↔ −(8+ 4+ 2)10 = −1410. So the answer
is −1410.

31. 5710 = (32+ 16+ 8+ 1)10 = 1110012 → 00111001−
11810 = −(64+ 32+ 16+ 4+ 2)10 = −1110110→
01110110→ 10001001→ 10001010. So the 8-bit rep-
resentations of 57 and −118 are 00111001 and 10001010.
Adding the 8-bit representations gives

0 0 1 1 1 0 0 1
+

1 0 0 0 1 0 1 0

1 1 0 0 0 0 1 1

Since the leading bit of this number is a 1, the answer is
negative. Converting back to decimal form gives

11000011→ 00111100→−001111012
= −(32+ 16+ 8+ 4+ 1)10 = −6110.

So the answer is −61.

32. 6210 = (32+ 16+ 8+ 4+ 2)10

= 1111102 → 00111110

−1810 = −(16+ 2)10

= −100102 → 00010010→ 11101101→ 11101110

Thus the 8-bit representations of 62 and −18 are 00111110
and 11101110. Adding the 8-bit representations gives

0 0 1 1 1 1 1 0
+

1 1 1 0 1 1 1 0

0 0 1 0 1 1 0 01

Truncating the 1 in the 28th position gives 00101100. Since
the leading bit of this number is a 0, the answer is positive.
Converting back to decimal form gives

00101100→ 1011002 = (32+ 8+ 4)10 = 4410.

So the answer is 44.

33. −610 = −(4+ 2)10

= −1102 → 00000110→ 11111001→ 11111010

−7310 = −(64+ 8+ 1)10 =
−10010012→ 01001001→ 10110110→ 10110111

Thus the 8-bit representations of−6 and−73 are 11111010
and 10110111. Adding the 8-bit representations gives

1 1 1 1 1 0 1 0
+

1 0 1 1 0 1 1 1

1 0 1 1 0 0 0 11

Truncating the 1 in the 28th position gives 10110001. Since
the leading bit of this number is a 1, the answer is negative.
Converting back to decimal form gives

10110001→ 01001110→−010011112
= −(64+ 8+ 4+ 2+ 1)10 = −7910.

So the answer is −79.
38. A2BC16 = 10 ·163 + 2 ·162 + 11 ·16+ 12 = 4166010
41. 0001110000001010101111102
44. 2E16

47. a. 6 ·84 + 1 ·83 + 5 ·82 + 0 ·8+ 2 ·1 = 25,41010

Section 3.1
1. a. False b. True
2. a. The statement is true. The integers correspond to cer-

tain of the points on a number line, and the real numbers
correspond to all the points on the number line.

b. The statement is false; 0 is neither positive nor negative.
c. The statement is false. For instance, let r = −2. Then
−r = −(−2) = 2, which is positive.
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3.1 Solutions and Hints to Selected Exercises A-15

d. The statement is false. For instance, the number 1
2 is a

real number, but it is not an integer.

3. a. P(2) is “2 >
1
2 ,” which is true.

P
(
1
2

)
is “ 12 >

1
1
2

.” This is false because 1
1
2

= 2, and

1
2 ≯ 2.

P(−1) is “−1 >
1
−1 .” This is false because

1
−1 = −1,

and −1 ≯ −1.
P
(
− 1

2

)
is “− 1

2 >
1

−1
2

.” This is true because 1

−1
2

=

−2 and −1
2 > −2.

P(−8) is “−8 >
1
−8 .” This is false because

1
−8 = −

1
8

and −8 ≯ − 1
8 .

b. If the domain of P(x) is the set of all real numbers, then
its truth set is the set of all real numbers x for which
either x > 1 or −1 < x < 0.

c. If the domain of P(x) is the set of all positive real num-
bers, then its truth set is the set of all real numbers x for
which x > 1.

4. b. If the domain of Q(n) is the set of all integers, then its
truth set is {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}.

5. a. Q(−2,1) is the statement “If −2 < 1 then (−2)2 < 12.”
The hypothesis of this statement is −2 < 1, which
is true. The conclusion is (−2)2 < 12, which is
false because (−2)2 = 4 and 12 = 1 and 4 �< 1. Thus
Q(−2, 1) is a conditional statement with a true hypoth-
esis and a false conclusion. So Q(−2, 1) is false.

c. Q(3,8) is the statement “If 3 < 8 then 32 < 82.” The
hypothesis of this statement is 3 < 8, which is true. The
conclusion is 32 < 82, which is also true because 32 = 9
and 82 = 64 and 9 < 64. Thus Q(3, 8) is a conditional
statement with a true hypothesis and a true conclusion.
So Q(3, 8) is true.

7. a. The truth set is the set of all integers d such that 6/d
is an integer, so the truth set is {−6,−3,−2,−1, 1, 2,
3, 6}.

c. The truth set is the set of all real numbers x with the
property that 1 ≤ x2 ≤ 4, so the truth set is {x ∈ R |
− 2 ≤ x ≤ −1 or 1 ≤ x ≤ 2}. In other words, the truth
set is the set of all real numbers between −2 and −1
inclusive together with those between 1 and 2 inclusive.

8. a. {−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5,
6, 7, 8, 9}

9. Counterexample: Let x = 1 : 1 ≯ 1
1 . (This is one coun-

terexample among many.)

11. Counterexample: Let m = 1 and n = 1. Then m ·n =
1 ·1 = 1 and m + n = 1+ 1 = 2. But 1 � 2, and so
m ·n � m + n. (This is one counterexample among many.)

13. (a), (e), (f) 14. (b), (c), (e), (f)

15. a. Partial answer: Every rectangle is a quadrilateral.
b. Partial answer: At least one set has 16 subsets.

16. a. ∀ dinosaurs x, x is extinct.
c. ∀ irrational numbers x, x is not an integer.
e. ∀ integers x, x2 does not equal 2, 147, 581, 953.

17. a. ∃ an exercise x such that x has an answer.

18. a. ∃s ∈ D such that E(s) and M(s). (Or: ∃s ∈ D such that
E(s) ∧ M(s).)

b. ∀s ∈ D, ifC(s) then E(s). (Or:∀s ∈ D,C(s) → E(s).)
e. (∃s ∈ D such that C(s) ∧ E(s)) ∧ (∃s ∈ D such that

C(s) ∧ ∼E(s))

19. (b), (d), (e)

20. Partial answer: The square root of a positive real number is
positive.

21. a. The total degree of G is even, for any graph G.
c. p is even, for some prime number p

22. a. ∀x , if x is a Java program, then x has at least 5 lines.

23. a. ∀x if x is an equilateral triangle, then x is isosceles.

24. a. ∃ a hatter x such that x is mad.
∃x such that x is a hatter and x is mad.

25. a. ∀ nonzero fractions x , the reciprocal of x is a fraction.
∀x , if x is a nonzero fraction, then the reciprocal of x is
a fraction.

c. ∀ triangles x , the sum of the angles of x is 180◦.
∀x , if x is a triangle, then the sum of the angles of x is
180◦.

e. ∀ even integers x and y, the sum of x and y is even.
∀x and y, if x and y are even integers, then the sum of x
and y is even.

26. b. ∀x(Int(x) −→ Ratl(x)) ∧ ∃x(Ratl(x)∧ ∼Int(x))
27. a. False. Figure b is a circle that is not gray.

b. True. All the gray figures are circles.

28. b. One answer among many: If a real number is negative,
then when its opposite is computed, the result is a posi-
tive real number.

This statement is true because for all real numbers
x,−(−|x |) = |x | (and any negative real number can be
represented as −|x |, for some real number x).

d. One answer among many: There is a real number that is

not an integer. This statement is true. For instance, 12 is
a real number that is not an integer.

30. b. One answer among many: If an integer is prime, then it
is not a perfect square.

This statement is true because a prime number is an
integer greater than 1 that is not a product of two smaller
positive integers. So a prime number cannot be a perfect
square because if it were, it would be a product of two
smaller positive integers.

31. Hint:Your answer should have the appearance shown in the
following made-up example:
Statement: “If a function is differentiable, then it is contin-
uous.”
Formal version: ∀ functions f , if f is differentiable, then
f is continuous.
Citation: Calculus by D. R. Mathematician, Best Publish-
ing Company, 2004, page 263.
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32. a. True: Any real number that is greater than 2 is greater
than 1.

c. False: (−3)2 > 4 but −3 ≯ 2.

33. a. True. Whenever both a and b are positive, so is their
product.

b. False. Let a = −2 and b = −3. Then ab = 6, which is
not less than zero.

Section 3.2
1. (a) and (e) are negations.

3. a. ∃ a fish x such that x does not have gills.
c. ∀movies m,m is less than or equal to 6 hours long. (Or:
∀ movies m,m is no more than 6 hours long.)

In 4–6 there are other correct answers in addition to those
shown.

4. a. Some dogs are unfriendly. (Or: There is at least one
unfriendly dog.)

c. All suspicions were unsubstantiated. (Or: No suspicions
were substantiated.)

5. a. There is a valid argument that does not have a true con-
clusion. (Or: At least one valid argument does not have
a true conclusion.)

6. a. Sets A and B have at least one point in common.

7. The statement is not existential.
Informal negation: There is at least one order from store A
for item B.
Formal version of statement: ∀ orders x , if x is from store
A, then x is not for item B.

9. ∃ a real number x such that x > 3 and x2 ≤ 9.

11. The proposed negation is not correct. Consider the given
statement: “The sum of any two irrational numbers is irra-
tional.” For this to be false means that it is possible to find
at least one pair of irrational numbers whose sum is ratio-
nal. On the other hand, the negation proposed in the exer-
cise (“The sum of any two irrational numbers is rational”)
means that given any two irrational numbers, their sum is
rational. This is a much stronger statement than the actual
negation: The truth of this statement implies the truth of
the negation (assuming that there are at least two irrational
numbers), but the negation can be true without having this
statement be true.
Correct negation: There are at least two irrational numbers
whose sum is rational.
Or: The sum of some two irrational numbers is rational.

13. The proposed negation is not correct. There are two mis-
takes: The negation of a “for all” statement is not a “for all”
statement; and the negation of an if-then statement is not an
if-then statement.
Correct negation: There exists an integer n such that n2 is
even and n is not even.

15. a. True: All the odd numbers in D are positive.
c. False: x = 16, x = 26, x = 32, and x = 36 are all

counterexamples.

16. ∃ a real number x such that x2 ≥ 1 and x ≯ 0. In other
words, ∃ a real number x such that x2 ≥ 1 and x ≤ 0.

18. ∃ a real number x such that x(x + 1) > 0 and both x ≤ 0
and x ≥ −1.

20. ∃ integers a, b, and c such that a − b is even and b − c is
even and a − c is not even.

22. There is an integer such that the square of the integer is odd
but the integer is not odd. (Or: At least one integer has an
odd square but is not itself odd.)

24. a. If a person is a child in Tom’s family, then the person is
female.
If a person is a female in Tom’s family, then the person
is a child.
The second statement is the converse of the first.

25. a. Converse: If n + 1 is an even integer, then n is a prime
number that is greater than 2.
Counterexample: Let n = 15. Then n + 1 is even but n
is not a prime number that is greater than 2.

26. Statement: ∀ real numbers x , if x2 ≥ 1 then x > 0.
Contrapositive: ∀ real numbers x , if x ≤ 0 then x2 < 1.
Converse: ∀ real numbers x , if x > 0 then x2 ≥ 1.
Inverse: ∀ real numbers x , if x2 < 1 then x ≤ 0.
The statement and its contrapositive are false. As a coun-
terexample, let x = −2. Then x2 = (−2)2 = 4, and so
x2 ≥ 1. However x ≯ 0.
The converse and the inverse are also false. As a coun-
terexample, let x = 1/2. Then x2 = 1/4, and so x > 0 but
x2 � 1.

28. Statement: ∀x ∈ R, if x(x + 1) > 0 then x > 0 or x < −1.
Contrapositive: ∀x ∈ R, if x ≤ 0 and x ≥ −1, then
x(x + 1) ≤ 0.
Converse: ∀x ∈ R, if x > 0 or x < −1 then x(x + 1) > 0.
Inverse: ∀x ∈ R, if x(x + 1) ≤ 0 then x ≤ 0 and x ≥ −1.
The statement, its contrapositive, its converse, and its
inverse are all true.

30. Statement: ∀ integers a, b, and c, if a − b is even and b − c
is even, then a − c is even.
Contrapositive: ∀ integers a, b, and c, if a − c is not even,
then a − b is not even or b − c is not even.
Converse: ∀ integers a, b and c, if a − c is even then a − b
is even and b − c is even.
Inverse: ∀ integers a, b, and c, if a − b is not even or b − c
is not even, then a − c is not even.
The statement is true, but its converse and inverse are false.
As a counterexample, let a = 3, b = 2, and c = 1. Then
a − c = 2, which is even, but a − b = 1 and b − c = 1, so
it is not the case that both a − b and b − c are even.

32. Statement: If the square of an integer is odd, then the integer
is odd.
Contrapositive: If an integer is not odd, then the square of
the integer is not odd.
Converse: If an integer is odd, then the square of the integer
is odd.
Inverse: If the square of an integer is not odd, then the inte-
ger is not odd.
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The statement, its contrapositive, its converse, and its
inverse are all true.

34. a. If n is divisible by some prime number strictly between
1 and

√
n, then n is not prime.

36. a. One possible answer: Let P(x) be “2x �= 1.” The state-
ment “∀x ∈ Z, 2x �= 1” is true, but the statements
“∀x ∈Q, 2x �= 1” and “∀x ∈ R, 2x �= 1” are both false.

37. The claim is “∀x , if x = 1 and x is in the sequence 0204,
then x is to the left of all the 0’s in the sequence.”
The negation is “∃x such that x = 1 and x is in the sequence
0204, and x is not to the left of all the 0’s in the sequence.”
The negation is false because the sequence does not contain
the character 1. So the claim is vacuously true (or true by
default).

39. If a person earns a grade of C− in this course, then the
course counts toward graduation.

41. If a person is not on time each day, then the person will not
keep this job.

43. It is not the case that if a number is divisible by 4, then that
number is divisible by 8. In other words, there is a number
that is divisible by 4 and is not divisible by 8.

45. It is not the case that if a person has a large income, then
that person is happy. In other words, there is a person who
has a large income and is not happy.

48. No. Interpreted formally, the statement says, “If carriers do
not offer the same lowest fare, then you may not select
among them,” or, equivalently, “If you may select among
carriers, then they offer the same lowest fare.”

Section 3.3
1. a. True: Tokyo is the capital of Japan.

b. False: Athens is not the capital of Egypt.

2. a. True: 22 > 3 b. False: 12 ≯ 1

3. a. y = 1
2 b. y = −1

4. a. Let n = 16. Then n > x because 16 > 15.83.

5. The statement says that no matter what circle anyone might
give you, you can find a square of the same color. This is
true because the only circles are a, c, and b, and given a or
c, which are blue, square j is also blue, and given b, which
is gray, squares g and h are also gray.

7. This is true because triangle d is above every square.

9. a. There are five elements in D. For each, an element in
E must be found so that the sum of the two equals 0.
So: if x = −2, take y = 2; if x = −1, take y = 1; if
x = 0, take y = 0; if x = 1, take y = −1; if x = 2, take
y = −2.

Alternatively, note that for each integer x in D, the
integer −x is also in D, including 0 (because −0 = 0),
and for all integers x, x + (−x) = 0.

10. a. True. Every student chose at least one dessert: Uta chose
pie, Tim chose both pie and cake, and Yuen chose pie.

c. This statement says that some particular dessert was
chosen by every student. This is true: Every student
chose pie.

11. a. There is a student who has seen Casablanca.
c. Every student has seen at least one movie.
d. There is a movie that has been seen by every student.

(There are many other acceptable ways to state these
answers.)

12. a. Negation: ∃x in D such that ∀y in E, x + y �= 1.
The negation is true. When x = −2, the only number y
with the property that x + y = 1 is y = 3, and 3 is not
in E .

b. Negation: ∀x in D, ∃y in E such that x + y �= −y.
The negation is true and the original statement is false.
To see that the original statement is false, take any x in
D and choose y to be any number in E with y �= − x

2 .
Then 2y �= −x , and adding x and subtracting y from
both sides gives x + y �= −y.

In 13–19 there are other correct answers in addition to those
shown.

13. a. Statement: For every color, there is an animal of that
color.
There are animals of every color.

b. Negation: ∃ a color C such that ∀ animals A, A is not
colored C .
For some color, there is no animal of that color.

14. Statement: There is a book that all people have read.
Negation: There is no book that all people have read.
(Or: ∀ books b, ∃ a person p such that p has not read b.)

15. a. Statement: For every odd integer n, there is an integer k
such that n = 2k + 1.
Given any odd integer, there is another integer for which
the given integer equals twice the other integer plus 1.
Given any odd integer n, we can find another integer k
so that n = 2k + 1.
An odd integer is equal to twice some other integer plus 1.
Every odd integer has the form 2k+ 1 for some integer k.

b. Negation: ∃ an odd integer n such that ∀ integers k, n �=
2k + 1.
There is an odd integer that is not equal to 2k + 1 for
any integer k.
Some odd integer does not have the form 2k + 1 for any
integer k.

18. a. Statement: For every real number x , there is a real num-
ber y such that x + y = 0.
Given any real number x , there exists a real number y
such that x + y = 0.
Given any real number, we can find another real num-
ber (possibly the same) such that the sum of the given
number plus the other number equals 0.
Every real number can be added to some other real num-
ber (possibly itself) to obtain 0.

b. Negation: ∃ a real number x such that ∀ real numbers
y, x + y �= 0.
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There is a real number x for which there is no real num-
ber y with x + y = 0.
There is a real number x with the property that
x + y �= 0 for any real number y.
Some real number has the property that its sum with any
other real number is nonzero.

20. Statement (1) says that no matter what square anyone might
give you, you can find a triangle of a different color. This is
true because the only squares are e, g, h, and j , and given
squares g and h, which are gray, you could take triangle d,
which is black; given square e, which is black, you could
take either triangle f or i , which are gray; and given square
j , which is blue, you could take either triangle f or h,
which are gray, or triangle d, which is black.

21. a. (1) The statement “∀ real numbers x, ∃ a real number
y such that 2x + y = 7” is true.

(2) The statement “∃ a real number x such that ∀ real
numbers y, 2x + y = 7” is false.

b. Both statements (1) “∀ real numbers x, ∃ a real number
y such that x + y = y + x” and (2) “∃ a real number x
such that ∀ real numbers y, x + y = y + x” are true.

22. a. Given any real number, you can find a real number so
that the sum of the two is zero. In other words, every
real number has an additive inverse. This statement is
true.

b. There is a real number with the following property: No
mattter what real number is added to it, the sum of the
two will be zero. In other words, there is one particular
real number whose sum with any real number is zero.
This statement is false; no one number will work for all
numbers. For instance, if x + 0 = 0, then x = 0, but in
that case x + 1 = 1 �= 0.

24. a. ∼(∀x ∈ D(∀y ∈ E(P(x, y))))

≡ ∃x ∈ D(∼(∀y ∈ E(P(x, y))))

≡ ∃x ∈ D(∃y ∈ E(∼P(x, y)))

25. This statement says that all of the circles are above all of
the squares. This statement is true because the circles are
a, b, and c, and the squares are e, g, h, and j , and all of
a, b, and c lie above all of e, g, h, and j .
Negation: There is a circle x and a square y such that x is
not above y. In other words, at least one of the circles is not
above at least one of the squares.

27. The statement says that there are a circle and a square with
the property that the circle is above the square and has
a different color from the square. This statement is true.
For example, circle a lies above square e and is differ-
ently colored from e. (Several other examples could also
be given.)

29. a. Version with interchanged quantifiers: ∃x ∈ R such that
∀y ∈ R, x < y.

b. The given statement says that for any real number x ,
there is a real number y that is greater than x . This is
true: For any real number x , let y = x + 1. Then x < y.
The version with interchanged quantifiers says that there

is a real number that is less than every other real number.
This is false.

31. ∀ people x, ∃ a person y such that x is older than y.

32. ∃ a person x such that ∀ people y, x is older than y.

33. a. Formal version: ∀ people x, ∃ a person y such that x
loves y.

b. Negation: ∃ a person x such that ∀ people y, x does not
love y. In other words, there is someone who does not
love anyone.

34. a. Formal version: ∃ a person x such that ∀ people y, x
loves y.

b. Negation: ∀ people x, ∃ a person y such that x does
not love y. In other words, everyone has someone whom
they do not love.

37. a. Statement: ∀ even integers n, ∃ an integer k such that
n = 2k.

b. Negation: ∃ an even integer n such that ∀ integers
k, n �= 2k.
There is some even integer that is not equal to twice any
other integer.

39. a. Statement: ∃ a program P such that ∀ questions Q posed
to P , P gives the correct answer to Q.

b. Negation: ∀ programs P , there is a question Q that can
be posed to P such that P does not give the correct
answer to Q.

40. a. ∀ minutes m, ∃ a sucker s such that s was born in
minute m.

41. a. This statement says that given any positive integer, there
is a positive integer such that the first integer is one more
than the second integer. This is false. Given the posi-
tive integer x = 1, the only integer with the property that
x = y + 1 is y = 0, and 0 is not a positive integer.

b. This statement says that given any integer, there is an
integer such that the first integer is one more than the
second integer. This is true. Given any integer x , take
y = x − 1. Then y is an integer, and y + 1 = (x − 1)+
1 = x .

e. This statement says that given any real number, there is
a real number such that the product of the two is equal to
1. This is false because 0 · y = 0 �= 1 for every number
y. So when x = 0, there is no real number y with the
property that xy = 1.

42. ∃ε > 0 such that ∀ integers N , ∃ an integer n such that
n> N and either L − ε ≥ an or an ≥ L + ε. In other
words, there is a positive number ε such that for all inte-
gers N , it is possible to find an integer n that is greater than
N and has the property that an does not lie between L − ε

and L + ε.

44. a. This statement is true. The unique real number with the
given property is 1. Note that

1 · y = y for all real numbers y,

and if x is any real number such that for instance,
x ·2= 2, then dividing both sides by 2 gives x = 2/2= 1.
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46. a. True. Both triangles a and c lie above all the squares.
b. Formal version: ∃x(Triangle(x) ∧ (∀y(Square(y)→

Above(x, y))))
c. Formal negation: ∀x(∼Triangle(x) ∨ (∃y (Square (y)∧
∼Above(x, y))))

48. a. False. There is no square to the right of circle k.
b. Formal version: ∀x(Circle(x)→ (∃y(Square(y) ∧

RightOf(y, x))))
c. Formal negation: ∃x(Circle(x) ∧ (∀y(∼Square(y) ∨
∼RightOf(y, x))))

51. a. False. There is no object that has a different color from
every other object.

b. Formal version: ∃y(∀x(x �= y→∼SameColor(x, y)))
c. Formal negation: ∀y(∃x(x �= y ∧ SameColor(x, y)))

53. a. False
b. Formal version: ∃x(Circle(x) ∧ (∃y(Square(y) ∧

SameColor(x, y))))
c. Formal negation: ∀x(∼Circle(x) ∨ (∀y(∼Square(y) ∨
∼SameColor(x, y))))

55. a. No matter what the domain D or the predicates P(x)
and Q(x) are, the given statements have the same truth
value. If the statement “∀x in D, (P(x) ∧ Q(x))” is
true, then P(x) ∧ Q(x) is true for every x in D, which
implies that both P(x) and Q(x) are true for every x
in D. But then P(x) is true for every x in D, and
also Q(x) is true for every x in D. So the statement
“(∀x in D, P(x)) ∧ (∀x, in D, Q(x))” is true. Con-
versely, if the statement “(∀x in D, P(x)) ∧ (∀x in
D, Q(x))” is true, then P(x) is true for every x in D,
and also Q(x) is true for every x in D. This implies
that both P(x) and Q(x) are true for every x in D, and
so P(x) ∧ Q(x) is true for every x in D. Hence the state-
ment “∀x in D, (P(x) ∧ Q(x))” is true.

59. a. Yes b. X = w1, X = w2 c. X = b2, X = w2

Section 3.4
1. b. ( fi + f j )2 = f 2i + 2 fi f j + f 2j

c. (3u + 5v)2 = (3u)2 + 2(3u)(5v)+ (5v)2

(= 9u2 + 30uv + 25v2)

d. (g(r)+ g(s))2 = (g(r))2 + 2g(r)g(s)+ (g(s))2

2. 0 is even.

3. 2
3 +

4
5 =

(2 ·5+3 ·4)
(3 ·5)

(
= 22

15

)
5. 1

0 is not an irrational number.

7. Invalid; converse error

8. Valid by universal modus ponens (or universal instantia-
tion)

9. Invalid; inverse error

10. Valid by universal modus tollens

16. Invalid; converse error

19. ∀x , if x is a good car, then x is not cheap.
a. Valid, universal modus ponens (or universal instantia-

tion)
b. Invalid, converse error

21. Valid. (A valid argument can have false premises and a true
conclusion!)

mortals

mice

people

The major premise says the set of people is included in
the set of mice. The minor premise says the set of mice
is included in the set of mortals. Assuming both of these
premises are true, it must follow that the set of people is
included in the set of mortals. Since it is impossible for the
conclusion to be false if the premises are true, the argument
is valid.

23. Valid. The major and minor premises can be diagrammed
as follows:

beings who
occasionally

make mistakes

teachers

gods

According to the diagram, the set of teachers and the set of
gods can have no common elements. Hence, if the premises
are true, then the conclusion must also be true, and so the
argument is valid.

25. Invalid. Let C represent the set of all college cafeteria food,
G the set of all good food, andW the set of all wasted food.
Then any one of the following diagrams could represent the
given premises.

G

G

C W

WC

1

3

G

C W

2

G

WC

4
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Only in drawing (1) is the conclusion true. Hence it is possi-
ble for the premises to be true while the conclusion is false,
and so the argument is invalid.

28. (3) Contrapositive form: If an object is gray, then it is a
circle.
(2) If an object is a circle, then it is to the right of all the
blue objects.
(1) If an object is to right of all the blue objects, then it is
above all the triangles.
∴ If an object is gray, then it is above all the triangles.

31. 4. If an animal is in the yard, then it is mine.
1. If an animal belongs to me, then I trust it.
5. If I trust an animal, then I admit it into my study.
3. If I admit an animal into my study, then it will beg when

told to do so.
6. If an animal begs when told to do so, then that animal is

a dog.
2. If an animal is a dog, then that animal gnaws bones.
∴ If an animal is in the yard, then that animal gnaws bones;

that is, all the animals in the yard gnaw bones.

33. 2. If a bird is in this aviary, then it belongs to me.
4. If a bird belongs to me, then it is at least 9 feet high.
1. If a bird is at least 9 feet high, then it is an ostrich.
3. If a bird lives on mince pies, then it is not an ostrich.
Contrapositive: If a bird is an ostrich, then it does not
live on mince pies.

∴ If a bird is in this aviary, then it does not live on mince
pies; that is, no bird in this aviary lives on mince pies.

Section 4.1
1. a. Yes: −17 = 2(−9)+ 1

b. Yes: 0 = 2 ·0
c. Yes: 2k − 1 = 2(k − 1)+ 1 and k − 1 is an integer

because it is a difference of integers.

2. a. Yes: 6m + 8n = 2(3m + 4n) and (3m + 4n) is an inte-
ger because 3, 4,m, and n are integers, and products and
sums of integers are integers.

b. Yes: 10mn + 7 = 2(5mn + 3)+ 1 and 5mn + 3 is an
integer because 3, 5,m, and n are integers, and products
and sums of integers are integers.

c. Not necessarily. For instance, if m = 3 and n = 2,
then m2 − n2 = 9− 4 = 5, which is prime. (Note that
m2 − n2 is composite for many values of m and n
because of the identity m2 − n2 = (m − n)(m + n).)

4. For example, let m = n = 2. Then m and n are inte-

gers such that m > 0 and n > 0 and 1
m +

1
n =

1
2 +

1
2 = 1,

which is an integer.

7. For example, let n = 7. Then n is an integer such that n > 5
and 2n − 1 = 127, which is prime.

9. For example, 25, 9, and 16 are all perfect squares, because
25 = 52, 9 = 32, and 16 = 42, and 25 = 9 + 16. Thus 25
is a perfect square that can be written as a sum of two other
perfect squares.

11. Counterexample: Let a = −2 and b = −1. Then a < b
because −2 < −1, but a2 ≮ b2 because (−2)2 = 4 and
(−1)2 = 1 and 4 ≮ 1. [So the hypothesis of the statement is
true but its conclusion is false.]

14. This property is true for some integers and false for other
integers. For instance, if a = 0 and b = 1, the property is
true because (0+ 1)2 = 02 + 12, but if a = 1 and b = 1,
the property is false because (1+ 1)2 = 4 and 12 + 12 = 2
and 4 �= 2.

15. Hint: This property is true for some integers and false for
other integers. To justify this answer you need to find exam-
ples of both.

17. 2 = 12 + 12, 4 = 22, 6 = 22 + 12 + 12,

8 = 22 + 22, 10 = 32 + 12, 12 = 22 + 22 + 22,

14 = 32 + 22 + 12, 16 = 42,

18 = 32 + 32 = 42 + 12 + 12, 20 = 42 + 22,

22 = 32 + 32 + 22, 24 = 42 + 22 + 22

19. a. ∀ integersm and n, ifm is even and n is odd, then m + n
is odd.
∀ even integers m and odd integers n, m + n is odd.
If m is any even integer and n is any odd integer, then
m + n is odd.

b. (a) any odd integer (b) integer r
(c) 2r + (2s + 1) (d) m + n is odd

20. a. If an integer is greater than 1, then its reciprocal is
between 0 and 1.

b. Start of proof: Supposem is any integer such thatm > 1.
Conclusion to be shown: 0 < 1/m < 1.

22. a. If the product of two integers is 1, then either both are 1
or both are −1.

b. Start of proof: Suppose m and n are any integers with
mn = 1.
Conclusion to be shown: m = n = 1 or m = n = −1.

24. Two versions of a correct proof are given below to illustrate
some of the variety that is possible.
Proof 1: Suppose n is any [particular but arbitrarily chosen]
even integer. [We must show that −n is even.] By definition
of even, n = 2k for some integer k. Multiplying both side
by −1 gives that

−n = −(2k) = 2(−k).
Let r = −k. Then r is an integer because r = −k = (−1)k,
−1 and k are integers, and a product of two integers is an
integer. Hence, −n = 2r for some integer r , and so −n is
even [as was to be shown].
Proof 2: Suppose n is any even integer. By definition of
even, n = 2k for some integer k. Then

−n = −2k = 2(−k).
But −k is an integer because it is a product of integers −1
and k. Thus −n equals twice some integer, and so −n is
even by definition of even.
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25. Proof: Suppose a is any even integer and b is any odd inte-
ger. [We must show that a − b is odd.] By definition of even
and odd, a = 2r and b = 2s + 1 for some integers r and s.
By substitution and algebra,

a − b = 2r − (2s + 1) = 2r − 2s − 1 = 2(r − s − 1)+ 1.

Let t = r − s − 1. Then t is an integer because differences
of integers are integers. Thus a − b = 2t + 1, where t is an
integer, and so, by definition of odd, a − b is odd [as was to
be shown].

26. Hint: The conclusion to be shown is that a certain quantity
is odd. To show this, you need to show that the quantity
equals twice some integer plus one.

29. Proof: Suppose n is any [particular but arbitrarily chosen]
odd integer. [We must show that 3n + 5 is even.] By defini-
tion of odd, there is an integer r such that n = 2r + 1. Then

3n + 5 = 3(2r + 1)+ 5 by substitution

= 6r + 3+ 5

= 6r + 8

= 2(3r + 4) by algebra.

Let t = 3r + 4. Then t is an integer because products and
sums of integers are integers. Hence, 3n + 5 = 2t , where t
is an integer, and so, by definition of even, 3n + 5 is even
[as was to be shown].

31. Proof: Suppose k is any [particular but arbitrarily chosen]
odd integer and m is any even integer. [We must show that
k2 + m2 is odd.] By definition of odd and even, k = 2a + 1
and m = 2b for some integers a and b. Then

k2 + m2 = (2a + 1)2 + (2b)2 by substitution

= 4a2 + 4a + 1+ 4b2

= 4(a2 + a + b2)+ 1

= 2(2a2 + 2a + 2b2)+ 1 by algebra.

But 2a2 + 2a + 2b2 is an integer because it is a sum of
products of integers. Thus k2 + m2 is twice an integer
plus 1, and so k2 + m2 is odd [as was to be shown].

33. Proof: Suppose n is any even integer. Then n = 2k for some
integer k. Hence

(−1)n = (−1)2k = ((−1)2)k = 1k = 1

[by the laws of exponents from algebra]. This is what was to
be shown.

35. The negation of the statement is “For all integers m ≥ 3,
m2 − 1 is not prime.”
Proof of the negation: Supposem is any integer withm ≥ 3.
By basic algebra,m2 − 1 = (m − 1)(m + 1). Becausem ≥
3, both m − 1 and m + 1 are positive integers greater than
1, and each is smaller than m2 − 1. So m2 − 1 is a product
of two smaller positive integers, each greater than 1, and
hence m2 − 1 is not prime.

38. The incorrect proof just shows the theorem to be true in the
one case where k = 2. A real proof must show that it is true
for all integers k > 0.

39. The mistake in the “proof” is that the same symbol, k,
is used to represent two different quantities. By setting
m = 2k and n = 2k + 1, the proof implies that n = m + 1,
and thus it deduces the conclusion only for this one situ-
ation. When m = 4 and n = 17, for instance, the compu-
tations in the proof indicate that n − m = 1, but actually
n − m = 13. In other words, the proof does not deduce the
conclusion for an arbitrarily chosen even integer m and odd
integer n, and hence it is invalid.

40. This incorrect proof exhibits circular reasoning. The word
since in the third sentence is completely unjustified. The
second sentence tells only what happens if k2 + 2k + 1 is
composite. But at that point in the proof, it has not been
established that k2 + 2k + 1 is composite. In fact, that is
exactly what is to be proved.

43. True. Proof: Suppose m and n are any odd integers. [We
must show that mn is odd.] By definition of odd, n = 2r + 1
and m = 2s + 1 for some integers r and s. Then

mn = (2r + 1)(2s + 1) by subsitution

= 4rs + 2r + 2s + 1

= 2(2rs + r + s)+ 1 by algebra.

Now 2rs + r + s is an integer because products and sums
of integers are integers and 2, r , and s are all integers.
Hence mn = 2 · (some integer) + 1, and so, by definition
of odd, mn is odd.

44. True. Proof: Suppose n is any odd integer. [We must show
that −n is odd.] By definition of odd, n = 2k + 1 for some
integer k. By substitution and algebra,

−n = −(2k + 1) = −2k − 1 = 2(−k − 1)+ 1.

Let t = −k − 1. Then t is an integer because differences of
integers are integers. Thus−n = 2t + 1, where t is an inte-
ger, and so, by definition of odd, −n is odd [as was to be
shown].

45. False. Counterexample: Both 3 and 1 are odd, but their dif-
ference is 3− 1 = 2, which is even.

47. False. Counterexample: Let m = 1 and n = 3. Then
m + n = 4 is even, but neither summand m nor summand
n is even.

54. Proof: Suppose n is any integer. Then

4(n2 + n + 1)− 3n2 = 4n2 + 4n + 4− 3n2

= n2 + 4n + 4 = (n + 2)2

(by algebra). But (n + 2)2 is a perfect square because n + 2
is an integer (being a sum of n and 2). Hence 4(n2 + n +
1)− 3n2 is a perfect square, as was to be shown.

56. Hint: This is true.

62. Hint: The answer is no.
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Section 4.2
1. −356 = −35

6

3. 4
5 +

2
9 =

4 ·9+2 ·5
45 = 46

45
4. Let x = 0.3737373737 . . ..

Then 100x = 37.37373737 . . . , and so
100x − x = 37.37373737 . . .− 0.3737373737 . . ..

Thus 99x = 37, and hence x = 37
99 .

6. Let x = 320.5492492492 . . ..
Then 10000x = 3205492.492492 . . ., and
10x = 3205.492492492 . . . , and so
10000x − 10x = 3205492− 3205.
Thus 9990x = 3202287, and hence x = 3202287

9990 .

8. b. ∀ real numbers x and y, if x �= 0 and y �= 0 then xy �= 0.

9. Because a and b are integers, b − a and ab2 are both inte-
gers (since differences and products of integers are inte-
gers). Also, by the zero product property, ab2 �= 0 because
neither a nor b is zero. Hence (b − a)/ab2 is a quotient of
two integers with nonzero denominator, and so it is rational.

11. Proof: Suppose n is any [particular but arbitrarily chosen]
integer. Then n = n ·1, and so n = n/1 by by dividing both
sides by 1. Now n and 1 are both integers, and 1 �= 0. Hence
n can be written as a quotient of integers with a nonzero
denominator, and so n is rational.

12. (a) any [particular but arbitrarily chosen] rational number
(b) integers a and b (c) (a/b)2 (d) b2

(e) zero product property (f) r 2 is rational

13. a. ∀ real numbers r , if r is rational then −r is rational.
Or: ∀r , if r is a rational number then −r is rational.
Or: ∀ rational numbers r, −r is rational.

b. The statement is true. Proof: Suppose r is a [particular
but arbitrarily chosen] rational number. [We must show
that −r is rational.] By definition of rational, r = a/b
for some integers a and b with b �= 0. Then

−r = −a

b
by substitution

= −a
b

by algebra.

But since a is an integer, so is −a (being the product
of −1 and a). Hence −r is a quotient of integers with a
nonzero denominator, and so−r is rational [as was to be
shown].

15. Proof: Suppose r and s are rational numbers. By definition
of rational, r = a/b and s = c/d for some integers a, b, c,
and d with b �= 0 and d �= 0. Then

rs = a

b
· c
d

by substitution

= ac

bd
by the rules of algebra for multiplying fractions.

Now ac and bd are both integers (being products of inte-
gers) and bd �= 0 (by the zero product property). Hence rs
is a quotient of integers with a nonzero denominator, and
so, by definition of rational, rs is rational.

16. Hint: Counterexample: Let r be any rational number and
s = 0. Then r and s are both rational, but the quotient of
r divided by s is undefined and therefore is not a rational
number.
Revised statement to be proved: For all rational numbers r
and s, if s �= 0 then r/s is rational.

17. Hint: The conclusion to be shown is that a certain quantity
(the difference of two rational numbers) is rational. To show
this, you need to show that the quantity can be expressed as
a ratio of two integers with a nonzero denominator.

18. Hint:
a/b+c/d

2 = (ad + bc)/(bd)

2
= ad + bc

2bd
19. Hint: If a < b then a + a < a + b (by T19 of Appendix

A), or equivalently 2a < a + b. Thus a <
a+b
2 (by T20

Appendix A).

21. True. Proof: Supposem is any even integer and n is any odd
integer. [We must show that m2 + 3n is odd.] By properties 1
and 3 of Example 4.2.3, m2 is even (because m2 = m ·m)
and 3n is odd (because both 3 and n are odd). It follows
from property 5 [and the commutative law for addition] that
m2 + 3n is odd [as was to be shown].

24. Proof: Suppose r and s are any rational numbers. By
Theorem 4.2.1, both 2 and 3 are rational, and so,
by exercise 15, both 2r and 3s are rational. Hence, by The-
orem 4.2.2, 2r + 3s is rational.

27. Let

x =
1− 1

2n+1

1− 1

2

=
1− 1

2n+1
1

2

=
1− 1

2n+1
1

2

· 2
n+1

2n+1
= 2n+1− 1

2n
·

But 2n+1 − 1 and 2n are both integers (since n is a non-
negative integer) and 2n �= 0 by the zero product property.
Therefore, x is rational.

31. Proof: Suppose c is a real number such that

r3c
3 + r2c

2 + r1c + r0 = 0,

where r0, r1, r2, and r3 are rational numbers. By defini-
tion of rational, r0 = a0/b0, r1 = a1/b1, r2 = a2/b2, and
r3 = a3/b3 for some integers, a0, a1, a2, a3, and nonzero
integers b0, b1, b2, and b3. By substitution,

r3c3 + r2c2 + r1c + r0

= a3
b3

c3 + a2
b2

c2 + a1
b1

c + a0
b0

= b0b1b2a3
b0b1b2b3

c3 + b0b1b3a2
b0b1b2b3

c2 + b0b2b3a1
b0b1b2b3

c + b1b2b3a0
b0b1b2b3

= 0.

Multiplying both sides by b0b1b2b3 gives

b0b1b2a3 ·c3+ b0b1b3a2 ·c2+ b0b2b3a1 ·c+ b1b2b3a0= 0.

Let n3 = b0b1b3a3, n2 = b0b1b3a2, n1 = b0b2b3a1, and
n0 = b1b2b3a0. Then n0, n1, n2, and n3 are all integers
(being products of integers). Hence c satisfies the equation
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n3c
3 + n2c

2 + n1c + n0 = 0.

where n0, n1, n2, and n3 are all integers. This is what was
to be shown.

33. a. Hint:Note that (x − r)(x − s) = x2 − (r + s)x + rs. If
both r and s are odd, then r + s is even and rs is odd.
So the coefficient of x2 is 1 (odd), the coefficient of x is
even, and the constant coefficient, rs, is odd.

35. This “proof” assumes what is to be proved.

37. By setting both r and s equal to a/b, this incorrect proof
violates the requirement that r and s be arbitrarily chosen
rational numbers. If both r and s equal a/b, then r = s.

Section 4.3
1. Yes, 52 = 13 ·4 2. Yes, 56 = 7 ·8
4. Yes, (3k + 1)(3k + 2)(3k + 3) =

3 [(3k + 1)(3k + 2)(k + 1)], and
(3k + 1)(3k + 2)(k + 1) is an integer because k is an
integer and sums and products of integers are integers.

6. No, 29/3 ∼= 9.67, which is not an integer.

7. Yes, 66 = (−3)(−22).
8. Yes, 6a(a + b) = 3a[2(a + b)], and 2(a + b) is an integer

because a and b are integers and sums and products of inte-
gers are integers.

10. No, 34/7 ∼= 4.86, which is not an integer.

12. Yes, n2 − 1 = (4k + 1)2 − 1 = (16k2 + 8k + 1)− 1 =
16k2 + 8k = 8(2k2 + k), and 2k2 + k is an integer because
k is an integer and sums and products of integers are inte-
gers.

14. (a) a | b (b) b = a ·r (c) −r (d) a | (−b)
15. Proof: Suppose a, b, and c are any integers such that a | b

and a | c. [We must show that a | (b + c).] By definition of
divides, b = ar and c = as for some integers r and s. Then

b + c = ar + as = a(r + s) by algebra.

Let t = r + s. Then t is an integer (being a sum of inte-
gers), and thus b + c = at where t is an integer. By defini-
tion of divides, then, a | (b + c) [as was to be shown].

16. Hint: The conclusion to be shown is that a certain quantity
is divisible by a. To show this, you need to show that the
quantity equals a times some integer.

17. a. ∀ integers n if n is a multiple of 3 then −n is a multiple
of 3.

b. The statement is true. Proof: Suppose n is any integer
that is a multiple of 3. [We must show that −n is a mul-
tiple of 3.] By definition of multiple, n = 3k for some
integer k. Then

−n = −(3k) by substitution

= 3(−k) by algebra.

Hence, by definition of multiple, −n is a multiple of 3 [as
was to be shown].

18. Counterexample: Let a = 2 and b = 1. Then a + b =
2+ 1 = 3, and so 3 | (a + b) because 3 = 3 ·1. On the other
hand, a − b = 2− 1 = 1, and 3 � 1 because 1/3 is not an
integer. Thus 3 � (a − b). [So the hypothesis of the statement
is true but its conclusion is false.]

19. Start of proof : Suppose a, b, and c are any integers such
that a divides b. [We must show that a divides bc.]

22. Hint: The given statement can be rewritten formally as
“∀ integers n, if n is divisible by 6, then n is divisible by
2.” This statement is true.

24. The statement is true. Proof: Suppose a, b, and c are any
integers such that a | b and a | c. [We must show that a | (2b −
3c).] By definition of divisibility, we know that b = am
and c = an for some integers m and n. It follows that
2b − 3c = 2(am)− 3(an) (by substitution) = a(2m − 3n)
(by basic algebra). Let t = 2m − 3n. Then t is an integer
because it is a difference of products of integers. Hence
2b − 3c = at , where t is an integer, and so a | (2b − 3c)
by definition of divisibility [as was to be shown].

25. The statement is false. Counterexample: Let a = 2, b = 3,
and c = 8. Then a | c because 2 divides 8, but ab � c
because ab = 6 and 6 does not divide 8.

26. Hint: The statement is true.

27. Hint: The statement is false.

32. No. Each of these numbers is divisible by 3, and so their
sum is also divisible by 3. But 100 is not divisible by 3.
Thus the sum cannot equal $100.

36. a. The sum of the digits is 54, which is divisible by 9.
Therefore, 637,425,403,705,125 is divisible by 9 and
hence also divisible by 3 (by transitivity of divisibil-
ity). Because the rightmost digit is 5, then 637,425,
403,705,125 is not divisible by 5. And because the two
rightmost digits are 25, which is not divisible by 4, then
637,425,403,705,125 is not divisible by 4.

37. a. 1176 = 23 ·3 ·72
38. a. p2e11 p2e22 . . . p2ekk

b. n = 42, 25 ·3 ·52 ·73 ·n = 58802

40. a. Because 12a = 25b, the unique factorization theorem
guarantees that the standard factored forms of 12a and
25b must be the same. Thus 25b contains the factors
22 ·3(= 12). But since neither 2 nor 3 divide 25, the fac-
tors 22 ·3 must all occur in b, and hence 12 | b. Similarly,
12a contains the factors 52 = 25, and since 5 is not a
factor of 12, the factors 52 must occur in a. So 25 | a.

41. Hint: 458 ·885 = (32 ·5)8 · (23 ·11)5 = 316 ·58 ·215 ·115.
How many factors of 10 does this number contain?

42. a. 6! = 6 ·5 ·4 ·3 ·2 ·1 = 2 ·3 ·5 ·2 ·2 ·3 ·2 = 24 ·32 ·5
44. Proof: Suppose n is a nonnegative integer whose deci-

mal representation ends in 0. Then n = 10m + 0 = 10m
for some integer m. Factoring out a 5 yields n = 10m =
5(2m), and 2m is an integer since m is an integer. Hence
10m is divisible by 5, which is what was to be shown.
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47. Hint: You may take it as a fact that for any positive
integer k,

10k = 99 . . . 9︸ ︷︷ ︸ + 1; that is,
k of these

10k = 9 ·10k−1 + 9 ·10k−2 + · · · + 9 ·101 + 9 ·100 + 1.

Section 4.4
1. q = 7, r = 7 3. q = 0, r = 36

5. q = −5, r = 10 7. a. 4 b. 7

11. a. When today is Saturday, 15 days from today is two
weeks (which is Saturday) plus one day (which is Sun-
day). Hence DayN should be 0. According to the for-
mula, when today is Saturday, DayT = 6, and so when
N = 15,

DayN = (DayT + N ) mod 7

= (6+ 15) mod 7

= 21 mod 7 = 0, which agrees.

13. Solution 1: 30 = 4 ·7+ 2. Hence the answer is two days
after Monday, which is Wednesday.
Solution 2:By the formula, the answer is (1+ 30)mod 7 =
31 mod 7 = 3, which is Wednesday.

14. Hint: There are two ways to solve this problem. One is
to find that 1,000 = 7 ·142+ 6 and note that if today is
Tuesday, then 1,000 days from today is 142 weeks plus
6 days from today. The other way is to use the formula
DayN = (DayT + N ) mod 7, with DayT = 2 (Tuesday)
and N = 1000.

16. Because d | n, n = dq + 0 for some integer q. Thus the
remainder is 0.

18. Proof: Suppose n is any odd integer. By definition of odd,
n = 2q + 1 for some integer q. Then n2 = (2q + 1)2 =
4q2 + 4q + 1 = 4(q2 + q)+ 1 = 4q(q + 1)+ 1. By the
result of exercise 17, the product q(q + 1) is even, so
q(q + 1) = 2m for some integer m. Then, by substitution,
n2 = 4 ·2m + 1 = 8m + 1.

20. Because a mod 7 = 4, the remainder obtained when a
is divided by 7 is 4, and so a = 7q + 4 for some inte-
ger q. Multiplying this equation through by 5 gives that
5a = 35q + 20 = 35q + 14+ 6 = 7(5q + 2)+ 6. Because
q is an integer, 5q + 2 is also an integer, and so 5a =
7 · (an integer)+ 6. Thus, because 0 ≤ 6 < 7, the remain-
der obtained when 5a is divided by 7 is 6, and so
5a mod 7 = 6.

23. Proof: Suppose n is any [particular but arbitrarily chosen]
integer such that n mod 5 = 3. Then the remainder obtained
when n is divided by 5 is 3, and so n = 5q + 3 for some
integer q. By substitution,

n2 = (5q + 3)2 = 25q2 + 30q + 9

= 25q2 + 30q + 5+ 4 = 5(5q2 + 6q + 1)+ 4.

Because products and sums of integers are integers, 5q2 +
6q + 1 is an integer, and hence n2 = 5 · (an integer) + 4.

Thus, since 0 ≤ 4 < 5, the remainder obtained when n2 is
divided by 5 is 4, and so n2 mod 5 = 4.

26. Hint: You need to show that (1) for all nonnegative inte-
gers n and positive integers d, if n is divisible by d then
n mod d = 0; and (2) for all nonnegative integers n and
positive integers d, if n mod d = 0 then n is divisible by d .

27. Proof: Suppose n is any integer. By the quotient-remainder
theorem with d = 3, there exist integers q and r such that
n = 3q + r and 0 ≤ r < 3. But the only nonnegative inte-
gers r that are less than 3 are 0, 1, and 2. Therefore,
n = 3q + 0 = 3q, or n = 3q + 1, or n = 3q + 2 for some
integer q.

28. a. Proof: Suppose n, n + 1, and n + 2 are any three con-
secutive integers. [We must show that n(n + 1)(n + 2) is
divisible by 3.] By the quotient-remainder theorem, n
can be written in one of the three forms, 3q, 3q + 1, or
3q + 2 for some integer q. We divide into cases accord-
ingly.
Case 1 (n = 3q for some integer q): In this case,

n(n + 1)(n + 2)

= 3q(3q + 1)(3q + 2) by substitution

= 3 · [q(3q + 1)(3q + 2)] by factoring out a 3.

Let m = q(3q + 1)(3q + 2). Then m is an integer
because q is an integer, and sums and products of inte-
gers are integers. By substitution,

n(n + 1)(n + 2) = 3m where m is an integer.

And so, by definition of divisible, n(n + 1)(n + 2) is
divisible by 3.
Case 2 (n = 3q+ 1 for some integer q): In this case,

n(n + 1)(n + 2)

= (3q + 1)((3q + 1)+ 1)((3q + 1)+ 2)
by substitution

= (3q + 1)(3q + 2)(3q + 3)

= (3q + 1)(3q + 2)3(q + 1)

= 3 · [(3q + 1)(3q + 2)(q + 1)] by algebra.

Let m = (3q + 1)(3q + 2)(q + 1). Then m is an inte-
ger because q is an integer, and sums and products of
integers are integers. By substitution,

n(n + 1)(n + 2) = 3m where m is an integer.

And so, by definition of divisible, n(n + 1)(n + 2) is
divisible by 3.
Case 3 (n = 3q+ 2 for some integer q): In this case,

n(n + 1)(n + 2)

= (3q + 2)((3q + 2)+ 1)((3q + 2)+ 2)
by substitution

= (3q + 2)(3q + 3)(3q + 4)

= (3q + 2)3(q + 1)(3q + 4)

= 3 · [(3q + 2)(q + 1)(3q + 4)] by algebra
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Let m = (3q + 2)(q + 1)(3q + 4). Then m is an inte-
ger because q is an integer, and sums and products of
integers are integers. By substitution,

n(n + 1)(n + 2) = 3m where m is an integer.

And so, by definition of divisible, n(n + 1)(n + 2) is
divisible by 3.
In each of the three cases, n(n + 1)(n + 2) was seen to
be divisible by 3. But by the quotient-remainder theo-
rem, one of these cases must occur. Therefore, the prod-
uct of any three consecutive integers is divisible by 3.

b. For all integers n, n(n + 1)(n + 2) mod 3 = 0.

29. a. Hint: Given any integer n, begin by using the quotient-
remainder theorem to say that n can be written in
one of the three forms: n = 3q, or n = 3q + 1, or
n = 3q + 2 for some integer q. Then divide into three
cases according to these three possibilities. Show that
in each case either n2 = 3k for some integer k, or
n2 = 3k + 1 for some integer k. For instance, when
n = 3q + 2, then n2 = (3q + 2)2 = 9q2 + 12q + 4 =
3(3q2 + 4q + 1)+ 1, and 3q2 + 4q + 1 is an integer
because it is a sum of products of integers.

31. b. If m2 − n2 = 56, then 56 = (m + n)(m − n). Now
56 = 23 ·7, and by the unique factorization theorem, this
factorization is unique. Hence the only representations
of 56 as a product of two positive integers are 56 =
7 ·8 = 14 ·4 = 28 ·2 = 56 ·1. By part (a), m and n must
both be odd or both be even. Thus the only solutions
are either m + n = 14 and m − n = 4 or m + n = 28
and m − n = 2. This gives either m = 9 and n = 5 or
m = 15 and n = 13 as the only solutions.

32. Under the given conditions, 2a − (b + c) is even.
Proof: Suppose a, b, and c are any integers such that a − b
is even and b − c is even. [We must show that 2a − (b + c)
is even.] Note first that 2a − (b + c) = (a − b)+ (a − c).
Also note that (a − b)+ (b − c) is a sum of two even inte-
gers and hence is even by Example 4.2.3 #1. But (a − b)+
(b − c) = a − c, and so a − c is even. Hence 2a − (b + c)
is a sum of two even integers, and thus it is even [as was to
be shown].

34. Hint: Express n using the quotient-remainder theorem with
d = 3.

36. Hint: Use the quotient-remainder theorem (as in Exam-
ple 3.4.5) to say that n = 4q, n = 4q + 1, n = 4q + 2, or
n = 4q + 3 and divide into cases accordingly.

38. Hint: Given any integer n, consider the two cases where n
is even and where n is odd.

39. Hint: Given any integer n, analyze the sum n + (n + 1)+
(n + 2)+ (n + 3).

42. Hint: Use the quotient-remainder theorem to say that n
must have one of the forms 6q, 6q + 1, 6q + 2, 6q + 3,
6q + 4, or 6q + 5 for some integer q.

44. Hint: There are three cases: Either x and y are both pos-
itive, or they are both negative, or one is positive and the
other is negative.

47. a. 7609+ 5 = 7614

49. Answer to first question: No. Counterexample: Let m =
1, n = 3, and d = 2. Then m mod d = 1 and n mod d = 1
but m �= n.
Answer to second question: Yes. Proof: Suppose m, n, and
d are integers such that m mod d = n mod d . Let r =
m mod d = n mod d. By definition of mod, m = dp + r
and n = dq + r for some integers p and q. Then m − n =
(dp + r)− (dq + r) = d(p − q). But p − q is an integer
(being a difference of integers), and so m − n is divisible
by d by definition of divisible.

Section 4.5
1. �37.999� = 37, �37.999� = 38

3. �−14.00001� = −15, �−14.00001� = −14
8. �n/7�. The floor notation is more appropriate. If the ceiling

notation is used, two different formulas are needed, depend-
ing on whether n/7 is an integer or not. (What are they?)

10. a. (i) (2050 +
⌊
2049
4

⌋
−
⌊
2049
100

⌋
+
⌊
2049
400

⌋)
mod 7

= (2050+ 512− 20+ 5) mod 7 = 2547 mod 7

= 6,which corresponds to a Saturday

b. Hint:One day is added every four years, except that each
century the day is not added unless the century is a mul-
tiple of 400.

12. Proof: Suppose n is any even integer. By definition of even,
n = 2k for some integer k. Then⌊n

2

⌋
=

⌊
2k

2

⌋
= �k� = k because k is an integer

and k ≤ k < k − 1.

But k = n

2
because n = 2k.

Thus, on the one hand,
⌊
n
2

⌋
= k, and on the other hand,

k = n
2 . It follows that

⌊
n
2

⌋
= n

2 [as was to be shown].

14. False. Counterexample: Let x = 2 and y = 1.9. Then
�x − y� = �2− 1.9� = �0.1� = 0, whereas �x� − �y� =
�2� − �1.9� = 2 = 1 = 1.

15. True. Proof: Suppose x is any real number. Let m = �x�.
By definition of floor, m ≤ x < m + 1. Subtracting 1 from
all parts of the inequality gives that

m − 1 ≤ x − 1 < m,

and so, by definition of floor, �x − 1� = m − 1. It follows
by substitution that �x − 1� = �x� − 1.

17. Proof for the case where n mod 3 = 2:
In the case where n mod 3 = 2, then n = 3q + 2 for some
integer q by definition of mod . By substitution,
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⌊n
3

⌋
=

⌊
3q + 2

3

⌋

=
⌊
3q

3
+ 2

3

⌋

=
⌊
q + 2

3

⌋
= q because q is an integer and

q ≤ q + 2/3 < q + 1.

But

q = n − 2

3
by solving n = 3q + 2 for q .

Thus, on the one hand,
⌊
n
3

⌋
= q, and on the other hand,

q = n−2
3 . It follows that

⌊
n
3

⌋
= n−2

3 .

18. Hint: This is false.

19. Hint: This is true.

23. Proof: Suppose x is a real number that is not an integer.
Let �x� = n. Then, by definition of floor and because n is
not an integer, n < x < n + 1. Multiplying both sides by
−1 gives −n > −x > −n − 1, or equivalently, −n − 1 <

−x < −n. Since −n − 1 is an integer, it follows by defini-
tion of floor that �−x� = −n − 1. Hence

�x� + �−x� = n + (−n − 1) = n − n − 1 = −1,
as was to be shown.

25. Hint: Let n =
⌊
x
2

⌋
and consider the two cases: n is even

and n odd.

26. Proof: Suppose x is any real number such that

x − � x � <
1
2 . Multiplying both sides by 2 gives

2x − 2�x� < 1, or 2x < 2�x� + 1.

Now by definition of floor, �x� ≤ x . Hence, 2�x� ≤ 2x .
Putting the two inequalities involving 2x together gives

2�x� ≤ 2x < 2�x� + 1.

Thus, by definition of floor (and because 2�x� is an inte-
ger), �2x� = 2�x�. This is what was to be shown.

30. This incorrect proof exhibits circular reasoning. The equal-

ity
⌊
n
2

⌋
= (n−1)

2 is what is to be shown. By substituting

2k + 1 for n into both sides of the equality and working
from the result as though it were known to be true, the proof
assumes the truth of the conclusion to be proved.

Section 4.6
1. (a) A contradiction

(b) A positive real number
(c) x
(d) Both sides by 2
(e) Contradiction

3. Proof: Suppose not. That is, suppose there is an integer n
such that 3n + 2 is divisible by 3. [We must derive a contra-
diction.] By definition of divisibility, 3n + 2 = 3k for some
integer k. Subtracting 3n from both sides gives that 2 =
3k − 3n = 3(k − n). So, by definition of divisibility, 3 | 2.

But by Theorem 4.3.1 this implies that 3 ≤ 2, which con-
tradicts the fact that 3 > 2. [Thus for all integers n, 3n + 2 is
not divisible by 3.]

5. Negation of statement: There is a greatest even integer.
Proof of statement: Suppose not. That is, suppose there is
a greatest even integer; call it N . Then N is an even inte-
ger, and N ≥ n for every even integer n. [We must deduce
a contradiction.] Let M = N + 2. Then M is an even inte-
ger since it is a sum of even integers, and M > N since
M = N + 2. This contradicts the supposition that N ≥ n
for every even integer n. [Hence the supposition is false and
the statement is true.]

8. (a) a rational number
(b) an irrational number
(c) a

b
(d) c

d
(e) a

b −
c
d

(f) integers
(g) integers
(h) zero product property
(i) rational

9. a. The mistake in this proof occurs in the second sentence
where the negation written by the student is incorrect:
Instead of being existential, it is universal. The prob-
lem is that if the student proceeds in a logically correct
manner, all that is needed to reach a contradiction is one
example of a rational and an irrational number whose
sum is irrational. To prove the given statement, however,
it is necessary to show that there is no rational number
and no irrational number whose sum is rational.

10. Proof by contradiction: Suppose not. That is, suppose there
is an irrational number x such that the square root of x is
rational. [We must derive a contradiction.] By definition of
rational,

√
x = a

b for some integers a and b with b �= 0. By
substitution,

(
√
x)2 =

(a
b

)2
,

and so, by algebra,

x = a2

b2
.

But a2 and b2 are both products of integers and thus are
integers, and b2 is nonzero by the zero product property.

Thus a2

b2 is rational. It follows that x is both irrational
and rational, which is a contradiction. [This is what was to
be shown.]

11. Proof: Suppose not. That is, suppose ∃ a nonzero rational
number x and an irrational number y such that xy is ratio-
nal. [We must derive a contradiction.] By definition of ratio-
nal, x = a/b and xy = c/d for some integers a, b, c, and
d with b �= 0 and d �= 0. Also a �= 0 because x is nonzero.
By substitution, xy = (a/b)y = c/d. Solving for y gives
y = bc/ad. Now bc and ad are integers (being products of
integers) and ad �= 0 (by the zero product property). Thus,
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4.6 Solutions and Hints to Selected Exercises A-27

by definition of rational, y is rational, which contradicts
the supposition that y is irrational. [Hence the supposition
is false and the statement is true.]

13. Hint: Suppose n2 − 2 is divisible by 4, and consider the two
cases where n is even and n is odd. (An alternative solution
uses Proposition 4.6.4.)

14. Hint: a2 = c2 − b2 = (c − b)(c + b)

15. Hint: (1) For any integer c, if 2 divides c, then 4 divides c2.
(2) The result of exercise 13 may be helpful.

16. Hint: Suppose a, b, and c are odd integers, z is a solution
to ax2 + bx + c = 0, and z is rational. Then z = p/q for
some integers p and q with q �= 0. We may assume p and
q have no common factor. (Why? If p and q do have a com-
mon factor, we can divide out their greatest common factor
to obtain two integers p′ and q ′ that (1) have no common
factor and (2) satisfy the equation z = p′/q ′. Then we can
redefine q = q ′ and p = p′.) Note that because p and q
have no common factor, they are not both even. Substi-
tute p/q into ax2 + bx + c = 0, and multiply through by
q2. Show that (1) the assumption that p is even leads to
a contradiction, (2) the assumption that q is even leads to
a contradiction, and (3) the assumption that both p and
q are odd leads to a contradiction. The only remaining
possibility is that both p and q are even, which has been
ruled out.

18. a. 5 | n b. 5 | n2 c. 5k d. (5k)2 e. 5 | n2

19. Proof (by contraposition): [To go by contraposition, we must
prove that ∀ positive real numbers, r and s, if r ≤ 10 and
s ≤ 10, then rs ≤ 100.] Suppose r and s are positive
real numbers and r ≤ 10 and s ≤ 10. By the algebra of
inequalities, rs ≤ 100. [To derive this fact, multiply both
sides of r ≤ 10 by s to obtatin rs ≤ 10s. And multiply both
sides of s ≤ 10 by 10 to obtain 10s ≤ 10 ·10 = 100. By tran-
sitivity of ≤, then, rs ≤ 100.] But this is what was to be
shown.

21. a. Proof by contradiction: Suppose not. That is, suppose
there is an integer n such that n2 is odd and n is even.
Show that this supposition leads logically to a contra-
diction.

b. Proof by contraposition: Suppose n is any integer such
that n is not odd. Show that n2 is not odd.

23. a. The contrapositive is the statement “∀ real numbers x ,
if −x is not irrational, then x is not irrational.” Equiva-
lently (because −(−x) = x), “∀ real numbers x , if x is
rational then −x is rational.”
Proof by contraposition: Suppose x is any rational num-
ber. [We must show that −x is also rational.] By defini-
tion of rational, x = a/b for some integers a and b with
b �= 0. Then x = −(a/b) = (−a)/b. Since both−a and
b are integers and b �= 0,−x is rational [as was to be
shown].

b. Proof by contradiction: Suppose not. [We take the nega-
tion and suppose it to be true.] That is, suppose ∃ an irra-
tional number x such that−x is rational. [We must derive
a contradiction.] By definition of rational, −x = a/b for

some integers a and b with b �= 0. Multiplying both
sides by −1 gives x = −(a/b) = −a/b. But −a and b
are integers (since a and b are) and b �= 0. Thus x is a
ratio of the two integers −a and b with b �= 0. Hence x
is rational (by definition of rational), which is a contra-
diction. [This contradiction shows that the supposition is
false, and so the given statement is true.]

25. Hints: See the answer to exercise 21 and look carefully at
the two proofs for Proposition 4.6.4.

26. a. Proof by contraposition: Suppose a, b, and c are any
[particular but arbitrarily chosen] integers such that a | b.
[We must show that a | bc.] By definition of divides, b =
ak for some integer k. Then bc = (ak)c = a(kc). But
kc is an integer (because it is a product of the integers k
and c). Hence a | bc by definition of divisibility [as was
to be shown].

b. Proof by contradiction: Suppose not. [We take the nega-
tion and suppose it to be true.] Suppose ∃ integers a, b,
and c such that a |/ bc and a | b. Since a | b, there exists
an integer k such that b = ak by definition of divides.
Then bc = (ak)c = a(kc) [by the associative law of alge-
bra]. But kc is an integer (being a product of integers),
and so a | bc by definition of divides. Thus a |/ bc and
a | bc, which is a contradiction. [This contradiction shows
that the supposition is false, and hence the given statement
is true.]

27. a. Hint: The contrapositive is “For all integers m and n, if
m and n are not both even and m and n are not both odd,
then m + n is not even.” Equivalently: “For all integers
m and n, if one of m and n is even and the other is odd,
then m + n is odd.”

b. Hint: The negation of the given statement is the follow-
ing: ∃ integers m and n such that m + n is even, and
either m is even and n is odd, or m is odd and n is
even.

30. The negation of “Every integer is rational” is “There is
at least one integer that is irrational” not “Every integer
is irrational.” Deriving a contradiction from an incorrect
negation of a statement does not prove the statement is
true.

31. a. Proof: Suppose r, s, and n are integers and r >
√
n and

s >
√
n. Note that r and s are both positive because

√
n

cannot be negative. By multiplying both sides of the first
inequality by s and both sides of the second inequal-
ity by

√
n (Appendix A, T20), we have that rs >

√
ns

and
√
ns >

√
n
√
n = n. Thus, by the transitive law for

inequality (Appendix A, T18), rs > n.

32. a.
√
667 ∼= 25.8, and so the possible prime factors to be

checked are 2, 3, 5, 7, 11, 13, 17, 19, and 23. Test-
ing each in turn shows that 667 is not prime because
667 = 23 ·29.

b.
√
557 ∼= 23.6, and so the possible prime factors to be

checked are 2, 3, 5, 7, 11, 13, 17, 19, and 23. Testing
each in turn shows that none divides 557. Therefore, 557
is prime.
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34. a.
√
9269 ∼= 96.3, and so the possible prime factors to be

checked are all among those you found for exercise
33. Testing each in turn shows that 9,269 is not prime
because 9,269 = 13 ·713.

b.
√
9103 ∼= 95.4, and so the possible prime factors to be

checked are all among those you found for exercise 33.
Testing each in turn shows that none divides 9,103.
Therefore, 9,103 is prime.

35. Hint: Is it possible for all three of n − 4, n − 6, and n − 8
to be prime?

Section 4.7
1. The value of

√
2 given by a calculator is an approximation.

Calculators can give exact values only for numbers that can
be represented using at most the number of decimal digits
in the calculator display. In particular, every number in a
calculator display is rational, but even many rational num-
bers cannot be represented exactly. For instance, consider
the number formed by writing a decimal point and follow-
ing it with the first 1 million digits of

√
2. By the discussion

in Section 4.2, this number is rational, but you could not
infer this from the calculator display.

3. Proof by contradiction: Suppose not. That is, suppose 6−
7
√
2 is rational. [We must prove a contradiction.] By defini-

tion of rational, there exist integers a and b �= 0 with

6− 7
√
2 = a

b
.

Then
√
2 = 1

−7
(a
b
− 6

) by subtracting 6 from both
sides and dividing both sides
by −7

and so
√
2 = a − 6b

−7b by the rules of algebra.

But a − 6b and −7b are both integers (since a and b are
integers and products and difference of integers are inte-
gers), and−7b �= 0 by the zero product property. Hence

√
2

is a ratio of the two integers a − 6b and−7b with−7b �= 0,
so
√
2 is a rational number (by definition of rational). This

contradicts the fact that
√
2 is irrational, and so the suppo-

sition is false and 6− 7
√
2 is irrational.

5. This is false.
√
4 = 2 = 2/1, which is rational.

7. Counterexample: Let x = √2 and let y = −√2. Then x
and y are irrational, but x + y = 0 = 0/1, which is ratio-
nal.

9. True.
Formal version of the statement: ∀ positive real numbers r ,
if r is irrational, then

√
r is irrational.

Proof by contraposition: Suppose r is any positive real
number such that

√
r is rational. [We must show that r is

rational.] By definition of rational,
√
r = a

b for some inte-

gers a and b with b �= 0. Then r = (√
r
)2 = (

a
b

)
2 = a2

b2 .

But both a2 and b2 are integers because they are products
of integers, and b2 �= 0 by the zero product property. Thus
r is rational [as was to be shown].
(The statement may also be proved by contradiction.)

13. Hint: Can you think of any “nice” integers x and y that are
greater than 1 and have the property that x2 = y3?

16. a. Proof by contradiction: Suppose not. That is, suppose
there is an integer n such that n = 3q1 + r1 = 3q2 + r2,
where q1, q2, r1, and r2 are integers, 0 ≤ r1 < 3, 0 ≤
r2 < 3, and r1 �= r2. By interchanging the labels for r1
and r2 if necessary, we may assume that r2 > r1. Then
3(q1 − q2) = r2 − r1 > 0, and because both r1 and r2
are less than 3, either r2 − r1 = 1 or r2 − r1 = 2. So
either 3(q1 − q2) = 1 or 3(q1 − q2) = 2. The first case
implies that 3 | 1, and hence, by Theorem 4.3.1, that
3 ≤ 1, and the second case implies that 3 | 2, and hence,
by Theorem 4.3.1, that 3 ≤ 2. These results contradict
the fact that 3 is greater than both 1 and 2. Thus in either
case we have reached a contradiction, which shows that
the supposition is false and the given statement is true.

b. Proof by contradiction: Suppose not. That is, suppose
there is an integer n such that n2 is divisible by 3 and
n is not divisible by 3. [We must deduce a contradic-
tion.] By definition of divisible, n2 = 3q for some inte-
ger q, and by the quotient-remainder theorem and part
(a), n = 3k + 1 or n = 3k + 2 some integer k.
Case 1 (n = 3k + 1 for some integer k): In this case

n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k)+ 1.

Let s = 3k2 + 2k. Then n2 = 3s + 1, and s is an inte-
ger because it is a sum of products of integers. It follows
that n2 = 3q = 3s + 1 for some integers q and s, which
contradicts the result of part (a).
Case 2 (n = 3k + 2 for some integer k): In this case

n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 6k + 1)+ 1.

Let t = 3k2 + 6k + 1. Then n2 = 3t + 1, and t is an
integer because it is a sum of products of integers. It
follows that n2 = 3q = 3t + 1 for some integers q and
t , which contradicts the result of part (a).
Thus in either case, a contradiction is reached, which
shows that the supposition is false and the given state-
ment is true.

c. Proof by contradiction: Suppose not. That is, suppose√
3 is rational. By definition of rational,

√
3 = a

b for
some integers a and b with b �= 0. Without loss of gen-
erality, assume that a and b have no common factor. (If
not, divide both a and b by their greatest common fac-
tor to obtain integers a′ and b′ with the property that a′

and b′ have no common factor and
√
3 = a′

b′ . Then rede-
fine a = a′ and b = b′.) Squaring both sides of

√
3 = a

b

gives 3 = a2

b2 , and multiplying both sides by b2 gives

3b2 = a2(∗).

Thus a2 is divisible by 3, and so, by part (b), a is also
divisible by 3. By definition of divisibility, then, a = 3k
for some integer k, and so

a2 = 9k2(∗∗).
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Substituting equation (**) into equation (∗) gives 3b2 =
9k2, and dividing both sides by 3 yields

b2 = 3k2.

Hence b2 is divisible by 3, and so, by part (b), b is also
divisible by 3. Consequently, both a and b are divisible
by 3, which contradicts the assumption that a and b have
no common factor. Thus the supposition is false, and so√
3 is irrational.

18. Hint: The proof is a generalization of the one given in the
solution for exercise 16(a).

19. Hint: (1) The parts of the proof are similar to those in exer-
cise 16(b) and 16(c). (2) Use the result of exercise 18.

20. Hint: This statement is true. If a2 − 3 = 9b, then a2 =
9b + 3 = 3(3b + 1), and so a2 is divisible by 3. Hence,
by exercise 16(b), a is divisible by 3. Thus a2 = (3c)2 for
some integer c.

21. Proof by contradiction: Suppose not. That is, suppose
√
2 is

rational. [We will show that this supposition leads to a contra-
diction.] By definition of rational, we may write

√
2 = a/b

for some integers a and b with b �= 0. Then 2 = a2/b2, and
so a2 = 2b2. Consider the prime factorizations for a2 and
for 2b2. By the unique factorization of integers theorem,
these factorizations are unique except for the order in which
the factors are written. Now because every prime factor of
a occurs twice in the prime factorization of a2, the prime
factorization of a2 contains an even number of 2’s. (If 2
is a factor of a, then this even number is positive, and if
2 is not a factor of a, then this even number is 0.) On the
other hand, because every prime factor of b occurs twice
in the prime factorization of b2, the prime factorization of
2b2 contains an odd number of 2’s. Therefore, the equation
a2 = 2b2 cannot be true. So the supposition is false, and
hence

√
2 is irrational.

23. Hint: By the result of exercise 22,
√
6 is irrational.

25. Hint:
2 ·3 ·5 ·7+ 1

2
= 3 ·5 ·7+ 1

2
and

2 ·3 ·5 ·7+ 1

3
= 2 ·5 ·7+ 1

3
.

26. Hint: You can deduce that p = 3.

27. a. Hint: For example, N4 = 2 ·3 ·5 ·7+ 1 = 211.

29. Hint: By Theorem 4.3.4 (divisibility by a prime) there is a
prime number p such that p | (n! − 1). Show that the suppo-
sition that p ≤ n leads to a contradiction. It will then follow
that n < p < n!.

30. Hint: Every odd integer can be written as 4k + 1 or as
4k + 3 for some integer k. (Why?) If p1 p2 . . . pn + 1 =
4k + 1, then 4 | p1 p2 . . . pn . Is this possible?

31. a. Hint: Prove the contrapositive: If for some integer
n > 2 that is not a power of 2, xn + yn = zn has a
positive integer solution, then for some prime number
p > 2, x p + y p = z p has a positive integer solution.
Note that if n = kp, then xn = xkp = (xk)p .

32. Existence proof: When n = 2, then n2 − 1 = 3, which is
prime. Hence there exists a prime number of the form
n2 − 1, where n is an integer and n ≥ 2.

Uniqueness proof (by contradiction): Suppose to the con-
trary that m is another integer satisfying the given con-
ditions. That is, m > 2 and m2 − 1 is prime. [We must
derive a contradiction.] Factor m2 − 1 to obtain m2 − 1 =
(m − 1)(m + 1)). But m > 2, and so m − 1 > 1 and m +
1 > 1. Hence m2 − 1 is not prime, which is a contradic-
tion. [This contradiction shows that the supposition is false,
and so there is no other integer m > 2 such that n2 − 1 is
prime.]

Uniqueness proof (direct): Suppose m is any integer such
that m ≥ 2 and m2 − 1 is prime. [We must show that
m = 2.] By factoring, m2 − 1 = (m − 1)(m + 1). Since
m2 − 1 is prime, either m − 1 = 1 or m + 1 = 1. But
m + 1 ≥ 2+ 1 = 3. Hence, by elimination, m − 1 = 1,
and so m = 2.

34. Proof (by contradiction): Suppose not. That is, suppose
there are two distinct real numbers a1 and a2 such that for
all real numbers r ,

(1) a1 + r = r and (2) a2 + r = r

Then

a1 + a2 = a2 by (1) with r = a2

and

a2 + a1 = a1 by (2) with r = a1.

It follows that

a2 = a1 + a2 = a2 + a1 = a1

which implies that a2 = a1. But this contradicts the suppo-
sition that a1 and a2 are distinct. [Thus the supposition is false
and there is at most one real number a such that a + r = r for
all real numbers r .]
Proof (direct): Suppose a1 and a2 are real numbers such that
for all real numbers r ,

(1) a1 + r = r and (2) a2 + r = r

Then

a1 + a2 = a2 by (1) with r = a2

and

a2 + a1 = a1 by (2) with r = a1.

It follows that

a2 = a1 + a2 = a2 + a1 = a1.

Hence a2 = a1. [Thus there is at most one real number a such
that a + r = r for all real numbers r .]
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Section 4.8
1. z = 0 3. a. z = 18 4. a = 17

12
6.

Iteration Number
0 1 2 3

a 26

d 7

q 0 1 2 3

r 26 19 12 5

8. a.
A 69 19 9

q 2

d 1

n 1

p 4

9. gcd(27, 72) = 9 10. gcd(5, 9) = 1

13. Divide the larger number, 1,188, by the smaller, 385,
to obtain a quotient of 3 and a remainder of 33. Next
divide 385 by 33 to obtain a quotient of 11 and a
remainder of 22. Then divide 33 by 22 to obtain a quo-
tient of 1 and a remainder of 11. Finally, divide 22
by 11 to obtain a quotient of 2 and a remainder of 0.
Thus, by Lemma 4.8.2, gcd(1188, 385) = gcd(385, 33) =
gcd(33, 22) = gcd(22, 11) = gcd(11, 0), and by Lemma
4.8.1, gcd(11, 0) = 11. So gcd (1188, 385) = 11.

14. Divide the larger number, 1,177, by the smaller, 509, to
obtain a quotient of 2 and a remainder of 159. Next divide
509 by 159 to obtain a quotient of 3 and a remainder
of 32. Next divide 159 by 32 to obtain a quotient of 4
and a remainder of 31. Then divide 32 by 31 to obtain
a quotient of 1 and a remainder of 1. Finally, divide 31
by 1 to obtain a quotient of 31 and a remainder of 0.
Thus, by Lemma 4.8.2, gcd(1177, 509) = gcd(509, 159) =
gcd(159, 32) = gcd(32, 31) = gcd(31, 1) = gcd(1, 0), and
by Lemma 4.8.1, gcd(1, 0) = 1. So gcd(1177, 509) = 1.

17. A 1,001

B 871

r 130 91 39 13 0

b 871 130 91 39 13 0

a 1,001 871 130 91 39 13

gcd 13

19. Hint: Divide the proof into two parts. In part 1 suppose a
and b are any positive integers such that a | b, and derive the
conclusion that gcd(a, b) = a. To do this, note that because
it is also the case that a | a, a is a common divisor of a and
b. Thus, by definition of greatest common divisor, a is less
than or equal to the greatest common divisor of a and b.
In symbols, a ≤ gcd(a, b). Then show that a ≥ gcd(a, b)

by using Theorem 4.3.1. In part 2 of the proof, suppose a
and b are any positive integers such that gcd(a, b) = a, and
deduce that a | b.

22. a. Hint 1: If a = dq − r , then −a = −dq + r = −dq −
d + d − r = d(−q − 1)+ (d − r).

Hint 2: If 0 ≤ r < d, then 0 ≥ −r > −d. Add d to all
parts of this inequality and see what results.

23. a. Proof: Suppose a, d, q, and r are integers such that a =
dq + r and 0 ≤ r < d. [We must show that q =

⌊
a
d

⌋
and r = a−d

⌊
a
d

⌋
.] Solving a = dq + r for r gives

r = a − dq, and substituting into 0 ≤ r < d gives 0 ≤
a − dq < d. Add dq to both sides to obtain dq ≤
a < d + dq = d(q + 1). Then divide through by d to
obtain q ≤ a

d < q + 1. Therefore, by definition of floor,⌊
a
d

⌋
= q. Finally, substitution into a = dq + r gives

a = d
⌊
a
d

⌋
+ r , and subtracting d

⌊
a
d

⌋
from both sides

yields r = a − d
⌊
a
d

⌋
[as was to be shown].

24. b. Iteration Number
0 1 2 3 4

a 630 294 294 252 210

b 336 336 42 42 42

gcd

Iteration Number
5 6 7 8 9

a 168 126 84 42 0

b 42 42 42 42 42

gcd 42

25. a. lcm(12, 18) = 36

26. Proof: Part 1: Let a and b be positive integers, and sup-
pose d = gcd(a, b) = 1cm(a, b). By definition of great-
est common divisor and least common multiple, d >

0, d | a, d | b, a | d, and b | d. Thus, in particular, a = dm
and d = an for some integers m and n. By substitution,
a = dm = (an)m = anm. Dividing both sides by a gives
1 = nm. But the only divisors of 1 are 1 and −1 (Theorem
4.3.2), and som = n = ±1. Since both a and d are positive,
m = n = 1, and hence a = d. Similar reasoning shows that
b = d also, and so a = b.
Part 2: Given any positive integers a and b such that
a = b, we have gcd(a, b) = gcd(a, a) = a and 1cm(a, b)
= 1cm(a, a) = a, and hence gcd(a, b) = 1cm(a, b).

29. Hint: Divide the proof into two parts. In part 1, suppose a
and b are any positive integers, and deduce that

gcd(a, b) · 1cm(a, b) ≤ ab.

Derive this result by showing that 1cm (a, b) ≤ ab
gcd(a,b) .

To do this, show that ab
gcd(a,b) is a multiple of both
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5.1 Solutions and Hints to Selected Exercises A-31

a and b. For instance, to see that ab
gcd(a,b) is a multiple of

b, note that because gcd (a, b) divides a, a = gcd (a, b) ·k
for some integer k, and thus ab = gcd(a, b) ·kb. Divide
both sides by gcd(a, b) to obtain ab

gcd(a,b) = kb. But since

k is an integer, this equation implies that ab
gcd(a,b) is

a multiple of b. The argument that ab
gcd(a,b) is a mul-

tiple of a is almost identical. In part 2 of the proof,
use the definition of least common multiple to show that

ab
1cm(a,b) | a and ab

1cm(a,b) | b. Conclude that ab
1cm(a,b) ≤

gcd(a, b) and hence that ab ≤ gcd(a, b) · 1cm(a, b).

Section 5.1
1. 1

11 ,
2
12 ,

3
13 ,

4
14 3. 1,−1

3 ,
1
9 ,− 1

27 5. 0, 0, 2, 2

8. g1 = �log2 1� = 0
g2 = �log2 2� = 1, g3 = �log2 3� = 1
g4 = �log2 4� = 2, g5 = �log2 5� = 2
g6 = �log2 6� = 2, g7 = �log2 7� = 2
g8 = �log2 8� = 3, g9 = �log2 9� = 3
g10 = �log2 10� = 3, g11 = �log2 11� = 3
g12 = �log2 12� = 3, g13 = �log2 13� = 3
g14 = �log2 14� = 3, g15 = �log2 15� = 3

When n is an integral power of 2, gn is the exponent of that
power. For instance, 8 = 23 and g8 = 3. More generally, if
n = 2k , where k is an integer, then gn = k. All terms of
the sequence from gn up to gm , where m = 2k+1 is the next
integral power of 2, have the same value as gn , namely k.
For instance, all terms of the sequence from g8 through g15
have the value 3.

Exercises 10–16 have more than one correct answer.

10. an = (−1)n , where n is an integer and n ≥ 1.

11. an = (n − 1)(−1)n , where n is an integer and n ≥ 1.

12. an = n

(n + 1)2
, where n is an integer and n ≥ 1

14. an = n2

3n
, where n is an integer and n ≥ 1

18. a. 2+ 3+ (−2)+ 1+ 0+ (−1)+ (−2) = 1
b. a0 = 2
c. a2 + a4 + a6 = −2+ 0+ (−2) = −4
d. 2 ·3 ·(−2) ·1 ·0 · (−1) ·(−2) = 0

19. 2+ 3+ 4+ 5+ 6 = 20 20. 22 ·32 ·42 = 576

23. 1(1+ 1) = 2

27.
(
1

1
− 1

2

)
+
(
1

2
− 1

3

)
+
(
1

3
− 1

4

)
+
(
1

4
− 1

5

)

+
(
1

5
− 1

6

)
+
(
1

6
− 1

7

)
+
(
1

7
− 1

8

)
+
(
1

8
− 1

9

)

+
(
1

9
− 1

10

)
+
(

1

10
− 1

11

)
= 1− 1

11
= 10

11

29. (−2)1 + (−2)2 + (−2)3 + · · · + (−2)n
= −2+ 22 − 23 + · · · + (−1)n2n

31.
n+1∑
k=0

1
k! = 1

0! + 1
1! + 1

2! + · · · + 1
(n+1)!

33. 1
1! = 1

35.
(

1
1+1

) (
2

2+1
) (

3
3+1

) =( 12) (23) (34) = 1
4

37.
k+1∑
k=1

i(i !) =
k∑

k=1
i(i !)+ (k + 1)(k + 1)!

40.
k∑

k=1
i3 + (k + 1)3 =

k+1∑
k=1

i3

Exercises 43–52 have more than one correct answer.

43.
7∑

k=1
(−1)k+1k2 or

6∑
k=0

(−1)k(k + 1)2

46.
6∑
j=2

(−1) j j
( j + 1)( j + 2)

or
7∑

k=3

(−1)k+1(k − 1)

k(k + 1)

47.
5∑

i=0
(−1)i r i 49.

n∑
k=1

k3

51.
n−1∑
i=0

(n − i)

53. When k = 0, then i = 1. When k = 5, then i = 6. Since
i = k + 1, then k = i − 1. Thus,

k(k − 1) = (i − 1)((i − 1)− 1) = (i − 1)(i − 2),

and so
5∑

k=0
k(k − 1) =

6∑
i=1

(i − 1)(i − 2)

55. When i = 1, then j = 0. When i = n + 1, then j = n.
Since j = i − 1, then i = j + 1. Thus,

(i − 1)2

i ·n = (( j + 1)− 1)2

( j + 1) ·n = j2

jn + n
.

(Note that n is constant as far as the sum is concerned.)

So
∑n+1

i=1
(i − 1)2

i ·n =
∑n

j=0
j2

jn + n
.

56. When i = 3, then j = 2. When i = n then j = n − 1.
Since j = i − 1, then i = j + 1. Thus,

n∑
i=3

i

i + n − 1
=

n−1∑
j=2

j + 1

( j + 1)+ n − 1

=
n−1∑
j=2

j + 1

j + n
.

59.
n∑

k=1
[3(2k − 3)+ (4− 5k)]

=
n∑

k=1
[(6k − 9)+ (4− 5k)] =

n∑
k=1

(k − 5)
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A-32 Appendix B Solutions and Hints to Selected Exercises

62.
4 ·3 ·2 ·1
3 ·2 ·1 = 4

65.
n(n − 1)(n − 2) · · · 3 ·2 ·1
(n − 1)(n − 2) · · · 3 ·2 ·1 = n

66.
(n − 1)(n − 2) · · · 3 ·2 ·1

(n + 1)n(n − 1)(n − 2) · · · 3 ·2 ·1 =
1

n(n + 1)

68.
[(n + 1)n(n − 1)(n − 2) · · · 3 ·2 ·1]2
[n(n − 1)(n − 2) · · · 3 ·2 ·1]2 = (n + 1)2

69.
n(n − 1)(n − 2) · · · (n − k + 1)(n − k)(n − k − 1) · · · 2 ·1

(n − k)(n − k − 1) · · · 2 ·1
= n(n − 1)(n − 2) · · · (n − k + 1)

71.
(
5
3

)
= 5!

(3!)(5−3)! =
5 ·4 ·3 ·2 ·1

(3 ·2 ·1)(2 ·1) = 10

73.
(
3
0

)
= 3!

(0!)(3−0)! =
3!

(1)(3!) = 1

75.
(

n
n − 1

)
= n!

(n−1)!(n−(n−1))! =
n(n−1)!

(n−1)!(n−n+1)! =
n
1 = n

77. a. Proof: Let n be an integer such that n ≥ 2. By definition
of factorial,

n! =
⎧⎨
⎩
2 ·1 if n = 2
3 ·2 ·1 if n = 3
n ·(n − 1) · · · 2 ·1 if n > 3.

In each case, n! has a factor of 2, and so n! = 2k for
some integer k. Then

n! + 2 = 2k + 2 by substitution

= 2(k + 1) by factoring out the 2.

Since k + 1 is an integer, n! + 2 is divisible by 2 [as was
to be shown].

c. Hint: Consider the sequence m! + 2,m! + 3,m! + 4,
. . . ,m! + m.

78. Proof: Suppose n and r are nonnegative integers with
r + 1 ≤ n. The right-hand side of the equation to be
shown is

n − r

r + 1
·
(
n
r

)
= n − r

r + 1
· n!
r !(n − r)!

= n − r

r + 1
· n!
r !(n − r) ·(n − r − 1)!

= n!
(r + 1)! ·(n − r − 1)!

= n!
(r + 1)! ·(n − (r + 1))!

=
(

n
r + 1

)
,

which is the left-hand side of the equation to be shown.

80. a. m − 1, sum +a[i + 1]

81. 0 remainder = r [6] = 1
2 1 remainder = r [5] = 0

2 2 remainder = r [4] = 1
2 5 remainder = r [3] = 1

2 11 remainder = r [2] = 0
2 22 remainder = r [1] = 1

2 45 remainder = r [0] = 0
2 90

Hence 9010 = 10110102.

84. a 23

i 0 1 2 3 4 5

q 23 11 5 2 1 0

r[0] 1

r[1] 1

r[2] 1

r[3] 0

r[4] 1

88. 0 remainder 1 = r [2] = 116
16 1 remainder 1 = r [1] = 116

16 17 remainder 15 = r [0] = F16
16 287

Hence 28710 = 11F16.

Section 5.2
1. Proof: Let P(n) be the property “n cents can be obtained

by using 3-cent and 8-cent coins.”

Show that P(14) is true:

Fourteen cents can be obtained by using two 3-cent coins
and one 8-cent coin.

Show that for all integers k ≥ 14, if P(k) is true, then
P(k+ 1) is true:

Suppose k cents (where k ≥ 14) can be obtained using 3-
cent and 8-cent coins. [Inductive hypothesis] We must show
that k + 1 cents can be obtained using 3-cent and 8-cent
coins. If the k cents includes an 8-cent coin, replace it by
three 3-cent coins to obtain a total of k + 1 cents. Other-
wise the k cents consists of 3-cent coins exclusively, and so
there must be least five 3-cent coins (since the total amount
is at least 14 cents). In this case, replace five of the 3-
cent coins by two 8-cent coins to obtain a total of k + 1
cents. Thus, in either case, k + 1 cents can be obtained
using 3-cent and 8-cent coins. [This is what we needed to
show.]

[Since we have proved the basis step and the inductive step,
we conclude that the given statement is true for all integers
n ≥ 14.]
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5.2 Solutions and Hints to Selected Exercises A-33

3. a. P(1) is “12 = 1 · (1+1) · (2 ·1+1)
6 .” P(1) is true because

12 = 1 and
1 · (1+1) · (2+1)

6 = 2 ·3
6 = 1 also.

b. P(k) is “12 + 22 + · · · + k2 = k(k+1)(2k+1)
6 .”

c. P(k + 1) is “12 + 22 + · · · + (k + 1)2

= (k+1)((k+1)+1)(2 · (k+1)+1)
6 .”

d. Must show: If for some integer k ≥ 1,

12 + 22 + · · · + k2 = k(k+1)(2k+1)
6 , then

12 + 22 + · · · + (k + 1)2

= (k+1)[(k+1)+1][(2(k+1)+1)]
6 .

5. a. 12 b. k2

c. 1+ 3+ 5+ · · · + [2(k + 1)− 1]
d. (k + 1)2

e. the odd integer just before 2k + 1 is 2k − 1
f. inductive hypothesis

6. Proof: For the given statement, the property P(n) is the
equation

2+ 4+ 6+ · · · + 2n = n2 + n. ← P(n)

Show that P(1) is true:

To prove P(1), we must show that when 1 is substituted
into the equation in place of n, the left-hand side equals
the right-hand side. But when 1 is substituted for n, the
left-hand side is the sum of all the even integers from 2
to 2 ·1, which is just 2, and the right-hand side is 12 + 1,
which also equals 2. Thus P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k+1)
is true:

Let k be any integer with k ≥ 1, and suppose P(k) is true.
That is, suppose

2+ 4+ 6+ · · · + 2k = k2 + k. ← P(k)
inductive hypothesis

We must show that P(k + 1) is true. That is, we must show
that

2+ 4+ 6+ · · · + 2(k + 1) = (k + 1)2 + (k + 1).

Because (k + 1)2 + (k + 1) = k2 + 2k + 1+ k + 1 =
k2 + 3k + 2, this is equivalent to showing that

2+ 4+ 6+ · · · + 2(k + 1) = k2 + 3k + 2. ← P(k + 1)

But the left-hand side of P(k + 1) is

2+ 4+ 6+ · · · + 2(k + 1)

= 2+ 4+ 6+ · · · + 2k + 2(k + 1)
by making the next-to-last
term explicit

= (k2 + k)+ 2(k + 1) by substitution from the
inductive hypothesis

= k2 + 3k + 2, by algebra,

and this is the right-hand side of P(k + 1). Hence P(k + 1)
is true.
[Since both the basis step and the inductive step have been
proved, P(n) is true for all integers n ≥ 1.]

8. Proof: For the given statement, the property P(n) is the
equation

1+ 2+ 22 + · · · + 2n = 2n+1 − 1. ← P(n)

Show that P(0) is true:

The left-hand side of P(0) is 1, and the right-hand side is
20+1 − 1 = 2− 1 = 1 also. Thus P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then P(k+1)
is true:

Let k be any integer with k ≥ 0, and suppose P(k) is true.
That is, suppose

1+ 2+ 22 + · · · + 2k = 2k+1 − 1. ← P(k) inductive
hypothesis

We must show that P(k + 1) is true. That is, we must show
that

1+ 2+ 22 + · · · + 2k+1 = 2(k+1)+1 − 1,

or, equivalently,

1+ 2+ 22 + · · · + 2k+1 = 2k+2 − 1.← P(k + 1)

But the left-hand side of P(k + 1) is

1+ 2+ 22 + · · · + 2k+1

= 1+ 2+ 22 + · · · + 2k + 2k+1

by making the next-to-last
term explicit

= (2k+1 − 1)+ 2k+1 by substitution from the
inductive hypothesis

= 2 ·2k+1 − 1 by combining like terms

= 2k+2 − 1, by the laws of exponents,

and this is the right-hand side of P(k + 1). Hence the prop-
erty is true for n = k + 1.

[Since both the basis step and the inductive step have been
proved, P(n) is true for all integers n ≥ 0.]

10. Proof: For the given statement, the property is the equation

12 + 22 + 32 + · · · + n2

= n(n + 1)(2n + 1)

6
. ← P(n)

Show that P(1) is true:

The left-hand side of P(1) is 12 = 1, and the right-hand

side is
1(1+1)(2 ·1+1)

6 = 2 ·3
6 = 1 also. Thus P(1)

is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k+1)
is true:

Let k be any integer with k ≥ 1, and suppose P(k) is true.
That is, suppose
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A-34 Appendix B Solutions and Hints to Selected Exercises

12 + 22 + 32 + · · · + k2

= k(k + 1)(2k + 1)

6
. ← P(k)

inductive hypothesis

We must show that P(k + 1) is true. That is, we must show
that

12 + 22 + 32 + · · · + (k + 1)2

= (k + 1)((k + 1)+ 1)(2(k + 1)+ 1)

6
,

or, equivalently,

12 + 22 + 32 + · · · + (k + 1)2

= (k + 1)(k + 2)(2k + 3)

6
. ← P(k + 1)

But the left-hand side of P(k + 1) is

12 + 22 + 32 + · · · + (k + 1)2

= 12 + 22 + 32 + · · · + k2 + (k + 1)2 by making the next-
to-last term explicit

= k(k + 1)(2k + 1)

6
+ (k + 1)2

by substitution from the
inductive hypothesis

= k(k + 1)(2k + 1)

6
+ 6(k + 1)2

6

because
6
6 = 1

= k(k + 1)(2k + 1)+ 6(k + 1)2

6
by adding fractions

= (k + 1)[k(2k + 1)+ 6(k + 1)]
6

by factoring out
(k + 1)

= (k + 1)(2k2 + 7k + 6)

6
by multiplying out and
combining like terms

= (k + 1)(k + 2)(2k + 3)

6
because (k + 2)
(2k+ 3)= 2k2+ 7k+ 6,

and this is the right-hand side of P(k + 1). Hence the prop-
erty is true for n = k + 1.

[Since both the basis step and the inductive step have been
proved, P(n) is true for all integers n ≥ 1.]

13. Proof: For the given statement, the property P(n) is the
equation

n−1∑
i=1

i(i + 1) = n(n − 1)(n + 1)

3
. ← P(n)

Show that P(2) is true:

The left-hand side of P(2) is
∑1

i=1 i(i+1) =1·(1+1)=2,

and the right-hand side is
2(2−1)(2+1)

3 = 6
3 = 2 also.

Thus P(2) is true.

Show that for all integers k ≥ 2, if P(k) is true then
P(k+ 1) is true:

Let k be any integer with k ≥ 2, and suppose P(k) is true.
That is, suppose

k−1∑
i=1

i(i + 1) = k(k − 1)(k + 1)

3
← P(k)
inductive hypothesis

We must show that P(k + 1) is true. That is, we must show
that

(k+1)−1∑
i=1

i(i + 1) = (k + 1)((k + 1)− 1)((k + 1)+ 1)

3
,

or, equivalently,

k∑
i=1

i(i + 1) = (k + 1)k(k + 2)

3
. ← P(k + 1)

But the left-hand side of P(k + 1) is

k∑
i=1

i(i + 1)

=
k−1∑
i=1

i(i + 1)+ k(k + 1)
by writing the last
term separately

= k(k − 1)(k + 1)

3
+ k(k + 1)

by substitution from the
inductive hypothesis

= k(k − 1)(k + 1)

3
+ 3k(k + 1)

3
because

3
3 = 1

= k(k − 1)(k + 1)+ 3k(k + 1)

3
by adding the fractions

= k(k + 1)[(k − 1)+ 3]
3

by factoring out k(k + 1)

= k(k + 1)(k + 2)

3
, by algebra,

and this is the right-hand side of P(k + 1). Hence P(k + 1)
is true.

[Since both the basis step and the inductive step have been
proved, P(n) is true for all integers n ≥ 0.]

15. Hint: To prove the basis step, show that
∑1

i=1 i(i !) =
(1+ 1)! − 1. To prove the inductive step, suppose that∑k

i=1 i(i !) = (k + 1)! − 1 for some integer k ≥ 1 and show
that

∑k+1
i=1 i(i !) = (k + 2)! − 1. Note that [(k + 1)! − 1] +

(k + 1)[(k + 1)!] = (k + 1)![1+ (k + 1)] − 1.

18. Hints: sin2 x + cos2 x = 1, cos(2x) = cos2 x − sin2 x =
1− 2 sin2 x , sin(a + b) = sin a cos b + cos a sin b,
sin(2x)= 2 sin x cos x, cos(a + b)= cos a cos b −
sin a sin b.

20. 4+ 8+ 12+ 16+ · · · + 200 = 4(1+ 2+ 3+ · · · + 50)

= 4
(
50 ·51

2

)
= 5100

22. 3+ 4+ 5+ 6+ · · · + 1000 = (1+ 2+ 3+ 4+ · · · +
1000)− (1+ 2) =

(
1000 · 1001

2

)
−3 = 500,497

24.
(k−1)((k−1)+1)

2 = k(k−1)
2
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5.3 Solutions and Hints to Selected Exercises A-35

25. a.
226 − 1

2− 1
= 226 − 1 = 67,108,863

b. 2+ 22 + 23 + · · · + 226

= 2(1+ 2+ 22 + · · · + 225)

= 2 ·(67,108,863) by part (a)

= 134,217,726

28.

(
1

2

)n+1
− 1

1

2
− 1

=
1

2n+1
− 1

−1

2

=
(

1

2n+1
− 1

)
(−2)

= − 2

2n+1
+ 2 = 2− 1

2n

30. Hint: c + (c + d)+ (c + 2d)+ · · · + (c + nd)

= (n + 1) c + d · n(n+1)2 .

33. In the inductive step, both the inductive hypothesis and
what is to be shown are wrong. The inductive hypothesis
should be

Suppose that for some integer k ≥ 1,

12 + 22 + · · · + k2 = k(k + 1)(2k + 1)

6
.

And what is to be shown should be

12 + 22 + · · · + (k + 1)2

= (k + 1)((k + 1)+ 1)(2(k + 1)+ 1)

6
.

34. Hint: See the Caution note for Example 5.1.8.

35. Hint: See the subsection Proving an Equality on page 254.

37. Hint: Form the sum n2 + (n + 1)2 + (n + 2)2 + · · · +
(n + (p − 1))2, and show that it equals

pn2 + 2n(1+ 2+ 3+ · · · + (p − 1))

+ (1+ 4+ 9+ 16+ · · · + (p − 1)2).

Section 5.3
1. General formula:

∏n
i=2

(
1− 1

i

) = 1
n for all integers n ≥ 2.

Proof (by mathematical induction): Let the property P(n)
be the equation

n∏
i=2

(
1− 1

i

)
= 1

n
. ← P(n)

Show that P(2) is true:

The left-hand side of P(2) is
∏2

i=2
(
1− 1

i

)
= 1− 1

2 =
1
2 ,

which equals the right-hand side.

Show that for all integers k ≥ 2, if P(k) is true then
P(k+ 1) is also true:

Suppose that k is any integer with k ≥ 2 such that

k∏
i=2

(
1− 1

i

)
= 1

k .
← P(k)
Inductive hypothesis

We must show that
k+1∏
i=2

(
1− 1

i

)
= 1

k+1 . ← P(k + 1)

But by the laws of algebra and substitution from the induc-
tive hypothesis, the left-hand side of P(k + 1) is

k+1∏
i=2

(
1− 1

i

)

=
k∏

i=2

(
1− 1

i

)(
1− 1

k + 1

)

=
(
1

k

)(
1− 1

k + 1

)
=

(
1

k

)(
(k + 1)− 1

k + 1

)

= 1

k + 1
which is the right-hand side of P(k + 1)

[as was to be shown].

3. General formula: 1
1 ·3 + 1

3 ·5 + · · · + 1
(2n−1)(2n+1) =

n
2n+1 for all integers n ≥ 1.

Proof (by mathematical induction): Let the property P(n)
be the equation

1
1 ·3 + 1

3 ·5 + · · · + 1
(2n−1)(2n+1) =

n
2n+1 .

Show that P(1) is true:

The left-hand side of P(1) equals 1
1 ·3 , and the right-hand

side equals 1
2 ·1+1 . But both of these equal 1

3 , so P(1) is
true.

Show that for any integer k ≥ 1, if P(k) is true then
P(k+ 1) is true:

Suppose that k is any integer with k ≥ 1, and

1

1 ·3 +
1

3 ·5 + · · · +
1

(2k − 1)(2k + 1)
= k

2k + 1
↑ P(k) inductive hypothesis

We must show that

1

1 ·3 +
1

3 ·5 + · · · +
1

(2(k + 1)− 1)(2(k + 1)+ 1)

= k + 1

2(k + 1)+ 1
.

or, equivalently,

1

1 ·3 +
1

3 ·5 + · · · +
1

(2k + 1)(2k + 3)
= k + 1

2k + 3
.

↑ P(k + 1)
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But the left-hand side of P(k + 1) is

1

1 ·3 +
1

3 ·5 + · · · +
1

(2k + 1)(2k + 3)

= 1

1 ·3 +
1

3 ·5 + · · · +
1

(2k − 1)(2k + 1)

+ 1

(2k + 1)(2k + 3)

= k

2k + 1
+ 1

(2k + 1)(2k + 3)
by inductive
hypothesis

= k(2k + 3)

(2k + 1)(2k + 3)
+ 1

(2k + 1)(2k + 3)

= 2k2 + 3k + 1

(2k + 1)(2k + 3)

= (2k + 1)(k + 1)

(2k + 1)(2k + 3)

= k + 1

2k + 3
by algebra,

and this is the right-hand side of P(k + 1) [as was to be
shown].

4. Hint 1: The general formula is

1− 4+ 9− 16+ · · · + (−1)n−1n2

= (−1)n−1(1+ 2+ 3+ · · · + n) in expanded form

Or:
n∑

i=1
(−1)i−1i2 = (−1)n−1

(
n∑

i=1
i

)
in summation
notation.

Hint 2: In the proof, use the fact that

1+ 2+ 3+ · · · + n =
n∑

i=1
i = n(n + 1)

2
.

6. a. P(0) is “50 − 1 is divisible by 4.” P(0) is true because
50 − 1 = 0, which is divisible by 4.

b. P(k) is “5k − 1 is divisible by 4.”
c. P(k + 1) is “5k+1 − 1 is divisible by 4.”
d. Must show: If for some integer k ≥ 0, 5k − 1 is divisible

by 4, then 5k+1 − 1 is divisible by 4.

8. Proof (by mathematical induction): For the given state-
ment, the property is the sentence “5n − 1 is divisible by 4.”

Show that P(0) is true:

P(0) is the sentence “50 − 1 is divisible by 4.” But
50 − 1 = 1− 1 = 0, and 0 is divisible by 4 because 0 =
4 ·0. Thus P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then
P(k+ 1) is true:

Let k be any integer with k ≥ 0, and suppose P(k) is true.
That is, suppose 5k − 1 is divisible by 4. [This is the induc-
tive hypothesis.] We must show that P(k + 1) is true. That
is, we must show that 5k+1 − 1 is divisible by 4. Now

5k+1 − 1 = 5k ·5− 1

= 5k · (4+ 1)− 1 = 5k ·4+ (5k − 1). (*)

By the inductive hypothesis 5k − 1 is divisible by 4, and so
5k − 1 = 4r for some integer r . By substitution into equa-
tion (∗),

5k+1 − 1 = 5k ·4+ 4r = 4(5k + r).

But 5k + r is an integer because k and r are integers. Hence,
by definition of divisibility, 5k+1 − 1 is divisible by 4 [as
was to be shown].

An alternative proof of the inductive step goes as follows:
Suppose that for some integer k ≥ 0, 5k − 1 is divisible
by 4. Then 5k − 1 = 4r for some integer r , and hence
5k = 4r + 1.
It follows that 5k+1 = 5k ·5 = (4r + 1) ·5 = 20r + 5. Sub-
tracting 1 from both sides gives that 5k+1 − 1 = 20r + 4 =
4(5r + 1). But 5r + 1 is an integer, and so, by definition of
divisibility, 5k+1 − 1 is divisible by 4.

11. Proof (by mathematical induction): For the given state-
ment, the property P(n) is the sentence “32n − 1 is divisible
by 8.”

Show that P(0) is true:

P(0) is the sentence “32 · 0 − 1 is divisible by 8.” But
32 · 0 − 1 = 1− 1 = 0, and 0 is divisible by 8 because
0 = 8 ·0. Thus P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then
P(k+ 1) is true:

Let k be any integer with k ≥ 0, and suppose P(k) is true.
That is, suppose 32k − 1 is divisible by 8. [This is the induc-
tive hypothesis.] We must show that P(k + 1) is true. That
is, we must show that 32(k+1) − 1 is divisible by 8, or equiv-
alently, 32k+2 − 1 is divisible by 8. Now

32k+2 − 1 = 32k ·32 − 1 = 32k ·9− 1

= 32k · (8+ 1)− 1 = 32k ·8+ (32k − 1) · (*)

By the inductive hypothesis 32k − 1 is divisible by 8, and
so 32k − 1 = 8r for some integer r . By substitution into
equation (∗),

32k+2 − 1 = 32k ·8+ 8r = 8(32k + r).

But 32k + r is an integer because k and r are integers.
Hence, by definition of divisibility, 32k+2 − 1 is divisible
by 8 [as was to be shown].

13. Hint: xk+1 − yk+1 = xk+1 − x · yk + x · yk − yk+1

= x · (xk − yk)+ yk ·(x − y)

14. Hint 1: (k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− k − 1

= (k3 − k)+ 3k2 + 3k

= (k3 − k)+ 3k(k + 1)

Hint 2: k(k + 1) is a product of two consecutive integers.
By Theorem 4.4.3, one of these must be even.
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16. Proof (by mathematical induction): For the given state-
ment, let the property P(n) be the inequality 2n < (n + 1)!.
Show that P(2) is true:

P(2) says that 22 < (2+ 1)!. The left-hand side is 22 = 4
and the right-hand side is 3! = 6. So, because 4 < 6, P(2)
is true.

Show that for all integers k ≥ 2, if P(k) is true then
P(k+ 1) is true:

Let k be any integer with k ≥ 2, and suppose P(k) is
true. That is, suppose 2k < (k + 1)!. [This is the induc-
tive hypothesis.] We must show that P(k + 1) is true. That
is, we must show that 2k+1 < ((k + 1)+ 1), or, equiva-
lently, 2k+1 < (k + 2)!. By the laws of exponents and the
inductive hypothesis,

2k+1 = 2 ·2k < 2(k + 1)!. (*)

Since k ≥ 2, then 2 < k + 2, and so

2(k + 1)! < (k + 2)(k + 1)! = (k + 2)!. (**)

Combining inequalities (∗) and (∗∗) gives

2k+1 < (k + 2)!
[as was to be shown].

19. Proof (by mathematical induction): For the given state-
ment, let the property P(n) be the inequality n2 < 2n .

Show that P(5) is true:

P(5) says that 52 < 25. But 52 = 25 and 25 = 32, and
25 < 32. Hence P(5) is true.

Show that for any integer k ≥ 5, if P(k) is true then
P(k+ 1) is true:

Let k be any integer with k ≥ 5, and suppose P(k) is true.
That is, suppose k2 < 2k . [This is the inductive hypothesis.]
We must show that P(k + 1) is true. That is, we must show
that (k + 1)2 < 2k+1. But

(k + 1)2 = k2 + 2k + 1 < 2k + 2k + 1

by inductive hypothesis
Also, by Proposition 5.3.2,

2k + 1 < 2k Prop. 5.3.2 applies since k ≥ 5 ≥ 3.

Putting these inequalities together gives

(k + 1)2 < 2k + 2k + 1 < 2k + 2k = 2k+1

[as was to be shown].

24. Proof (by mathematical induction): For the given state-
ment, let the property P(n) be the equation an = 3 ·7n−1.
Show that P(1) is true:

The left-hand side of P(1) is a1, which equals 3 by defi-
nition of the sequence. The right-hand side is 3 ·71−1 = 3
also. Thus P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then
P(k+ 1) is true:

Let k be any integer with k ≥ 1, and suppose P(k) is
true. That is, suppose ak = 3 ·7k−1. [This is the inductive

hypothesis.] We must show that P(k + 1) is true. That
is, we must show that ak+1 = 3 ·7(k+1)−1, or, equivalently,
ak+1 = 3 ·7k . But the left-hand side of P(k + 1) is

ak+1 = 7ak
by definition of the sequence
a1, a2, a3, . . .

= 7(3 ·7k−1) by inductive hypothesis

= 3 ·7k by the laws of exponents,

and this is the right-hand side of P(k + 1) [as was to be
shown].

30. The inductive step fails for going from n = 1 to n = 2,
because when k = 1,

A = {a1, a2} and B = {a1},
and no set C can be defined to have the properties claimed
for the C in the proof. The reason is that C = {a1} = B,
and so an element of A, namely a2, is not in either B or C .

Since the inductive step fails for going from n = 1 to
n = 2, the truth of the following statement is never proved:
“All the numbers in a set of two numbers are equal to each
other.” This breaks the sequence of inductive steps, and so
none of the statements for n > 2 is proved true either.

Here is an explanation for what happens in terms of
the domino analogy. The first domino is tipped backward
(the basis step is proved). Also, if any domino from the
second onward tips backward, then it tips the one behind
it backward (the inductive step works for n ≥ 2). However,
when the first domino is tipped backward, it does not tip the
second one backward. So only the first domino falls down;
the rest remain standing.

31. Hint: Is the basis step true?

32. Hint: Consider the problem of trying to cover a 3× 3
checkerboard with trominoes. Place a checkmark in certain
squares as shown in the following figure.

� �

� �

Observe that no two squares containing checkmarks can be
covered by the same tromino. Since there are four check-
marks, four tromiones would be needed to cover these
squares. But, since each tromino covers three squares, four
trominoes would cover twelve squares, not the nine squares
in this checkerboard. It follows that such a covering is
impossible.

34. a. Hint: For the inductive step, note that a 3× (2(k + 1))
checkerboard can be split into a 3× 2k checkerboard and
a 3× 2 checkerboard.

35. b. Hint: Consider a 3× 5 checkerboard, and refer to the
hint for exercise 32. Figure out a way to place six
checkmarks in squares so that no two of the squares that
contain checkmarks can be covered by the same tromino.

37. Hint: Use proof by contradiction. If the statement is false,
then there exists some ordering of the integers from 1
to 30, say x1, x2, . . . , x30, such that x1 + x2 + x3 < 45,
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x2 + x3 + x4 < 45, . . . , and x30 + x1 + x2 < 45. Evalu-
ate the sum of all these inequalities using the fact that∑30

i=1 xi =
∑30

i=1 i and Theorem 4.2.2.

38. Hint:Given k + 1 a’s and k + 1 b’s arrayed around the out-
side of the circle, there has to be at least one location where
an a is followed by a b as one travels in the clockwise direc-
tion. In the inductive step, temporarily remove such an a
and the b that follows it, and apply the inductive hypothesis.

Section 5.4
1. Proof (by strong mathematical induction): Let the property

P(n) be the sentence “an is odd.”

Show that P(1) and P(2) are true:

Observe that a1 = 1 and a2 = 3 and both 1 and 3 are odd.
Thus P(1) and P(2) are true.

Show that for any integer k ≥ 2, if P(i) is true for all inte-
gers i with 1 ≤ i ≤ k, then P(k+ 1) is true:

Let k ≥ 2 be any integer, and suppose ai is odd for all
integers i with 1 ≤ i ≤ k. [This is the inductive hypothe-
sis.] We must show that ak+1 is odd. We know that ak+1 =
ak−1 + 2ak by definition of a1, a2, a3, . . . . Moreover, k − 1
is less than k + 1 and is greater than or equal to 1 (because
k ≥ 2). Thus, by inductive hypothesis, ak−1 is odd. Also,
every term of the sequence is an integer (being a sum of
products of integers), and so 2ak is even by definition of
even. Hence ak+1 is the sum of an odd integer and an even
integer and hence is odd (by exercise 19, in Section 4.1).
[This is what was to be shown.]

4. Proof (by strong mathematical induction): Let the property
P(n) be the inequality dn ≤ 1.

Show that P(1) and P(2) are true:

Observe that d1 = 9
10 and d2 = 10

11 and both 9
10 ≤ 1 and

10
11 ≤ 1. Thus P(1) and P(2) are true.

Show that for any integer k ≥ 2, if P(i) is true for all inte-
gers i with 1 ≤ i ≤ k, then P(k+ 1) is true:

Let k ≥ 2 be any integer, and suppose di ≤ 1 for all
integers i with 1 ≤ i ≤ k. [This is the inductive hypoth-
esis.] We must show that dk+1 ≤ 1. But, by defini-
tion of d1, d2, d3, . . . , dk+1 = dk ·dk−1. Now dk ≤ 1 and
dk−1 ≤ 1 by inductive hypothesis [since 1 ≤ k < k + 1 and
1 ≤ k − 1 < k + 1 because k ≥ 2.]. Consequently, dk+1 =
dk ·dk−1 ≤ 1 because if two positive numbers are each less
than or equal to 1, then their product is less than or equal to
1. [If 0 < a ≤ 1 and 0 < b ≤ 1, then multiplying a ≤ 1 by b
gives ab ≤ b, and since b ≤ 1, then by transitivity of order,
ab ≤ 1.] This is what was to be shown. [Since we have
proved both the basis step and the inductive step, we conclude
that dn ≤ 1 for all integers n ≥ 1.]

5. Proof (by strong mathematical induction): Let the property
P(n) be the equation en = 5 ·3n + 7 ·2n .
Show that P(0) and P(1) are true.

We must show that e0 = 5 ·30 + 7 ·20 and e1 = 5 ·31 +
7 ·21. The left-hand side of the first equation is 12 (by

definition of e0, e1, e2, . . .), and its right-hand side is 5 ·1+
7 ·1 = 12 also. The left-hand side of the second equation is
29 (by definition of e0, e1, e2, . . .), and its right-hand side is
5 ·3+ 7 ·2 = 29 also. Thus P(0) and P(1) are true.

Show that for any integer k ≥ 1, if P(i) is true for all inte-
gers i with 0 ≤ i ≤ k, then P(k+ 1) is true:

Let k ≥ 1 be an integer, and suppose ei = 5 ·3i + 7 ·2i for
all integers i with 0 ≤ i ≤ k. [Inductive hypothesis]Wemust
show that ek+1 = 5 ·3k+1 + 7 ·2k+1.
But

ek+1 = 5ek − 6ek−1 by definition of e0, e1, e2, . . .

= 5(5 ·3k + 7 ·2k)− 6(5 ·3k−1 + 7 ·2k−1)
by inductive hypothesis

= 25 ·3k + 35 ·2k − 30 ·3k−1 − 42 ·2k−1
= 25 ·3k + 35 ·2k − 10 ·3 ·3k−1 − 21 ·2 ·2k−1
= 25 ·3k + 35 ·2k − 10 ·3k − 21 ·2k
= (25− 10) ·3k + (35− 21) ·2k
= 15 ·3k + 14 ·2k
= 5 ·3 ·3k + 7 ·2 ·2k
= 5 ·3k+1 + 7 ·2k+1 by algebra.

[This is what was to be shown.]

10. Hint: In the basis step, show that P(14), P(15), and P(16)
are all true. For the inductive step, note that k + 1 =
[(k + 1)− 3] + 3, and if k ≥ 16, then (k + 1)− 3 ≥ 14.

11. Proof (by strong mathematical induction): Let the property
P(n) be the sentence

“A jigsaw puzzle consisting of n pieces
takes n − 1 steps to put together.”

Show that P(1) is true:
A jigsaw puzzle consisting of just one piece does not take
any steps to put together. Hence it is correct to say that it
takes zero steps to put together.
Show that for any integer k ≥ 1, if P(i) is true for all inte-
gers i with 1 ≤ i ≤ k then P(k+ 1) is true:

Let k ≥ 1 be an integer and suppose that for all integers
i with 1 ≤ i ≤ k, a jigsaw puzzle consisting of i pieces
takes i − 1 steps to put together. [This is the inductive
hypothesis.] We must show that a jigsaw puzzle consist-
ing of k + 1 pieces takes k steps to put together. Con-
sider assembling a jigsaw puzzle consisting of k + 1 pieces.
The last step involves fitting together two blocks. Suppose
one of the blocks consists of r pieces and the other con-
sists of s pieces. Then r + s = k + 1, and 1 ≤ r ≤ k and
1 ≤ s ≤ k. Thus by inductive hypothesis, the numbers of
steps required to assemble the blocks are r − 1 and s − 1,
respectively. Then the total number of steps required to
assemble the puzzle is (r − 1)+ (s − 1)+ 1 = (r + s)−
1 = (k + 1)− 1 = k [as was to be shown].

12. Hint: For any collection of cans, at least one must contain
enough gasoline to enable the car to get to the next can.
(Why?) Imagine taking all the gasoline from that can and
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pouring it into the can that immediately precedes it in the
direction of travel around the track.

13. Sketch of proof: Given any integer k > 1, either k is prime
or k is a product of two smaller positive integers, each
greater than 1. In the former case, the property is true. In
the latter case, the inductive hypothesis ensures that both
factors of k are products of primes and hence that k is also
a product of primes.

14. Proof (by strong mathematical induction): Let the property
P(n) be the sentence “Any product of n odd integers is
odd.”

Show that P(2) is true:

We must show that any product of two odd integers is odd.
But this was established in Chapter 4 (exercise 43 of Sec-
tion 4.1).

Show that for any integer k ≥ 2, if P(i) is true for all inte-
gers i with 2 ≤ i ≤ k then P(k+ 1) is true:

Let k be any integer with k ≥ 2, and suppose that for all
integers i with 2 ≤ i ≤ k, any product of i odd integers
is odd. [Inductive hypothesis] Consider any product M of
k + 1 odd integers. Some multiplication is the final one that
is used to obtain M . Thus there are integers A and B such
that M = AB, and each of A and B is a product of between
1 and k odd integers. (For instance, if M = ((a1a2)a3)a4,
then A = (a1a2)a3 and B = a4.) By inductive hypothesis,
each of A and B is odd, and, as in the basis step, we
know that any product of two odd integers is odd. Hence
M = AB is odd.

16. Hint: Let the property P(n) be the sentence “If n is even,
then any sum of n odd integers is even, and if n is odd, then
any sum of n odd integers is odd.” For the inductive step,
consider any sum S of k + 1 odd integers. Some addition is
the final one that is used to obtain S. Thus there are integers
A and B such that S = A + B, and A is a sum of r odd
integers and B is a sum of (k + 1)− r odd integers. Con-
sider the two cases where k + 1 is even and k + 1 is odd,
and for each case consider the two subcases where r is even
and where r is odd.

17. 41 = 4, 42 = 16, 43 = 64, 44 = 256, 45 = 1024,
46 = 4096, 47 = 16384, and 48 = 65536.

Conjecture: The units digit of 4n equals 4 if n is odd and
equals 6 if n is even.

Proof by strong mathematical induction: Let the property
P(n) be the sentence “The units digit of 4n equals 4 if n
is odd and equals 6 if n is even.”

Show that P(1) and P(2) are true:

When n = 1, 4n = 41 = 4, and the units digit is 4. When
n = 2, then 4n = 42 = 16, and the units digits is 6. Thus
P(1) and P(2) are true.

Show that for any integer k ≥ 2, if the property is true for
all integers i with 1 ≤ i ≤ k then it is true for k+1:

Let k by any integer with k ≥ 2, and suppose that for all
integers i with 0 ≤ i ≤ k, the units digit of 4i equals 4 if i
is odd and equals 6 if i is even. [Inductive hypothesis] We

must show that the units digit of 4k+1 equals 4 if k + 1 is
odd and equals 6 if k + 1 is even.

Case 1 (k+ 1 is odd): In this case, k is even, and so,
by inductive hypothesis, the units digits of 4k is 6. Thus
4k = 10q + 6 for some nonnegative integer q. It follows
that 4k+1 = 4k ·4 = (10q + 6) ·4 = 40q + 24 = 10(4q +
2)+ 4. Thus the units digit of 4k+1 is 4 [as was to be shown].
Case 2 (k+ 1 is even): In this case, k is odd, and so,
by inductive hypothesis, the units digit of 4k is 4. Thus
4k = 10q + 4 for some nonnegative integer q. It follows
that 4k+1 = 4k ·4 = (10q + 4) ·4 = 40q + 16 = 10(4q +
1)+ 6. Thus the units digit of 4k+1 is 6 [as was to be
shown].

20. Proof: Let n be any integer greater than 1. Consider the
set S of all positive integers other than 1 that divide n.
Since n | n and n > 1, there is at least one element in S.
Hence, by the well-ordering principle for the integers, S
has a smallest element; call it p. We claim that p is prime.
For suppose p is not prime. Then there are integers a
and b with 1 < a < p, 1 < b < p, and p = ab. By defi-
nition of divides, a | p. Also p | n because p is in S and
every element in S divides n. Therefore, a | p and p | n,
and so, by transitivity of divisibility, a | n. Consequently,
a ∈ S. But this contradicts the fact that a < p, and p is
the smallest element of S. [This contradiction shows that the
supposition that p is not prime is false.] Hence p is prime,
and we have shown the existence of a prime number that
divides n.

22. a. Proof: Suppose r is any rational number. [We need to
show that there is an integer n such that r < n.]

Case 1 (r ≤ 0): In this case, take n = 1. Then r < n.

Case 2 (r > 0): In this case, r = a
b for some positive

integers a and b (by definition of rational and because r
is positive). Note that r = a

b < n if, and only if, a < nb.
Let n = 2a. Multiply both sides of the inequality 1 < 2
by a to obtain a < 2a, and multiply both sides of the
inequality 1 < b by 2a to obtain 2a < 2ab = nb. Thus
a < 2a < nb, and so, by transitivity of order, a < nb.
Dividing both sides by b gives that a

b < n, or, equiva-
lently, that r < n.
Hence, in both cases, r < n [as was to be shown].

23. Hint: If r is any rational number, let S be the set of all inte-
gers n such that r < n. Use the results of exercises 22(a),
22(c), and the well-ordering principle for the integers to
show that S has a least element, say v, and then show that
v − 1 ≤ r < v.

24. Proof: Let S be the set of all integers r such that n = 2i ·r
for some integer i . Then n ∈ S because n = 20 ·n, and so
S �= ∅. Also, since n ≥ 1, each r in S is positive, and so, by
the well-ordering principle, S has a least element m. This
means that n = 2k ·m (*) for some nonnegative integer k
and m ≤ r for every r in S. We claim that m is odd. The
reason is that if m were even, then m = 2p for some inte-
ger p. Substituting into equation (*) gives

n = 2k ·m = 2k ·2p = (2k ·2)p = 2k+1 · p.
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It follows that p ∈ S and p < m, which contradicts the fact
thatm is the least element of S. Hencem is odd, and so n =
m ·2k for some odd integer m and nonnegative integer k.

29. Hint: In the inductive step, divide into cases depending
upon whether k can be written as k = 3x or k = 3x + 1 or
k = 3x + 2 for some integer x .

30. Hint: In the inductive step, let an integer k ≥ 0 be given
and suppose that there exist integers q ′ and r ′ such that
k = dq ′ + r ′ and 0 ≤ r ′ < d. You must show that there
exist integers q and r such that

k + 1 = dq + r and 0 ≤ r < d.

To do this, consider the two cases r ′ < d − 1 and r ′ =
d − 1.

31. Hint: Given a predicate P(n) that satisfies conditions (1)
and (2) of the principle of mathematical induction, let S be
the set of all integers greater than or equal to a for which
P(n) is false. Suppose that S has one or more elements, and
use the well-ordering principle to derive a contradiction.

32. Hint: Suppose S is a set containing one or more integers,
all of which are greater than or equal to some integer a,
and suppose that S does not have a least element. Let the
property P(n) be the sentence “i /∈ S for any integer i with
a ≤ i ≤ n.” Use mathematical induction to prove that P(n)
is true for all integers n ≥ a, and explain how this result
contradicts the supposition that S does not have a least
element.

Section 5.5
1. Proof: Suppose the predicate m + n = 100 is true before

entry to the loop. Then

mold + nold = 100.

After execution of the loop,

mnew = mold + 1 and nnew = nold − 1,

so

mnew + nnew = (mold + 1)+ (nold − 1)

= mold + nold = 100.

3. Proof: Suppose the predicate m3 > n2 is true before entry
to the loop. Then

m3
old > n2

old.

After execution of the loop,

mnew = 3 ·mold and nnew = 5 ·nold,

so

m3
new = (3 ·mold)

3 = 27 ·m3
old > 27 ·n2

old.

But since nnew = 5 ·nold, then nold = 1
5nnew. Hence

m3
new > 27 ·n2

old = 27 ·
(
1

5
nnew

)2

= 27 · 1
25

n2
new

= 27

25
·n2

new > n2
new.

6. Proof: [The wording of this proof is almost the same as that of
Example 5.5.2.]

I. Basis Property: [I (0) is true before the first iteration of
the loop.]
I (0) is “exp = x0 and i = 0.” According to the pre-
condition, before the first iteration of the loop exp = 1
and i = 0. Since x0 = 1, I (0) is evidently true.

II. Inductive Property: [If G ∧ I (k) is true before a loop
iteration (where k ≥ 0), then I (k + 1) is true after the
loop iteration.]

Suppose k is a nonnegative integer such that G ∧ I (k)
is true before an iteration of the loop. Then as execu-
tion reaches the top of the loop, i �= m, exp = xk , and
i = k. Since i �= m, the guard is passed and statement
1 is executed. Now before execution of statement 1,

expold = xk,

so execution of statement 1 has the following effect:

expnew = expold · x = xk · x = xk+1.

Similarly, before statement 2 is executed,

iold = k,

so after execution of statement 2,

inew = iold + 1 = k + 1.

Hence after the loop iteration, the two statements
exp = xk+1 and i = k + 1 are true, and so I (k + 1) is
true.

III. Eventual Falsity of Guard: [After a finite number of
iterations of the loop, G becomes false.]

The guard G is the condition i �= m, and m is a non-
negative integer. By I and II, it is known that

for all integers n ≥ 0, if the loop is iterated n
times, then exp = xn and i = n.

So after m iterations of the loop, i = m. Thus G
becomes false after m iterations of the loop.

IV. Correctness of the Post-Condition: [If N is the least
number of iterations after which G is false and I (N ) is
true, then the value of the algorithm variables will be as
specified in the post-condition of the loop.]

According to the post-condition, the value of exp after
execution of the loop should be xm . But when G is
false, i = m. And when I (N ) is true, i = N and exp =
x N . Since both conditions (G false and I (N ) true) are
satisfied, m = i = N and exp = xm , as required.

8. Proof:
I. Basis Property: I (0) is “i = 1 and sum = A[1].”

According to the pre-condition, this statement is
true.

II. Inductive Property: Suppose k is a nonnegative inte-
ger such that G ∧ I (k) is true before an iteration of the
loop. Then as execution reaches the top of the loop,
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5.6 Solutions and Hints to Selected Exercises A-41

i �= m, i = k + 1, and sum = A[1] + A[2] + · · · +
A[k + 1]. Since i �= m, the guard is passed and
statement 1 is executed. Now before execution of state-
ment, 1, iold = k + 1. So after execution of statement
1, inew = iold + 1 = (k + 1)+ 1 = k + 2. Also before
statement 2 is executed, sumold = A[1] + A[2] +
· · · + A[k + 1]. Execution of statement 2 adds A[k +
2] to this sum, and so after statement 2 is
executed, sumnew = A[1] + A[2] + · · · + A[k + 1] +
A[k + 2]. Thus after the loop iteration, I (k + 1) is
true.

III. Eventual Falsity of Guard: The guard G is the con-
dition i �= m. By I and II, it is known that for all
integers n ≥ 1, after n iterations of the loop, I (n)
is true. Hence, after m − 1 iterations of the loop,
I (m) is true, which implies that i = m and G is
false.

IV. Correctness of the Post-Condition: Suppose that N
is the least number of iterations after which G is
false and I (N ) is true. Then (since G is false) i =
m and (since I (N ) is true) i = N + 1 and sum =
A[1] + A[2] + · · · + A[N + 1]. Putting these together
gives m = N + 1, and so sum = A[1] + A[2] + · · · +
A[m], which is the post-condition.

10. Hint: Assume G ∧ I (k) is true for a nonnegative integer k.
Then aold �= 0 and bold �= 0 and
(1) aold and bold are nonnegative integers with

gcd(aold, bold) = gcd(A, B).

(2) At most one of aold and bold equals 0.
(3) 0 ≤ aold + bold ≤ A + B − k.

It must be shown that I (k + 1) is true after the loop itera-
tion. That means it is necessary to show that
(1) anew and bnew are nonnegative integers with

gcd(anew, bnew) = gcd(A, B).
(2) At most one of anew and bnew equals 0.
(3) 0 ≤ anew + bnew ≤ A + B − (k + 1).

To show (3), observe that

anew + bnew =
{
aold − bold + bold if aold ≥ bold
bold − aold + aold if aold < bold

[The reason for this is that when aold ≥ bold, then anew =
aold − bold and bnew = b old, and when aold < bold, then bnew =
b old − aold and anew = aold.]
Thus

anew + bnew =
{
aold if aold ≥ bold
bold if aold < bold

But since aold �= 0 and bold �= 0 and a old and bold are
nonnegative integers, then aold ≥ 1 and bold ≥ 1. Hence
aold − 1 ≥ 0 and b old − 1 ≥ 0 and aold ≤ aold + bold − 1
and bold ≤ bold + aold − 1. It follows that anew + bnew ≤
aold + bold − 1 ≤ (A + B − k)− 1 by the truth of (3) going
into the kth iteration. Hence anew + bnew < A + B − (k +
1) by algebraic simplification.

Section 5.6
1. a1 = 1, a2 = 2a1 + 2 = 2 ·1+ 2 = 4,

a3 = 2a2 + 3 = 2 ·4+ 3 = 11,

a4 = 2a3 + 4 = 2 ·11+ 4 = 26

3. c0 = 1, c1 = 1 ·(c0)2 = 1 · (1)2 = 1,

c2 = 2(c1)
2 = 2 ·(1)2 = 2,

c3 = 3(c2)
2 = 3 ·(2)2 = 12

5. s0 = 1, s1 = 1, s2 = s1 + 2s0 = 1+ 2 ·1 = 3,

s3 = s2 + 2s1 = 3+ 2 ·1 = 5

7. u1 = 1, u2 = 1, u3 = 3u2 − u1 = 3 ·1− 1 = 2,

u4 = 4u3 − u2 = 4 ·2− 1 = 7

9. By definition of a0, a1, a2, . . ., for each integer k ≥ 1,

(*) ak = 3k + 1 and

(**) ak−1 = 3(k − 1)+ 1.

Then ak−1 + 3

= 3(k − 1)+ 1+ 3

= 3k − 3+ 1+ 3

= 3k + 1

= ak

11. By definition of c0, c1, c2, . . ., cn = 2n − 1, for each integer
n ≥ 0. Substitute k and k − 1 in place of n to get

(*) ck = 2k − 1 and

(**) ck−1 = 2k−1 − 1

for all integers k ≥ 1. Then

2ck−1 + 1 = 2(2k−1 − 1)+ 1 by substitution from (**)

= 2k − 2+ 1

= 2k − 1 by basic algebra

= ck by substitution from (*)

13. By definition of t0, t1, t2, . . ., tn = 2+ n, for each integer
n ≥ 0. Substitute k, k − 1, and k − 2 in place of n to get

(*) tk = 2+ k,

(**) tk−1 = 2+ (k − 1), and

(***) tk−2 = 2+ (k − 2)

for each integer k ≥ 2. Then

2tk−1 − tk−2
= 2(2+ (k − 1)− (2+ (k − 2)) by substitution from

(**) and (***)

= 2(k + 1)− k

= 2+ k by basic algebra

= tk by substitution
from (*).
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15. Hint: Mathematical induction is not needed for the proof.
Start with the right-hand side of the equation and use
algebra to transform it into the left-hand side of the
equation.

17. a. a1 = 2

a2 = 2 (moves to move the top disk from pole A to
pole C)

+ 1 (move to move the bottom disk from
pole A to pole B)

+ 2 (moves to move the top disk from
pole C to pole A)

+ 1 (move to move the bottom disk
from pole B to pole C)

+ 2 (moves to move top disk
from pole A to pole C)

= 8

a3 = 8+ 1+ 8+ 1+ 8 = 26

c. For all integers k ≥ 2.

ak = ak−1 (moves to move the top k − 1 disks from
pole A to pole C)

+ 1 (move to move the bottom disk from
pole A to pole B)

+ ak−1 (moves to move the top disk
from pole C to pole A)

+ 1 (move to move the bottom
disks from pole B to
pole C)

+ ak−1 (moves to move
the top disks from
pole A to pole C)

= 3ak−1 + 2.

18. b. b4 = 40
e. Hint:One solution is to use mathematical induction and

apply the formula from part (c). Another solution is to
prove by mathematical induction that when a most effi-
cient transfer of n disks from one end pole to the other
end pole is performed, at some point all the disks are on
the middle pole.

19. a. s1 = 1, s2 = 1+ 1+ 1 = 3,
s3 = s1 + (1+ 1+ 1)+ s1 = 5

b. s4 = s2 + (1+ 1+ 1)+ s2 = 9

20. b. Call the poles A, B, and C . Compute c2 by using the
following sequence of steps to transfer two disks from
A to B:
1 (move to move the top disk for A to B)
+1 (move to move the top disk from B to C)
+1 (move to move the bottom disk from A to B)
+1 (move to move the top disk from C to A)
+1 (move to move the top disk from A to B)

This sequence of steps is the least possible, and so
c2 = 5.

A tower of 3 disks can be transferred from A to B by
using the following sequence of steps:
1 (move to move the top disk from A to B)
+1 (move to move the top disk from B to C)
+1 (move to move the middle disk from A to B)
+1 (move to move the top disk from C to A)
+1 (move to move the middle disk from B to C)
+1 (move to move the top disk from A to B)
+1 (move to move the top disk from B to C).

After these 7 steps have been completed, the bottom
disk can be moved from A to B. At that point the top
two disks are on C , and a modified version of the ini-
tial seven steps can be used to move them from C to B.
Thus the total number of steps is 7+ 1+ 7 = 15, and
15 < 21 = 4c2 + 1.

21. b. t3 = 14

22. b. r0 = 1, r1 = 1, r2 = 1+ 4 ·1 = 5, r3 = 5+ 4 ·1 = 9,

r4 = 9+ 4 ·5 = 29, r5 = 29+ 4 ·9 = 65,

r6 = 65+ 4 ·29 = 181

23. c. There are 904 rabbit pairs, or 1,808 rabbits, after 12
months.

25. a. Each term of the Fibonacci sequence beyond the second
equals the sum of the previous two. For any integer
k ≥ 1, the two terms previous to Fk+1 are Fk and Fk−1.
Hence, for all integers k ≥ 1, Fk+1 = Fk + Fk−1.

26. By repeated use of definition of the Fibonacci sequence, for
all integers k ≥ 4,

Fk = Fk−1 + Fk−2 = (Fk−2 + Fk−3)+ (Fk−3 + Fk−4)

= ((Fk−3 + Fk−4)+ Fk−3)+ (Fk−3 + Fk−4)

= 3Fk−3 + 2Fk−4.
27. For all integers k ≥ 1,

F2
k − F2

k−1
= (Fk − Fk−1)(Fk + Fk−1) by basic algebra (difference

of two squares)

= (Fk − Fk−1)Fk+1 by definition of the
Fibonacci sequence

= Fk Fk+1 − Fk−1Fk+1

32. Hint:Use mathematical induction. In the inductive step, use
Lemma 4.8.2 and the fact that Fk+2 = Fk+1 + Fk to deduce
that

gcd(Fk+2, Fk+1) = gcd(Fk+1, Fk).

34. Hint: Let L = lim
n→∞

Fn+1
Fn

and show that L = 1
L + 1.

Deduce that L = 1+√5
2 .

35. Hint: Use the result of exercise 30 to prove that the infi-

nite sequence
F0
F1

,
F2
F3

,
F4
F5

, . . . is strictly decreasing and that

the infinite sequence
F1
F2

,
F3
F4

,
F5
F6

, . . . is strictly increasing.

The first sequence is bounded below by 0, and the second
sequence is bounded above by 1. Deduce that the limits of
both sequences exist, and show that they are equal.
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37. a. Because the 4% annual interest is compounded quar-
terly, the quarterly interest rate is (4%)/4 = 1%. Then
Rk = Rk−1 + 0.01Rk−1 = 1.01Rk−1.

b. Because one year equals four quarters, the amount
on deposit at the end of one year is R4 = $5203.02
(rounded to the nearest cent).

c. The annual percentage rate (APR) for the account is
$5203.02−$5000.00

$5000.00 = 4.0604%.

39. When one is climbing a staircase consisting of n stairs, the
last step taken is either a single stair or two stairs together.
The number of ways to climb the staircase and have the
final step be a single stair is cn−1; the number of ways to
climb the staircase and have the final step be two stairs
is cn−2. Therefore, cn = cn−1 + cn−2. Note also that c1 = 1
and c2 = 2 [because either the two stairs can be climbed one
by one or they can be climbed as a unit].

41. Proof (by mathematical induction): Let the property,
P(n), be the equation

∑n
i=1 cai = c

∑n
i=1 ai , where

a1, a2, a3, . . . , an and c are any real numbers.

Show that P(1) is true:

Let a1 and c be any real numbers. By the recursive defi-
nition of sum,

∑1
i=1(cai ) = ca1 and

∑1
i=1 ai = a1. There-

fore,
∑1

i=1(cai ) = c
∑1

i=1 ai , and so P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k+ 1) is true:

Let k be any integer with k ≥ 1. Suppose that for any real
numbers a1, a2, a3, . . . , ak and c,

∑k
i=1(cai ) = c

∑k
i=1 ai .

[This is the inductive hypothesis]. [We must show that for any

real numbers a1, a2, a3, . . . ak+1 and c,
k+1∑
i=1

(cai ) = c
∑k+1

i=1 ai .]

Let a1, a2, a3, . . . , ak+1 and c be any real numbers.
Then

k+1∑
i=1

cai =
k∑

i=1
cai + cak+1

by the recursive
definition of �

= c
k∑

i=1
ai + cak+1

by inductive
hypothesis

= c

( k∑
i=1

ai + ak+1

)
by the distributive law
for the real numbers

= c
k+1∑
i=1

ai
by the recursive
definition of �.

44. Hint: Let the property be the inequality∣∣∣∣∣
n∑

i=1
ai

∣∣∣∣∣ ≤
n∑

i=1
|ai |.

To prove the inductive step, note that because
∣∣∑k+1

i=1 ai
∣∣ =∣∣∑k

i=1 ai + ak+1
∣∣, you can use the triangle inequality for

absolute value (Theorem 4.4.6) to deduce∣∣∑k
i=1 ai + ak+1

∣∣ ≤ ∣∣∑k
i=1 ai

∣∣+ |ak+1|.

Section 5.7
1. a. 1+ 2+ 3+ · · · + (k − 1)

= (k − 1)((k − 1)+ 1)

2
= (k − 1)k

2
b. 3+ 2+ 4+ 6+ 8+ · · · + 2n

= 3+ 2(1+ 2+ 3+ · · · + n)

= 3+ 2
n(n+ 1)

2
= 3+ n(n+ 1)

= n2 + n + 3

2. a. 1+ 2+ 22 + · · · + 2i−1 = 2(i−1)+1 − 1

2− 1
= 2i − 1

c. 2n + 2n− 2 ·3+ 2n− 3 ·3+ · · · + 22 ·3+ 2 ·3+ 3

= 2n + 3(2n− 2+ 2n− 3+ · · · + 22+ 2+ 1)

= 2n + 3(1+ 2+ 22+ · · · + 2n− 3+ 2n− 2)

= 2n + 3

(
2(n−2)+1 − 1

2− 1

)
= 2n + 3(2n−1 − 1)

= 2 ·2n−1 + 3 ·2n−1 − 3

= 5 ·2n−1 − 3
3. a0 = 1

a1 = 1 ·a0 = 1 ·1 = 1

a2 = 2a1 = 2 ·1
a3 = 3a2 = 3 ·2 ·1
a4 = 4a3 = 4 ·3 ·2 ·1

...

Guess:

an = n(n − 1) · · · 3 ·2 ·1 = n!
5. c1 = 1

c2 = 3c1 + 1 = 3 ·1+ 1 = 3+ 1

c3 = 3c2 + 1 = 3 · (3+ 1)+ 1 = 32 + 3+ 1

c4 = 3c3 + 1 = 3 · (32 + 3+ 1)+ 1

= 33 + 32 + 3+ 1
...

Guess:

cn = 3n−1 + 3n−2 + · · · + 33 + 32 + 3+ 1

= 3n − 1

3− 1
by Theorem 5.2.3 with r = 3

= 3n − 1

2
6. Hint:

dn = 2n + 2n−2 ·3+ 2n−3 ·3+ · · · + 22 ·3+ 2 ·3+ 3

= 5 ·2n−1 − 3 for all integers n ≥ 1
9. Hint: For any positive real numbers a and b,

a

b
a

b
+ 2
=

a

b
a

b
+ 2
· b
b
= a

a + 2b
.
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10. h0 = 1

h1 = 21 − h0 = 21 − 1

h2 = 22 − h1 = 22 − (21 − 1) = 22 − 21 + 1

h3 = 23 − h2 = 23 − (22 − 21 + 1)

= 23 − 22 + 21 − 1

h4 = 24 − h3 = 24 − (23 − 22 + 22 − 1)

= 24 − 23 + 22 − 21 + 1
...

Guess:

hn = 2n − 2n−1 + · · · + (−1)n ·1
= (−1)n[1− 2+ 22 − · · · + (−1)n ·2n]
= (−1)n[1+ (−2)
+ (−2)2 − · · · + (−2)n] by basic algebra

= (−1)n
[
(−2)n+1 − 1

(−2)− 1

]
by Theorem 5.2.3

= (−1)n+1 · [(−2)n+1 − 1]
(−1) ·(−3)

= 2n+1 − (−1)n+1
3

by basic algebra

12. s0 = 3

s1 = s0 + 2 ·1 = 3+ 2 ·1
s2 = s1 + 2 ·2 = [3+ 2 ·1] + 2 ·2
= 3+ 2 · (1+ 2)

s3 = s2 + 2 ·3 = [3+ 2 · (1+ 2)] + 2 ·3
= 3+ 2 · (1+ 2+ 3)

s4 = s3 + 2 ·4 = [3+ 2 · (1+ 2+ 3)] + 2 ·4
= 3+ 2 · (1+ 2+ 3+ 4)
...

Guess:

sn = 3+ 2 · (1+ 2+ 3+ · · · + (n − 1)+ n)

= 3+ 2 · n(n + 1)

2
by Theorem 5.2.2

= 3+ n(n + 1) by basic algebra

14. x1 = 1
x2 = 3x1 + 2 = 3+ 2

x3 = 3x2 + 3 = 3(3+ 2)+ 3 = 32 + 3 ·2+ 3

x4 = 3x3 + 4 = 3(32 + 3 ·2+ 3)+ 4

= 33 + 32 ·2+ 3 ·3+ 4

x5 = 3x4 + 5 = 3(33 + 32 ·2+ 3 ·3+ 4)+ 5

= 34 + 33 ·2+ 32 ·3+ 3 ·4+ 5

x6 = 3x5 + 6

= 3(34 + 33 ·2+ 32 ·3+ 4 ·3+ 5)+ 6

= 35 + 34 ·2+ 33 ·3+ 32 ·4+ 3 ·5+ 6
...

Guess:

xn = 3n−1 + 3n−2 ·2+ 3n−3 ·3+ · · · + 3(n − 1)+ n

= 3n−1 + 3n−2 + 3n−2︸ ︷︷ ︸+ 3n−3 + 3n−3 + 3n−3︸ ︷︷ ︸ +
2 times 3 times

+ 3+ 3+ · · · + 3︸ ︷︷ ︸+ 1+ 1+ · · · + 1︸ ︷︷ ︸
(n − 1) times n times

= (3n−1 + 3n−2 + · · · + 32 + 3+ 1)

+ (3n−2 + 3n−3 + · · · + 32 + 3+ 1)+ · · ·
+ (32 + 3+ 1)+ (3+ 1)+ 1

= 3n − 1

2
+ 3n−1 − 1

2
+ · · · + 33 − 1

2

+ 32 − 1

2
+ 3− 1

2

= 1
2 [(3n + 3n−1 + · · · + 32 + 3)− n]

= 1
2 [3(3n−1 + 3n−2 + · · · + 3+ 1)− n]

= 1
2

(
3

(
3n − 1

3− 1

)
− n

)
= 1

4 (3n+1 − 3− 2n)

18. Proof: Let d be any fixed constant, and let a0, a1, a2, . . .
be the sequence defined recursively by ak = ak−1 + d for
all integers k ≥ 1. The property P(n) is the equation an =
a0 + nd. We show by mathematical induction that P(n) is
true for all integers n ≥ 0.

Show that P(0) is true:

When n = 0, the left-hand side of the equation is a0, and
the right-hand side is a0 + 0 ·d = a0, which equals the left-
hand side. Thus P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true, then
P(k + 1) is true:

Suppose

ak = a0 + kd, for some integer k ≥ 0.

[This is the inductive hypothesis.]

We must show that ak+1 = a0 + (k + 1)d . But

ak+1 = ak + d by definition of a0, a1, a2, . . .

= [a0 + kd] + d by substitution from the
inductive hypothesis

= a0 + (k + 1)d by basic algebra

[as was to be shown].

19. Let Un = the number of units produced on day n. Then

Uk = Uk−1 + 2 for all integers k ≥ 1,

U0 = 170.

Hence U0,U1,U2, . . . is an arithmetic sequence with fixed
constant 2. It follows that when n = 30,
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5.7 Solutions and Hints to Selected Exercises A-45

Un = U0 + n ·2 = 170+ 2n = 170+ 2 ·30
= 230 units.

Thus the worker must produce 230 units on day 30.

24.
20∑
k=0

5k = 521 − 1

4
∼= 1.192× 1014 ∼=

119,200,000,000,000 ∼= 119 trillion people (This is about
20,000 times the current population of the earth!)

26. b. Hint: Before simplification,
An = 1000(1.0025)n + 200[(1.0025)n−1 +
(1.0025)n−1 + · · · + (1.0025)2 + 1.0025+ 1].

d. A240
∼= $67,481.15, A480

∼= $188,527.05
e. Hint: Use logarithms to solve the equation An =

10,000, where An is the expression found (after simpli-
fication) in part (b).

27. a. Hint: APR ∼= 19.6%
c. Hint: approximately two years

28. Proof: Let a0, a1, a2, . . . be the sequence defined recur-
sively by a0 = 1 and ak = kak−1 for all integers k ≥ 1. Let
the property P(n) be the equation an = n!. We show by
mathematical induction that P(n) is true for all integers
n ≥ 0.

Show that P(0) is true:

When n = 0, the right-hand side of the equation is 0! = 1,
and by definition of a0, a1, a2, . . . , the left-hand side of
the equation, a0, is also 1. Thus the property is true for
n = 0.

Show that for all integers k ≥ 0, if P(k) is true, then
P(k + 1) is true:

Suppose

ak = k! for some integer k ≥ 0.

[This is the inductive hypothesis.]

We must show that ak+1 = (k + 1)!. But
ak+1 = (k + 1) ·ak by definition of a0, a1, a2, . . .

= (k + 1) ·k! by substitution from the
inductive hypotheses

= (k + 1)! by definition of factorial.

[Hence if P(k) is true, then P(k + 1) is true.]

30. Proof: Let c1, c2, c3, . . . be the sequence defined recur-
sively by c1 = 1 and ck = 3ck−1 + 1 for all integers k ≥ 2.

Let the property P(n) be the equation cn = 3n−1
2 . We show

by mathematical induction that P(n) is true for all integers
n ≥ 1.

Show that P(1) is true:

When n = 1, the right-hand side of the equation is 31−1
2 =

3−1
2 = 1, and by definition of c1, c2, c3, . . . , the left-hand

side of the equation, c1, is also 1. Thus the property is true
for n = 1.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k + 1) is true:

Suppose that

ck = 3k − 1

2
for some integer k ≥ 1.

[This is the inductive hypothesis.]

We must show that ck+1 = 3k+1 − 1

2
. But

ck+1 = 3ck + 1 by definition of c1, c2, c3, . . .

= 3

(
3k − 1

2

)
+ 1 by substitution from the

inductive hypothesis

= 3k+1 − 3

2
+ 2

2

= 3k+1 − 1

2
by basic algebra.

35. Hint: 2k+1 − 2k+1 − (−1)k+1
3

= 3 ·2k+1
3

− 2k+1 − (−1)k+1
3

= 2 ·2k+1 + (−1)k+1
3

= 2k+2 − (−1)k+2
3

37. Hint: [3+ k(k + 1)] + 2(k + 1)

= 3+ k2 + k + 2k + 2 = 3+ [k2 + 3k + 2]
= 3+ (k + 1)(k + 2)

= 3+ (k + 1)[(k + 1)+ 1]
39. Proof: Let x1, x2, x3, . . . be the sequence defined recur-

sively by x1 = 1 and xk = 3xk−1 + k for all integers k ≥ 2.

Let the property, P(n), be the equation xn = 3n+1−2n−3
4 .

We show by mathematical induction that P(n) is true for
all integers n ≥ 1.

Show that P(1) is true:

When n = 1, the right-hand side of the equation

is 31+1−2 ·1−3
4 = 32−2−3

4 = 1, and by definition of
x1, x2, x3, . . . , the left-hand side of the equation, x1, is also
1. Thus P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true for, then
P(k + 1) is true.

Suppose that for some integer k ≥ 0, xk = 3k+1−2k−3
4 .

[Inductive hypothesis] We must show that

xk+1 = 3(k+1)+1 − 2(k + 1)− 3

4
, or, equivalently,

xk+1 = 3k+2 − 2k − 5

4
. But

xk+1 = 3xk + k by definition
of x1, x2, x3,

= 3

(
3k+1 − 2k − 3

4

)
+ k + 1 by inductive

hypothesis

= 3 ·3k+1 − 3 ·2k − 3 ·3
4

+ 4(k + 1)

4
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A-46 Appendix B Solutions and Hints to Selected Exercises

= 3k+2 − 6k − 9+ 4k + 4

4

= 3k+2 − 2k − 5

4
by algebra.

[This is what was to be shown.]

43. a. a0 = 2

a1 = a0
2a0 − 1

= 2

2 ·2− 1
= 2

3

a2 = a1
2a1 − 1

=
2
3

2 · 23−3
3

=
2
3
1
3

= 2

a3 = a2
2a2 − 1

= 2

2 ·2− 1
= 2

3

a4 = a3
2a3 − 1

=
2
3

2 · 23 −
3
3

=
2
3
1
3

= 2

Guess: an =
{
2 if n is even
2
3 if n is odd

.

b. Proof: Let a0, a1, a2, . . . be the sequence defined recur-
sively by x0 = 2 and ak = ak−1

2ak−1−1 for all integers

k ≥ 1. Let the property, P(n), be the equation

an =
{
2 if n is even
2
3 if n is odd

.

We show by strong mathematical induction that P(n)
is true for all integers n ≥ 1.

Show that P(0) and P(1) are true:
The results of part (a) show that P(0) and P(1) are
true.

Show that for all integers k ≥ 0, if P(k) is true for all
integers i with 0 ≤ i ≤ k, then P(k + 1) is true:

Let k be any integer with k ≥ 0, and suppose that for
all integers i with 0 ≤ i ≤ k,

ai =
{
2 if i is even
2
3 if i is odd

. [Inductive hypothesis]

We must show that

ak+1 =
{
2 if k is even
2
3 if k is odd

.

But

ak+1 = ak
2ak − 1

by definition of
a0, a1, a2, . . .

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
2 ·2−1 if k is even

2
3

2 · 23−1
if k is odd

by inductive hypothesis

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
3 if k is even

2
3
1
3

if k is odd

=

⎧⎪⎨
⎪⎩

2
3 if k + 1 is odd

2 if k + 1 is even

because k + 1 is odd
when k is even

and k + 1 is even when
k is odd.

[This is what was to be shown.]

45. v1 = 1

v2 = v�2/2� + v�3/2� + 2 = v1 + v1 + 2

= 1+ 1+ 2

v3 = v�3/2� + v�4/2� + 2 = v1 + v2 + 2

= 1+ (1+ 1+ 2)+ 2 = 3+ 2 ·2
v4 = v�4/2� + v�5/2� + 2 = v2 + v2 + 2

= (1+ 1+ 2)+ (1+ 1+ 2)+ 2

= 4+ 3 ·2
v5 = v�5/2� + v�6/2� + 2 = v2 + v3 + 2

= (3+ 2 ·2)+ (1+ 1+ 2)+ 2

= 5+ 4 ·2
v6 = v�6/2� + v�7/2� + 2 = v3 + v3 + 2

= (3+ 2 ·2)+ (3+ 2 ·2)+ 2

= 6+ 5 ·2
...

Guess:

vn = n + 2(n − 1) = 3n − 2 for all integers n ≥ 1

b. Proof: Let v1, v2, v3, . . . be the sequence defined recur-
sively by v1 = 1 and vk = v�k/2� + v�(k+1)/2� + 2 for all
integers k ≥ 1. Let the property, P(n), be the equation

vn = 3n − 2.

We show by strong mathematical induction that P(n) is
true for all integers n ≥ 1.

Show that P(1) is true:

When n = 1, the right-hand side of the equation
is 3 ·1− 2 = 1, which equals v1 by definition of
v1, v2, v3, . . . . Thus P(1) is true.

Show that for all integers k ≥ 1, if P(i) is true for all
integers i with 0 ≤ i ≤ k, then P(k + 1) is true:

Let k be any integer with k ≥ 1, and suppose that for all
integers i with 1 ≤ i ≤ k, vi = 3i − 2.
[This is the inductive hypothesis.] We must show that
vk+1 = 3(k + 1)− 2 = 3k + 1.

vk+ 1 = v�(k+ 1)/2� + v�(k+ 2)/2� + 2 by definition of
v1, v2, v3, . . .

=
(
3
⌊
k+1
2

⌋
−2

)
+
(
3
⌊
k+2
2

⌋
−2

)
+ 2
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5.8 Solutions and Hints to Selected Exercises A-47

= 3
(⌊

k+ 1
2

⌋
+
⌊
k+ 2
2

⌋)
− 2

=

⎧⎪⎨
⎪⎩
3
(
k
2 +

k+2
2

)
− 2 if k is even

3
(
k+1
2 + k+1

2

)
− 2 if k is odd

= 3
(
2k+2
2

)
− 2

= 3(k + 1)− 2

= 3k + 1 by the laws of algebra.

[This is what was to be shown.]

46. Hint: Show that for all integers n ≥ 0, s2n = 2n and
s2n+1 = 2n+1. Then combine these formulas using the ceil-
ing function to obtain sn = 2�n/2�.

48. a. Hint: wn =

⎧⎪⎨
⎪⎩
(
n+ 1
2

)2
if n is odd

n
2

(
n
2 + 1

)
if n is even

49. a. Hint: Express the answer using the Fibonacci sequence.

50. The sequence does not satisfy the formula. According to
the formula, a4 = (4− 1)2 = 9. But by definition of the
sequence, a1 = 0, a2 = 2 ·0+ (2+ 1) = 1, a3 = 2 ·1+
(3− 1) = 4, and so a4 = 2 ·4+ (4− 1) = 11. Hence the
sequence does not satisfy the formula for n = 4.

52. a. Hint: The maximum number of regions is obtained
when each additional line crosses all the previous
lines, but not at any point that is already the inter-
section of two lines. When a new line is added, it
divides each region through which it passes into two
pieces. The number of regions a newly added line
passes through is one more than the number of lines it
crosses.

53. Hint: The answer involves the Fibonacci numbers!

Section 5.8
1. (a), (d), and (f)

3. a. a0 = C ·20 + D = C + D = 1
a1 = C ·21 + D = 2C + D = 3

}

⇔
{
D = 1− C
2C + (1− C) = 3

}
⇔

{
C = 2
D = −1

a2 = 2 ·22 + (−1) = 7

4. a. b0 = C ·30 + D ·(−2)0 = C + D = 0
b1 = C ·31 + D ·(−2)1 = 3C − 2D = 5

}

⇔
{
D = −C
3C − 2(−C) = 5

}
⇔

{
C = 1
D = −1

b2 = 32 + (−1)(−2)2 = 9− 4 = 5

5. Proof: Given that an = C ·2n + D, then for any choice of
C and D and integer k > 2,

ak = C ·2k + D,

ak−1 = C ·2k−1 + D,

ak−2 = C ·2k−2 + D.

Hence

3ak−1 − 2ak−2 = 3(C ·2k−1 + D)− 2(C ·2k−2 + D)

= 3C ·2k−1 + 3D − 2C ·2k−2 − 2D

= 3C ·2k−1 − C ·2k−1 + D

= 2C ·2k−1 + D

= C ·2k + D = ak .

8. a. If for all k > 2, t k = 2t k−1+ 3t k−2 and t �= 0 then
t2= 2t + 3 [by dividing by tk−2], and so t2 − 2t −
3= 0. But t2 − 2t − 3= (t − 3)(t + 1); hence t = 3 or
t = − 1.

b. It follows from (a) and the distinct roots theorem that
for some constants C and D, a0, a1, a2, . . . satisfies the
equation

an = C ·3n + D ·(−1)n for all integers n ≥ 0.

Since a0 = 1 and a1 = 2, then

a0 = C ·30 + D ·(−1)0 = C + D = 1
a1 = C ·31 + D ·(−1)1 = 3C − D = 2

}

⇔
{
D = 1− C
3C − (1− C) = 2

}

⇔
{
D = 1− C
4C − 1 = 2

}

⇔
{
C = 3/4
D = 1/4

Thus an = 3
4 (3n)+ 1

4 (−1)n for all integers n ≥ 0.

11. Characteristic equation: t2 − 4 = 0. Since t2 − 4 = (t −
2)(t + 2), t = 2 and t = −2 are the roots. By the distinct
roots theorem, for some constants C and D

dn = C ·(2n)+ D ·(−2)n for all integers n ≥ 0.

Since d0 = 1 and d1 = −1, then
d0 = C ·20 + D · (−2)0 = C + D = 1
d1 = C ·21 + D · (−2)1 = 2C − 2D = −1

}

⇔
{
D = 1− C
2C − 2(1− C) = −1

}

⇔
{
D = 1− C
4C − 2 = −1

}

⇔
⎧⎨
⎩C = 1

4

D = 3
4

Thus dn = 1
4 (2

n)+ 3
4 (−2)n for all integers n ≥ 0.

13. Characteristic equation: t2 − 2t + 1 = 0. By the quadratic
formula,

t = 2±√4− 4 ·1
2

= 2

2
= 1.
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A-48 Appendix B Solutions and Hints to Selected Exercises

By the single root theorem, for some constants C and D

rn = C · (1n)+ Dn · (1n)
= C + nD for all integers n ≥ 0.

Since r0 = 1 and r1 = 4, then

r0 = C + 0 ·D = C = 1
r1 = C + 1 ·D = C + D = 4

}
⇔

{
C = 1
1+ D = 4

}

⇔
{
C = 1
D = 3

Thus rn = 1+ 3n for all integers n ≥ 0.

16. Hint: For all integers n ≥ 0,

sn =
√
3+ 2

2
√
3

(
1+√3

)n +
√
3− 2

2
√
3

(
1−√3

)n
.

19. Proof: Suppose r, s, a0, and a1 are numbers with r �= s.
Consider the system of equations

C + D = a0

Cr + Ds = a1.

By solving for D and substituting, we find that

D = a0 − C

Cr + (a0 − C)s = a1.

Hence

C(r − s) = a1 − a0s.

Since r �= s, both sides may be divided by r − s. Thus the
given system of equations has the unique solution

C = a1 − a0s

r − s

and

D = a0 − C = a0 − a1 − a0s

r − s

= a0r − a0s − a1 + a0s

r − s
= a0r − a1

r − s
.

Alternative solution: Since the determinant of the sys-
tem is 1 ·s − r ·1 = s − r and since r �= s, the given sys-
tem has a nonzero determinant and therefore has a unique
solution.

21. Hint:Use strong mathematical induction. First note that the
formula holds for n = 0 and n = 1. To prove the inductive
step, suppose that for some k ≥ 2, the formula holds for
all i with 0 ≤ i ≤ k. Then show that the formula holds for
k + 1. Use the proof of Theorem 5.8.3 (the distinct roots
theorem) as a model.

22. The characteristic equation is t2 − 2t + 2 = 0. By the
quadratic formula, its roots are

t = 2±√4− 8

2
= 2± 2i

2
=

{
1+ i

1− i
.

By the distinct roots theorem, for some constants C and D

an = C(1+ i)n + D(1− i)n

for all integers n ≥ 0.

Since a0 = 1 and a1 = 2, then

a0 = C(1+ i)0 + D(1− i)0 = C + D = 1

a1 = C(1+ i)1 + D(1− i)1

= C(1+ i)+ D(1− i) = 2

⇔
{
D = 1− C
C(1+ i)+ (1− C)(1− i) = 2

}

⇔
{
D = 1− C
C(1+ i − 1+ i)+ 1− i = 2

}

⇔
{

D = 1− C
C(2i) = 1+ i

}

⇔
⎧⎨
⎩
D = 1− C

C = 1+ i

2i
= 1+ i

2i
· i
i
= i − 1

−2 =
1− i

2

⎫⎬
⎭

⇔

⎧⎪⎪⎨
⎪⎪⎩
D = 1− 1− i

2
= 2− 1+ i

2
= 1+ i

2

C = 1− i

2

⎫⎪⎪⎬
⎪⎪⎭

Thus for all integers n ≥ 0,

an =
(
1− i

2

)
(1+ i)n +

(
1+ i

2

)
(1− i)n .

Section 5.9
1. a. (1) p, q, r , and s are Boolean expressions by I.

(2) ∼s is a Boolean expression by (1) and II(c).
(3) (r ∨ ∼s) is a Boolean expression by (1), (2), and

II(b).
(4) (q ∧ (r ∨ ∼s)) is a Boolean expression by (1), (3),

and II(a).
(5) ∼p is a Boolean expression by (1) and II(c).
(6) (∼p ∨ (q ∧ (r ∨ ∼s))) is a Boolean expression by

(4), (5), and II(b).

2. a. (1) ε ∈ S by I.
(2) a = εa ∈ S by (1) and II(a).
(3) aa ∈ S by (2) and II(a).
(4) aab ∈ S by (3) and II(b).

3. a. (1) MI is in the MIU system by I.
(2) MI I is in the MIU system by (1) and II(b).
(3) MI I I I is in the MIU system by (3) and II(b).
(4) MI I I I I I I I is in the MIU system by (3) and II(b).
(5) MIU I I I I is in the MIU system by (4) and II(c).
(6) MIUU I is in the MIU system by (5) and II(c).
(7) MIU I is in the MIU system by (6) and II(d).

4. a. (1) 2, 0.3, 4.2, and 7 are arithmetic expressions by I.
(2) (0.3− 4.2) is an arithmetic expression by (1) and

II(d).
(3) (2 ·(0.3− 4.2)) is an arithemetic expression by (1),

(2), and II(e).
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5.9 Solutions and Hints to Selected Exercises A-49

(4) (−7) is an arithmetic expression by (1) and II(b).
(5) ((2 ·(0.3− 4.2))+ (−7)) is an arithmetic expression

by (3), (4), and II(c).

5. Proof by structural induction: Let the property be the fol-
lowing sentence: The string ends in a 1.

Show that each object in the BASE for S satisfies the prop-
erty:

The only object in the base is 1, and the string 1 ends in a 1.

Show that for each rule in the RECURSION for S, if the
rule is applied to an object in S that satisfies the property,
then the objects defined by the rule also satisfy the prop-
erty:
The recursion for S consists of two rules denoted II(a) and
II(b). Suppose s is a string in S that ends in a 1. In the case
where rule II(a) is applied to s, the result is the string 1s,
which also ends in a 1. In the case where rule II(b) is applied
to s, the result is the string 1s, which also ends in a 1. Thus
when each rule in the RECURSION is applied to a string
in S that ends in a 1, the result is also a string that ends
in a 1.

7. Proof by structural induction: Let the property be the fol-
lowing sentence: The string contains an even number
of a’s.
Show that each object in the BASE for S satisfies the prop-
erty:
The only object in the base is ε, which contains 0 a’s.
Because 0 is an even number, ε contains an even number
of a’s.

Show that for each rule in the RECURSION for S, if the
rule is applied to an object in S that satisfies the property,
then the objects defined by the rule also satisfy the prop-
erty:

The recursion for S consists of four rules denoted II(a), II(b),
II(c), and II(d). Suppose s is a string in S that contains an
even number of a’s. In the case where either rule II(a) or
rule II(b) is applied to s, the result is the string bs or the
string sb, each of which contain the same number of a’s as
s and hence an even number of a’s. In the case where either
rule II(c) or rule II(d) is applied to s, the result is the string
aas or the string saa, each of which contain two more a’s
than the number of a’s in s. Because two more than any even
integer is an even integer, both aas and saa contain an even
number of a’s. Thus when each rule in ‘the RECURSION is
applied to a string in S that contains an even number of a’s,
the result is also a string that contains even number of a’s.

9. Hint: Let the property be the following sentence: The string
represents an odd integer. In the decimal notation, a string
represents an odd integer if, and only if, it ends in 1, 3, 5, 7
or 9.

10. Hint: By divisibility results from Chapter 3 (exercises 15
and 16 of Section 3.3), if both s and t are divisible by 5,
then so are s + t and s − t .

12. Hint: Can the number of I ’s in a string in the MIU system
be a multiple of 3? How do rules II(a)–(d) affect the number
of I ’s in a string?

13. a. (1) ( ) is in P by I.
(2) (( )) is in P by (1) and II(a).
(3) ( )(( )) is in P by (1), (2), and II(b).

14. a. This structure is not in P . Define a function f : P → Z
as follows: For each parenthesis structure S in P , let

f (S) =
[
the number of left
parentheses in S

]
−
[
the number of right
parentheses in S

]
.

Observe that for all S in P, f (S) = 0. To see why, use
the reasoning of structural induction:

1. The base element of P is sent by f to 0: f [()] =
0 [because there is one left and one right parenthesis
in ( )].

2. For all S ∈ P , if f [S] = 0 then f [(S)] = 0 [because
if k − m = 0 then (k + 1)− (m + 1) = 0].

3. For all S and T in P , if f [S] = 0 and f [T ] = 0, then
f [ST ] = 0 [because if k − m = 0 and n − p = 0, then
(k + n)− (m + p) = 0].

Items (1), (2), and (3) show that all parenthesis struc-
tures obtainable from the base structure ( ) by repeated
application of II(a) and II(b) are sent to 0 by f . But
by III (the restriction condition), there are no other ele-
ments of P besides those obtainable from the base ele-
ment by applying II(a) and II(b). Hence f (S) = 0 for all
S ∈ P .
Now if ( )(( ) were in P , then it would be sent to 0 by f .
But f [( )(( )] = 3− 2 = 1 �= 0. Thus ( )(( ) /∈ P .

15. Let S be the set of all strings of 0’s and 1’s with the same
number of 0’s and 1’s. The following is a recursive defini-
tion of S.
I. BASE: The null string ε ∈ S.
II. RECURSION: If s ∈ S, then

a. 01s ∈ S b. s01 ∈ S c. 10s ∈ S
d. s10 ∈ S e. 0s1 ∈ S f. 1s0 ∈ S

III. RESTRICTION: There are no elements of S other that
those obtained from I and II.

17. Let T be the set of all strings of a’s and b’s that contain an
odd number of a’s. The following is a recursive definition
of T .
I. BASE: The a ∈ T .
II. RECURSION: If t ∈ T , then

a. bt ∈ T b. tb ∈ T c. aat ∈ T
d. ata ∈ T e. taa ∈ T

III. RESTRICTION: There are no elements of T other
than those obtained from I and II.

19. a. M(86) = M(M(97)) since 86 ≤ 100

= M(M(M(108))) since 97 ≤ 100

= M(M(98)) since 108 > 100

= M(M(M(109))) since 98 < 100

= M(M(99)) since 109 > 100

= M(91) by Example 5.9.6
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21. a. A(1, 1) = A(0, A(1, 0)) by (5.9.3) with m = 1
and n = 1

= A(1, 0)+ 1 by (5.9.1) with n = A(1, 0)

= A(0, 1)+ 1 by (5.9.2) with m = 1

= (1+ 1)+ 1 by (5.9.1) with n = 1

= 3

Alternative solution:

A(1, 1) = A(0, A(1, 0)) by (5.9.3) with m = 1
and n = 1

= A(0, A(0, 1)) by (5.9.2) with m = 1

= A(0, 2) by (5.9.1) with n = 1

= 3 by (5.9.1) with n = 2

22. a. Proof by mathematical induction: Let the property,
P(n), be the equation A(1, n) = n + 2.
Show that P(0) is true:
When n = 0,

A(1, n) = A(1, 0) by substitution

= A(0, 1) by (5.9.2)

= 1+ 1 by (5.9.1)

= 2.

On the other hand, n + 2 = 0+ 2 also. Thus A(1, n) =
n + 2 for n = 0.
Show that for all integers k ≥ 0, if P(k) is true, then
P(k + 1) is true:
Let k be an integer with k ≥ 1 and suppose P(k) is
true. In other words, suppose A(1, k) = k + 2. [This is
the inductive hypothesis.] We must show that P(k + 1) is
true. In other words, we must show that A(1, k + 1) =
(k + 1)+ 2 = k + 3. But

A(1, k + 1) = A(0, A(1, k)) by (5.9.3)

= A(1, k)+ 1 by (5.9.1)

= (k + 2)+ 1 by inductive hypothesis

= k + 3.

[This is what was to be shown.]
[Since both the basis and the inductive steps have been
proved, we conclude that the equation holds for all nonneg-
ative integers n.]

24. Suppose F is a function. Then F(1) = 1, F(2) = F(1) =
1, F(3) = 1+ F(5 ·3− 9) = 1+ F(6) = 1+ F(3). Sub-
tracting F(3) from the extreme left and extreme right of this
sequence of equations gives 1 = 0, which is false. Hence F
is not a function.

Section 6.1
1. a. A = {2, {2}, (√2)2} = {2, {2}, 2} = {2, {2}} and B =

{2, {2}, {{2}}}. So A ⊆ B because every element in A
is in B, but B � A because {{2}} ∈ B and {{2}} �∈ A.
Also A is a proper subset of B because {{2}} is in B
but not A.

c. A = {{1, 2}, {2, 3}} and B = {1, 2, 3}. So A � B
because {1, 2} ∈ A and {1, 2} �∈ B. Also B � A
because 1 ∈ B and 1 �∈ A.

e. A =
{√

16, {4}
}
= {4, {4}} and B = {4}. Then B ⊆ A

because the only element in B is 4 and 4 is in A,
but A � B because {4} ∈ A and {4} �∈ B. Also B is a
proper subset of A because {4} is in A but not B.

2. Proof That B ⊆ A:
Suppose x is a particular but arbitrarily chosen element
of B.

[We must show that x ∈ A. By definition of A, this
means we must show that x = 2 · (some integer).]

By definition of B, there is an integer b such that x =
2b − 2.

[Given that x = 2b − 2, can x also be expressed
as 2 · (some integer)? I.e., is there an integer,
say a, such that 2b − 2 = 2a ? Solve for a to obtain
a = b − 1. Check to see if this works.]

Let a = b − 1.
[First check that a is an integer.]

Then a is an integer because it is a difference of integers.
[Then check that x = 2a.]

Also 2a = 2(b − 1) = 2b − 2 = x ,
Thus, by definition of A, x is an element of A,

[which is what was to be shown].

3. a. No. R � T because there are elements in R that are not
in T . For example, the number 2 is in R but 2 is not in
T since 2 is not divisible by 6.

b. Yes. T ⊆ R because every number divisible by 6 is
divisible by 2. To see why this is so, suppose n is
any number that is divisible by 6. Then n = 6m for
some integer m. Since 6m = 2(3m) and since 3m is
an integer (being a product of integers), it follows that
n = 2 · (some integer), and, hence, that n is divisible
by 2.

5. a. C ⊆ D Proof: [We will show that every element of C is
in D.] Suppose n is any element of C . Then n = 6r − 5
for some integer r . Let s = 2r − 2. Then s is an integer
(because products and differences of integers are inte-
gers), and

3s + 1 = 3(2r − 2)+ 1 = 6r − 6+ 1 = 6r − 5,

which equals n. Thus n satisfies the condition for being
in D. Hence, every element in C is in D.

b. D � C because there are elements of D that are not in
C . For example, 4 is in D because 4 = 3 ·1+ 1. But 4
is not in C because if it were, then 4 = 6r − 5 for some
integer r , which would imply that 9 = 6r , or, equiva-
lently, that r = 3/2, and this contradicts the fact that r
is an integer.

6. c. Sketch of proof that B ⊆ C : If r is any element of B
then there is an integer b such that r = 10b − 3. To show
that r is in C , you must show that there is an integer c
such that r = 10c + 7. In scratch work, assume that c
exists and use the information that 10b − 3 would have
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to equal 10c + 7 to deduce the only possible value for ċ.
Then show that this value is (1) an integer and (2) satis-
fies the equation r = 10c + 7, which will allow you to
conclude that r is an element of C .
Sketch of proof that C ⊆ B: If s is any element of C
then there is an integer c such that s = 10c + 7. To show
that s is in B, you must show that there is an integer b
such that s = 10c − 3. In scratch work, assume that b
exists and use the information that 10c + 7 would have
to equal 10b − 3 to deduce the only possible value for
b. Then show that this value is (1) an integer and (2) sat-
isfies the equation s = 10b − 3, which will allow you to
conclude that s is an element of B.

8. a. The set of all x in U such that x is in A and x is in B.
The shorthand notation is A ∩ B.

9. a. x �∈ A and x �∈ B

10. a. {1, 3, 5, 6, 7, 9} b. {3, 9}
c. {1, 2, 3, 4, 5, 6, 7, 8, 9} d. ∅ e. {1, 5, 7}

11. a. A ∪ B = {x ∈ R | 0 < x < 4}
b. A ∩ B = {x ∈ R | 1 ≤ x ≤ 2}
c. Ac = {x ∈ R | x ≤ 0 or x > 2}
d. A ∪ C = {x ∈ R | 0 < x ≤ 2 or 3 ≤ x < 9}
e. A ∩ C = ∅
f. Bc = {x ∈ R | x < 1 or x ≥ 4}
g. Ac ∩ Bc = {x ∈ R | x ≤ 0 or x ≥ 4}
h. Ac ∪ Bc = {x ∈ R | x < 1 or x > 2}
i. (A ∩ B)c = {x ∈ R | x < 1 or x > 2}
j. (A ∪ B)c = {x ∈ R | x ≤ 0 or x ≥ 4}

13. b. False. Many negative real numbers are not rational. For
example, −√2 ∈ R but −√2 /∈ Q.

d. False. 0 ∈ Z but 0 /∈ Z− ∪ Z+.
14. a.

U
B

A C

15. a.
U

C

A

B

16. a. A ∪ (B ∩ C) = {a, b, c}, (A ∪ B) ∩ C = {b, c}, and
(A ∪ B) ∩ (A ∪ C) = {a, b, c, d} ∩ {a, b, c, e} =
{a, b, c}.
Hence A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

17. a.

A B

C

U

18. a. The number 0 is not in ∅ because ∅ has no elements.
b. No. The left-hand set is the empty set; it does not have

any elements. The right-hand set is a set with one ele-
ment, namely ∅.

19. A1 = {1, 12} = {1}, A2 = {2, 22} = {2, 4},
A3 = {3, 32} = {3, 9}, A4 = {4, 42} = {4, 16}

a. A1 ∪ A2 ∪ A3 ∪ A4 = {1} ∪ {2, 4} ∪ {3, 9} ∪ {4, 16}
= {1, 2, 3, 4, 9, 16}

b. A1 ∩ A2 ∩ A3 ∩ A4 = {1} ∩ {2, 4} ∩ {3, 9} ∩ {4, 16}
= ∅

c. A1, A2, A3, and A4 are not mutually disjoint
because A2 ∩ A4 = {4} = ∅.

21. C0 = {0,−0} = {0}, C1 = {1,−1}, C1 = {2,−2},
C1 = {3,−3}, C1 = {4,−4}
a.

4⋃
i=0

Ci = {0} ∪ {1,−1} ∪ {2,−2} ∪ {3,−3} ∪ {4,−4} =
{−4,−3,−2,−1, 0, 1, 2, 3, 4}

b.
4⋂

i=0
Ci = {0} ∩ {1,−1} ∩ {2,−2} ∩ {3,−3} ∩ {4,−4}

= ∅
c. C0, C1, C2, . . . are mutually disjoint because no two of

the sets have any elements in common.

d.
n⋃

i=0
Ci = {−n,−(n − 1), . . . ,−2,−1, 0, 1, 2, . . . ,

(n − 1), n}
e.

n⋂
i=0

Ci = ∅

f.
∞⋃
i=0

Ci = Z, the set of all integers

g.
∞⋂
i=0

Ci = ∅
22. D0 = [−0, 0] = {0}, D1 = [−1, 1], D2 = [−2, 2],

D3 = [−3, 3], D4 = [−4, 4]
a.

4⋃
i=0

Di = {0} ∪ [−1, 1] ∪ [−2, 2] ∪ [−3, 3] ∪ [−4, 4]
= [−4, 4]

b.
4⋂

i=0
Di = {0} ∪ [−1, 1] ∪ [−2, 2] ∪ [−3, 3] ∪ [−4, 4]

= {0}
c. D0, D1, D2, . . . are not mutually disjoint. In fact, each

Dk ⊆ Dk+1.

d.
n⋃

i=0
Di = [−n, n]

e.
n⋂

i=0
Di = {0}
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f.
∞⋃
i=0

Di = R, the set of all real numbers

g.
∞⋂
i=0

Di = {0}
24. W0 = (0,∞),W1 = (1,∞),W2 = (2,∞),

W3 = (3,∞),W4 = (4,∞)

a.
4⋃

i=0
Wi = (0,∞) ∪ (1,∞) ∪ (2,∞) ∪ (3,∞) ∪

(4,∞) = (0,∞)

b.
4⋂

i=0
Wi = (0,∞) ∩ (1,∞) ∩ (2,∞) ∩ (3,∞) ∩

(4,∞) = (4,∞)

c. W0,W1,W2, . . . are not mutually disjoint. In fact,
Wk+1 ⊆ Wk for all integers k ≥ 0.

d.
n⋃

i=0
Wi = (0,∞)

e.
n⋂

i=0
Wi = (n,∞)

f.
∞⋃
i=0

Wi = (0,∞)

g.
∞⋂
i=0

Wi = ∅
27. a. No. The element d is in two of the sets.

b. No. None of the sets contains 6.
28. Yes. Every integer is either even or odd, and no integer is

both even and odd.

31. a. A ∩ B = {2}, so P(A ∩ B) = {∅, {2}}.
b. A = {1, 2}, so P(A) = {∅, {1}, {2}, {1, 2}}.
c. A ∪ B = {1, 2, 3}, so P(A ∪ B) = {∅, {1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

d. A × B = {(1, 2), (1, 3), (2, 2), (2, 3)}, so
P(A × B) = {∅, {(1, 2)}, {(1, 3)}, {(2, 2)}, {(2, 3)},
{(1, 2), (1, 3)}, {(1, 2), (2, 2)},
{(1, 2), (2, 3)}, {(1, 3), (2, 2)}, {(1, 3), (2, 3)},
{(2, 2), (2, 3)}, {(1, 2), (1, 3), (2, 2)},
{(1, 2), (1, 3), (2, 3)},
{(1, 2), (2, 2), (2, 3)}, {(1, 3), (2, 2), (2, 3)},
{(1, 2), (1, 3), (2, 2), (2, 3)}}.

32. a. P(A × B) = {∅, {(1, u)}, {(1, v)}, {(1, u), (1, v)}}
33. b. P(P(∅)) =P({∅}) = {∅, {∅}}
34. a. A1 × (A2 × A3) = {(1, (u,m)), (2, (u,m)),

(3, (u,m)), (1, (u, n)), (2, (u, n)), (3, (u, n)),
(1, (v,m)), (2, (v,m)), (3, (v,m)), (1, (v, n)),
(2, (v, n)), (3, (v, n))}

35. a. A × (B ∪ C) = {a, b} × {1, 2, 3}
= {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

b. (A × B) ∪ (A × C) = {(a, 1), (a, 2), (b, 1), (b, 2),
(a, 2), (a, 3), (b, 2), (b, 3)}

= {(a, 1), (a, 2), (b, 1), (b, 2),
(a, 3), (b, 3)}

36.
→ → →

→
i 1 2 3 4

j 1 2 3 1 2 3 4 1 2

found no yes no yes no yes

answer A ⊆ B

Section 6.2
1. a. (1) A (2) B ∪ C

b. (1) A ∩ B (2) C

2. a. (1) A − B (2) A (3) A (4) B
b. (1) x ∈ A (2) A (3) B (4) A

3. (a.) A (b) C (c) B (d) C (e) B ⊆ C

5. Proof: Suppose A and B are sets.

B − A ⊆ B ∩ Ac: Suppose x ∈ B − A. By definition
of set difference, x ∈ B and x /∈ A. But then by definition
of complement, x ∈ B and x ∈ Ac, and so by definition of
intersection, x ∈ B ∩ Ac. [Thus B − A ⊆ B ∩ Ac by defini-
tion of subset].

B ∩ Ac ⊆ B − A: Suppose x ∈ B ∩ Ac. By definition
of intersection, x ∈ B and x ∈ Ac. But then by definition
of complement, x ∈ B and x /∈ A, and so by definition of
set difference, x ∈ B − A. [Thus B ∩ Ac ⊆ B − A by defi-
nition of subset.]

[Since both set containments have been proved, B − A =
B ∩ Ac by definition of set equality.]

6. Partial answers
a. (A ∩ B) ∪ (A ∩ C) b. A c. B ∪ C
d. x ∈ C e. A ∩ B f. by definition of intersection,

x ∈ A ∩ C , and so by definition of union,
x ∈ (A ∩ B) ∪ (A ∩ C).

7. Hint: This is somewhat similar to the proof in Example
6.2.3.

8. Proof: Suppose A and B are any sets.
Proof that (A ∩ B) ∪ (A ∩ Bc) ⊆ A: Suppose
x ∈ (A ∩ B) ∪ (A ∩ Bc). [We must show that x ∈ A.] By
definition of union, x ∈ A ∩ B or x ∈ (A ∩ Bc).
Case 1 (x ∈ A ∩ B): In this case x is in A and x is in B,
and so, in particular, x ∈ A.
Case 2 (x ∈ A ∩ Bc): In this case x is in A and x is not in
B, and so, in particular, x ∈ A.
Thus, in either case, x ∈ A [as was to be shown]. [Thus
(A ∩ B) ∪ (A ∩ Bc) ⊆ A by definition of subset.]
Proof that A ⊆ (A ∩ B) ∪ (A ∩ Bc): Suppose x ∈ A. [We
must show that x ∈ (A ∩ B) ∪ (A ∩ Bc).] Either x ∈ B or
x �∈ B.
Case 1 (x ∈ B): In this case we know that x is in A and
we are also assuming that x is in B. Hence, by definition of
intersection, x ∈ A ∩ B.
Case 2 (x ∈ A ∩ Bc): In this case we know that x is in A
and we are also assuming that x is in Bc. Hence, by defini-
tion of intersection, x ∈ A ∩ Bc.
Thus, x ∈ A ∩ B or x ∈ A ∩ Bc, and so, by definition of
union, x ∈ (A ∩ B) ∪ (A ∩ Bc) [as was to be shown. Thus
A ⊆ (A ∩ B) ∪ (A ∩ Bc) by definition of subset.]
Conclusion: Since both set containments have been
proved, it follows by definition of set equality that
(A ∩ B) ∪ (A ∩ Bc) = A.

9. Partial proof: Suppose A, B, and C are any sets. To
show that (A − B) ∪ (C − B) = (A ∪ C)− B, we must
show that (A − B) ∪ (C − B) ⊆ (A ∪ C)− B and that
(A ∪ C)− B ⊆ (A − B) ∪ (C − B).
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(A − B) ∪ (C − B) ⊆ (A ∪ C) − B: Suppose that x is
any element in (A − B) ∪ (C − B). [We must show that
x ∈ (A ∪ C)− B.] By definition of union, x ∈ A − B or
x ∈ C − B.

Case 1 (x ∈ A − B): Then, by definition of set difference,
x ∈ A and x /∈ B. But because x ∈ A, we have that x ∈
A ∪ C by definition of union. Hence x ∈ A ∪ C and x /∈ B,
and so, by definition of set difference, x ∈ (A ∪ C)− B.

Case 2 (x ∈ C − B): Then, by definition of set difference,
x ∈ C and x /∈ B. But because x ∈ C , we have that x ∈
A ∪ C by definition of union. Hence x ∈ A ∪ C and x /∈ B,
and so, by definition of set difference, x ∈ (A ∪ C)− B.

Thus, in both cases, x ∈ (A ∪ C)− B [as was to be shown].
So (A − B) ∪ (C − B) ⊆ (A ∪ C)− B.

11. Partial proof: Suppose A and B are any sets. We will
show that A ∪ (A ∩ B) ⊆ A. Suppose x is any element
in A ∪ (A ∩ B). [We must show that x ∈ A.] By defini-
tion of union, x ∈ A or x ∈ A ∩ B. In the case where
x ∈ A, clearly x ∈ A. In the case where x ∈ A ∩ B, x ∈ A
and x ∈ B (by definition of intersection). Thus, in par-
ticular, x ∈ A. Hence, in both cases x ∈ A [as was to be
shown].
To complete the proof that A ∪ (A ∩ B) = A, you must
show that A ⊆ A ∪ (B ∩ A).

12. Proof: Let A be a set. [We must show that A ∪ ∅ = A.]

A ∪ ∅ ⊆ A: Suppose x ∈ A ∪ ∅. Then x ∈ A or x ∈ ∅ by
definition of union. But x /∈ ∅ since ∅ has no elements.
Hence x ∈ A.

A ⊆ A ∪ ∅: Suppose x ∈ A. Then the statement “x ∈ A
or x ∈ ∅” is true. Hence x ∈ A ∪ ∅ by definition of union.
[Alternatively, A ⊆ A ∪ ∅ by the inclusion in union property.]
Since A ∪ ∅ ⊆ A and A ⊆ A ∪ ∅, then A ∪ ∅ = A by defi-
nition of set equality.

13. Proof: Suppose A, B, and C are sets and A ⊆ B. Let x ∈
A ∩ C . By definition of intersection, x ∈ A and x ∈ C . But
since A ⊆ B and x ∈ A, then x ∈ B. Hence x ∈ B and
x ∈ C , and so, by definition of intersection, x ∈ B ∩ C .
[Thus A ∩ C ⊆ B ∩ C by definition of subset.]

16. Hint: The proof has the following outline:
Suppose A, B, and C are any sets such that A ⊆ B and
A ⊆ C .

...

Therefore, A ⊆ B ∩ C .

18. Proof: Suppose A, B, and C are arbitrarily chosen sets.

A × (B ∪ C) ⊆ (A × B) ∪ (A × C): Suppose (x, y) ∈
A × (B ∪ C). [We must show that (x, y) ∈ (A × B) ∪ (A ×
C).] Then x ∈ A and y ∈ B ∪ C . By definition of union,
this means that y ∈ B or y ∈ C .

Case 1 ( y ∈ B): Then, since x ∈ A, (x, y) ∈ A × B by
definition of Cartesian product. Hence (x, y) ∈ (A × B) ∪
(A × C) by the inclusion in union property.

Case 2 ( y ∈ C): Then, since x ∈ A, (x, y) ∈ A × C by
definition of Cartesian product. Hence (x, y) ∈ (A × B) ∪
(A × C) by the inclusion in union property.

Hence, in either case, (x, y) ∈ (A × B) ∪ (A × C) [as was
to be shown].

Thus A × (B ∪ C) ⊆ (A × B) ∪ (A × C) by definition of
subset.

(A × B) ∪ (A × C) ⊆ A × (B ∪ C): Suppose (x, y) ∈
(A × B) ∪ (A × C). Then (x, y) ∈ A × B or
(x, y) ∈ A × C .

Case 1 ((x, y) ∈ A × B): In this case, x ∈ A and y ∈ B.
By definition of union, since y ∈ B, then y ∈ B ∪ C . Hence
x ∈ A and y ∈ B ∪ C , and so, by definition of Cartesian
product, (x, y) ∈ A × (B ∪ C).

Case 2 ((x, y) ∈ A × C): In this case, x ∈ A and y ∈ C .
By definition of union, since y ∈ C , then y ∈ B ∪ C . Hence
x ∈ A and y ∈ B ∪ C , and so, by definition of Cartesian
product, (x, y) ∈ A × (B ∪ C).

Thus, in either case, (x, y) ∈ A × (B ∪ C). [Hence, by def-
inition of subset, (A × B) ∪ (A × C) ⊆ A × (B ∪ C).]

[Since both subset relations have been proved, we can con-
clude that A × (B ∪ C) = (A × B) ∪ (A × C) by definition of
set equality.]

20. There is more than one error in this “proof.” The most seri-
ous is the misuse of the definition of subset. To say that A is
a subset of B means that for all x, if x ∈ A then x ∈ B. It
does not mean that there exists an element of A that is also
an element of B. The second error in the proof occurs in
the last sentence. Just because there is an element in A that
is in B and an element in B that is in C , it does not follow
that there is an element in A that is in C . For instance, sup-
pose A = {1, 2}, B = {2, 3}, and C = {3, 4}. Then there is
an element in A that is in B (namely 2) and there is an ele-
ment in B that is in C (namely 3), but there is no element
in A that is in C .

21. Hint: The statement “since x /∈ A or x /∈ B, x /∈ A ∪ B” is
fallacious. Try to think of an example of sets A and B and
an element x such that the statement “x /∈ A or x /∈ B” is
true and the statement “x /∈ A ∪ B” is false.

23. a.

A B

C

U

Entire shaded region is A � (B � C ). 
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A B

C

U

Darkly shaded region is (A � B) � (A � C ). 

24. (a) (A − B) ∩ (B − A) (b) intersection (c) B − A
(d) B (e) A (f) A (g) (A − B) ∩ (B − A) = ∅

25. Proof by contradiction: Suppose not. That is, suppose there
exist sets A and B such that (A ∩ B) ∩ (A ∩ Bc) �= ∅.
Then there is an element x in (A ∩ B) ∩ (A ∩ Bc). By
definition of intersection, x ∈ (A ∩ B) and x ∈ (A ∩ Bc).
Applying the definition of intersection again, we have
that since x ∈ (A ∩ B), x ∈ A and x ∈ B, and since
x ∈ (A ∩ Bc), x ∈ A and x /∈ B. Thus, in particular, x ∈ B
and x /∈ B, which is a contradiction. It follows that the sup-
position is false, and so (A ∩ B) ∩ (A ∩ Bc) = ∅.

27. Proof: Let A be a subset of a universal set U . Suppose
A ∩ Ac �= ∅, that is, suppose there is an element x such
that x ∈ A ∩ Ac. Then by definition of intersection, x ∈ A
and x ∈ Ac, and so by definition of complement, x ∈ A
and x /∈ A. This is a contradiction. [Hence the supposition
is false, and we conclude that A ∩ Ac = ∅.]

29. Proof: Let A be a set. Suppose A × ∅ �= ∅. Then there
would be an element (x, y) in A × ∅. By definition of
Cartesian product, x ∈ A and y ∈ ∅. But there are no ele-
ments y such that y ∈ ∅. Hence there are no elements (x, y)
such that x ∈ A and y ∈ ∅. Consequently, (x, y) /∈ A × ∅.
[Thus the supposition is false, and so A × ∅ = ∅.]

30. Proof: Let A and B be sets such that A ⊆ B. [We must show
that A ∩ Bc = ∅.] Suppose A ∩ Bc �= ∅; that is, suppose
there were an element x such that x ∈ A ∩ Bc. Then x ∈ A
and x ∈ Bc by definition of intersection. So x ∈ A and
x /∈ B by definition of complement. But A ⊆ B by hypoth-
esis. So since x ∈ A, x ∈ B by definition of subset. Thus
x /∈ B and also x ∈ B, which is a contradiction. Hence the
supposition that A ∩ Bc �= ∅ is false, and so A ∩ Bc = ∅.

33. Proof: Let A, B, and C be any sets such that C ⊆ B − A.
Suppose A ∩ C �= ∅. Then there is an element x such that
x ∈ A ∩ C . By definition of intersection, x ∈ A and x ∈ C .
Since C ⊆ B − A, then x ∈ B and x /∈ A. So x ∈ A and
x /∈ A, which is a contradiction. Hence the supposition is
false, and thus A ∩ C = ∅.

36. a. Start of proof that A ∪ B ⊆ (A − B) ∪ (B − A) ∪ (A ∩
B): Given any element x in A ∪ B, by definition of
union x is in at least one of A and B. Thus x satisfies
exactly one of the following three conditions:
(1) x ∈ A and x /∈ B (x is in A only)
(2) x ∈ B and x /∈ A (x is in B only)
(3) x ∈ A and x ∈ B (x is in both A and B)

b. To show that (A − B), (B − A), and (A ∩ B) are mutu-
ally disjoint, we must show that the intersection of any
two of them is the empty set. But, by definition of set
difference and set intersection, saying that x ∈ A − B
means that (1) x ∈ A and x /∈ B, saying that x ∈ B − A
means that (2) x ∈ B and x /∈ A, and saying that x ∈
A ∩ B means that (3) x ∈ A and x ∈ B. Conditions (1)–
(3) are mutually exclusive, and so no two of them can
be satisfied at the same time. Thus no element can be
in the intersection of any two of the sets, and, therefore,
the intersection of any two of the sets is the empty set.
Hence, (A − B), (B − A), and (A ∩ B) are mutually
disjoint.

37. Suppose A and B1, B2, B3, . . . , Bn are any sets.

Proof that A ∩
(

n⋃
i=1

Bi

)
⊆

n⋃
i=1

(A ∩ Bi ):

Suppose x is any element in A ∩
(

n⋃
i=1

Bi

)
. [We must

show that x ∈
n⋃

i=1
(A ∩ Bi ).] By definition of intersection,

x ∈ A and x ∈
n⋃

i=1
Bi . Since x ∈

n⋃
i=1

Bi , the definition of

general union implies that x ∈ Bi for some i = 1, 2, . . . , n,
and so, since x ∈ A, the definition of intersection implies
that x ∈ A ∩ Bi . Thus, by definition of general union,

x ∈
n⋃

i=1
(A ∩ Bi ) [as was to be shown].

Proof that
n⋃

i=1
(A ∩ Bi ) ⊆ A ∩

(
n⋃

i=1
Bi

)
:

Suppose x is any element in
n⋃

i=1
(A ∩ Bi ). [We must show

that x ∈ A ∩
(

n⋃
i=1

Bi

)
.] By definition of general union, x ∈

A ∩ Bi for some i = 1, 2, . . . , n. Thus, by definition of
intersection, x ∈ A and x ∈ Bi . Since x ∈ Bi for some i =
1, 2, . . . , n, by definition of general union, x ∈

n⋃
i=1

Bi .

Thus we have that x ∈ A and x ∈
n⋃

i=1
Bi , and so, by defini-

tion of intersection, x ∈ A ∩
(

n⋃
i=1

Bi

)
[as was to be shown].

Conclusion: Since both set containments have been proved,

it follows by definition of set equality that A ∩
(

n⋃
i=1

Bi

)
=

n⋃
i=1

(A ∩ Bi ).

38. Proof sketch: If x ∈
n⋃

i=1
(Ai − B), then x ∈ Ai − B for

some i = 1, 2, . . . , n, and so, (1) for some i = 1, 2, . . . , n,

x ∈ Ai (which implies that x ∈
(

n⋃
i=1

Ai

)
) and (2) x �∈ B.

Conversely, if x ∈
(

n⋃
i=1

Ai

)
− B, then x ∈

n⋃
i=1

Ai and

x �∈ B, and so, by definition of general union, x ∈ Ai for
some i = 1, 2, . . . , n, x ∈ Ai and x �∈ B. This implies that
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there is an integer i such that x ∈ Ai − B, and thus that

x ∈
n⋃

i=1
(Ai − B).

40. Suppose A and B1, B2, B3, . . . , Bn are any sets.

Proof that
n⋃

i=1
(A × Bi ) ⊆ A ×

(
n⋃

i=1
Bi

)
:

Suppose (x, y) is any element in
n⋃

i=1
(A × Bi ). [We must

show that (x, y) ∈ A ×
(

n⋃
i=1

Bi

)
.] By definition of gen-

eral union, (x, y) ∈ A × Bi for some i = 1, 2, . . . , n. By
definition of Cartesian product, this implies that (1)
x ∈ A and (2) y ∈ Bi for some i = 1, 2, . . . , n. By defi-

nition of general union, (2) implies that y ∈
n⋃

i=1
Bi . Thus

x ∈ A and y ∈
n⋃

i=1
Bi , and so by definition of Cartesian

product, (x, y) ∈ A ×
(

n⋃
i=1

Bi

)
[as was to be shown].

Proof that A ×
(

n⋃
i=1

Bi

)
⊆

n⋃
i=1

(A × Bi ):

Suppose (x, y) is any element in A ×
(

n⋃
i=1

Bi

)
. [We must

show that (x, y) ∈
n⋃

i=1
(A × Bi ).] By definition of Cartesian

product, (1) x ∈ A and (2) y ∈
n⋃

i=1
Bi . By definition of gen-

eral union, (2) implies that y ∈ Bi for some i = 1, 2, . . . , n.
Thus x ∈ A and y ∈ Bi for some i = 1, 2, . . . , n, and so, by
definition of Cartesian product, (x, y) ∈ A × Bi for some
i = 1, 2, . . . , n. It follows from the definition of general

union that (x, y) ∈
n⋃

i=1
(A × Bi ) [as was to be shown].

Conclusion: Since both set containments have been proved,

it follows by definition of set equality that
n⋃

i=1
(A × Bi ) =

A ×
(

n⋃
i=1

Bi

)
.

Section 6.3
1. Counterexample: Any sets A, B, and C where C con-

tains elements that are not in A will serve as a counterex-
ample. For instance, let A = {1, 3}, B = {2, 3}, and C =
{4}. Then (A ∩ B) ∪ C = {3} ∪ {4} = {3, 4}, whereas A ∩
(B ∪ C) = {1, 3} ∩ {2, 3, 4} = {3}. Since {3, 4} �= {3},
(A ∩ B) ∪ C �= A ∩ (B ∪ C).

3. Counterexample: Any sets, A, B, and C where A ⊆ C and
B contains at least one element that is not in either A or
C will serve as a counterexample. For instance, let A =
{1}, B = {2}, and C = {1, 3}. Then A � B and B � C but
A ⊆ C .

5. False. Counterexample: Any sets A, B, and C where
A and C have elements in common that are not in
B will serve as a counterexample. For instance, let
A = {1, 2, 3}, B = {2, 3}, and C = {3}. Then B − C =

{2}, and so A − (B − C) = {1, 2, 3} − {2} = {1, 3}. On
the other hand A − B = {1, 2, 3} − {2, 3} = {1}, and
so (A − B)− C = {1} − {3} = {1}. Since {1, 3} �= {1},
A − (B − C) �= (A − B)− C .

6. True. Proof: Let A and B be any sets.

A ∩ (A ∪ B) ⊆ A: Suppose x ∈ A ∩ (A ∪ B). By defi-
nition of intersection, x ∈ A and x ∈ A ∪ B. In particular
x ∈ A. Thus, by definition of subset, A ∩ (A ∪ B) ⊆ A.

A ⊆ A ∩ (A ∪ B): Suppose x ∈ A. Then by definition
of union, x ∈ A ∪ B. Hence x ∈ A and x ∈ A ∪ B, and
so, by definition of intersection x ∈ A ∩ (A ∪ B). Thus, by
definition of subset, A ⊆ A ∩ (A ∪ B).

Because both A ∩ (A ∪ B) ⊆ A and A ⊆ A ∩ (A ∪ B)

have been proved, we conclude that A ∩ (A ∪ B) = A.

9. True. Proof: Suppose A, B, and C are sets and A ⊆ C and
B ⊆ C . Let x ∈ A ∪ B. By definition of union, x ∈ A or
x ∈ B. But if x ∈ A then x ∈ C (because A ⊆ C), and if
x ∈ B then x ∈ C (because B ⊆ C). Hence, in either case,
x ∈ C . [So, by definition of subset, A ∪ B ⊆ C.]

11. Hint: The statement is false. Consider sets U, A, B, and
C as follows: U = {1, 2, 3, 4}, A = {1, 2}, B = {1, 2, 3},
and C = {2}.

12. Hint: The statement is true. Sketch of proof : If
x ∈ A ∩ (B − C), then x ∈ A and x ∈ B and x /∈ C . So
it is true that x ∈ A and x ∈ B and that x ∈ A and x /∈ C .
Conversely, if x ∈ (A ∩ B)− (A ∩ C), then x ∈ A and
x ∈ B, but x /∈ A ∩ C , and so x /∈ C .

14. Hint: The statement is false. Show that the follow-
ing is a counterexample: A = {1, 3}, B = {1, 2, 3}, and
C = {2, 3}.

15. Hint: The statement is true. Sketch of proof : Suppose
x ∈ A. [We must show that x ∈ B.] Either x ∈ C or x /∈ C .
In case x ∈ C , make use of the fact that A ∩ C ⊆ B ∩ C to
show that x ∈ B. In case x /∈ C , make use of the fact that
A ∪ C ⊆ B ∪ C to show that x ∈ B.

17. True. Proof: Suppose A and B are any sets with A ⊆ B. [We
must show that P(A) ⊆P(B).] So suppose X ∈P(A).
Then X ⊆ A by definition of power set. But because
A ⊆ B, we also have that X ⊆ B by the transitive prop-
erty for subsets, and thus, by definition of power set,
X ∈P(B). This proves that for all X , if X ∈P(A)

then X ∈P(B), and so P(A) ⊆P(B) [as was to be
shown].

18. False. Counterexample: For any sets A and B,P(A) ∪
P(B) contains only sets that are subsets of either A or B,
whereas the sets in P(A ∪ B) can contain elements of both
A and B. Thus, if at least one of A or B contains elements
that are not in the other set, P(A) ∪P(B) and P(A ∪ B)

will not be equal. For instance, let A = {1} and B = {2}.
Then {1, 2} ∈P(A ∪ B) but {1, 2} /∈P(A) ∪P(B).

19. Hint: The statement is true. To prove it, suppose A and
B are any sets, and suppose X ∈P(A) ∪P(B). Show
that X ⊆ A ∪ B, and deduce the conclusion from this
result.
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22. a. Statement: ∀ sets S, ∃ a set T such that S ∩ T = ∅.
Negation: ∃ a set S such that ∀ sets T, S ∩ T �= ∅.
The statement is true. Given any set S, take T = Sc.
Then S ∩ T = S ∩ Sc = ∅ by the complement law for
∩. Alternatively, T could be taken to be ∅.

23. Hint: S0 = {∅}, S1 = {{a}, {b}, {c}}
25. a. S1 = {∅, {t}, {u}, {v}, {t, u}, {t, v}, {u, v}, {t, u, v}}

b. S2 = {{w}, {t, w}, {u, w}, {v,w}, {t, u, w}, {t, v, w},
{u, v, w}, {t, u, v, w}}

c. Yes

26. Hint: Use mathematical induction. In the inductive step,
you will consider the set of all nonempty subsets
of {2, . . . , k} and the set of all nonempty subsets of
{2, . . . , k + 1}. Any subset of {2, . . . , k + 1} either con-
tains k + 1 or does not contain k + 1. Thus⎡
⎣the sum of all products
of elements of nonempty
subsets of {2, . . . , k + 1}

⎤
⎦

=

⎡
⎢⎢⎣
the sum of all products
of elements of nonempty
subsets of {2, . . . , k + 1}
that do not contain k + 1

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
the sum of all products
of elements of nonempty
subsets of {2, . . . , k + 1}
that contain k + 1

⎤
⎥⎥⎦

But any subset of {2, . . . , k + 1} that does not contain k + 1
is a subset of {2, . . . , k}. And any subset of {2, . . . , k + 1}
that contains k + 1 is the union of a subset of {2, . . . , k}
and {k + 1}.

27. a. commutative law for ∩
b. distributive law
c. commutative law for ∩

28. Partial answer:
a. set difference law
b. set difference law
c. commutative law for ∩
d. De Morgan’s law

29. Hint: Remember to use the properties in Theorem 6.2.2
exactly as they are written. For example, the distributive law
does not state that for all sets A, B, and C, (A ∪ B) ∩ C =
(A ∩ C) ∪ (B ∩ C).

30. Proof: Let sets A, B, and C be given. Then

(A ∩ B) ∪ C
= C ∪ (A ∩ B) by the commutative law for ∪
= (C ∪ A) ∩ (C ∪ B) by the distributive law

= (A ∪ C) ∩ (B ∪ C) by the commutative law for ∪.
31. Proof: Suppose A and B are sets. Then

A ∪ (B − A)

= A ∪ (B ∩ Ac) by the set difference law

= (A ∪ B) ∩ (A ∪ Ac) by the distributive law

= (A ∪ B) ∩U by the complement law for ∪
= A ∪ B by the identity law for ∩.

36. Proof: Let A, B, and C be any sets. Then

((Ac ∪ Bc)− A)c

= ((Ac ∪ Bc) ∩ Ac)c by the set difference law

= (Ac ∪ Bc)c ∪ (Ac)c by De Morgan’s law

= ((Ac)c ∩ (Bc)c) ∪ (Ac)c by De Morgan’s law

= (A ∩ B) ∪ A by the double
complement law

= A ∪ (A ∩ B) by the commutative law for ∪
= A by the absorption law

39. Partial proof: Let A and B be any sets. Then

(A − B) ∪ (B − A)

= (A ∩ Bc) ∪ (B ∩ Ac) by the set difference law

= [(A ∩ Bc) ∪ B] ∩ [(A ∩ Bc) ∪ Ac)]
by the distributive law

= [(B ∪ (A ∩ Bc)] ∩ [Ac ∪ (A ∩ Bc)]
by the commutative law for ∪

= [(B ∪ A) ∩ (B ∪ Bc)] ∩ [(Ac ∪ A) ∩ (Ac ∪ Bc)]
by the distributive law

= [(A ∪ B) ∩ (B ∪ Bc)] ∩ [(A ∪ Ac) ∩ (Ac ∪ Bc)]
by the commutative law for ∪

41. Hint: The answer is ∅.
44. a. Proof: Suppose not. That is, suppose there exist sets A

and B such that A − B and B are not disjoint. [We must
derive a contradiction.] Then (A − B) ∩ B �= ∅, and so
there is an element x in (A − B) ∩ B. By definition
of intersection, x ∈ A − B and x ∈ B, and by defini-
tion of difference, x ∈ A and x /∈ B. Hence x ∈ B and
also x /∈ B, which is a contradiction. Thus the suppo-
sition is false, and we conclude that A − B and B are
disjoint.

b. Let A and B be any sets. Then

(A − B) ∩ B
= (A ∩ Bc) ∩ B by the set difference law

= A ∩ (Bc ∩ B) by the associative law for ∩
= A ∩ (B ∩ Bc) by the commutative law for ∩
= A ∩ ∅ by the complement law for ∩
= ∅ by the universal bound law for ∩.

46. a. A)B = (A − B) ∪ (B − A) = {1, 2} ∪ {5, 6} =
{1, 2, 5, 6}

47. Proof: Let A and B be any subsets of a universal set. By def-
inition of ), showing that A)B = B)A is equivalent to
showing that (A − B) ∪ (B − A) = (B − A) ∪ (A − B).
But this follows immediately from the commutative law
for ∪.
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48. Proof: Let A be any subset of a universal set. Then

A)∅
= (A − ∅) ∪ (∅ − A) by definition of �

= (A ∩ ∅c) ∪ (∅ ∩ Ac) by the set difference law

= (A ∩U ) ∪ (Ac ∩ ∅) by the complement of U law and
the commutative law for ∩

= A ∪ ∅ by the identity law for ∩ and the
universal bound law for ∩

= A. by the identity law for ∪
51. Hint: First show that for any sets A and B and for any

element x ,

x ∈ A)B ⇔ (x ∈ A and x /∈ B) or (x ∈ B and x /∈ A),

and

x /∈ A)B ⇔ (x /∈ A and x /∈ B) or (x ∈ B and x ∈ A).

52. Same hint as for exercise 51.

53. Start of proof : Suppose A and B are any subsets of a univer-
sal set U . By the universal bound law for union, B ∪U =
U , and so, by the commutative law for union, U ∪ B = U .
Take the intersection of both sides of the equation with A.

Section 6.4
1. a. because 1 is an identity for ·

b. by the complement law for +
c. by the distributive law for + over ·
d. by the complement law for ·
e. because 0 is an identity for +

4. Proof: For all elements a in B,

a ·0 = a ·(a ·a) by the complement law for ·
= (a ·a) ·a by the associative law for ·
= a ·a by exercise 48

= 0. by the complement law for ·

6. a. Proof: 0 ·1 = 0 because 1 is an identity for · , and 0+
1 = 1+ 0 = 1 because + is commutative and 0 is an
identity for +. Thus, by the uniqueness of the comple-
ment law, 0 = 1.

7. a. Proof: Suppose 0 and 0′ are elements of B both of
which are identities for +. Then both 0 and 0′ satisfy
the identity, complement, and universal bound laws. [We
will show that 0 = 0′.] By the identity law for +, for all
a ∈ B,

a + 0 = a and a + 0′ = a.

It follows that

⇒
⇒
⇒
⇒
⇒
⇒

a + 0 = a + 0′

ā · (a + 0) = ā · (a + 0′)
(ā ·a)+ (ā ·0) = (ā ·a)+ (ā ·0′)

(a · ā)+ 0 = (a · ā)+ 0′

0 ·0 = 0′ ·0′
0 = 0′

because both quantities equals a
by “multiplying” both sides by ā
by the distributive law
by the universal bound law for ·
by the complement law for ·
by the universal bound law for ·

[This is what was to be shown.]

b. Hint: Suppose 1 and 1′ are elements of B both of which
are identities for · . Then for all a ∈ B, by the identity
law for · , a ·1 = a and a ·1′ = a. It follows that a ·1 =
a ·1′, and ā + a ·1 = ā + a ·1′. Etc.

8. Proof: Suppose B is a Boolean algebra and a and b are any
elements of B. We first prove that (a ·b)+ (a + b) = 1.

a ·b + (a + b)

= (a + b)+ (a ·b)
by the commutative law for +

= ((a + b)+ a) ·((a + b)+ b)
by the distributive law of + over ·

= ((b + a)+ a) ·(a + (b + b))
by the commutative and
associative laws for +

= (b + (a + a)) ·(a + (b + b))
by the associative and
commutative laws for +

= (b + (a + a)) ·(a + 1)
by the commutative and
complement laws for +

= (b + 1) ·1 by the complement and
universal bound laws for +

= 1 ·1 by the universal bound law for +
= 1 by the identity law for · .

Next we prove that (a ·b) ·(a + b) = 0.

(a ·b) ·(a + b)

= ((a ·b) ·a)+ (((a ·b) ·b)
by the distributive law of · over +

= ((b ·a) ·a)+ ((a ·(b ·b))
by the commutative and associative laws for ·

= (b ·(a ·a))+ (a ·0)
by the associative and complement laws for ·

= (b ·0)+ 0
by the complement and universal bound laws for ·

= 0+ 0 by the universal bound law for ·
= 0 by the identity law for +.

Because both (a ·b)+ (a + b) = 1 and (a ·b) ·(a + b) =
0, it follows, by the uniqueness of the complement law, that
a ·b = a + b.

10. Hint: One way to prove the statement is to use the result of
exercise 3. Some stages in the proof are the following:

y = (y + x) · y = (x · y)+ (z · y) = z · (x + y) = z.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A-58 Appendix B Solutions and Hints to Selected Exercises

11. a. (i) Because S has only two distinct elements, 0 and 1, we
only need to check that 0+ 1 = 1+ 0. But this is true
because both sums equal 1.
(v) Partial answer:

0+ (0 ·0) = 0+ 0 = 0 and (0+ 0) ·(0+ 0) = 0 ·0 = 0 also

0+ (0 ·1) = 0+ 0 = 0 and (0+ 0) ·(0+ 1) = 0 ·1 = 0 also

0+ (1 ·0) = 0+ 0 = 0 and (0+ 1) ·(0+ 0) = 1 ·0 = 0 also

0+ (1 ·1) = 0+ 1 = 1 and (0+ 1) ·(0+ 1) = 1 ·1 = 1 also

b. Hint: Verify that 0+ x = x and that 1 · x = x for all
x ∈ S.

12. Hints: (1) Because the proofs of the absorption laws do not
use the associative laws, the absorption laws may be used
at any stage of the derivation.
(2) Show that for all x, y, and z in B, x (x + (y + z)) · x =
x and ((x + y)+ z)) · x = x .
(3) Show that for all a, b, and c in B, both a + (b + c) and
(a + b)+ c equal ((a + b)+ c) ·(a + (b + c)).
(4) Use De Morgan’s laws and the double complement law
to deduce the associative law for · .

13. The sentence is not a statement because it is neither true
nor false. If the sentence were true, then because it declares
itself to be false, the sentence would be false. Therefore, the
sentence is not true. On the other hand, if the sentence were
false, then it would be false that “This sentence is false,”
and so the sentence would be true. Consequently, the sen-
tence is not false.

14. This sentence is a statement because it is true. Recall that
the only way for an if-then statement to be false is for the
hypothesis to be true and the conclusion false. In this case
the hypothesis is not true. So regardless of what the con-
clusion states, the sentence is true. (This is an example of a
statement that is vacuously true, or true by default.)

17. This sentence is not a statement because it is neither true
nor false. If the sentence were true, then either the sentence
is false or 1+ 1 = 3. But 1+ 1 �= 3, and so the sentence is
false. Therefore, the sentence is not true. On the other hand,
if the sentence were false, then it would be true that “This
sentence is false or 1+ 1 = 3,” and so the sentence would
be true. Consequently, the sentence is not false.

20. Hint: Suppose that apart from statement (ii), all of Nixon’s
other assertions about Watergate are evenly split between
true and false.

21. No. Suppose there were a computer program P that had
as output a list of all computer programs that do not list
themselves in their output. If P lists itself as output, then
it would be on the output list of P , which consists of all
computer programs that do not list themselves in their out-
put. Hence P would not list itself as output. But if P does
not list itself as output, then P would be a member of the
list of all computer programs that do not list themselves in
their output, and this list is exactly the output of P . Hence
P would list itself as output. This analysis shows that the
assumption of the existence of such a program P is contra-
dictory, and so no such program exists.

25. Hint: Show that any algorithm that solves the printing prob-
lem can be adapted to produce an algorithm that solves the
halting problem.

Section 7.1
1. a. domain of f = {1, 3, 5}, co-domain of f = {s, t, u, v}

b. f (1) = v, f (3) = s, f (5) = v

c. range of f = {s, v}
d. yes, no
e. inverse image of s = {3}, inverse image of u = ∅,

inverse image of v = {1, 5}
f. {(1, v), (3, s), (5, v)}

3. a. True. The definition of function says that for any input
there is one and only one output, so if two inputs are
equal, their outputs must also be equal.

c. True. The definition of function does not prohibit this
occurrence.

4. a. There are four functions from X to Y as shown below.

a

b

X Y

u

v

a

b

X Y

u

v

a

b

X Y

u

v

a

b

X Y

u

v

5. a. IZ(e) = e

b. IZ
(
b j k
i

)
= b j k

i

6. a. The sequence is given by the function f : Znonneg → R
defined by the rule

f (n) = (−1)n
2n + 1

for all nonnegative integers n.

7. a. 1 [because there is an odd number of elements in {1, 3, 4}]
c. 0 [because there is an even number of elements in {2, 3}]

8. a. F(0) = (03 + 2 ·0+ 4) mod 5 = 4 mod 5 = 4
b. F(1) = (13 + 2 ·1+ 4) mod 5 = 7 mod 5 = 2

9. a. S(1) = 1 b. S(15) = 1+ 3+ 5+ 15 = 24
c. S(17) = 1+ 17 = 18

10. a. T (1) = {1} b. T (15) = {1, 3, 5, 15}
c. T (17) = {1, 17}

11. a. F(4, 4) = (2 ·4+ 1, 3 ·4− 2) = (9, 10)
b. F(2, 1) = (2 ·2+ 1, 3 ·1− 2) = (5, 1)

12. a. G(4, 4) = ((2 ·4+ 1) mod 5, (3 ·4− 2) mod 5) =
(9 mod 5, 10 mod 5) = (4, 0)

b. G(2, 1) = ((2 ·2+ 1) mod 5, (3 ·1− 2) mod 5) =
(5 mod 5, 1 mod 5) = (0, 1)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7.1 Solutions and Hints to Selected Exercises A-59

13. x f (x) g(x)

0 42 mod 5 = 1 (02 + 3 ·0+ 1) mod 5 = 1

1 52 mod 5 = 0 (12 + 3 ·1+ 1) mod 5 = 0

2 62 mod 5 = 1 (22 + 3 ·2+ 1) mod 5 = 1

3 72 mod 5 = 4 (32 + 3 ·3+ 1) mod 5 = 4

4 82 mod 5 = 4 (42 + 3 ·4+ 1) mod 5 = 4

The table shows that f (x) = g(x) for all x in J5. Thus, by
definition of equality of functions, f = g.

15. F ·G and G ·F are equal because for all real numbers x ,
(F ·G)(x) = F(x) ·G(x) by definition of F ·G

= G(x) ·F(x) by the commutative law for
multiplication of real numbers

= (G ·F)(x) by definition of G · F .
17. a. 23 = 8 c. 41 = 4
18. a. log3 81 = 4 because 34 = 81

c. log3
(

1
27

)
= −3 because 3−3 = 1

27

19. Let b be any positive real number with b �= 1. Since b1 = b,
by definition of logarithm, logb b = 1.

21. Proof: Suppose b and u are any positive real numbers. [We

must show that logb
(
1
u

)
= − logb(u).] Let v = logb

(
1
u

)
.

By definition of logarithm, bv = 1
u . Multiplying both sides

by u and dividing by bv gives u = b−v , and thus, by defini-
tion of logarithm, −v = logb(u). Now multiply both sides
of this equation by −1 to obtain v = − logb(u). Therefore,

logb
(
1
u

)
= − logb(u) because both expressions equal v.

[This is what was to be shown.]

22. Hint: Use a proof by contradiction. Suppose log3 7 is ratio-
nal. Then log3 7 = a

b for some integers a and b with b �= 0.

Apply the definition of logarithm to rewrite log3 7 = a
b in

exponential form.

23. Suppose b and y are positive real numbers with logb y = 3.
By definition of logarithm, this implies that b3 = y. Then

y = b3 = 1
1
b3

= 1(
1
b

)3 =
(
1

b

)−3
.

Thus, by definition of logarithm (with base 1/b),
log1/b(y) = −3.

25. a. p1(2, y) = 2, p1(5, x) = 5, range of p1 = {2, 3, 5}
26. a. mod(67, 10) = 7 and div(67, 10) = 6 since 67 =

10 ·6+ 7.

27. f (aba) = 0 [because there are no b’s to the left
of the left-most a in aba]

f (bbab) = 2 [because there are two b’s to the left
of the left-most a in bbab]

f (b) = 0 [because the string b contains no a’s]

range of f = Znonneg

28. a. E(0110) = 000111111000 and
D(111111000111) = 1101

29. a. H(10101, 00011) = 3

30. a. Domain of f Co-domain of f

(1, 1)
(1, 0)
(0, 1)
(0, 0)

1

0

32. a. f (1, 1, 1)= (4 ·1+ 3 ·1+ 2 ·1) mod 2= 9 mod 2= 1
f (0, 0, 1)= (4 ·0+ 3 ·0+ 2 ·1) mod 2= 2 mod 2= 0

33. If g were well defined, then g(1/2) = g(2/4) because
1/2 = 2/4. However, g(1/2) = 1− 2 = −1 and g(2/4) =
2− 4 = −2. Since −1 �= −2, g(1/2) �= g(2/4). Thus g is
not well defined.

35. Student B is correct. If R were well defined, then R(3)
would have a uniquely determined value. However, on the
one hand, R(3) = 2 because (3 ·2) mod 5 = 1, and, on the
other hand, R(3) = 7 because (3 ·7) mod 5 = 1. Hence
R(3) does not have a uniquely determined value, and so
R is not well defined.

38. a.
a

b

c

r
s
t
u
v
w

b. f (A) = {v}, f (X) = {t, v}, f −1(C) = {c},
f −1(D) = {a, b}, f −1(E) = ∅ f −1(Y ) =
{a, b, c} = X

40. Partial answer: (a) y ∈ F(A) or y ∈ F(B), (b) some,
(c) A ∪ B, (d) F(A ∪ B)

41. The statement is true. Proof: Let F be a function from X to
Y , and suppose A ⊆ X, B ⊆ X , and A ⊆ B. Let y ∈ F(A).
[We must show that y ∈ F(B).] Then, by definition of image
of a set, y = F(x) for some x ∈ A. Since A ⊆ B, x ∈ B,
and so y = F(x) for some x ∈ B. Hence y ∈ F(B) [as was
to be shown].

43. The statement is false. Counterexample: Let X = {1, 2, 3},
let Y = {a, b}, and define a function F: X → Y by the
arrow diagram shown below.

1
2
3

a

b

F

Let A={1, 2} and B={1, 3}. Then F(A)={a, b}= F(B),
and so F(A) ∩ F(B)={a, b}. But F(A ∩ B)= F({1})=
{a} �= {a, b}. And so F(A) ∩ F(B) � F(A ∩ B).
(This is just one of many possible counterexamples.)

45. The statement is true. Proof: Let F be a function from a set
X to a set Y , and suppose C ⊆ Y, D ⊆ Y , and C ⊆ D. [We
must show that F−1(C) ⊆ F−1(D).] Suppose x ∈ F−1(C).
Then F(x) ∈ C . Since C ⊆ D, F(x) ∈ D also. Hence by
definition of inverse image, x ∈ F−1(D). [So F−1(C) ⊆
F−1(D).]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A-60 Appendix B Solutions and Hints to Selected Exercises

46. Hint: x ∈ F−1(C ∪ D)⇔ F(x) ∈ C ∪ D ⇔ F(x) ∈ C or
F(x) ∈ D

51. a. φ(15) = 8 [because 1, 2, 4, 7, 8, 11, 13, and 14
have no common factors with 15 other
than ±1]

b. φ(2) = 1 [because the only positive integer less
than or equal to 2 having no common fac-
tors with 2 other than ±1 is 1]

c. φ(5) = 4 [because 1, 2, 3, and 4 have no common
factors with 5 other than ±1]

52. Proof: Let p be any prime number and n any integer with
n ≥ 1. There are pn−1 positive integers less than or equal
to pn that have a common factor other than ±1 with pn ,
namely p, 2p, 3p, . . . , (pn−1)p. Hence, by the difference
rule, there are pn − pn−1 positive integers less than or equal
to pn that have no common factor with pn except ±1.

53. Hint: Use the result of exercise 52 with p = 2.

Section 7.2
1. The second statement is the contrapositive of the first.

2. a. most b. least

3. Hint: One counterexample is given and explained below.
Give a different counterexample and accompany it with
an explanation. Counterexample: Consider the function
defined by the following arrow diagram:

a

b

u

v

f

Observe that a is sent to exactly one element of Y , namely,
u, and b is also sent to exactly one element of Y , namely,
u also. So it is true that every element of X is sent to
exactly one element of Y . But f is not one-to-one because
f (a) = f (b) but a �= b. [Note that to say, “Every element of
X is sent to exactly one element of Y” is just another way of
saying that in the arrow diagram for the function there is only
one arrow coming out of each element of X. But this statement
is part of the definition of any function, not just of a one-to-one
function.]

4. Hint: The statement is true.

5. Hint: One of the incorrect ways is (b).

6. a. f is not one-to-one because f (1) = 4 = f (9) and 1 �=
9. f is not onto because f (x) �= 3 for any x in X .

b. g is one-to-one because g(1) �= g(5), g(1) �= g(9), and
g(5) �= g(9). g is onto because each element of Y is the
image of some element of X: 3 = g(5), 4 = g(9), and
7 = g(1).

7. a. F is not one-to-one because F(c) = x = F(d) and
c �= d. F is onto because each element of Y is the image
of some element of X: x = F(c) = F(d), y = F(a),
and z = F(b).

9. a. One example of many is the following:

1
2
3

X Y

1
2
3
4

f

10. a. (i) f is one-to-one: Suppose f (n1) = f (n2) for some
integers n1 and n2. [We must show that n1 = n2.] By
definition of f, 2n1 = 2n2, and dividing both sides
by 2 gives n1 = n2, as was to be shown.

(ii) f is not onto: Consider 1 ∈ Z. We claim that 1 �=
f (n), for any integer n, because if there were an
integer n such that 1 = f (n), then, by definition
of f, 1 = 2n. Dividing both sides by 2 would give
n = 1/2. But 1/2 is not an integer. Hence 1 �= f (n)
for any integer n, and so f is not onto.

b. h is onto: Suppose m ∈ 2Z. [We must show that there
exists an integer n such that h(n) = m.] Since m ∈ 2Z,

m = 2k for some integer k. Let n = k. Then h(n) =
2n = 2k = m. Hence there exists an integer (namely, n)
such that h(n) = m. This is what was to be shown.

11. Hints: a. (i) g is one-to-one (ii) g is not onto
b. G is onto. Proof: Suppose y is any element of R.

[We must show that there is an element x in R such that
G(x) = y. What would x be if it exists? Scratch work
shows that x would have to equal (y + 5)/4. The proof must
then show that x has the necessary properties.] Let x =
(y + 5)/4. Then (1) x ∈ R, and (2) G(x) = G((y +
5)/4) = 4[(y + 5)/4] − 5 = (y + 5)− 5 = y [as was
to be shown].

13. a. (i) H is not one-to-one: H(1) = 1 = H(−1) but
1 �= −1.

(ii) H is not onto: H(x) �= −1 for any real number x
(since no real numbers have negative squares).

14. The “proof” claims that f is one-to-one because for each
integer n there is only one possible value for f (n). But to
say that for each integer n there is only one possible value
for f (n) is just another way of saying that f satisfies one
of the conditions necessary for it to be a function. To show
that f is one-to-one, one must show that any integer n has a
different function value from that of the integerm whenever
n �= m.

15. f is one-to-one. Proof: Suppose f (x1) = f (x2) where x1
and x2 are nonzero real numbers. [We must show that x1 =
x2.] By definition of f ,

x1 + 1

x1
= x2 + 1

x2

cross-multiplying gives

x1x2 + x2 = x1x2 + x1,

and so
x1 = x2 by subtracting x1x2 from

both sides

[This is what was to be shown.]
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16. f is not one-to-one. Note that
x1

x21 + 1
= x2

x22 + 1
⇒ x1x

2
2 + x1 = x2x

2
1 + x2

⇒ x1x
2
2 − x2x

2
1 = x2 − x1

⇒ x1x2(x2 − x1) = x2 − x1

⇒ x1 = x2 or x1x2 = 1.

Thus for a counterexample take any x1 and x2 with x1 �=
x2 but x1x2 = 1. For instance, take x1 = 2 and x2 = 1/2.
Then f (x1) = f (2) = 2/5 and f (x2) = f (1/2) = 2/5,
but 2 �= 1/2.

19. a. Note that because 417302072
7

∼= 59614581.7 and

417302072− 7 ·59614581 = 5, h(417-30-2072) = 5.
But position 5 is already occupied, so the next position
is checked. It is free, and thus the record is placed in
position 6.

20. Recall that �x� = that unique integer n such that n ≤ x <

n + 1.
a. Floor is not one-to-one:

Floor(0) = 0 = Floor (1/2) but 0 �= 1/2.
b. Floor is onto: Suppose m ∈ Z. [We must show that there

exists a real number y such that Floor(y)=m.] Let y=m.
Then Floor(y) = Floor(m) = m since m is an integer.
(Actually, Floor takes the valuem for all real numbers in
the interval m ≤ x < m + 1.) Hence there exists a real
number y such that Floor(y) = m. This is what was to
be shown.

21. a. l is not one-to-one: l(0) = l(1) = 1 but 1 �= 0.
b. l is onto: Suppose n is a nonnegative integer. [We must

show that there exists a string s in S such that l(s) = n.] Let

s =
{
ε (the null string) if n = 0
00 . . . 0 if n > 0

.

︸ ︷︷ ︸
n 0’s

Then l(s) = the length of s = n. This is what was to be
shown.

23. a. F is not one-to-one: Let A = {a} and B = {b}. Then
F(A) = F(B) = 1 but A �= B.

24. b. N is not onto: The number −1 is in Z but N (s) �= −1
for any string s in S because no string has a negative
number of a’s.

26. S is not one-to-one. Counterexample: S(6) = 1+ 2+ 3+
6 = 12 and S(11) = 1+ 11 = 12. So S(6) = S(11) but
6 �= 11.
S is not onto. Counterexample: In order for there to be a
positive integer n such that S(n) = 5, n would have to
be less than 5. But S(1) = 1, S(2) = 3, S(3) = 4, and
S(4) = 7. Hence there is no positive integer n such that
S(n) = 5.

27. Hint: a. T is not one-to-one. b. T is not onto.

28. a. G is one-to-one. Proof: Suppose (x1, y1) and (x2, y2) are
any elements ofR× R such that G(x1, y1) = G(x2, y2).
[We must show that (x1, y1) = (x2, y2).] Then, by defini-
tion of G, (2y1,−x1) = (2y2,−x2), and, by definition
of ordered pair,

2y1 = 2y2 and − x1 = −x1.
Dividing both sides of the left equation by 2 and both
sides of the right equation by −1 gives that

y1 = y2 and x1 = x2,

and so, by definition of ordered pair, (x1, y1) = (x2, y2)
[as was to be shown].

b. G is onto. Proof: Suppose (u, v) is any element of
R× R. [We must show that there is an element (x, y)
in R× R such that G(x, y) = (u, v).] Let (x, y) =
(−v, u/2). Then (1) (x, y) ∈ R× R and (2) G(x, y) =
(2y,−x) = (2(u/2),−(−v)) = (u, v) [as was to be
shown.]

31. a. Hint: F is one-to-one. Use the unique factorization of
integers theorem in the proof.

32. a. Let x = log8 27 and y= log2 3. [The question is: Is
x = y?] By definition of logarithm, both of these equa-
tions can be written in exponential form as

8x = 27 and 2y = 3.

Now 8 = 23. So

8x = (23)x = 23x .

Also 27 = 33 and 3 = 2y . So

27 = 33 = (2y)3 = 23y .

Hence, since 8x = 27,

23x = 23y .

By (7.2.5), then,

3x = 3y,

and so

x = y.

But x = log8 27 and y = log2 3, and so log8 27 = y =
log2 3 and the answer to the question is yes.

33. Proof: Suppose that b, x, and y are positive real numbers
and b �= 1. Let u = logb(x) and v = logb(y). By defini-
tion of logarithm, bu = x and bv = y. By substitution, xy =
bu

bv = bu−v [by (7.2.3) and the fact that b−v = 1
bv ]. Translat-

ing x
y = bu−v into logarithmic form gives logb

(
x
y

)
= u −

v, and so, by substitution, logb
(
x
y

)
= logb(x)− logb(y)

[as was to be shown].

35. Start of Proof: Suppose a, b, and x are [particular but arbi-
trarily chosen] real numbers such that b and x are positive
and b �= 1. [We must show that logb(xa) = a logbx .] Let

r = logb(x
a) and s = logb x .

36. No. Counterexample: Define f : R→ R and g: R→ R as
follows: f (x) = x and g(x) = −x for all real numbers
x . Then f and g are both one-to-one [because for all
real number x1 and x2, if f (x1) = f (x2) then x1 = x2, and
if g(x1) = g(x2) then −x1 = −x2 and so x1 = x2 also], but
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f + g is not one-to-one [because f + g satisfies the equa-
tion ( f + g)(x) = x + (−x) = 0 for all real numbers x, and
so, for instance, ( f + g)(1) = ( f + g)(2) but 1 �= 2].

38. Yes. Proof: Let b be a one-to-one function from R to R,
and let c be any nonzero real number. Suppose (c f )(x1) =
(c f )(x2). [We must show that x1 = x2.] It follows by def-
inition of c f that c f (x1) = c f (x2). Since c �= 0, we may
divide both sides of the equation by c to obtain f (x1) =
f (x2). But since f is one-to-one, this implies that x1 = x2
[as was to be shown].

40. a. Hint: The assumption that F is one-to-one is needed
in the proof that F−1(F(A)) ⊆ A. If F(r) ∈ F(A), the
definition of image of a set implies that there is an
element x in A such that F(r) = F(x).

b. Hint: The assumption that F is one-to-one is needed
in the proof that F(A1) ∩ F(A2) ⊆ F(A1 ∩ A2). If u ∈
F(A1) and u ∈ F(A2), then the definition of image of
a set implies that there are elements x1 in A1 and x2 in
A2 such that F(x1) = u and F(x2) = u and, thus, that
F(x1) = F(x2).

42.

s
t
u
v

w

F –1

a
b
c
d
e

44. The function is not onto. Hence it is not a one-to-one cor-
respondence.

45. The answer to exercise 10(b) shows that h is onto. To show
that h is one-to-one, suppose h(n1) = h(n2). By definition
of h, this implies that 2n1 = 2n2. Dividing both sides by 2
gives n1 = n2. Hence h is one-to-one.
Given any even integer m, if m = h(n), then by definition
of h,m = 2n, and so n = m/2. Thus

h−1(m) = m

2
for all m ∈ 2Z.

46. The function g is not a one-to-one correspondence because
it is not onto. For instance, if m = 2, it is impossible to
find an integer n such that g(n) = m. (This is because if
g(n) = m, then 4n − 5 = 2, which implies that n = 7/4.
Thus the only number n with the property that g(n) = m is
7/4. But 7/4 is not an integer.)

47. The answer to exercise 11b shows that G is onto. In addi-
tion, G is one-to-one. To prove this, suppose G(x1) =
G(x2) for some x1 and x2 inR. [We must show that x1 = x2.]
By definition of G, 4x1 − 5 = 4x2 − 5. Add 5 to both
sides of this equation and divide both sides by 4 to obtain
x1 = x2 [as was to be shown]. We claim that G−1(y) =
(y + 5)/4. By definition of inverse function, this is true
if, and only if, G((y + 5)/4) = y. But G((y + 5)/4) =
4((y + 5)/4)− 5 = (y + 5)− 5 = y, so it is the case that
G−1(y) = (y + 5)/4.

50. The function is not one-to-one. Hence it is not a one-to-one
correspondence.

52. The answer to exercise 15 shows that f is one-to-one, and
if the co-domain is taken to be the set of all real numbers
not equal to 1, then f is also onto. [The reason is that given

any real number y �= 1, if we take x = 1
y−1 , then

f (x) = f

(
1

y − 1

)
=

1

y − 1
+ 1

1

y − 1

= 1+ (y − 1)

1
= y.]

f −1(y) = 1

y − 1
for each real number y �= 1.

53. Hint: Is there a real number x such that f (x) = 1?

57. Hint:Let a function F be given and suppose the
domain of F is represented as a one-dimensional array
a[1], a[2], . . . , a[n]. Introduce a variable answer whose
initial value is “one-to-one.” The main part of the body of
the algorithm could be written as follows:

while (i ≤ n − 1 and answer = “one-to-one”)
j := i + 1
while ( j ≤ n and answer = “one-to-one”)

if (F(a[i]) = F(a[ j]) and a[i] �= a[ j])
then answer := “not one-to-one”
j := j + 1

end while
i := i + 1

end while

What can you say if execution reaches this point?

58. Hint: Let a function F be given and suppose the domain and
co-domain of F are represented by the one-dimensional
arrays a[1], a[2], . . . , a[n] and b[1], b[2], . . . , b[m],
respectively. Introduce a variable answer whose initial
value is “onto.” For each b[i] from i = 1 to m, make
a search through a[1], a[2], . . . , a[n] to check whether
b[i] = F(a[ j]) for some a[ j]. Introduce a Boolean vari-
able to indicate whether a search has been successful. (Set
the variable equal to 0 before the start of each search, and
let it have the value 1 if the search is successful.) At the end
of each search, check the value of the Boolean variable. If
it is 0, then F is not onto. If all searches are successful,
then F is onto.

Section 7.3
1. g◦ f is defined as follows:

(g◦ f )(1) = g( f (1)) = g(5) = 1,

(g◦ f )(3) = g( f (3)) = g(3) = 5,

(g◦ f )(5) = g( f (5)) = g(1) = 3.

f ◦g is defined as follows:

( f ◦g)(1) = f (g(1)) = f (3) = 3,

( f ◦g)(3) = f (g(3)) = f (5) = 1,

( f ◦g)(5) = f (g(5)) = f (1) = 5.

Then g◦ f �= f ◦g because, for example, (g◦ f )(1) �=
( f ◦g)(1).
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3. (G ◦F)(x) = G(F(x)) = G(x3) = x3 − 1 for all real
numbers x .
(F ◦G)(x) = F(G(x)) = F(x − 1) = (x − 1)3 for all real
numbers x .
G ◦F �= F ◦G because, for instance, (G ◦F)(2) =
23 − 1 = 7, whereas (F ◦G)(2) = (2− 1)3 = 1.

6. (G ◦F)(0) = G(F(0)) = G(7.0) = G(0) = 0 mod 5 = 0

(G ◦F)(1) = G(F(1)) = G(7.1) = G(7) = 7 mod 5 = 2

(G ◦F)(2) = G(F(2)) = G(7.2) = G(14) = 14 mod 5 = 4

(G ◦F)(3) = G(F(3)) = G(7.3) = G(21) = 21 mod 5 = 1

(G ◦F)(4) = G(F(4)) = G(7.4) = G(28) = 28 mod 5 = 3

8. a. (L ◦M)(12) = L(M(12)) = L(12 mod 5) = L(2)

= 22 = 4

(M ◦ L)(12) = M(L(12)) = M(122) = M(144)

= 144 mod 5 = 4

(L ◦M)(9) = L(M(9)) = L(9 mod 5) = L(4)

= 42 = 16

(M ◦ L)(9) = M(L(9)) = M(92) = M(81)

= 81 mod 5 = 1

9. (F−1 ◦F)(x) = F−1(F(x)) = F−1(3x + 2)

= (3x + 2)− 2

3
= 3x

3
= x = IR(x)

for all x in R. Hence F−1 ◦F = IR by definition of equality
of functions.

(F ◦F−1)(y) = F(F−1(y)) = F

(
y − 2

3

)

= 3

(
y − 2

3

)
+ 2 = (y − 2)+ 2

= y = IR(y)

for all y in R. Hence F ◦F−1 = IR by definition of equality
of functions.

12. a. By definition of logarithm with base b, for each real
number x, logb(b

x ) is the exponent to which b must
be raised to obtain bx . But this exponent is just x . So
logb(b

x ) = x .

13. Hint: Suppose f is any function from a set X to a set Y ,
and show that for all x in X , (IY ◦ f )(x) = f (x).

15. a. sk = sm
16. No. Counterexample: Define f and g by the arrow dia-

grams below.

X

a

b

Z

x

y

Y

1

2

3

f g

Then g◦ f is one-to-one but g is not one-to-one. (So it is
false that both f and g are one-to-one by De Morgan’s
law!) (This is one counterexample among many. Can you
construct a different one?)

18. Hint: Suppose f : X → Y and g: Y → Z are functions and
g◦ f is one-to-one. Given x1 and x2 in X , if f (x1) = f (x2)
then (g◦ f )(x1) = (g◦ f )(x2). (Why?) Then use the fact
that g◦ f is one-to-one.

19. Hint: Suppose f : X → Y and g: Y → Z are functions and
g◦ f is onto. Given z ∈ Z , there is an element x in X such
that (g◦ f )(x) = z. (Why?) Let y = f (x). Then g(y) = z.

21. True. Proof: Suppose X is any set and f, g, and h are func-
tions from X to X such that h is one-to-one and h ◦ f =
h ◦g. [We must show that for all x in X, f (x) = g(x).] Sup-
pose x is any element in X . Because h ◦ f = h ◦g, we
have that (h ◦ f )(x) = (h ◦g)(x) by definition of equality of
functions. Then, by definition of composition of functions,
h( f (x) = h(g(x)). But since h is one-to-one, this implies
that f (x) = g(x) [as was to be shown].

23.
X Z

u
v

w

a
b
c

g* f

XZ

u
v

w

a
b
c

 f –1*g–1

Z X

u
v

w

a
b
c

(g* f )–1

Z Y

u
v

w

x
y
z

g–1 Y X

x
y
z

a
b
c

f –1

The functions (g◦ f )−1 and f −1◦g−1 are equal.
26. Hints: (1) Theorems 7.3.3 and 7.3.4 taken together insure

that g◦ f is one-to-one and onto. (2) Use the inverse func-
tion property: F−1(b) = a ⇔ F(a) = b, for all a in the
domain of F and b in the domain of F−1.

Section 7.4
1. The student should have replied that for A to have the same

cardinality as B means that there is a function from A to B
that is one-to-one and onto. A set cannot have the property
of being one-to-one or onto another set; only a function can
have these properties.

2. Define a function f : Z+ → S as follows: For all positive
integers k, f (k) = k2.
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f is one-to-one: [We must show that for all k1, k2 ∈ Z+, if
f (k1) = f (k2) then k1 = k2.] Suppose k1 and k2 are positive
integers and f (k1)= f (k2). By definition of f, (k1)2=(k2)2,
so k1 = ±k2. But k1 and k2 are positive. Hence k1 = k2.

f is onto: [We must show that for all n ∈ S, there exists
k ∈ Z+ such that n = f (k).] Suppose n ∈ S. By definition
of S, n = k2 for some positive integer k. But then by defi-
nition of f, n = f (k).
Since there is a one-to-one, onto function (namely, f ) from
Z+ to S, the two sets have the same cardinality.

3. Define f : Z→ 3Z by the rule f (n) = 3n for all integers n.
The function f is one-to-one because for any integers n1

and n2, if f (n1) = f (n2) then 3n1 = 3n2 and so n1 = n2.
Also f is onto because if m is any element in 3Z, then m =
3k for some integer k. But then f (k) = 3k = m by defini-
tion of f . Thus, since there is a function f : Z→ 3Z that is
one-to-one and onto, Z has the same cardinality as 3Z.

6. Hint: If m ∈ 2Z, show that J (m) = J (m + 1) = m.

7. b. For each positive integer n, F(n) = (−1)n
⌊
n
2

⌋
.

8. It was shown in Example 7.4.2 that Z is countably infi-
nite, which means that Z+ has the same cardinality as Z.
By exercise 3, Z has the same cardinality as 3Z. It follows
by the transitive property of cardinality (Theorem 7.4.1 (c))
that Z+ has the same cardinality as 3Z. Thus 3Z is count-
ably infinite [by definition of countably infinite], and hence
3Z is countable [by definition of countable].

10. Proof: Define f : S→ U by the rule f (x) = 2x for all real
numbers x in S. Then f is one-to-one by the same argu-
ment as in exercise 10a of Section 7.2 with R in place of
Z. Furthermore, f is onto because if y is any element in U ,
then 0 < y < 2 and so 0 < y/2 < 1. Consequently, y/2 ∈
S and f (y/2) = 2(y/2) = y. Hence f is a one-to-one cor-
respondence, and so S and U have the same cardinality.

11. Hint: Define h: S→ V as follows: h(x) = 3x + 2, for all
x ∈ S.

13.

y = tan   x –
2( )

0.5 x

y

1

It is clear from the graph that f is one-to-one (since it is
increasing) and that the image of f is all of R (since the
lines x = 0 and x = 1 are vertical asymptotes). Thus S and
R have the same cardinality.

16. In Example 7.4.4 it was shown that there is a one-to-one
correspondence from Z+ to Q+. This implies that the posi-
tive rational numbers can be written as an infinite sequence:
r1, r2, r3, r4, . . . .Now the setQ of all rational numbers con-
sists of the numbers in this sequence together with 0 and
the negative rational numbers:−r1,−r2,−r3,−r4, . . . . Let
r0 = 0. Then the elements of the set of all rational numbers
can be “counted” as follows:

r0, r1,−r1, r2,−r2, r3,−r3, r4,−r4, . . . .
In other words, we can define a one-to-one correspondence

G(n) =
{
rn/2 if n is even
−r(n−1)/2 if n is odd

for all integers n ≥ 1.

Therefore, Q is countably infinite and hence countable.

18. Hint: No.

19. Hint: Suppose r and s are real numbers with s > r > 0.

Let n be an integer such that n >

√
2

s−r . Then s − r >

√
2
n .

Let m =
⌊
nr√
2

⌋
+ 1. Then m >

nr√
2
≥ m − 1. Use the

fact that s = r + (s − r) to show that r <

√
2m
n < s.

22. Hint: Use the unique factorization of integers theorem
(Theorem 4.3.5) and Theorem 7.4.3.

23. a. Define a function G: Znonneg → Znonneg × Znonneg as fol-
lows: Let G(0) = (0, 0), and then follow the arrows in
the diagram, letting each successive ordered pair of inte-
gers be the value of G for the next successive inte-
ger. Thus, for instance, G(1) = (1, 0), G(2) = (0, 1),
G(3) = (2, 0), G(4) = (1, 1), G(5) = (0, 2), G(6) =
(3, 0), G(7) = (2, 1), G(8) = (1, 2), and so forth.

b. Hint: Observe that if the top ordered pair of any given
diagonal is (k, 0), the entire diagonal (moving from top
to bottom) consists of (k, 0), (k − 1, 1), (k − 2, 2), . . . ,
(2, k − 2), (1, k − 1), (0, k). Thus for all the ordered
pairs (m, n) within any given diagonal, the value of
m + n is constant, and as you move down the ordered
pairs in the diagonal, starting at the top, the value of the
second element of the pair keeps increasing by 1.

25. Hint: There are at least two different approaches to this
problem. One is to use the method discussed in Section 4.2.
Another is to suppose that 1.999999 . . . < 2 and derive
a contradiction. (Show that the difference between 2 and
1.999999 . . . can be made smaller than any given positive
number.)

26. Proof: Let A be an infinite set. Construct a countably infi-
nite subset a1, a2, a3, . . . of A, by letting a1 be any element
of A, letting a2 be any element of A other than a1, letting a3
be any element of A other than a1 or a2, and so forth. This
process never stops (and hence a1, a2, a3, . . . is an infinite
sequence) because A is an infinite set. More formally,
1. Let a1 be any element of A.
2. For each integer n ≥ 2, let an be any element of A −
{a1, a2, a3, . . . , an−1}. Such an element exists, for other-
wise A − {a1, a2, a3, . . . , an−1} would be empty and A
would be finite.
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27. Proof: Suppose A is any countably infinite set, B is any
set, and g: A→ B is onto. Since A is countably infi-
nite, there is a one-to-one correspondence f : Z+ → A.
Then, in particular, f is onto, and so by Theorem 7.3.4,
g◦ f is an onto function from Z+ to B. Define a func-
tion h: B → Z+ as follows: Suppose x is any element
of B. Since g◦ f is onto, {m ∈ Z+ | (g◦ f )(m) = x} �= ∅.
Thus, by the well-ordering principle for the integers, this
set has a least element. In other words, there is a least
positive integer n with (g◦ f )(n) = x . Let h(x) be this
integer.

We claim that h is a one-to-one. For suppose h(x1) =
h(x2) = n. By definition of h, n is the least positive inte-
ger with (g◦ f )(n) = x1. But also by definition of h, n
is the least positive integer with (g◦ f )(n) = x2. Hence
x1 = (g◦ f )(n) = x2.

Thus h is a one-to-one correspondence between B and a
subset S of positive integers (the range of h). Since any
subset of a countable set is countable (Theorem 7.4.3), S
is countable, and so there is a one-to-one correspondence
between B and a countable set. Hence, by the transitive
property of cardinality, B is countable.

29. Hint: Suppose A and B are any two countably infinite sets.
Then there are one-to-one correspondences f : Z+ → A
and g : Z+ → B.
Case 1 (A ∩ B = ∅): In this case define h : Z+ → A ∪ B
as follows: For all integers n ≥ 1,

h(n)

{
f (n/2) if n is even

g((n + 1)/2) if n is odd.

Show that h is one-to-one and onto.
Case 2 (A ∩ B �∈ ∅): In this case let C = B − A. Then
A ∪ B = A ∪ C and A ∩ C = ∅. If C is countably infinite,
use the result of case 1 to complete the proof. If C is finite,
use the result of exercise 28 to complete the proof.

30. Hint:Use proof by contradiction and the fact that the set of
all real numbers is uncountable.

31. Hint:Consider the following cases: (1) A and B are both
finite, (2) at least one of A or B is infinite and A ∩ B = ∅,
(3) at least one of A or B is infinite and A ∩ B �= ∅. In case
3 use the fact that A ∪ B = (A − B) ∪ (B − A) ∪ (A ∩ B)

and that the sets (A − B), (B − A), and (A ∩ B) are mutu-
ally disjoint.

32. Hint:Use the one-to-one correspondence F: Z+ → Z of
Example 7.4.2 to define a function G: Z+ × Z+ → Z× Z
by the formula G(m, n) = (F(m), F(n)). Show that G is
a one-to-one correspondence, and use the result of exercise
22 and the transitive property of cardinality.

34. Hint for Solution 1:Define a function f :P(S)→ T as
follows: For each subset A of S, let f (A) = χA, the
characteristic function of A, where χA: S→ {0, 1} is
defined by the rule

χA(x) =
{
1 if x ∈ A

0 if x /∈ A for all x ∈ S
.

Show that f is one-to-one (for all A1, A2 ⊆ S, if χA1 =
χA2 then A1 = A2) and that f is onto (given any function
g: S→ {0, 1}, there is a subset A of S such that g = χA).

Hint for Solution 2: Define H: T →P(S) by letting
H( f ) = {x ∈ S | f (x) = 1}. Show that H is a one-to-one
correspondence?

35. Partial proof (by contradiction): Suppose not. Suppose
there is a one-to-one, onto function f : S→P(S). Let

A = {x ∈ S | x /∈ f (x)}.
Then A ∈P(S) and since f is onto, there is a z ∈ S such
that A = f (z). [Now derive a contradiction!]

37. Hint: Since A and B are countable, their elements can be
listed as

A: a1, a2, a3, . . . and B: b1, b2, b3, . . .
Represent the elements of A × B in a grid:

(a1, b1) (a1, b2) (a1, b3) . . .

(a2, b1) (a2, b2) (a2, b3) . . .

(a3, b1) (a3, b2) (a3, b3) . . .

...
...

...

Now use a counting method similar to that of Exam-
ple 7.4.4.

Section 8.1
1. a. 0 E 0 because 0− 0 = 0 = 2 ·0, so 2 | (0− 0).

5 �E 2 because 5− 2 = 3 and 3 �= 2k for any integer k
so 2 � | (5− 2).
(6, 6) ∈ E because 6− 6 = 0 = 2 ·0, so 2 | (6− 6).
(−1, 7) ∈ E because −1− 7 = −8 = 2 ·(−4), so
2 | (−1− 7).

2. Hint: To show a statement of the form p↔ (q ∨ r), you
need to show p→ (q ∨ r) and (q ∨ r)→ p. To show
a statement of the form p→ (q ∨ r), you can show
(p∧ ∼q)→ r (since these two statement forms are log-
ically equivalent). To show a statement of the form
(q ∨ r)→ p, you can show (q → p) ∧ (r → p) (since
these two statement forms are logically equivalent). In this
case, supposem and n are any integers, and let p be “m − n
is even,” let q be “m and n are both even,” and let r be
“m − n is even,” let q be “m and n are both even,” and let r
be “m and n are both odd.”

3. a. 10 T 1 because 10− 1 = 9 = 3 ·3, so 3 | (10− 1).
1 T 10 because 1− 10 = −9 = 3 ·(−3), so 3 | (1− 10).
2 T 2 because 2− 2 = 0 = 3 ·0, so 3 | (2− 2).
8 T/ 1 because 8− 1 = 7 �= 3k, for any integer k. So

3 � | (8− 1).
b. One possible answer: 3, 6, 9,−3,−6
e. Hint: All integers of the form 3k + 1, for some integer

k, are related by T to 1.
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4. a. Yes, because 15 and 25 are both divisible by 5, which is
prime.

b. No, because 22 and 27 have no common prime factor.

5. a. Yes, because both {a, b} and {b, c} have two elements.

6. a. No, because {a} ∩ {c} = ∅.
7. a. Yes. 1 R(−9)⇔ 5|(12 − (−9)2). But 12 − (−9)2 =

1− 81 = −80, and 5|(−80) because −80 = 5 · (−16).
8. a. Yes, because both abaa and abba have the same first

two characters ab.
b. No, because the first two characters of aabb are different

from the first two characters of bbaa.

9. a. Yes, because the sum of the characters in 0121 is 4 and
the sum of the characters in 2200 is also 4.

b. No, because the sum of the characters in 1011 is 3
whereas the sum of the characters in 2101 is 4.

10. R = {(3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)}
R−1 = {(4, 3), (5, 3), (6, 3), (5, 4), (6, 4), (6, 5)}

12. a. No. If F: X → Y is not onto, then F−1 is not defined
on all of Y . In other words, there is an element y in
Y such that (y, x) /∈ F−1 for any x ∈ X . Consequently,
F−1 does not satisfy property (1) of the definition of
function.

13.

0

2

1

3

15.

2

3

8

4

5

6

7

16. Hint: See Example 8.1.6.

19. A × B = {(2, 6), (2, 8), (2, 10), (4, 6), (4, 8), (4, 10)}
R = {(2, 6), (2, 8), (2, 10), (4, 8)}
S = {(2, 6), (4, 8)}
R ∪ S = R, R ∩ S = S

21.

x

y

The shaded region
is R.  The dashed
line is not included.

x

y

S consists of the
points on this line.

x

y

The shaded region
is R    S.  The line
y = x is included.

Note that the union of the
“less than” relation, <, and
the “equals” relation, =, is
the “less than or equal to”
relation,   .

The graph of the intersection of R and S is obtained by
finding the set of all points common to both graphs. But
there are no points for which both x < y and x = y. Hence
R ∩ S = ∅ and the graph consists of no points at all.

24. a. 574329 Tak Kurosawa
011985 John Schmidt

Section 8.2
1. R1:

a.

0

2

1

3

b. R1 is not reflexive: 2 �R1 2.
c. R1 is not symmetric: 2 R1 3 but 3 �R1 2.
d. R1 is not transitive: 1 R1 0 and 0 R1 3 but 1 �R1 3.

3. R3:
a.

2 3

0 1
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b. R3 is not reflexive: (0, 0) /∈ R3

c. R3 is symmetric. (If R3 were not symmetric, there
would be elements x and y in A = {0, 1, 2, 3} such that
(x, y) ∈ R3 but (y, x) /∈ R3. It is clear by inspection that
no such elements exist.)

d. R3 is not transitive: (2, 3) ∈ R3 and (3, 2) ∈ R3 but
(2, 2) /∈ R3

6. R6:
a.

2 3

0 1

b. R6 is not reflexive: (0, 0) /∈ R6

c. R6 is not symmetric: (0, 1) ∈ R6 but (1, 0) /∈ R6.
d. R6 is transitive. (If R6 were not transitive, there would be

elements x, y, and z in {0, 1, 2, 3} such that (x, y) ∈ R6

and (y, z) ∈ R6 and (x, z) /∈ R6. It is clear by inspection
that no such elements exist.)

9. R is reflexive: R is reflexive ⇔ for all real numbers
x, x R x . By definition of R, this means that for all real
numbers x, x ≥ x . In other words, for all real numbers
x, x > x or x = x . But this is true.
R is not symmetric: R is symmetric⇔ for all real numbers
x and y, if x R y then y R x . By definition of R, this means
that for all real numbers x and y, if x ≥ y then y ≥ x . But
this is false. As a counterexample, take x = 1 and y = 0.
Then x ≥ y but y � x because 1 ≥ 0 but 0 � 1.
R is transitive: R is transitive⇔ for all real numbers x, y,
and z, if x R y and y R z then x R z. By definition of R,
this means that for all real numbers x, y and z, if x ≥ y and
y ≥ z then x ≥ z. But this is true by definition of ≥ and
the transitive property of order for the real numbers. (See
Appendix A, T18.)

11. D is reflexive: For D to be reflexive means that for all real
numbers x, x D x . But by definition of D, this means that
for all real numbers x, xx = x2 ≥ 0, which is true.
D is symmetric: For D to be symmetric means that for all
real numbers x and y, if x D y then y D x . But by defini-
tion of D, this means that for all real numbers x and y, if
xy ≥ 0 then yx ≥ 0, which is true by the commutative law
of multiplication.
D is not transitive: For D to be transitive means that for all
real numbers x, y, and z, if x D y and y D z then x D z. By
definition of D, this means that for all real numbers x, y,
and z, if xy ≥ 0 and yz ≥ 0 then xz ≥ 0. But this is false:
there exist real numbers x, y, and z such that xy ≥ 0 and
yz ≥ 0 but xz � 0. As a counterexample, let x = 1, y = 0,
and z = −1. Then x D y and y D z because 1 ·0 ≥ 0 and
0 ·(−1) ≥ 0. But x �D z because 1 · (−1) � 0.

12. E is reflexive: [We must show that for all integers m,
m E m.] Suppose m is any integer. Since m − m = 0 and
2 | 0, we have that 2 | (m − m). Consequently, m E m by
definition of E .

E is symmetric: [We must show that for all integers m and n,
if m E n then n E m.] Supposem and n are any integers such
that m E n. By definition of E , this means that 2 | (m − n),
and so, by definition of divisibility, m − n = 2k for some
integer k. Now n − m = −(m − n). Hence, by substitu-
tion, n − m = −(2k) = 2(−k). It follows that 2 | (n − m)

by definition of divisibility (since −k is an integer), and
thus n E m by definition of E .

E is transitive: [We must show that for all integers m, n and
p if m E n and n E p then m E p.] Suppose m, n, and p
are any integers such that m E n and n E p. By defini-
tion of E this means that 2 | (m − n) and 2 | (n − p), and
so, by definition of divisibility, m − n = 2k for some inte-
ger k and n − p = 2l for some integer l. Now m − p =
(m − n)+ (n − p). Hence, by substitution, m − p = 2k +
2l = 2(k + l). It follows that 2 | (m − p) by definition of
divisibility (since k + l is an integer), and thusmEp by def-
inition of E .

15. D is reflexive: [We must show that for all positive integers
m,m D m.] Suppose m is any positive integer. Since m =
m ·1, by definition of divisibility m |m. Hence m D m by
definition of D.

D is not symmetric: For D to be symmetric would mean
that for all positive integers m and n, if m D n then n D m.
By definition of divisibility, this would mean that for all
positive integers m and n, if m | n then n |m. But this is
false. As a counterexample, take m = 2 and n = 4. Then
m | n because 2 | 4 but n � | m because 4 � | 2.
D is transitive: To prove transitivity of D, we must show
that for all positive integers m, n, and p, if m D n and
n D p then m D p. By definition of D, this means that
for all positive integers m, n, and p, if m | n and n | p then
m | p. But this is true by Theorem 4.3.3 (the transitivity of
divisbility).

18. Hint: Q is reflexive, symmetric, and transitive.

20. E is reflexive: E is reflexive⇔ for all subsets A of X , A E A.
By definition of E, this means that for all subsets A of X, A

has the same number of elements as A. But this is true.

E is symmetric: E is symmetric⇔ for all subsets A and B

of X , if A E B then B E A. By definition of E, this means
that if A has the same number of elements as B, then B has
the same number of elements as A. But this is true.

E is transitive: E is transitive ⇔ for all subsets A, B, and
C of X , if A E B and B E C, then A E C. By definition of
E, this means that for all subsets, A, B, and C of X , if A has
the same number of elements as B and B has the number of
elements as C, then A has the same number of elements as
C. But this is true.

23. S is reflexive: S is reflexive⇔ for all subsets A of X, ASA.
By definition of S, this means that for all subsets A of
X, A ⊆ A. But this is true because every set is a subset of
itself.

S is not symmetric: S is symmetric⇔ for all subsets A and
B of X , if ASB then BSA. By definition of S, this means
that for all subsets A and B of X , if A ⊆ B then B ⊆ A. But
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this is false because X �= ∅ and so there is an element a
in X . As a counterexample, take A = ∅, and B = {a}. Then
A ⊆ B but B � A.

S is transitive: S is transitive⇔ for all subsets A, B, and C

of X , if ASB and BSC, then A S C. By definition of S, this
means that for all subsets A, B, and C of X , if A ⊆ B and
B ⊆ C then A ⊆ C. But this is true by the transitive prop-
erty of subsets (Theorem 6.2.1 (3)).

25. R is reflexive: Suppose s is any string in A. Then s R s
because s has the same first two characters as s.

R is symmetric: Suppose s and t are any strings in A such
that s R t. By definition of R, s has the same first two char-
acters as t . It follows that t has the same first two characters
as s, and so t R s.

R is transitive: Suppose s, t, and u, are any strings in A such
that s R t and t R u. By definition of R, s has the same first
two characters as t and t has the same first two characters
as u. It follows that s has the same two characters as u, and
so s R u.

27. I is reflexive: [We must show that for all statements p, p I p.]
Suppose p is a statement. The only way a conditional state-
ment can be false is for its hypothesis to be true and its
conclusion false. Consider the statement p→ p. Both the
hypothesis and the conclusion have the same truth value.
Thus it is impossible for p→ p to be false, and so p→ p
must be true.
I is not symmetric: I is symmetric ⇔ for all statements p
and q, if p I q then q I p. By definition of I, this means
that for all statements p and q, if p→ q then q → p. But
this false. As a counterexample, let p be the statement “10
is divisible by 4” and let q be “10 is divisible by 2.” Then
p→ q is the statement “If 10 is divisible by 4, then 10
is divisible by 2.” This is true because its hypothesis, p,
is false. On the other hand, q → p is the statement “If 10
is divisible by 2, then 10 is divisible by 4.” This is false
because its hypothesis, q, is true and its conclusion, p, is
false.
I is transitive: [We must show that for all statements p, q, and
r, if p I q and q I r then p I r .] Suppose p, q, and r are
statements such that p I q and q I r . By definition of I, this
means that p→ q and q → r are both true. By transitivity
of if-then (Example 2.3.6 and exercise 20 of Section 2.3),
we can conclude that p→ r is true. Hence, by definition of
I, p, I r .

28. F is reflexive: F is reflexive⇔ for all elements (x, y) in R
× R, (x, y) F (x, y). By definition of F, this means that for
all elements (x, y) in R× R, x = x . But this is true.
F is symmetric: [We must show that for all elements
(x1, y1) and (x2, y2) in R× R, if (x1, y1)F(x2, y2) then
(x2, y2)F(x1, y1).] Suppose (x1, y1) and (x2, y2) are ele-
ments of R× R such that (x1, y1), F(x2, y2). By definition
of F, this means that x1 = x2. By symmetry of equality,
x2 = x1. Thus, by definition of F, (x2, y2)F(x1, y1).
F is transitive: [We must show that for all elements
(x1, y1), (x2, y2) and (x3, y3) in R× R, if (x1, y1)F(x2, y2)
and (x2, y2)F(x3, y3) then (x1, y1)F(x3, y3).] Suppose

(x1, y1), (x2, y2), and (x3, y3) are elements of R× R
such that (x1, y1)F(x2, y2) and (x2, y2)F(x3, y3). By def-
inition of F, this means that x1 = x2 and x2 = x3. By
transitivity of equality, x1 = x3. Hence, by definition of
F, (x1, y1)F(x3, y3).

31. R is reflexive: R is reflexive⇔ for all people p in A, p R p.
By definition of R, this means that for all people p living
in the world today, p lives within 100 miles of p. But this
is true.
R is symmetric: [We must show that for all people p and q in
A, if p R q then q R p.] Suppose p and q are people in A
such that p R q . By definition of R, this means that p lives
within 100 miles of q. But this implies that q lives within
100 miles of p. So, by definition of R, q R p.

R is not transitive: R is transitive ⇔ for all people p, q
and r , if p R q and q R r then p R r . But this is false. As
a counterexample, take p to be an inhabitant of Chicago,
Illinois, q an inhabitant of Kankakee, Illinois, and r an
inhabitant of Champaign, Illinois. Then p R q because
Chicago is less then 100 miles from Kankakee, and q R r
because Kankakee is less than 100 miles from Champaign,
but p �R r because Chicago is not less than 100 miles from
Champaign.

34. Proof: Suppose R is any reflexive relation on a set A. [We
must show that R−1 is reflexive. To show this, we must show
that for all x in A, x R−1 x.] Given any element x in A, since
R is reflexive, x R x, and by definition of relation, this means
that (x, x) ∈ R. It follows, by definition of the inverse of a
relation, that (x, x) ∈ R−1, and so, by definition of relation,
x R−1 x [as was to be shown].

37. a. R ∩ S is reflexive: Suppose R and S are reflexive. [To
show that R ∩ S is reflexive, we must show that ∀x ∈ A,

(x, x) ∈ R ∩ S.] So suppose x ∈ A. Since R is reflexive,
(x, x) ∈ R, and since S is reflexive, (x, x) ∈ S. Thus,
by definition of intersection, (x, x) ∈ R ∩ S [as was to
be shown].

38. Hint: The answer is yes.

41. Yes. To prove this we must show that for all x and y in A, if
(x, y) ∈ R ∪ S then (y, x) ∈ R ∪ S. So suppose (x, y) is a
particular but arbitrarily chosen element in R ∪ S. [We must
show that (y, x) ∈ R ∪ S.] By definition of union, (x, y) ∈
R or (x, y) ∈ S. If (x, y) ∈ R, then (y, x) ∈ R because
R is symmetric. Hence (y, x) ∈ R ∪ S by definition of
union. But also, if (x, y) ∈ S then (y, x) ∈ S because
S is symmetric. Hence (y, x) ∈ R ∪ S by definition of
union. Thus, in either case, (y, x) ∈ R ∪ S [as was to be
shown].

43. R1 is not irreflexive because (0, 0) ∈ R1. R1 is not asym-
metric because (0, 1) ∈ R1 and (1, 0) ∈ R1. R1 is not
intransitive because (0, 1) ∈ R1 and (1, 0) ∈ R1 and
(0, 0) ∈ R1.

45. R3 is irreflexive. R3 is not asymmetric because (2, 3) ∈ R3

and (3, 2) ∈ R3. R3 is intransitive.

48. R6 is irreflexive. R6 is asymmetric. R6 is intransitive (by
default).
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51. Rt = R ∪ {(0, 0), (0, 3), (1, 0), (3, 1), (3, 2), (3, 3),
(0, 2), (1, 2)}

= {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2),
(1, 3), (2, 2), (3, 0), (3, 1), (3, 2)(3, 3)}

54. Algorithm—Test for Reflexivity
[The input for this algorithm is a binary relation R defined
on a set A, that is represented as the one-dimensional array
a[1], a[2], . . . , a[n]. To test whether R is reflexive, the variable
answer is initially set equal to “yes,” and each element a[i] of
A is examined in turn to see whether it is related by R to itself.
If any element is not related to itself by R, then answer is set
equal to “no,” the while loop is not repeated, and processing
terminates.]

Input: n [a positive integer], a[1], a[2], . . . , a[n] [a one-
dimensional array representing a set A], R [a subset
of A × A]

Algorithm Body:

i := 1, answer := “yes”
while (answer = “yes” and i ≤ n)

if (a[i], a[i]) /∈ R then answer := “no”
i := i + 1

end while

Output: answer [a string]

Section 8.3
1. a. cRc b. bRa, cRb, eRd c. aRc

d. cRc, bRa, cRb, eRd, aRc, cRa

2. a. R = {(0, 0), (0, 2), (1, 1), (2, 0), (2, 2), (3, 3), (3, 4),
(4, 3), (4, 4)}

3. {0, 4}, {1, 3}, {2}
5. {1, 5, 9, 13, 17}, {2, 6, 10, 14, 18}, {3, 7, 11, 15, 19},
{4, 8, 12, 16, 20}

7. {(1, 3), (3, 9)}, {(2, 4), (−4,−8), (3, 6)}, {(1, 5)}
8. {∅}, {{a}, {b}, {c}}, {{a, b}, {a, c}, {b, c}}, {{a, b, c}}

11. [0] = {x ∈ A | 4 | (x2 − 0)} = {x ∈ A | 4 | x2} =
{−4,−2, 0, 2, 4} [1] = {x ∈ A | 4 | (x2 − 12)} =
{x ∈ A | 4 | (x2 − 1)} = {−3,−1, 1, 3}

13. {aaaa, aaab, aaba, aabb}, {abaa, abab, abba, abbb},
{baaa, baab, baba, babb}, {bbaa, bbab, bbba, bbbb}

15. a. True. 17− 2 = 15 and 5 | 15.
16. a. [7] = [4] = [19], [−4] = [17], [−6] = [27]
17. a. Proof: Suppose that m and n are integers such that

m ≡ n (mod 3). [We must show that m mod 3 = n mod 3.]
By definition of congruence, 3 | (m − n), and so by
definition of divisibility, m − n = 3k for some integer
k. Let m mod 3r =. Then m = 3l + r for some inte-
ger l. Since m − n = 3k, then by substitution, (3l +
r)− n = 3k, or, equivalently, n = 3(l − k)+ r . Since
l − k is an integer and 0 ≤ r < 3, it follows, by def-
inition of mod, that n mod 3 = r also. So m mod 3 =
n mod 3.

Suppose that m and n are integers such that
m mod 3 = n mod 3. [We must show that m ≡ n (mod 3).]
Let r = m mod 3 = nmod 3. Then, by definition of
mod, m = 3p + r and n = 3q + r for some integers
p and q. By substitution, m − n = (3p + r)− (3q +
r) = 3(p − q). Since p − q is an integer, it follows that
3 | (m − n), and so, by definition of congruence, m ≡ n
(mod 3).

18. a. For example, let A = {1, 2} and B = {2, 3}. Then A �=
B, so A and B are distinct. But A and B are not disjoint
since 2 ∈ A ∩ B.

19. a. (1) Proof: R is reflexive because it is true that for each
student x at a college, x has the same major (or double
major) as x .
R is symmetric because it is true that for all students
x and y at a college, if x has the same major (or double
major) as y, then y has the same major (or double major)
as x .
R is transitive because it is true that for all students x, y,
and z at a college, if x has the same major (or double
major) as y and y has the same major (or double major)
as z, then x has the same major (or double major) as z.
R is an equivalence relation because it is reflexive, sym-
metric, and transitive.

(2) There is one equivalence class for each major and
double major at the college. Each class consists of all
students with that major (or double major).

20. (1) Hint: See the solution to exercise 15 in Section 10.2.
(2) Two distinct classes: {x ∈ Z | x = 2k, for some integer k}
and {x ∈ Z | x = 2k + 1, for some integer k}.

25. (1) Proof: A is reflexive because each real number has the
same absolute value as itself.
A is symmetric because for all real numbers x and y, if
|x | = |y| then |y| = |x |.
A is transitive because for all real numbers x, y, and z, if
|x | = |y| and |y| = |z| then |x | = |z|.
A is an equivalence relation because it is reflexive, symmet-
ric, and transitive.

(2) The distinct classes are all sets of the form {x,−x},
where x is a real number.

26. Hints: (1) D is reflexive, symmetric, and transitive. The
proofs are very similar to the proofs in exercise 17.

(2) There are two distinct equivalence classes. Note that
m2 − n2 = (m − n)(m + n) for all integers m and n. In
addition, 3 | (m − n) or 3 | (m + n)⇔ either m − n = 3r
or m + n = 3r , for some integer r

28. (1) Proof: I is reflexive because the difference between
each real number and itself is 0, which is an integer.

I is symmetric because for all real numbers x and y, if
x − y is in integer, then y − x = (−1)(x − y), which is
also an integer.

I is transitive because for all real numbers x, y, and z, if
x − y is an integer and y − z is an integer, then x − z =
(x − y)+ (y − z) is the sum of two integers and thus an
integer.
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I is an equivalence relation because it is reflexive, symmet-
ric, and transitive.

(2) There is one class for each real number x with 0 ≤ x <

1. The distinct classes are all sets of the form {y ∈ R | y =
n + x, for some integer n}, where x is a real number such
that 0 ≤ x < 1.

29. (1) Proof: P is reflexive because each ordered pair of real
numbers has the same first element as itself.
P is symmetric for the following reason: Suppose (w, x)
and (y, z) are ordered pairs of real numbers such that
(w, x)P(y, z). Then, by definition of P, w = y. But by the
symmetric property of equality, this implies that y = w,
and so, by definition of P, (y, z)P(w, x).
P is transitive for the following reason: Suppose
(u, v), (w, x), and (y, z) are ordered pairs of real numbers
such that (u, v)P(w, x) and (w, x)P(y, z). Then, by defini-
tion of P, u = w and w = y. But by the transitive property
of equality, this implies that u = w, and so, by definition of
P, (u, v)P(w, x).
P is an equivalence relation because it is reflexive, symmet-
ric, and transitive.

(2) There is one equivalence class for each real number.
The distinct equivalence classes are all sets of ordered pairs
{(x, y) ∈ R× R | x = a}, for each real number a. Equiva-
lently, the equivalence classes consist of all vertical lines in
the Cartesian plane.

32. Solution for (2): There is one equivalence class for each real
number t such that 0 ≤ t < π . One line in each class goes
through the origin, and that line makes an angle of t with
the positive horizontal axis.

line L

t

Alternatively, there is one equivalence class for every pos-
sible slope: all real numbers plus “undefined.”

34. No. If points p, q, and r all lie on a straight line with q in
the middle, and if p is c units from q and q is c units from
r , than p is more then c units from r .

36. Proof: Suppose R is an equivalence relation on a set A and
a ∈ A. Because R is an equivalence relation, R is reflex-
ive, and because R is reflexive, each element of A is related
to itself by R. In particular, a R a. Hence by definition of
equivalence class, a ∈ [a].

38. Proof: Suppose R is an equivalence relation on a set A and
a, b, and c are elements of A with b R c and c ∈ [a]. Since
c ∈ [a], then c R a by definition of equivalence class. But R
is transitive since R is an equivalence relation. Thus since
b R c and c R a, then b R a. It follows that b ∈ [a] by
definition of class.

40. Proof: Suppose a, b and x are in A, a R b, and x ∈ [a]. By
definition of equivalence class, x R a. So x R a and a R b,
and thus, by transitivity, x R b. Hence x ∈ [b].

41. Hint: To show that [a] = [b], show that [a] ⊆ [b] and [b] ⊆
[a]. To show that [a] ⊆ [b], show that for all x in A, if
x ∈ [a] then x ∈ [b].

42. c. For example (2, 6), (−2,−6), (3, 9), (−3,−9).
43. a. Suppose that (a, b), (a′, b′), (c, d) and (c′, d ′) are

any elements of A such that [(a, b)] = [(a′, b′)] and
[(c, d)] = [(c′, d ′)]. By definition of the relation, ab′ =
ba′ (*) and cd ′ = dc′ (**). We must show that [(a, b)] +
[(c, d)] = [(a′, b′)] + [(c′, d ′)]. By definition of the
addition, this equation is true if, and only if,

[(ad + bc, bd)] = [(a′d ′ + b′c′, b′d ′)].
And, by definition of the relation, this equation is true if,
and only if,

(ad + bc)b′d ′ = bd(a′d ′ + b′c′),

which is equivalent to

adb′d ′ + bcb′d ′ = bda′d ′ + bdb′c′, by multiplying out.

But this equation is equivalent to

(ab′)(dd ′)+ (cd ′)(bb′)

= (ba′)(dd ′) + (dc′)(bb′) by regrouping

and, by substitution from (*) and (**), this last equation
is true.

c. Suppose that (a, b) is any element of A. We must show
that [(a, b)] + [(0, 1)] = [(a, b)]. By definition of the
addition, this equation is true if, and only if,

[(a ·1+ b ·0, b ·1)] = [(a, b)].
But this last equation is true because a ·1+ b ·0 = a
and b ·1 = b.

e. Suppose that (a, b) is any element of A. We must
show that [(a, b)] + [(−a, b)] = [(−a, b)] + [(a, b)] =
[(0, 1)]. By definition of the addition, this equation is
true if, and only if,

[(ab + b(−a), bb)] = [(0, 1)],
or, equivalently,

[(0, bb)] = [(0, 1)]
By definition of the relation, this last equation is true if,
and only if, 0 ·1 = bb ·0, which is true.

44. a. Let (a, b) be any element of Z+ × Z+. We must show
that (a, b)R(a, b). By definition of R, this relationship
holds if, and only if, a + b = b + a. But this equation
is true by the commutative law of addition for real num-
bers. Hence R is reflexive.

c. Hint: You will need to show that for any positive inte-
gers a, b, c, and d, if a + d = c + b and c + f = d +
e, then a + f = b + e.

d. One possible answer: (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)
g. Observe that for any positive integers a and b, the

equivalence class of (a, b) consists of all ordered pairs
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in Z+ × Z+ for which the difference between the first
and second coordinates equals a − b. Thus there is one
equivalence class for each integer: positive, negative,
and zero. Each positive integer n corresponds to the
class of (n + 1, 1); each negative integer −n corre-
sponds to the class of (1, n + 1); and zero corresponds
to the class (1, 1).

47. c. “Ways and Means”

Section 8.4
1. a. ZKUHUH VKDOO ZH PHHW

b. IN THE CAFETERIA

3. a. The relation 3 | (25− 19) is true because 25− 19 = 6
and 3 | 6 (since 6 = 3 ·2).

b. By definition of congruence modulo n, to show that
25 ≡ 19 (mod 3), one must show that 3 | (25− 19). This
was verified in part (a).

c. To show that 25 = 19+ 3k for some integer k, one
solves the equation for k and checks that the result is
an integer. In this case, k = (25− 19)/3 = 2, which is
an integer. Thus 25 = 19+ 2 ·3.

d. When 25 is divided by 3, the remainder is 1 because
25 = 3 ·8+ 1. When 19 is divided by 3, the remainder
is also 1 because 19 = 3 ·6+ 1. Thus 25 and 19 have
the same remainder when divided by 3.

e. By definition, 25 mod 3 is the remainder obtained when
25 is divided by 3, and 19 mod 3 is the remainder
obtained when 19 is divided by 3. In part (d) these two
numbers were shown to be equal.

6. Hints: (1) Use the quotient-remainder theorem and
Theorem 8.4.1 to show that given any integer a, a is in
one of the classes [0], [1], [2], . . . [n − 1]. (2) Use Theo-
rem 4.3.1 to prove that if 0 ≤ a < n, 0 ≤ b < n, and a ≡ b
(mod n), then a = b.

7. a. 128 ≡ 2 (mod 7) because 128− 2 = 126 = 7 ·18, and
61 ≡ 5 (mod 7) because 61− 5 = 56 = 7 ·8

b. 128+ 61 ≡ (2+ 5) (mod 7) because 128+ 61 = 189,
2+ 5 = 7, and 189− 7 = 182 = 7 ·26

c. 128− 61 ≡ (2− 5) (mod 7) because 128− 61 = 67,
2− 5 = −3, and 67− (−3) = 70 = 7 ·10

d. 128 ·61 ≡ (2 ·5) (mod 7) because 128 ·61 = 7808,
2 ·5 = 10, and 7808− (10) = 7798 = 7 ·1114

e. 1282 ≡ 22(mod 7) because 1282 = 16384, 22 = 4, and
16384− 4 = 16380 = 7 ·2340.

9. a. Proof: Suppose a, b, c, d, and n are integers
with n > 1, a ≡ c (mod n), and b ≡ d (mod n). By
Theorem 8.4.1, a − c = nr and b − d = ns for some
integers r and s. Then

(a + b)− (c + d) = (a − c)+ (b − d) = nr + ns

= n(r + s).

But r + s is an integer, and so, by Theorem 8.4.1,
a + b ≡ (c + d)(mod n).

12. a. Proof (by mathematical induction): Let the property
P(n) be the congruence 10n ≡ 1 (mod 9).

Show that P(0) is true:

When n = 0, the left-hand side of the congruence is
100 = 1 and the right-hand side is also 1.

Show that for all integers k ≥ 0, if P(k) is true, then
P(k + 1) is true.

Let k be any integer with k ≥ 0, and suppose
P(k) is true. That is, suppose 10k ≡ 1 (mod 9). (*)
[This is the inductive hypothesis.] By Theorem 8.4.1,
10 ≡ 1 (mod 9)(**) because 10− 1 = 9 = 9 ·1. And by
Theorem 8.4.3, we can multiply the left- and right-hand
sides of (*) and (**) to obtain 10k ·10 ≡ 1 ·1 (mod 9),
or, equivalently, 10k+1 ≡ 1 (mod 9). Hence P(k + 1)
is true.

Alternative Proof: Note that 10 ≡ 1 (mod 9) because
10− 1 = 9 and 9|9. Thus by Theorem 8.4.3(4), 10n ≡
1n ≡ 1 (mod 9).

14. 141 mod 55 = 14
142 mod 55 = 196mod 55 = 31
144 mod 55 = (142 mod 55)2 mod 55 = 312 mod 55 = 26
148 mod 55 = (144 mod 55)2 mod 55 = 262 mod 55 = 16
1416 mod 55 = (148 mod 55)2 mod 55 = 162 mod 55 = 36

15. 427 mod 55 = 1416+8+2+1 mod 55
= {

(1416 mod 55)(148 mod 55)(142 mod 55)
(141 mod 55)

}
mod 55

= (36 ·16 ·31 ·14)mod 55 = 249984mod 55 = 9

16. Note that 307 = 256+ 32+ 16+ 2+ 1.

6751 mod 713 = 675
6752 mod 713 = 18
6754 mod 713 = 182 mod 713 = 324
6758 mod 713 = 3242 mod 713 = 165
67516 mod 713 = 1652 mod 713 = 131
67532 mod 713 = 1312 mod 713 = 49
67564 mod 713 = 492 mod 713 = 262
675128 mod 713 = 2622 mod 713 = 196
675256 mod 713 = 1962 mod 713 = 627

Thus

675307 mod 713 = 675256+32+16+2+1 mod 713
= (675256 ·67532 ·67516 ·6752 ·6751)mod 713
= (627 ·49 ·131 ·18 ·675)mod 713 = 3.

19. The letters in HELLO translate numercially into 08, 05, 12,
12, and 15. By Example 8.4.9, the H is encrypted as 17.
To encrypt E, we compute 53 mod 55 = 15. To encrypt L,
we compute 123 mod 55 = 23. And to encrypt 0, we com-
pute 153 mod 55 = 20. Thus the ciphertext is 17 15 23
23 20. (In practice, individual letters of the alphabet are
grouped together in blocks during encryption so that deci-
phering cannot be accomplished through knowledge of fre-
quency patterns of letters or words.)

22. By Example 8.4.10, the decryption key is 27. Thus
the residues modulo 55 for 1327, 2027, and 927 must be
found and then translated into letters of the alphabet.
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Because 27 = 16+ 8+ 2+ 1, we first perform the follow-
ing computations:

131 ≡ 13 (mod 55) 201 ≡ 20 (mod 55)
132 ≡ 4 (mod 55) 202 ≡ 15 (mod 55)
134 ≡ 42 ≡ 16 (mod 55) 204 ≡ 152 ≡ 5 (mod 55)
138 ≡ 162 ≡ 36 (mod 55) 208 ≡ 252 ≡ 5 (mod 55)
1316 ≡ 362 ≡ 31 (mod 55) 2016 ≡ 252 ≡ 20 (mod 55)

91 ≡ 9 (mod 55)
92 ≡ 26 (mod 55)
94 ≡ 262 ≡ 16 (mod 55)
98 ≡ 162 ≡ 36 (mod 55)
916 ≡ 362 ≡ 31 (mod 55)

Then we compute

1327 mod 55 = (31 ·36 ·4 ·13)mod 55 = 7,
2027 mod 55 = (20 ·25 ·15 ·20)mod 55 = 15,
927 mod 55 = (31 ·36 ·26 ·9)mod 55 = 4.

Finally, because 7, 15, and 4 translate into letters as G, O,
and D, we see that the message is GOOD.

25. Hint: By Theorem 5.2.3, using a in place of r and n − 1

in place of n, we have 1+ a + a2 + · · · + an−1 = an−1
a−1 .

Multiplying both sides by a − 1 gives

an − 1 = (a − 1)(1+ a + a2 + · · · + an−1).
26. Step 1: 6664 = 765 ·8+ 544, and so 544 = 6664− 765 ·8

Step 2: 765 = 544 ·1+ 221, and so 221 = 765− 544
Step 3: 544 = 221 ·2+ 102, and so 102 = 544− 221 ·2
Step 4: 221 = 102 ·2+ 17, and so 17 = 221− 102 ·2
Step 5: 102 = 17 ·6+ 0

Thus gcd(6664, 765) = 17 (which is the remainder
obtained just before the final division). Substitute back
through steps 4–1 to express 17 as a linear combination of
6664 and 765:

17 = 221− 102 ·2
= 221− (544− 221 ·2) = 221 ·5− 544 ·2
= (765− 544) ·5− 544 ·2 = 765 ·5− 544 ·7
= 765 ·5− (6664− 765 ·8) ·7 = (−7) ·6664+ 61 ·765.

(When you have finished this final step, it is wise to verify
that you have not made a mistake by checking that the final
expression really does equal the greatest common divisor.)

28. a 330 156 18 12 6

b 156 18 12 6 0

r 18 12 6 0

q 2 8 1 2

s 1 0 1 −8 9

t 0 1 −2 17 −19
u 0 1 −8 9 −26
v 1 −2 17 −19 55

newu 1 −8 9 −26
newv −2 17 −19 55

sa + tb 330 18 −6 6 6

31. a. Step 1: 210 = 13 ·16+ 2, and so 2 = 210− 16 ·13
Step 2: 13 = 2 ·6+ 1, and so 1 = 13− 2 ·6
Step 3: 6 = 1 ·6+ 0, and so gcd(210, 13) = 1

Substitute back through steps 2–1:

1 = 13− 2 ·6
= 13− (210− 16 ·13) ·6 = (−6) ·210+ 97 ·13

Thus 210 · (−6) ≡ 1 (mod 13), and so −6 is an inverse
for 210 modulo 13.

b. Compute 13− 6 = 7, and note that 7 ≡ −6 (mod 13)
because 7− (−6) = 13 = 13 ·1. Thus, by Theo-
rem 8.4.3(3), 210 ·7 ≡ 210 · (−6) (mod 13). It fol-
lows, by the transitive property of congruence, that
210 ·7 ≡ 1 (mod 13), and so 7 is a positive inverse for
210 modulo 13.

c. This problem can be solved using either the result of part
(a) or that of part (b). By part (b) 210 ·7 ≡ 1 (mod 13).
Multiply both sides by 8 and apply Theorem 8.4.3(3) to
obtain 210 ·56 ≡ 8 (mod 13). Thus a positive solution
for 210x ≡ 8 (mod 13) is x = 56. Note that the least
positive residue corresponding to this solution is also a
solution. By Theorem 8.4.1, 56 ≡ 4 (mod 13) because
56 = 13 ·4+ 4, and so, by Theorem 8.4.3(3), 210 ·56 ≡
210 ·4 ≡ 9 (mod 13). This shows that 4 is also a solu-
tion for the congruence, and because 0 ≤ 4 < 13, 4 is
the least positive solution for the congruence.

33. Hint: If as + bt = 1 and c = au = bv, then c = asc +
btc = as(bv)+ bt (au).

35. Proof: Suppose a, n, s and s ′ are integers such that as ≡
as ′ ≡ 1 (mod n). Consider the quantity as ′s, and note that
as ′s = (as ′) ·s = (as) ·s ′. By Theorem 8.4.3(3), (as ′) ·s ≡
1 ·s = s (mod n) and (as ′) ·s ′ ≡ 1 ·s ′ = s ′ (mod n). Thus
by transitivity of congruence modulo n, s ≡ s ′ (mod n).
This shows that any two inverses for a are congruent
modulo n.

36. The numeric equivalents of H, E, L, and P are 08, 05, 12 and
16. To encrypt these letters, the following quantities must
be computed: 843 mod 713, 543 mod 713, 1243 mod 713, and
1643 mod 713. We use the fact that 43 = 32+ 8+ 2+ 1.

H: 8 ≡ 8 (mod 713)
82 ≡ 64 (mod 713)
84 ≡ 642 ≡ 531 (mod 713)
88 ≡ 5312 ≡ 326 (mod 713)
816 ≡ 3262 ≡ 39 (mod 713)
832 ≡ 392 ≡ 95 (mod 713)
Thus the ciphertext is
843 mod 713
= (95 ·326 ·64 ·8)mod 713 = 233.

E: 5 ≡ 5 (mod 713)
52 ≡ 25 (mod 713)
54 ≡ 625 (mod 713)
58 ≡ 6252 ≡ 614 (mod 713)
516 ≡ 6142 ≡ 532 (mod 713)
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532 ≡ 5322 ≡ 676 (mod 713)
Thus the ciphertext is
543 mod 713
= (676 ·614 ·25 ·5)mod 713 = 129.

L: 12 ≡ 12 (mod 713)
122 ≡ 144 (mod 713)
124 ≡ 1442 ≡ 59 (mod 713)
128 ≡ 592 ≡ 629 (mod 713)
1216 ≡ 6292 ≡ 639 (mod 713)
1232 ≡ 6392 ≡ 485 (mod 713)
Thus the ciphertext is
1243 mod 713
= (485 ·629 ·144 ·12)mod 713 = 48.

P: 16 ≡ 16 (mod 713)
162 ≡ 256 (mod 713)
164 ≡ 2562 ≡ 653 (mod 713)
168 ≡ 6532 ≡ 35 (mod 713)
1616 ≡ 352 ≡ 512 (mod 713)
1632 ≡ 5122 ≡ 473 (mod 713)
Thus the ciphertext is
1643 mod 713
= (473 ·35 ·256 ·16)mod 713 = 128.

Therefore, the encrypted message is 233 129 048 128.
(Again, note that in practice, individual letters of the alpha-
bet are grouped together in blocks during encryption so that
deciphering cannot be accomplished through knowledge of
frequency patterns of letters or words. We kept them sep-
arate so that the numbers in the computations would be
smaller and easier to work with.)

39. By exercise 38, the decryption key, d, is 307. Hence, to
decrypt the message, the following quantities must be com-
puted: 675307 mod 713, 89307 mod 713, and 48307 mod 713.
We use the fact that 307 = 256+ 32+ 16+ 2+ 1.

675 ≡ 675 (mod 713)
6752 ≡ 18 (mod 713)
6754 ≡ 182 ≡ 324 (mod 713)
6758 ≡ 3242 ≡ 165 (mod 713)
67516 ≡ 1652 ≡ 131 (mod 713)
67532 ≡ 1312 ≡ 49 (mod 713)
67564 ≡ 492 ≡ 262 (mod 713)
675128 ≡ 2622 ≡ 196 (mod 713)
675256 ≡ 1962 ≡ 627 (mod 713)

89 ≡ 89 (mod 713)
892 ≡ 78 (mod 713)
894 ≡ 782 ≡ 380 (mod 713)
898 ≡ 3802 ≡ 374 (mod 713)
8916 ≡ 3742 ≡ 128 (mod 713)
8932 ≡ 1282 ≡ 698 (mod 713)
8964 ≡ 6982 ≡ 225 (mod 713)
89128 ≡ 2252 ≡ 2 (mod 713)
89256 ≡ 22 ≡ 4 (mod 713)

48 ≡ 48 (mod 713)
482 ≡ 165 (mod 713)
484 ≡ 131 (mod 713)
488 ≡ 49 (mod 713)
4816 ≡ 262 (mod 713)
4832 ≡ 196 (mod 713)
4864 ≡ 627 (mod 713)
48128 ≡ 6272 ≡ 266 (mod 713)
48256 ≡ 2662 ≡ 169 (mod 713)

Thus the decryption for 675 is

675307 mod 713 = (675256+32+16+2+1) mod 713
= (627 ·49 ·131 ·18 ·675) mod 713 = 3, which

corresponds to the letter C .
The decryption for 89 is

89307 mod 713 = (89256+32+16+2+1) mod 713
= (4 ·698 ·128 ·78 ·89) mod 713 = 15, which

corresponds to the letter O .

The decryption for 48 is

48307 mod 713 = (48256+32+16+2+1) mod 713
= (169 ·196 ·262 ·165 ·48) mod 713 = 12, which

corresponds to the letter L .

Thus the decrypted message is COOL.

41. a. Hint: For the inductive step, assume p | q1q2 . . . qs+1 and
let a = q1q2 . . . qs . Then p | aqs+1, and either p = qs+1
or Euclid’s lemma and the inductive hypothesis can be
applied.

42. a. When a = 15 and p = 7, ap−1 = 156 = 11390625 ≡
1 (mod 7) because 11390625− 1 = 7 ·1627232.

Section 8.5
1. a.

0

3

1

2

R1 is not antisymmetric: 1 R1 3
and 3 R1 1 and 1 � 3.

b.

0

3

1

2

R2 is antisymmetric: There are
no cases where a R b and
b R a and a � b.
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2. R is not antisymmetric. Let x and y be any two distinct
people of the same age. Then x R y and y R x but x �= y.

5. R is a partial order relation.

Proof:
R is reflexive: Suppose (a, b) ∈ R× R. Then
(a, b) R (a, b) because a = a and b ≤ b.
R is antisymmetric: Suppose (a, b) and (c, d) are ordered
pairs of real numbers such that (a, b) R (c, d) and
(c, d) R (a, b). Then

either a < c or both a = c and b ≤ d

and

either c < a or both c = a and d ≤ b.

Thus

a ≤ c and c ≤ a

and so

a = c.

Consequently,

b ≤ d and d ≤ b

and so

b = d.

Hence (a, b) = (c, d).
R is transitive: Suppose (a, b), (c, d), and (e, f ) are
ordered pairs of real numbers such that (a, b) R (c, d) and
(c, d) R (e, f ). Then

either a < c or both a = c and b ≤ d

and

either c < e or both c = e and d ≤ f.

It follows that one of the following cases must occur.
Case 1 (a < c and c < e): Then by transitivity of<, a < e,
and so (a, b) R (e, f ) by definition of R.

Case 2 (a < c and c = e): Then by substitution, a < e, and
so (a, b) R (e, f ) by definition of R.

Case 3 (a = c and c < e): Then by substitution, a < e, and
so (a, b) R (e, f ) by definition of R.

Case 4 (a = c and c = e): Then by definition of R, b ≤ d
and d ≤ f , and so by transitivity of≤, b ≤ f . Hence a = e
and b ≤ f , and so (a, b) R (e, f ) by definition of R.
In each case, (a, b) R (e, f ). Therefore, R is transitive.
Since R is reflexive, antisymmetric, and transitive, R is a
partial order relation.

8. R is not a partial order relation because R is not antisym-
metric.

Counterexample: 1 R 3 (because 1+ 3 is even) and 3 R 1
(because 3+ 1 is even) but 1 �= 3.

10. No. Counterexample: Define relations R and S on the set
{1, 2} as follows: R = {(1, 2)} and S = {(2, 1)}. Then both
R and S are antisymmetric, but R ∪ S = {(1, 2), (2, 1)}

is not antisymmetric because (1, 2) ∈ R ∪ S and (2, 1) ∈
R ∪ S but 1 �= 2.

11. a. This follows from (1).
b. False. By (1), bba � bbab.

13. R1 = {(a, a), (b, b)}, R2 = {(a, a), (b, b), (a, b)},
R3 = {(a, a), (b, b), (b, a)}

14. a. R1 = {(a, a), (b, b), (c, c)},
R2 = {(a, a), (b, b), (c, c), (b, a)},
R3 = {(a, a), (b, b), (c, c), (c, a)},
R4 = {(a, a), (b, b), (c, c), (b, a), (c, a)},
R5 = {(a, a), (b, b), (c, c), (c, b), (c, a)},
R6 = {(a, a), (b, b), (c, c), (b, c), (b, a)},
R7 = {(a, a), (b, b), (c, c), (c, b), (b, a), (c, a)},
R8 = {(a, a), (b, b), (c, c), (b, c), (b, a), (c, a)},
R9 = {(a, a), (b, b), (c, c), (b, c)},
R10 = {(a, a), (b, b), (c, c), (c, b)}

15. Hint: R is the identity relation on A: x R x for all x ∈ A
and x �R y if x �= y.

16. a. 20

10 154

2 5

1

17. a. {0, 1}

{1}{0}

∅

18.
(1, 1)

(1, 0)

(0, 1)

(0, 0)

21. a. Proof: [We must show that for all a and b in A, a | b or
b | a.] Let a and b be particular but arbitrarily chosen
elements of A. By definition of A, there are nonnegative
integers r and s such that a = 2r and b = 2s . Now either
r ≤ s or s < r . If r ≤ s, then

b = 2s = 2r ·2s−r = a ·2s−r ,
where s − r ≥ 0. It follows, by definition of divisibil-
ity, that a | b. By a similar argument, if s < r , then b | a.
Hence either a | b or b | a [as was to be shown].
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b.
1 2 22 23 24

22. Greatest element: none; least element: 1;
Maximal elements: 15, 20; minimal element: 1

24. Greatest element: {0, 1}; least element: ∅;
Maximal elements: {0, 1}; minimal elements: ∅

26. Greatest element: (1, 1); least element: (0, 0);
Maximal elements: (1, 1); minimal elements: (0, 0)

30. a. No greatest element, no least element
b. Least element is 0, greatest element is 1

31. R is a total order relation because it is reflexive, antisym-
metric, and transitive (so it is a partial order) and because
[b, a, c, d] is a chain that contains every element of A:
bRc, cRa, and aRd .

34. Hint: Let R′ be the restriction of R to B and show that R′

is reflexive, antisymmetric, and transitive. In each case, this
follows almost immediately from the fact that R is reflex-
ive, antisymmetric, and transitive.

35. ∅ ⊆ {w} ⊆ {w, x} ⊆ {w, x, y} ⊆ {w, x, y, z}
36. Proof: Suppose A is a partially ordered set with respect

to a relation �. By definition of total order, A is totally
ordered if, and only if, any two elements of A are compara-
ble. By definition of chain, this is true if, and only if, A is a
chain.

39. Proof (by mathematical induction): Let A be a set that
is totally ordered with respect to a relation 	, and let
the property P(n) be the sentence “Every subset of A
with n elements has both a least element and a greatest
element.”

Show that P(1) is true:

If A = ∅, then P(1) is true by default. So assume that A has
at least one element, and suppose S = {a1} is a subset of A
with one element. Because 	 is reflexive, a1 	 a1. So, by
definition of least element and greatest element, a1 is both
a least element and a greatest element of S, and thus the
property is true for n = 1.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k + 1) is true:

Let k be any integer with k ≥ 1, and suppose that any subset
of A with k elements has both a least element and a great-
est element. [Inductive hypothesis] We must show that any
subset of A with k + 1 elements has both a least element
and a greatest element. If A has fewer than k + 1 elements,
then the statement is true by default. So assume that A has
at least k + 1 elements and that S = {a1, a2, . . . , ak+1} is a
subset of A with k + 1 elements. By inductive hypothesis,
S − {ak+1} has both a least element s and a greatest element
b. Now because A is totally ordered, ak+1 and s are com-
parable. If ak+1 	 s, then, by transitivity of 	, ak+1 is the
least element of S; otherwise, s remains the least element
of S. And if b 	 ak+1, then, by transitivity of 	, ak+1 is the
greatest element of S; otherwise, b remains the greatest ele-
ment of S. Thus S has both a greatest element and a least
element [as was to be shown].

40. a. Proof by contradiction: Suppose not. Suppose A is a
finite set that is partially ordered with respect to a rela-
tion � and A has no minimal element. Construct a
sequence of elements x1, x2, x3, . . . of A as follows:

1. Pick any element of A and call it x1.
2. For each i = 2, 3, 4, . . . , pick xi to be an element of

A for which xi � xi−1 and xi �= xi−1. [Such an ele-
ment must exist because otherwise xi−1 would be mini-
mal, and we are supposing that no element of A is min-
imal.] Now xi �= x j for any i �= j . [If xi = x j where
i < j , then on the one hand, x j � x j−1 � . . . � xi+1 �
xi and so xi � xi+1, and on the other hand, since xi =
x j then x j = xi 4 xi+1, and so x j 4 xi+1. Hence by
antisymmetry, x j = xi+1, and so xi = xi+1. But this con-
tradicts the definition of the sequence x1, x2, x3, . . . .]
Thus x1, x2, x3, . . . is an infinite sequence of distinct
elements, and consequently {x1, x2, x3, . . .} is an infi-
nite subset of the finite set A. This is impossible.
Hence the supposition is false and we conclude that
any partially ordered subset of a finite set has a min-
imal element.

42. c d

a b

44. One such total order is 1, 5, 2, 15, 10, 4, 20.

46. One such total order is (0, 0), (1, 0), (0, 1), (1, 1).

50. a. One possible answer: 1, 6, 10, 9, 5, 7, 2, 4, 8, 3

51. b. Critical path: 1, 2, 5, 8, 9.

Section 9.1
2. 3/4, 1/2, 1/2

3. {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 1 ,

2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 }, probabil-
ity = 20/52 ∼= 38.5%

5. {10♣, J♣, Q♣, K♣, A♣, 10 , J , Q , K , A , 10 ,
J , Q , K , A , 10♠, J♠,Q♠,K♠,K♠,A♠} prob-
ability = 20/52 = 5/13 ∼= 38.5%.

7. {26, 35, 44, 53, 62}, probability = 5/36 ∼= 13.9%

9. {11, 12, 13, 14, 15, 21, 22, 23, 24, 31, 32, 33, 41, 42, 51}
probability = 15/36 = 41 2

3%

11. a. {HHH , HHT , HT H , HTT , T HH , T HT , T T H ,
T T T }

b. (i) {HTT , T HT , T T H}, probability = 3/8 ∼= 37.5%

12. a. {BBB, BBG, BGB, BGG, GBB, GBG, GGB,
GGG}

b. (i) {GBB, BGB, BBG} probability = 3/8 = 37.5%

13. a. {CCC , CCW , CWC , CWW , WCC , WCW , WWC ,
WWW }

b. (i) {CWW , WCW , WWC}, probability = 3/8 =
37.5%
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A-76 Appendix B Solutions and Hints to Selected Exercises

14. a. probability = 3/8 = 37.5%

16. a. {RRR, RRB, RRY , RBR, RBB, RBY , RY R, RY B,
RYY , BRR, BRB, BRY , BBR, BBB, BBY , BY R,
BY B, BYY , Y RR, Y RB, Y RY , Y BR, Y BB, Y BY ,
YY R, YY B, YYY }

b. {RBY, RY B, Y BR, BRY, BY R, Y RB}, probability =
6/27 = 2/9 ∼= 22.2%

c. {RRB, RBR, BRR, RRY , RY R, Y RR, BBR, BRB,
RBB, BBY , BY B, Y BB, YY R, Y RY , RYY , YY B,
Y BY , BYY } probability = 18/27 = 2/3 = 66 2

3%

18. a. {B1B1, B1B2, B1W , B2B1, B2B2, B2W , WB1, WB2,
WW }

b. {B1B1, B1B2, B2B1, B2B2} probability = 4/9 ∼= 44.4%
c. {B1W , B2W , WB1, WB2} probability = 4/9 ∼= 44.4%

21. a. 10 11 12 13 14 15 16 17 18 . . . 96 97 98 99
( ( ( ( (

3 ·4 3 ·5 3 ·6 3 ·32 3 ·33
The above diagram shows that there are as many posi-
tive two-digit integers that are multiples of 3 as there are
integers from 4 to 33 inclusive. By Theorem 9.1.1, there
are 33− 4+ 1, or 30, such integers.

b. There are 99− 10+ 1 = 90 positive two-digit inte-
gers in all, and by part (a), 30 of these are multiples
of 3. So the probability that a randomly chosen pos-
itive two-digit integer is a multiple of 3 is 30/90 =
1/3 = 33 1

3%.
c. Of the integers from 10 through 99 that are multi-

ples of 4, the smallest is 12 (= 4 ·3) and the largest is

96 (= 4 ·24). Thus there are 24− 3+ 1 = 22 two-digit
integers that are multiples of 4. Hence the probability
that a randomly chosen two-digit integer is a multiple of
4 is 22/90 = 36 2

3%.

23. c. Probability = m−3+1
n = m−2

n

d. Because
⌊
39
2

⌋
= 19, the probability is 39−19+1

39 = 21
39 .

24. a. (i) If n is even, there are
⌊
n
2

⌋
= n

2 elements in the sub-
array.

(ii) If n is odd, there are
⌊
n
2

⌋
= n−1

2 elements in the

sub-array.
b. There are n elements in the array, so

(i) The probability that an element is in the given sub-

array when n is even is

n
2
n =

1
2 ,

(ii) The probability that an element is in the given sub-

array when n is odd is

n−1
2
n = n−1

2n .

26. Let k be the 27th element in the array. By Theorem 9.1.1,
k − 42+ 1 = 27, and so k = 42+ 27− 1 = 68. Thus the
27th element in the array is A[68].

28. Let m be the smallest of the integers. By Theorem 9.1.1,
279− m + 1 = 56, and som = 279− 56+ 1 = 224. Thus
the smallest of the integers is 224.

31. 1 2 3 4 5 6 7 8 9 . . . 999 1000 1001
( ( ( (

3 ·1 3 ·2 3 ·3 3 ·333
Thus there are 333 multiples of 3 between 1 and 1001.

32. a. M Tu W Th F Sa Su M Tu W Th F Sa Su · · · F Sa Su M
1 2 3 4 5 6 7 8 9 10 11 12 13 14 362 363 364 365

( ( (
7 ·1 7 ·2 7 ·52

Sundays occur on the 7th day of the year, the 14th day of the year, and in fact on all
days that are multiples of 7. There are 52 multiples of 7 between 1 and 365, and so
there are 52 Sundays in the year.

Section 9.2
1.

Start:
A has
won 3

Game 4 Game 5 Game 6 Game 7

A (A wins)
(A wins)

(A wins)
(A wins)

(B wins)

B

A

B

A

B

A

B

There are five ways to complete the series:
A, B–A, B–B–A, B–B–B–A, and B–B–B–B.

3. Four ways: A–A–A–A, B–A–A–A–A, B–B–A–A–A–A, and
B–B–B–A–A–A–A.

4. Two ways: A–B–A–B–A–B–A and B–A–B–A–B–A–B

6. a. Step 1:
Choose urn.

Step 2:
Choose ball 1.

Step 3:
Choose ball 2.

Start

Urn 1

Urn 2

B1

B2

W

B

W1

W2

B2

W

B1

W

B1

B2

W1

W2

B

W2

B

W1
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9.2 Solutions and Hints to Selected Exercises A-77

b. There are 12 equally likely outcomes of the experiment.

c. 2/12 = 1/6 = 16 2
3% d. 8/12 = 2/3 = 66 2

3%

8. By the multiplication rule, the answer is 3 ·2 ·2 = 12.

9. a. In going from city A to city B, one may take any of the
3 roads. In going from city B to city C , one may take
any of the 5 roads. So, by the multiplication rule, there
are 3 ·5 = 15 ways to travel from city A to city C via
city B.

b. A round-trip journey can be thought of as a four-step
operation:

Step 1: Go from A to B.
Step 3: Go from B to C .
Step 2: Go from C to B.
Step 4: Go from B to A.

Since there are 3 ways to perform step 1, 5 ways to
perform step 2, 5 ways to perform step 3, and 3 ways
to perform step 4, by the multiplication rule, there are
3 ·5 ·5 ·3 = 225 round-trip routes.

c. In this case the steps for making a round-trip journey are
the same as in part (b), but since no route segment may
be repeated, there are only 4 ways to perform step 3 and
only 2 ways to perform step 4. So, by the multiplica-
tion rule, there are 3 ·5 ·4 ·2 = 120 round-trip routes in
which no road is traversed twice.

11. a. Imagine constructing a bit string of length 8 as an eight-
step process:

Step 1: Choose either a 0 or a 1 for the left-most
position,

Step 2: Choose either a 0 or a 1 for the next position to
the right.

Step 3: Choose either a 0 or a 1 for the next position to
the right.

Since there are 2 ways to perform each step, the total
number of ways to accomplish the entire operation,
which is the number of different bit strings of length 8,
is 2 ·2 ·2 ·2 ·2 · 2 ·2 ·2 = 28 = 256.

b. Imagine that there are three 0’s in the three left-most
positions, and imagine filling in the remaining 5 posi-
tions as a 5-step process, where step i is to fill in the
(i + 3)rd position. Since there are 2 ways to perform
each of the 5 steps, there are 25 ways to perform the
entire operation. So there are 25, or 32, 8-bit strings that
begin with three 0’s.

12. a. There are 9 hexadecimal digits from 3 through B and 11
hexadecimal digits from 5 through F. Thus the answer is
9 ·16 ·16 ·16 ·11 = 405,504.

13. a. In each of the four tosses there are two possible results:
Either a head (H) or a tail (T ) is obtained. Thus, by the
multiplication rule, the number of outcomes is
2 ·2 ·2 ·2 = 24 = 16.

b. There are six outcomes with two heads:
HHTT, HT HT, HTT H, T HHT, T HT H, T T HH .
Thus the probability of obtaining exactly two heads is
6/16 = 3/8.

14. a. Let each of steps 1–4 be to choose a letter of the alpha-
bet to put in positions 1–4, and let each of steps 5–7
be to choose a digit to put in positions 5–7. Since there
are 26 letters and 10 digits (0–9), the number of license
plates is

26 ·26 ·26 ·26 ·10 ·10 ·10 = 456,976,000.

b. In this case there is only one way to perform step 1
(because the first letter must be an A) and only one
way to perform step 7 (because the last digit must
be a 0). Therefore, the number of license plates is
26 ·26 ·26 ·10 ·10 = 17,576, 000.

d. In this case there are 26 ways to perform step 1, 25 ways
to perform step 2, 24 ways to perform step 3, 10 ways to
perform step 4, 9 ways to perform step 5, and 8 ways
to perform step 6, so the number of license plates is
26 ·25 ·24 ·23 ·10 ·9 ·8 = 258,336,000.

16. a. Two solutions:
(i) number of integers

=
⎡
⎣number of
ways to pick
first digit

⎤
⎦
⎡
⎣number of
ways to pick
second digit

⎤
⎦ = 9 ·10 = 90

(ii) Using Theorem 9.1.1, number of integers =
99− 10+ 1 = 90.

b. Odd integers end in 1, 3, 5, 7, or 9.
number of odd integers

=
⎡
⎣number of
ways to pick
first digit

⎤
⎦
⎡
⎣number of
ways to pick
second digit

⎤
⎦ = 9 ·5 = 45

Alternative solution: Use the listing method shown in the
solution for Example 9.1.4.

c.
[
number of integers
with distinct digits

]

=
⎡
⎣number of
ways to pick
first digit

⎤
⎦
⎡
⎣number of
ways to pick
second digit

⎤
⎦

= 9 ·9 = 81

d.
[
number of odd integers
with distinct digits

]

=
⎡
⎣number of
ways to pick
second digit

⎤
⎦
⎡
⎣number of
ways to pick
first digit

⎤
⎦

= 5 ·8 = 40 because the first digit
can’t equal 0, nor can it
equal the second digit

e. 81/90 = 9/10, 40/90 = 4/9

18. a. Let step 1 be to choose either the number 2 or one of
the letters corresponding to the number 2 on the keypad,
let step 2 be to choose either the number 1 or one of
the letters corresponding to the number 1 on the keypad,
and let steps 3 and 4 be to choose either the number 3 or
one of the letters corresponding to the number 3 on the
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A-78 Appendix B Solutions and Hints to Selected Exercises

keypad. There are 4 ways to perform step 1, 3 ways
to perform step 2, and 4 ways to perform each of
steps 3 and 4. So by the multiplication rule, there are
4 ·3 ·4 ·4 = 192 ways to perform the entire operation.
Thus there are 192 different PINs that are keyed the
same as 2133. Note that on a computer keyboard, these
PINs would not be keyed the same way.

19. Step 1:
Choose the
secretary.

Step 2:
Choose the
treasurer.

Step 3:
Choose the
president.

Ann

Bob

Dan

Cyd

Dan

Ann

Cyd

Dan

Ann

Cyd

Bob

Bob

Bob

Bob

Cyd

Cyd

Cyd

Cyd

Dan

Dan

Dan

Ann

Ann

Ann

There are 14 different paths from “root” to “leaf” of this
possibility tree, and so there are 14 ways the officers can
be chosen. Because 14 = 2 ·7, reordering the steps will not
make it possible to use the multiplication rule alone to solve
this problem.

20. a. The number of ways to perform step 4 is not constant; it
depends on how the previous steps were performed. For
instance, if 3 digits had been chosen in steps 1–3, then
there would be 10− 3 = 7 ways to perform step 4, but if
3 letters had been chosen in steps 1–3, then there would
be 10 ways to perform step 4.

21. Hint:
a. The answer is 2mn . b. The answer is nm .

22. a. The answer is 4 ·4 ·4 = 43 = 64. Imagine creating a
function from a 3-element set to a 4-element set as a
three-step process: Step 1 is to send the first element
of the 3-element set to an element of the 4-element set
(there are four ways to perform this step); step 2 is to
send the second element of the 3-element set to an ele-
ment of the 4-element set (there are also four ways to
perform this step); and step 3 is to send the third ele-
ment of the 3-element set to an element of the 4-element
set (there are four ways to perform this step). Thus the
entire process can be performed in 4 ·4 ·4 different ways.

24. The outer loop is iterated 30 times, and during each iter-
ation of the outer loop there are 15 iterations of the inner
loop. Hence, by the multiplication rule, the total number of
iterations of the inner loop is 30 ·15 = 450.

27. The outer loop is iterated 50− 5+ 1 = 46 times, and dur-
ing each iteration of the outer loop there are 20− 10+ 1 =
11 iterations of the inner loop. Hence, by the multiplica-
tion rule, the total number of iterations of the inner loop is
46 ·11 = 506.

29. Hints: One solution is to add leading zeros as needed to
make each number five digits long. For instance, write 1
as 00001. Let some of the steps be to choose positions for
the given digits. The answer is 720. Another solution is
to consider separately the cases of four-digit and five-digit
numbers.

31. a. There are a + 1 divisors: 1, p, p2, . . . , pa .
b. A divisor is a product of any one of the a + 1 numbers

listed in part (a) times any one of the b + 1 numbers
1, q, q2, . . . , qb. So, by the multiplication rule, there are
(a + 1)(b + 1) divisors in all.

32. a. Since the nine letters of the word ALGORIT HM are
all distinct, there are as many arrangements of these let-
ters in a row as there are permutations of a set with nine
elements: 9! = 362, 880.

b. In this case there are effectively eight symbols to be per-
muted (because AL may be regarded as a single sym-
bol). So the number of arrangements is 8! = 40,320.

34. The same reasoning as in Example 9.2.9 gives an answer of
4! = 24.

35. WX , WY , WZ , XW , XY , X Z , YW , Y X , Y Z , ZW , Z X ,
ZY

37. a. P(6, 4) = 6!
(6− 4)! =

6 ·5 ·4 ·3 ·2 ·1
2 ·1 = 360

38. a. P(5, 3) = 5 ·4 ·3 ·2!
2! = 60

39. a. P(9, 3) = 9 ·8 ·7 ·6!
6! = 504

c. P(8, 5) = 8 ·7 ·6 ·5 ·4 ·3!
3! = 6,720

41. Proof: Let n be an integer and n ≥ 2. Then

P(n + 1, 2)− P(n, 2)

= (n + 1)!
[(n + 1)− 2]! −

n!
(n − 2)! =

(n + 1)!
(n − 1)! −

n!
(n − 2)!

= (n + 1) ·n ·(n − 1)!
(n − 1)! − n ·(n − 1) ·(n − 2)!

(n − 2)!
= n2 + n − (n2 − n) = 2n = 2 · n · (n − 1)!

(n − 1)!
= 2 · n!

(n − 1)! = 2P(n, 1).

This is what was to be proved.

45. Hint: In the inductive step, suppose there exist k! permu-
tations of a set with k elements. Let X be a set with k + 1
elements. The process of forming a permutation of the ele-
ments of X can be considered a two-step operation where
step 1 is to choose the element to write first. Step 2 is to
write the remaining elements of X in some order.
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= 8! − 10,080 = 40,320− 10,080
= 30,240

14. number of variable names

=
[
number of numeric
variable names

]
+
[
number of string
variable names

]
= (26+ 26 ·36)+ (26+ 26 ·36) = 1,924

15. Hint: In exercise 14 note that

26+ 26 ·36 = 26
1∑

k=0
36k .

Generalize this idea here. Use Theorem 5.2.3 to evaluate
the expression you obtain.

16. a. 10 ·9 ·8 ·7 ·6 ·5 ·4 = 604,800

b.
[
number of phone numbers with
at least one repeated digit

]

=
[
total number of
phone numbers

]
−
[
number of phone numbers
with no repeated digits

]
= 107 − 604, 800 = 9,395,200

c. 9,395,200/107 ∼= 93.95%

18. a. Proof: Let A and B be mutually disjoint events in a sam-
ple space S. By the addition rule, N (A ∪ B) = N (A)+
N (B). Therefore, by the equally likely probability for-
mula,

P(A ∪ B) = N (A ∪ B)

N (S)
= N (A)+ N (B)

N (S)

= N (A)

N (S)
+ N (B)

N (S)
= P(A)+ P(B).

19. Hint: Justify the following answer: 39 ·38 ·38.
20. a. Identify the integers from 1 to 100,000 that contain the

digit 6 exactly once with strings of five digits. Thus, for
example, 306 would be identified with 00306. It is not
necessary to use strings of six digits, because 100,000
does not contain the digit 6. Imagine the process of
constructing a five-digit string that contains the digit 6
exactly once as a five-step operation that consists of fill-
ing in the five digit positions

1 2 3 4 5
.

Step 1: Choose one of the five positions for the 6.

Step 2: Choose a digit for the left-most remaining posi-
tion.

Step 3: Choose a digit for the next remaining position to
the right.

Step 4: Choose a digit for the next remaining position to
the right.

Step 5: Choose a digit for the right-most position.

Since there are 5 choices for step 1 (any one of the
five positions) and 9 choices for each of steps 2–5 (any
digit except 6), by the multiplication rule, the number of
ways to perform this operation is 5 ·9 ·9 ·9 ·9 = 32,805.
Hence there are 32,805 integers from 1 to 100,000 that
contain the digit 6 exactly once.

21. Hint: The answer is 2/3.

23. a. Let A = the set of integers that are multiples of 4 and
B = the set of integers that are multiples of 7. Then
A ∩ B = the set of integers that are multiples of 28.

But n(A) = 250 since 1 2 3 4 5 6 7 8 . . . 999 1000,
( ( (

4 ·1 4 ·2 . . . 4 ·250
or, equivalently, since 1,000 = 4 ·250.

Also n(B) = 142 since 1 2 3 4 5 6 7. . . 14 . . . 994 995 . . . 1000
( ( (

7 ·1 7 ·2 . . . 7 ·142
or, equivalently, since 1,000 = 7 ·142+ 6.

and n(A ∩ B) = 35 since 1 2 3 . . . 28 . . . 56 . . . 980 . . . 1000,
( ( (

28 ·1 28 ·2. . . 28 ·35
or, equivalently, since 1,000 = 28 ·35+ 20.

So n(A ∪ B) = 250+ 142− 35 = 357.

25. a. Length 0: ε
Length 1: 0, 1
Length 2: 00, 01, 10, 11
Length 3: 000, 001, 010, 011, 100, 101, 110
Length 4: 0000, 0001, 0010, 0011, 0100, 0101, 0110,

1000, 1001, 1010, 1011, 1100, 1101
b. By part (a), d0 = 1, d1 = 2, d2 = 4, d3 = 7,

and d4 = 13.
c. Let k be an integer with k ≥ 3. Any string of length k

that does not contain the bit pattern 111 starts either
with a 0 or with a 1. If it starts with a 0, this can
be followed by any string of k − 1 bits that does not
contain the pattern 111. There are dk−1 of these. If the
string starts with a 1, then the first two bits are 10 or 11.
If the first two bits are 10, then these can be followed by
any string of k − 2 bits that does not contain the pattern
111. There are dk−2 of these. If the string starts with a
11, then the third bit must be 0 (because the string does
not contain 111), and these three bits can be followed by
any string of k − 3 bits that does not contain the pattern
111. There are dk−3 of these. Therefore, for all integers
k ≥ 3, dk = dk−1 + dk−2 + dk−3.

d. By parts (b) and (c), d5 = d4 + d3 + d2 = 13+ 7+ 4 =
24. This is the number of bit strings of length five that
do not contain the pattern 111.

26. c. Hint: sk = 2sk−1 + 2sk−2
e. Hint: For all integers n ≥ 0,

sn =
√
3+ 2

2
√
3

(1+√3)n +
√
3− 2

2
√
3

(1−√3)n .

28. a. a3 = 3 (The three permutations that do not move more
than one place from their “natural” positions are 213,
132, and 123.)

29. a. 110010102 = 2+ 23 + 26 + 27 = 202,
001110002 = 23 + 24 + 25 = 56,
011010112 = 1+ 2+ 23 + 25 + 26 = 107,
111011102 = 2+ 22 + 23 + 25 + 26 + 27 = 238
So the answer is 202.56.107.238.
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b. The network ID for a Class A network consists of
8 bits and begins with 0. If all possible combina-
tions of eight 0’s and 1’s that start with a 0 were
allowed, there would be 2 choices (0 or 1) for each
of the 7 positions from the second through the eighth.
This would give 27 = 128 possible ID’s. But because
neither 00000000 nor 01111111 is allowed, the total
is reduced by 2, so there are 126 possible Class A
networks.

c. Let w.x .y.z be the dotted decimal form of the IP
address for a computer in a Class A network. Because
the network IDs for a Class A network go from
00000001 (= 1) through 01111110 (= 126), w can be
any integer from 1 through 126. In addition, each of
x, y, and z can be any integer from 0 (= 00000000)
through 255 (= 11111111), except that x, y, and z
cannot all be 0 simultaneously and cannot all be 255
simultaneously.

d. Twenty-four positions are allocated for the host ID in a
Class A network. If each could be either 0 or 1, there
would be 224 = 16,777,216 possible host IDs. But nei-
ther all 0’s nor all 1’s is allowed, which reduces the total
by 2. Thus there are 16,777,214 possible host IDs in a
Class A network.

i. Observe that 140 = 128+ 8+ 4 = 100011002, which
begins with 10. Thus the IP address comes from a
Class B network. An alternative solution uses the
result of Example 9.3.5: Network IDs for Class B net-
works range from 128 through 191. Thus, since 128 ≤
140 ≤ 191, the given IP address is from a Class B
network.

31. a. There are 12 possible birth months for A, 12 for B, 12
for C , and 12 for D, so the total is 124 = 20,736.

b. If no two people share the same birth month, there are
12 possible birth months for A, 11 for B, 10 for C , and
9 for D. Thus the total is 12 ·11 ·10 ·9 = 11,880.

c. If at least two people share the same birth month,
the total number of ways birth months could be asso-
ciated with A, B,C , and D is 20,736− 11,880 =
8,856.

d. The probability that at least two of the four people share

the same birth month is 8856
20736

∼= 42.7%.

e. When there are five people, the probability that at least

two share the same birth month is 125−12 ·11 ·10 ·9 ·8
125∼= 61.8%, and when there are more than five people,

the probability is even greater. Thus, since the proba-
bility for four people is less than 50%, the group must
contain five or more people for the propability to be
at least 50% that two or more share the same birth
month.

32. Hint: Analyze the solution to exercise 31.

33. a. The number of students who checked at least one of
the statements is N (H)+ N (C)+ N (D)− N (H ∩ C)

− N (N ∩ D)− N (C ∩ D)+ N (H ∩ C ∩ D) =
28+ 26+ 14− 14− 4− 8+ 2 = 45

b. By the difference rule, the number of students who
checked none of the statements is the total number of
students minus the number who checked at least one
statement. This is 100− 45 = 55.

d. The number of students who checked #1 and #2 but not
#3 is N (H ∩ C)− N (N ∩ C ∩ D) = 14− 2 = 12.

35. Let

M = the set of married people in the sample,

Y = the set of people between 20 and 30 in the sample, and

F = the set of females in the sample.

Then the number of people in the set M ∪ Y ∪ F is less
than or equal to the size of the sample. And so

1,200 ≥ N (M ∪ Y ∪ F)

= N (M)+ N (Y )+ N (F)− N (M ∩ Y )

− N (M ∩ F)− N (Y ∩ F)+ N (M ∩ Y ∩ F)

= 675+ 682+ 684− 195− 467− 318+ 165

= 1,226.

This is impossible since 1,200 < 1,226, so the polltaker’s
figures are inconsistent. They could not have occurred as a
result of an actual sample survey.

37. Let A be the set of all positive integers less than 1,000
that are not multiples of 2, and let B be the set of all
positive integers less than 1,000 that are not multiples of
5. Since the only prime factors of 1,000 are 2 and 5, the
number of positive integers that have no common factors
with 1,000 is N (A ∩ B). Let the universe U be the set of
all positive integers less than 1,000. Then Ac is the set of
positive integers less than 1,000 that are multiples of 2,
Bc is the set of positive integers less than 1,000 that are
multiples of 5, and Ac ∩ Bc is the set of positive integers
less than 1,000 that are multiples of 10. By one of the pro-
cedures discussed in Section 9.1 or 9.2, it is easily found
that N (Ac) = 499, N (Bc) = 199, and N (Ac ∩ Bc) = 99.
Thus, by the inclusion/exclusion rule,

N (Ac ∪ Bc) = N (Ac)+ N (Bc)− N (Ac ∩ Bc)

= 499+ 199− 99 = 599.

But by De Morgan’s law, N (Ac ∪ Bc) = N ((A ∩ B)c),
and so

N ((A ∩ B)c) = 599. (*)

Now since (A ∩ B)c = U − (A ∩ B), by the difference
rule we have

N ((A ∩ B)c) = N (U )− N (A ∩ B). (**)

Equating the right-hand sides of (∗) and (∗∗) gives N (U )−
N (A ∩ B) = 599. And because N (U ) = 999, we con-
clude that 999− N (A ∩ B) = 599, or, equivalently, N (A ∩
B) = 999− 599 = 400. So there are 400 positive integers
less than 1,000 that have no common factor with 1,000.

40. Hint: Let A and B be the sets of all positive integers less
than or equal to n that are divisible by p and q, respectively.
Then φ(n) = n − (N (A ∪ B)).
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42. c. Hint: If k ≥ 6, any sequence of k games must begin
with W, LW , or LLW , where L stands for “lose” and
W stands for “win.”

43. c. Hint: Divide the set of all derangements into two
subsets: one subset consists of all derangements in
which the number 1 changes places with another
number, and the other subset consists of all derange-
ments in which the number 1 goes to position i �= 1
but i does not go to position 1. The answer is dk =
(k − 1)dk−1 + (k − 1)dk−2. Can you justify it?

48. Hint: Use the associative law for sets and the gen-
eralized distributive law for sets from exercise 37,
Section 6.2.

49. Hint: Use the solution method described in Section 5.8.
The answer is sk = 2sk−1 + 3sk−2 for k ≥ 4.

Section 9.4
1. a. No. For instance, the aces of the four different suits

could be selected.
b. Yes. Let x1, x2, x3, x4, x5 be the five cards. Consider the

function S that sends each card to its suit.

x1

x2

x3

x4

x5

S

S(xi ) = the suit

5 cards (pigeons) 4 suits (pigeonholes)

club

diamond

heart

spade

of xi

By the pigeonhole principle, S is not one-to-one:
S(xi ) = S(x j ) for some two cards xi and x j . Hence at
least two cards have the same suit.

3. Yes. Denote the residents by x1, x2, . . . , x500. Consider the
function B from residents to birthdays that sends each resi-
dent to his or her birthday:

x1

x2

x3

x500

B

Jan 1

Jan 2

Jan 3

Dec 31

B(xi) = the birthday

500 residents (pigeons) 366 birthdays (pigeonholes)

of xi

By the pigeonhole principle, B is not one-to-one: B(xi ) =
B(x j ) for some two residents xi and x j . Hence at least two
residents have the same birthday.

5. a. Yes. There are only three possible remainders that can
be obtained when an integer is divided by 3: 0, 1, and
2. Thus, by the pigeonhole principle, if four integers are
each divided by 3, then at least two of them must have
the same remainder.

More formally, call the integers n1, n2, n3, and n4,
and consider the function R that sends each inte-
ger to the remainder obtained when that integer is
divided by 3:

n1

n2

n3

n4

R

R(ni ) = the remainder

4 integers (pigeons) 3 remainders (pigeonholes)

0

1

2
obtained when ni
is divided by 3

By the pigeonhole principle, R is not one-to-one,
R(ni ) = R(n j ) for some two integers ni and n j . Hence
at least two integers must have the same remainder.

b. No. For instance, {0, 1, 2} is a set of three inte-
gers no two of which have the same remainder when
divided by 3.

7. Hint: Look at Example 9.4.3.

9. a. Yes.

Solution 1: Only six of the numbers from 1 to 12 are
even (namely, 2, 4, 6, 8, 10, 12), so at most six even
numbers can be chosen from between 1 and 12 inclu-
sive. Hence if seven numbers are chosen, at least one
must be odd.

Solution 2: Partition the set of all integers from 1
through 12 into six subsets (the pigeonholes), each con-
sisting of an odd and an even number: {1, 2}, {3, 4},
{5, 6}, {7, 8}, {9, 10}, {11, 12}. If seven integers (the
pigeons) are chosen from among 1 through 12, then, by
the pigeonhole principle, at least two must be from the
same subset. But each subset contains one odd and one
even number. Hence at least one of the seven numbers
is odd.

Solution 3: Let S = {x1, x2, x3, x4, x5, x6, x7} be a set of
seven numbers chosen from the set T = {1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12}, and let P be the following par-
tition of T : {1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, and
{11, 12}. Since each element of S lies in exactly one
subset of the partition, we can define a function F
from S to P by letting F(xi ) be the subset that
contains xi .
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x1

x2

x3

x4

x5

x6

x7

{1, 2}

{3, 4}

{5, 6}

{7, 8}

{9, 10}

{11, 12}

S (pigeons) P (pigeonholes)

F

F(xi ) = the subset
that
contains xi

Since S has 7 elements and P has 6 elements, by the
pigeonhole principle, F is not one-to-one. Thus two dis-
tinct numbers of the seven are sent to the same subset,
which implies that these two numbers are the two dis-
tinct elements of the subset. Therefore, since each pair
consists of one odd and one even integer, one of the
seven numbers is odd.

b. No. For instance, none of the 10 numbers 1, 3, 5, 7, 9,
11, 13, 15, 17, 19 is even.

10. Yes. There are n even integers in the set {1, 2, 3, . . . , 2n},
namely 2(= 2 ·1), 4(= 2 ·2), 6(= 2 ·3), . . . , 2n(= 2 ·n).
So the maximum number of even integers that can be cho-
sen is n. Thus if n + 1 integers are chosen, at least one of
them must be odd.

12. The answer is 27. There are only 26 black cards in a stan-
dard 52-card deck, so at most 26 black cards can be chosen.
Hence if 27 are taken, at least one must be red.

14. There are 61 integers from 0 to 60 inclusive. Of these, 31
are even (0 = 2 ·0, 2 = 2 ·1, 4 = 2 ·2, . . . , 60 = 2 ·30) and
so 30 are odd. Hence if 32 integers are chosen, at least one
must be odd, and if 31 integers are chosen, at least one must
be even.

17. The answer is 8. (There are only seven possible remainders
for division by 7: 0, 1, 2, 3, 4, 5, 6.)

20. The answer is 20,483 [namely, 0, 1, 2, . . . , 20482].

22. This number is irrational; the decimal expansion neither ter-
minates nor repeats.

24. Let A be the set of the thirteen chosen numbers, and let B
be the set of all prime numbers between 1 and 40. Note that
B = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}. For each x
in A, let F(x) be the smallest prime number that divides x .
Since A has 13 elements and B has 12 elements, by the
pigeonhole principle F is not one-to-one. Thus F(x1) =
F(x2) for some x1 �= x2 in A. By definition of F , this means
that the smallest prime number that divides x1 equals the
smallest prime number that divides x2. Therefore, two num-
bers in A, namely x1 and x2, have a common divisor greater
than 1.

25. Yes. This follows from the generalized pigeonhole princi-
ple with 30 pigeons, 12 pigeonholes, and k = 2, using the
fact that 30 > 2 ·12.

26. No. For instance, the birthdays of the 30 people could be
distributed as follows: three birthdays in each of the six
months January through June and two birthdays in each of
the six months July through December.

29. The answer is x = 3. There are 18 years from 17 through
34. Now 40 > 18 ·2, so by the generalized pigeonhole prin-
ciple, you can be sure that there are at least x = 3 stu-
dents of the same age. However, since 18 ·3 > 40, you can-
not be sure of having more than three students with the
same age. (For instance, three students could be each of
the ages 17 through 20, and two could be each of the ages
from 21 through 34.) So x cannot be taken to be greater
than 3.

31. Hint: Use the same type of reasoning as in Example 9.4.6.

32. Hints: (1) The number of subsets of the six integers is
26 = 64. (2) Since each integer is less than 13, the largest
possible sum is 57. (Why? What gives this sum?)

33. Hint: The power set of A has 26 = 64 elements, and so
there are 63 nonempty subsets of A. Let k be the small-
est number in the set A. Then the sums over the elements in
the nonempty subsets of A lie in the range from k through
k + 10+ 11+ 12+ 13+ 14 = k + 60. How many num-
bers are in this range?

35. Hint: Let X be the set consisting of the given 52 pos-
itive integers, and let Y be the set containing the fol-
lowing elements: {00}, {50}, {01, 99}, {02, 98}, {03, 97},
. . . , {48, 52}, {49, 51}. Define a function F from X to Y
by the rule F(x) = the set containing the last two dig-
its of x . Use the pigeonhole principle to argue that F
is not one-to-one, and show how the desired conclusion
follows.

36. Hint:Represent each of the 101 integers xi as ai2ki where ai
is odd and ki ≥ 0. Now 1 ≤ xi ≤ 200, and so 1 ≤ ai ≤ 199
for all i . There are only 100 odd integers from 1 to 199
inclusive.

37. b. Hint: For each k = 1, 2, . . . , n, let ak = x1 + x2 +
· · · + xk . If some ak is divisible by n, then the problem
is solved: the consecutive subsequence is x1, x2, . . . , xk .
If no ak is divisible by n, then a1, a2, a3, . . . , an sat-
isfies the hypothesis of part (a). Hence a j − ai is
divisible by n for some integers i and j with j > i .
Write a j − ai in terms of the xi ’s to derive the given
conclusion.

38. Hint: Let a1, a2, . . . , an2+1 be any sequence of n2 + 1 dis-
tinct real numbers, and suppose that this sequence con-
tains neither a strictly increasing subsequence of length
n + 1 nor a strictly decreasing subsequence of length
n + 1. Let S be the set of all ordered pairs of integers
(i, d), where 1 ≤ i ≤ n and 1 ≤ d ≤ n. For each term
ak in the sequence, let F(ak) = (ik, dk), where ik is the
length of the longest increasing sequence starting at ak,
and dk is the length of the longest decreasing sequence
starting at ak . Suppose that F is one-to-one and derive a
contradiction.
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Section 9.5
1. a. 2-combinations: {x1, x2}, {x1, x3}, {x2, x3}.

Hence,

(
3
2

)
= 3.

b. Unordered selections: {a, b, c, d}, {a, b, c, e},
{a, b, d, e}, {a, c, d, e}, {b, c, d, e}.

Hence,

(
5
4

)
= 5.

3. P(7, 2) =
(
7
2

)
·2!

5. a.
(
6
0

)
= 6!

0!(6−0)! =
6!
1.6! = 1

b.
(
6
1

)
= 6!

1!(6−1)! =
6.5!
1.5! = 6

6. a. number of committees of 6

=
(
15
6

)
= 15!

(15− 6)!6!
7 5

= 15 ·14 ·13 ·12 ·11 ·10 ·9!
9! ·6 ·5 ·4 ·3 ·2 = 5,005

b.

⎡
⎣number of committees
that don’t contain A
and B together

⎤
⎦

=

⎡
⎢⎢⎣
number of
committees with A
and five others—
none of them B

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
number of
committees with B
and five others—
none of them A

⎤
⎥⎥⎦

+
[
number of committees
with neither A nor B

]

=
(
13
5

)
+
(
13
5

)
+
(
13
6

)
= 1,287+ 1,287+ 1,716 = 4,290

Alternative solution:⎡
⎣number of committees
that don’t contain A
and B together

⎤
⎦

=
[
total number
of committees

]
−
[
number of committees
that contain both A and B

]

=
(
15
6

)
−
(
13
4

)
= 5,005− 715 = 4,290

c.

⎡
⎣number of
committees with
both A and B

⎤
⎦+

⎡
⎣number of
committees with
neither A and B

⎤
⎦

=
(
13
4

)
+
(
13
6

)
= 715+ 1,716 = 2,431

d. (i)

⎡
⎣number of subsets
of three men
chosen from eight

⎤
⎦ ·

⎡
⎣number of subsets
of three women
chosen from seven

⎤
⎦

=
(
8
3

)(
7
3

)
= 56 ·35 = 1,960

(ii)

[
number of committees
with at least one woman

]

=
[
total number of
committees

]
−
[
number of all-male
committees

]

=
(
15
6

)
−
(
8
6

)
= 5,005− 28

= 4,977

e.

⎡
⎣number of
ways to choose
two freshmen

⎤
⎦ ·

⎡
⎣number of
ways to choose two
sophomores

⎤
⎦

·
[
number of ways
to choose two juniors

]
·
[
number of ways
to choose two seniors

]

=
(
3
2

)(
4
2

)(
3
2

)(
5
2

)

= 540
8. Hint: The answers are a. 1001, b. (i) 420, (ii) all 1001

require proof, (iii) 175, c. 506, d. 561

9. b.
(24
3

)(16
3

)
+
(24
4

)(16
2

)
+
(24
5

)(16
1

)
+
(24
6

)(16
0

)
=

3,223,220

11. a. (1) 4 (because there are as many royal flushes as there
are suits)

(2) 4(52
5

) = 4
2,598,960

∼= 0.0000015

c. (1) 13 ·
(48
1

)
= 624 (because one can first choose the

denomination of the four-of-a-kind and then choose
one additional card from the 48 remaining)

(2) 624(52
5

) = 624
2,598,960 = 0.00024

f. (1) Imagine constructing a straight (including a straight
flush and a royal flush) as a six-step process: step 1 is
to choose the lowest denomination of any card of the
five (which can be any one of A, 2, . . . , 10), step 2
is to choose a card of that denomination, step 3 is to
choose a card of the next higher denomination, and
so forth until all five cards have been selected. By the
multiplication rule, the number of ways to perform
this process is

10 ·
(
4

1

)(
4

1

)(
4

1

)(
4

1

)(
4

1

)
= 10 ·45 = 10,240.

By parts (a) and (b), 40 of these numbers represent
royal or straight flushes, so there are 10,240− 40 =
10,200 straights in all.

(2) 10,200(52
5

) = 10,200
2,598,960

∼= 0.0039
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13. a. 210 = 1,024

d.
[
number of outcomes
with at least one head

]

=
[
total number
of outcomes

]
−
[
number of outcomes
with no heads

]
= 1,024− 1 = 1,023

15. a. 50 b. 50
c. To get an even sum, both numbers must be even or both

must be odd. Hence[
number of subsets of two integers from
1 to 100 inclusive whose sum is even

]

=

⎡
⎢⎢⎣
number of subsets
of two even
integers chosen from
the 50 possible

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
number of subsets
of two odd
integers chosen from
the 50 possible

⎤
⎥⎥⎦

=
(
50
2

)
+
(
50
2

)
= 2,450.

d. To obtain an odd sum, one of the numbers must be even

and the other odd. Hence the answer is
(50
1

)
·
(50
1

)
=

2,500. Alternatively, note that the answer equals the
total number of subsets of two integers chosen from 1
through 100 minus the number of such subsets for which
the sum of the elements is even. Thus the answer is(100

2

)
− 2,450 = 2,500.

17. a. Two points determine a line. Hence⎡
⎣number of straight
lines determined
by the ten points

⎤
⎦ =

⎡
⎣number of subsets
of two points
chosen from ten

⎤
⎦

=
(
10
2

)
= 45.

19. a.
10!

2!1!1!3!2!1! = 151,200 since there are 2 A’s, 1 B,
1 H, 3 L’s, 2 O’s, and 1 U

b.
8!

2!1!1!2!2! = 5,040 c.
9!

1!2!1!3!2! = 15,120

23. Rook must move seven squares to the right and seven
squares up, so

⎡
⎣the number of
paths the rook
can take

⎤
⎦ =

⎡
⎢⎢⎣
the number
of orderings
of seven R’s
and seven U’s

⎤
⎥⎥⎦ where R stands

for “right” and U
stands for “up”

= 14!
7!7! = 3,432.

24. b. Solution 1:One factor can be 1, and the other factor can
be the product of all the primes. (This gives 1 factoriza-
tion.) One factor can be one of the primes, and the other
factor can be the product of the other three. (This gives(4
1

)
= 4 factorizations.) One factor can be a product of

two of the primes, and the other factor can be a product

of the two other primes. The number
(4
2

)
= 6 counts

all possible sets of two primes chosen from the four
primes, and each set of two primes corresponds to a
factorization. Note, however, that the set {p1, p2} cor-
responds to the same factorization as the set {p3, p4},
namely, p1 p2 p3 p4 (just written in a different order). In
general, each choice of two primes corresponds to the
same factorization as one other choice of two primes.
Thus the number of factorizations in which each factor

is a product of two primes is

(4
2

)
2 = 3. (This gives 3

factorizations.) The foregoing cases account for all the
possibilities, so the answer is 4+ 3+ 1 = 8.

Solution 2: Let S = {p1, p2, p3, p4}. Let p1 p2 p3 p4 =
P , and let f1 f2 be any factorization of P . The product
of the numbers in any subset A ⊆ S can be used for f1,
with the product of the numbers in Ac being f2. There
are as many ways to write f1 f2 as there are subsets
of S, namely 24 = 16 (by Theorem 6.3.1). But given
any factors f1 and f2, f1 f2 = f2 f1. Thus counting the
number of ways to write f1 f2 counts each factorization

twice, so the answer is 16
2 = 8.

25. a. There are four choices for where to send the first ele-
ment of the domain (any element of the co-domain may
be chosen), three choices for where to send the second
(since the function is one-to-one, the second element of
the domain must go to a different element of the co-
domain from the one to which the first element went),
and two choices for where to send the third element
(again since the function is one-to-one). Thus the answer
is 4 ·3 ·2 = 24.

b. none
e. Hint: The answer is n(n − 1) · · · (n − m + 1).

26. a. Let the elements of the domain be called a, b, and c and
the elements of the co-domain be called u and v. In order
for a function from {a, b, c} to {u, v} to be onto, two ele-
ments of the domain must be sent to u and one to v, or
two elements must be sent to v and one to u. There are as
many ways to send two elements of the domain to u and
one to v as there are ways to choose which elements of

{a, b, c} to send to u, namely,
(3
2

)
= 3. Similarly, there

are
(3
2

)
= 3 ways to send two elements of the domain

to v and one to u. Therefore, there are 3+ 3 = 6 onto
functions from a set with three elements to a set with
two elements.

c. Hint: The answer is 6.
d. Consider functions from a set with four elements to

a set with two elements. Denote the set of four ele-
ments by X = {a, b, c, d} and the set of two elements
by Y = {u, v}. Divide the set of all onto functions from
X to Y into two categories. The first category consists
of all those that send the three elements in {a, b, c} onto
{u, v} and that send d to either u or v. The functions in
this category can be defined by the following two-step
process:
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Step 1: Construct an onto function from {a, b, c} to
{u, v}.

Step 2: Choose whether to send d to u or to v.

By part (a), there are six ways to perform step 1, and,
because there are two choices for where to send d, there
are two ways to perform step 2. Thus, by the multiplication
rule, there are 6 ·2 = 12 ways to define the functions in the
first category.

The second category consists of all those onto functions
from X to Y that send all three elements in {a, b, c} to
either u or v and that send d to whichever of u or v

is not the image of the others. Because there are only
two choices for where to send the elements in {a, b, c},
and because d is simply sent to wherever the others
do not go, there are just two functions in the second
category.

Every onto function from X to Y either sends at least two
elements of X to f (d) or it does not. If it sends at least
two elements of X to f (d) then it is in the second cat-
egory. If it does not, then the image of {a, b, c} is {u, v}
and so the “restriction” of the function to {a, b, c} is onto.
Therefore, the function is one of those included in the
first category. Thus all onto functions from X to Y are
in one of the two categories and no function is in both
categories, and so the total number of onto functions is
12+ 2 = 14.

Hints: a. (i) g is one-to-one (ii) g is not onto
b. G is onto. Proof: Suppose y is any element of R.

[We must show that there is an element x in R such that
G(x) = y. Use of scratch work to determine what x would
have to be if it exists shows that x would have to equal
(y + 5)/4. The proof must then show that x has the neces-
sary properties.] Let x = (y + 5)/4. Then (1) x ∈ R, and
(2) G(x) = G((y + 5)/4) = 4[(y + 5)/4] − 5 = (y +
5)− 5 = y [as was to be shown].

27. a. A relation on A is any subset of A × A, and A × A
has 82 = 64 elements. So there are 264 binary relations
on A.

c. Form a symmetric relation by a two-step process: (1)
pick a set of elements of the form (a, a) (there are eight
such elements, so 28 sets); (2) pick a set of pairs of ele-
ments of the form (a, b) and (b, a) where a �= b (there
are (64− 8)/2 = 28 such pairs, so 228 such sets). The
answer is therefore 28 ·228 = 236.

28. Hint: Use the difference rule and the generalization of the
inclusion/exclusion rule for 4 sets. (See exercise 48 in Sec-
tion 9.3.)

31. Call the set X , and suppose that X = {x1, x2, . . . , xn}.
For each integer i = 0, 1, 2, . . . , n − 1, we can consider
the set of all partitions of X (let’s call them parti-
tions of type i) where one of the subsets of the parti-
tion is an (i + 1)-element set that contains xn and i ele-
ments chosen from {x1, . . . , xn−1}. The remaining sub-
sets of the partition will be a partition of the remain-
ing (n − 1)− i elements of {x1, . . . , xn−1}. For instance,

if X = {x1, x2, x3}, there are five partitions of the various
types, namely,

Type 0: two partitions where one set is a 1-element set con-
taining x3: [{x3}, {x1}, {x2}], [{x3}, {x1, x2}]

Type 1: two partitions where one set is a 2-element set con-
taining x3: [{x1, x3}, {x2}], [{x2, x3}, {x1}]

Type 2: one partition where one set is a 3-element set con-
taining x3 : {x1, x2, x3}

In general, we can imagine constructing a partition of type
i as a two-step process:

Step 1: Select out the i elements of {x1, . . . , xn−1} to put
together with xn ,

Step 2: Choose any partition of the remaining (n − 1)− i
elements of {x1, . . . , xn−1} to put with the set
formed in step 1.

There are
(n−1

i

)
ways to perform step 1 and P(n−1)−i ways

to perform step 2. Therefore, by the multiplication rule,
there are

(n−1
i

) · P(n−1)−i partitions of type i . Because any
partition of X is of type i for some i = 0, 1, 2, . . . , n − 1,
it follows from the addition rule that the total number of
partitions is(
n − 1
0

)
Pn−1 +

(
n − 1
1

)
Pn−2

+
(
n − 1
2

)
Pn−3 + · · · +

(
n − 1
n − 1

)
P0.

33. S5,2 = S4,1 + 2S4,2 = 1+ 2 ·7 = 15

36. Proof (by mathematical induction): Let the property P(n)
be the equation Sn,2 = 2n−1 − 1.

Show that P(2) is true:

We must show that S2,2 = 22−1 − 1. By Example 9.5.13,
S2,2 = 1, and 22−1 − 1 = 2− 1 = 1 also. So P(2) is true.

Show that for all integers k ≥ 2, if P(k) is true, then
P(k+1) is true:

Let k be any integer with k ≥ 2, and suppose that Sk,2 =
2k−1 − 1. [Inductive hypothesis.] We must show that
Sk+1,2 = 2(k+1)−1 − 1 = 2k − 1. But according to Exam-
ple 9.5.13, Sk+1,2 = Sk,1 + 2Sk,2 and Sk,1 = 1. So by sub-
stitution and the inductive hypothesis,

Sk+1,2 = 1+ 2Sk,2 = 1+ 2(2k−1 − 1)

= 1+ 2k − 2 = 2k − 1

[as was to be shown].

38. Hint: Observe that the number of onto functions from
X = {x1, x2, x3, x4} to Y = {y1, y2, y3} is S4,3 ·3! because
the construction of an onto function can be thought of as a
two-step process where step 1 is to choose a partition of X
into three subsets and step 2 is to choose, for each subset of
the partition, an element of Y for the elements of the subset
to be sent to.
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Section 9.6
1. a.

(5+3−1
5

)
=
(7
5

)
= 7 ·6

2 = 21.

b. The three elements of the set are 1, 2 and 3. The
5-combinations are [1, 1, 1, 1, 1], [1, 1, 1, 1, 2],
[1, 1, 1, 1, 3], [1, 1, 1, 2, 2], [1, 1, 1, 2, 3], [1, 1, 1, 3, 3],
[1, 1, 2, 2, 2], [1, 1, 2, 2, 3], [1, 1, 2, 3, 3], [1, 1, 3, 3, 3],
[1, 2, 2, 2, 2], [1, 2, 2, 2, 3], [1, 2, 2, 3, 3], [1, 2, 3, 3, 3],
[1, 3, 3, 3, 3], [2, 2, 2, 2, 2], [2, 2, 2, 2, 3], [2, 2, 2, 3, 3],
[2, 2, 3, 3, 3], [2, 3, 3, 3, 3], and [3, 3, 3, 3, 3].

2. a.
(4+3−1

4

)
=
(6
4

)
= 6 ·5

2 = 15

3. a.
(20+6−1

20

)
=
(25
20

)
= 53,130

b. If at least three are eclairs, then 17 additional pastries
are selected from six kinds. The number of selections is(17+6−1

17

)
=
(22
17

)
= 26,334.

Note: In parts (a) and (b), it is assumed that the selec-
tions being counted are unordered.

c. Let T be the set of selections of pastry that may be any
one of the six kinds, let E≥3 be the set of selections con-
taining three or more eclairs, and let E≤2 be the set of
selections containing two or fewer eclairs. Then

N (E≤2) = N (T )− N (E≥3) because T = E≤2 ∪ E≥3
andE≤2 ∩ E≥3 = ∅

= 53, 130− 26, 334 by parts (a) and (b)

= 26, 796.

Thus there are 26,796 selections of pastry containing at
most two eclairs.

5. The answer equals the number of 4-combinations with rep-
etition allowed that can be formed from a set of n elements.
It is (

4+ n − 1
4

)
=

(
n + 3
4

)

= (n + 3)(n + 2)(n + 1)n(n − 1)!
4!(n − 1)!

= n(n + 1)(n + 2)(n + 3)

24
.

8. As in Example 9.6.4, the answer is the same as the num-
ber of quadruples of integers (i, j, k,m) for which 1 ≤ i ≤
j ≤ k ≤ m ≤ n. By exercise 5, this number is

(n+3
4

)
=

n(n+1)(n+2)(n+3)
24 .

10. Think of the number 20 as divided into 20 individual units
and the variables x1, x2, and x3 as three categories into
which these units are placed. The number of units in cat-
egory xi indicates the value of xi in a solution of the equa-
tion. By Theorem 9.6.1, the number of ways to select 20

objects from the three categories is
(20+3−1

20

)
=
(22
20

)
=

22 ·21
2 = 231, so there are 231 nonnegative integer solu-

tions to the equation.

11. The analysis for this exercise is the same as for exercise
10 except that since each xi ≥ 1, we can imagine taking 3
of the 20 units, placing one in each category x1, x2, and
x3, and then distributing the remaining 17 units among
the three categories. The number of ways to do this is(17+3−1

17

)
=
(19
17

)
= 19 ·18

2 = 171, so there are 171 pos-

itive integer solutions to the equation.

16. a. Let L≥7 be the set of selections that include at least
seven cans of lemonade. In this case an additional eight
cans can be selected from the five types of soft drinks,
and so

N (L≥7) =
(
8+ 5− 1

8

)
=

(
12
8

)
= 495.

Let T be the set of selections of cans in which the soft
drink may be any one of the five types, and let L≤6 be
the set of selections that contain at most six cans of
lemonade. Then

N (L≤6) = N (T )− N (L≥7)
because T = L≤6 ∪ L≥7
and L≤6 ∩ L≥7 = ∅

= 3, 876− 495 by the above and part (a)
of Example 9.6.2= 3, 381.

Thus there are 3,381 selections of fifteen cans of soft
drinks that contain at most six cans of lemonade.

b. Let R≤5 be the set of selections containing at most five
cans of root beer, and let L≤6 be the set of selections
containing at most six cans of lemonade. The answer
to the question can be represented as N (R≤5 ∩ L≤6).
As in part (a), let T be the set of all the selections of
fifteen cans in which the soft drink may be any one
of the five types. If you remove all the selections con-
taining at least six cans of root beer or at least seven
cans of lemonade from T , then you are left with all
the selections containing at most five cans of root beer
and at most six cans of lemonade. Thus, in the nota-
tion of part (a) and Example 9.6.2, N (R≤5 ∩ L≤6) =
N (T )− N (R≥6 ∪ L≥7).

Use the inclusion/exclusion rule as follows to compute
N (R≥6 ∪ L≥7):

N (R≥6 ∪ L≥7) = N (R≥6)+ N (L≥7)− N (R≥6 ∩ L≥7).

To find N (R≥6 ∩ L≥7), observe that if at least six cans
of root beer and at least seven cans of lemonade are
selected, then at most two additional cans of soft drink
can be chosen from the other three types to make up the
total of fifteen cans. A selection of two such cans can be
represented by a string of 2×’s and 3|’s, and a selection
of one such can can be represented by a string of 1×
and 3|’s. Hence

N (R≥6 ∩ L≥7) =
(
2+ 3− 1

2

)
=

(
1+ 3− 1

1

)

=
(
4
2

)
+
(
3
1

)
= 6+ 3 = 9.
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It follows that

N (R≥6 ∪ L≥7) = N (R≥6)+ N (L≥7) by the inclusion/
exclusion rule− N (R≥6 ∩ L≥7)

= 715+ 495− 15 by part (a), the
computation
above, and part (b)
of Example 9.6.2

= 1,201.

Putting together the information from earlier in the
solution gives that

N (R≤5 ∩ L≤6) = N (T )− N (R≥6 ∪ L≥7)

= 3,876− 1,201 = 2,675.

Thus there are 2,681 selections of fifteen soft drinks that
contain at most five cans of root beer and at most six
cans of lemonade.

17. Hints: a. The answer is 10,295,472. b. See the solution to
part (c) of Example 9.6.2. The answer is 9,949,368. c. The
answer is 9,111,432.

d. Let T denote the set of all the selections of thirty
balloons, let R≤12 denote the set of selections contain-
ing at most twelve red balloons, let B≤8 denote the set
of selections containing at most eight blue balloons, let
R≥13 denote the set of selections containing at least thir-
teen red balloons, and let B≥9 denote the set of selections
containing at least nine blue balloons.. Then the answer
to the question can be represented as N (R≤12 ∩ B≤8). Out
of the total of all the balloon selections, if you remove
the selections containing at least thirteen red or at least
nine blue balloons, then you are left with the selections
containing at most twelve red and at most eight blue
balloons. Thus N (R≤12 ∩ B≤8) = N (T )− N (R≥13 ∪ B≥9).
Compute N (R≥13 ∩ B≥9), and use the inclusion/exclusion
rule to find N (R≥13 ∪ B≥9).

19. Hints: The answers are a. 51,128 b. 46,761

Section 9.7
1.

(
n
0

)
= n!

0!(n − 0)! =
n!
1 ·n! = 1

3.
(
n

2

)
= n!

(n − 2)! ·2! =
n ·(n − 1) ·(n − 2)!

(n − 2)! ·2!
= n(n − 1)

2
5. Proof: Suppose n and r are nonnegative integers and r ≤ n.

Then(
n
r

)
= n!

r !(n − r)! by Theorem 9.5.1

= n!
(n − (n − r))!(n − r)! since n − (n − r) =

n − n + r = r

= n!
(n − r)!(n − (n − r))!

by interchanging the
factors in the denominator

=
(

n
n − r

)
by Theorem 9.5.1.

6. Solution 1: Apply formula (9.7.2) with m + k in place of n.
This is legal because m + k ≥ 1.
Solution 2:(

m + k
m + k − 1

)
= (m+k)!

(m+k−1)![(m+k)−(m+k−1)]!

= (m+k)· (m+k−1)!
(m+k−1)!(m+k−m−k+1)!

= (m+k)· (m+k−1)!
(m+k−1)! ·1! = m + k

10. a.
(
6
2

)
=

(
5
2

)
+
(
5
1

)
= 10+ 5 = 15,(

6
3

)
=

(
5
3

)
+
(
5
2

)
= 10+ 10 = 20

b.
(
6
4

)
=

(
5
4

)
+
(
5
3

)
= 5+ 10 = 15,(

6
5

)
=

(
5
5

)
+
(
5
4

)
= 1+ 5 = 6,(

7
3

)
=

(
6
3

)
+
(
6
2

)
= 20+ 15 = 35,(

7
4

)
=

(
6
4

)
+
(
6
3

)
= 15+ 20 = 35,(

7
5

)
=

(
6
5

)
+
(
6
4

)
= 6+ 15 = 21

c. Row for n = 7 : 1 7 21 35 35 21 7 1

13. Proof by mathematical induction: Let the property P(n) be
the formula

n+1∑
i=2

(
i
2

)
=

(
n + 2
3

)
. ← P(n)

Show that P(1) is true:

To prove P(1) we must show that

1+1∑
i=2

(
i
2

)
=

(
1+ 2
3

)
. ← P(1)

But

1+1∑
i=2

(
i
2

)
=

2∑
i=2

(
i
2

)
=

(
2
2

)
= 1 =

(
3
3

)
=

(
1+ 2
3

)
,

so P (1) is true.

Show that for all integers k ≥ 1, P(k) is true, then P(k+1)
is true:

Let k be any integer with k ≥ 1, and suppose that

k+1∑
i=2

(
i
2

)
=

(
k + 2
3

) ← P(k)
inductive hypothesis

We must show that

(k+1)+1∑
i=2

(
i
2

)
=

(
(k + 1)+ 2

3

)
,
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or, equivalently,

k+2∑
i=2

(
i
2

)
=

(
k + 3
3

)
. ← P(k + 1)

But the left-hand side of P(k+1) is

k+2∑
i=2

(
i
2

)
=

k+1∑
i=1

(
i
2

)
+
(
k + 2
2

)
by writing the last
term separately

=
(
k + 2
3

)
+
(
k + 2
2

)
by inductive hypothesis

=
(
(k + 2)+ 1

3

)
by Pascal’s formula

=
(
k + 3
3

)
,

which is the right-hand side of P(k+ 1) [as was to be shown].
[Since we have proved the basis step and the inductive step, we
conclude that P(n) is true for all n ≥ 1.]

14. Hint: Use the results of exercises 3 and 13.

17. Hint: This follows by letting m = n = r in exercise 16 and
using the result of Example 9.7.2.

19. 1+ 7x +
(7
2

)
x2 +

(7
3

)
x3 +

(7
4

)
x4 +

(7
5

)
x5 +

(7
6

)
x6 +

x7 = 1+ 7x + 21x2 + 35x3 + 35x4 + 21x5 + 7x6 + x7

21. 1+ 6(−x)+
(6
2

)
(−x)2 +

(6
3

)
(−x)3 +

(6
4

)
(−x)4 +(6

5

)
(−x)5 + (−x)6 = 1− 6x + 15x2 − 20x3 + 15x4 −

6x5 + x6

23. (p − 2q)4 =
4∑

k=0

(
4
k

)
p4−k(−2q)k

=
(
4
0

)
p4(−2q)0 +

(
4
1

)
p3(−2q)1

+
(
4
2

)
p2(−2q)2 +

(
4
3

)
p1(−2q)3

+
(
4
4

)
p0(−2q)4

= p4 − 8p3q + 24p2q2 − 32pq3 + 16q4

25.
(
x + 1

x

)5

=
5∑

k=0

(
5
k

)
x5−k

(
1

x

)k

=
(
5
0

)
x5

(
1

x

)0

+
(
5
1

)
x4

(
1

x

)1

+
(
5
2

)
x3

(
1

x

)2

+
(
5
3

)
x2

(
1

x

)3

+
(
5
4

)
x1

(
1

x

)4

+
(
5
5

)
x0

(
1

x

)5

= x5 + 5x3 + 10x + 10

x
+ 5

x3
+ 1

x5

29. The term is
(9
3

)
x6y3 = 84x6y3, so the coefficient is 84.

31. The term is
(12
7

)
a5(−2b)7 = 792a5(−128)b7 =

− 101,376a5b7, so the coefficient is −101,376.
33. The term is

(15
8

)
(3p2)8(−2q)7 =

(15
8

)
38(−2)7 p16q7, so

the coefficient is
(15
8

)
38(−2)7 = −5, 404,164,480.

36. Proof: Let a = 1, let b = −1, and let n be a positive integer.
Substitute into the binomial theorem to obtain

(1+ (−1))n =
n∑

k=0

(
n
k

)
·1n−k ·(−1)k

=
n∑

k=0

(
n
k

)
(−1)k since 1n−k = 1.

But (1+ (−1))n = 0n = 0, so

0 =
n∑

k=0

(
n
k

)
(−1)k

=
(
n
0

)
−
(
n
1

)
+
(
n
2

)
−
(
n
3

)
+ · · · + (−1)n

(
n
n

)
.

37. Hint: 3 = 1+ 2

38. Proof: Letm be any integer withm ≥ 0, and apply the bino-
mial theorem with a = 2 and b = −1. The result is

1 = 1m = (2+ (−1))m =
m∑
i=0

(
m
i

)
2m−i (−1)i

=
m∑
i=0

(−1)i
(
m
i

)
2m−i .

41. Hint:Apply the binomial theorem with a = −1
2 and b = 1,

and analyze the resulting equation when n is even and when
n is odd.

43.
n∑

k=0

(
n

k

)
5k =

n∑
k=0

(
n

k

)
1n−k5k = (1+ 5)n = 6n

45.
n∑

i=0

(
n

i

)
xi =

n∑
i=0

(
n

i

)
1n−i x i = (1+ x)n

47.
2n∑
j=0

(−1) j
(
2n

j

)
x j =

2n∑
j=0

(
2n

j

)
12n− j (−x) j = (1− x)2n

51.
m∑
i=0

(−1)i
(
m

i

)
1

2i
=

m∑
i=0

(
m

i

)
1m−i

(
−1

2

)i

=
(
1− 1

2

)m

= 1

2m

53.
n∑

i=0
(−1)i

(
n

i

)
5n−i2i =

n∑
i=0

(
n

i

)
5n−i (−2)i = (5− 2)n = 3n

55. b. n(1+ x)n−1 =
n∑

k=1

(
n
k

)
kxk−1.

[The term corresponding to k = 0 is zero because
d
dx (x0)= 0.]
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c. (i) Substitute x = 1 in part (b) above to obtain

n(1+ 1)n−1 =
n∑

k=1

(
n
k

)
k ·1k−1 =

n∑
k=1

(
n
k

)
k

=
(
n
1

)
·1+

(
n
2

)
·2+

(
n
3

)
·3+ · · · +

(
n
n

)
n.

Dividing both sides by n and simplifying gives

2n−1 = 1

n

[(
n
1

)
+ 2

(
n
2

)
+ 3

(
n
3

)
+ · · · + n

(
n
n

)]
.

Section 9.8
1. By probability axiom 2, P(∅) = 0.

2. a. By probability axiom 3, P(A ∪ B) = P(A)+ P(B) =
0.3+ 0.5 = 0.8.

b. Because A ∪ B ∪ C = S,C = S − (A ∪ B). Thus, by
the formula for the probability of the complement
of an event, P(C) = P((A ∪ B)c) = 1− P(A ∪ B) =
1− 0.8 = 0.2.

4. By the formula for the probability of a general union
of two events, P(A ∪ B) = P(A)+ P(B)− P(A ∩ B) =
0.8+ 0.7− 0.6 = 0.9.

7. a. P(A ∪ B) = 0.4+ 0.3 = 0.7
b. P(C) = P((A ∪ B)c) = 1− P(A ∪ B) =

1− 0.7 = 0.3
c. P(A ∪ C) = 0.4+ 0.3 = 0.7
d. P(Ac) = 1− P(A) = 1− 0.4 = 0.6
e. P(Ac ∩ Bc) = P((A ∪ B)c) = 1− P(A ∪ B) =

1− 0.7 = 0.3
f. P(Ac ∪ Bc) = P((A ∩ B)c) = P(∅c) = P(S) = 1

9. a. P(A ∪ B) = P(A)+ P(B)− P(A ∩ B) =
0.4+ 0.5− 0.2 = 0.7

d. P(Ac ∩ Bc) = P((A ∪ B)c) = 1− P(A ∪ B) =
1− 0.7 = 0.3

11. Hint: V = (U ∪ (V −U ))

12. Hint:Use the fact that for all setsU and V,U ∪ (V −U ) =
U ∪ V .

13. Hint: (A1 ∪ A2 ∪ · · · ∪ Ak) ∩ Ak+1 = ∅ and
A1 ∪ A2 ∪ · · · ∪ Ak ∪ Ak+1 = (A1 ∪ A2 ∪ · · · ∪ Ak) ∪
Ak+1.

14. Solution 1: The net gain of the grand prize winner is
$2,000,000 − $2 = $1,999,998. Each of the 10,000 sec-
ond prize winners has a net gain of $20 − $2 = $18, and
each of the 50,000 third prize winners has a net gain of
$4 − $2 = $2. The number of people who do not win any-
thing is 1,500,000 − 1 − 10,000 −50,000 = 1,439,999,
and each of these people has a net loss of $2. Because all
of the 1,500,000 tickets have an equal chance of winning a
prize, the expected gain or loss of a ticket is

1

1500000
($1,999,998 ·1+ $18 ·10000
+ $2 ·50000+ (−$2) ·1,439,999) = −$0.40.

Solution 2: The total income to the lottery organizer is
$2 (per ticket) · 1,500,000 (tickets) = $3,000,000. The
payout the lottery organizer must make is $2,000,000+
($20)(10,000)+ ($4)(50,000) = $2,400,000, so the net
gain to the lottery organizer is $600,000, which amounts

to $600,000
1,500,000 = $0.40 per ticket. Thus the expected net loss

to a purchaser of a ticket is $0.40.

16. Let 21 and 22 denote the two balls with the number 2, and

let 5 and 6 denote the other two balls. There are
(6
2

)
= 4

subsets of 2 balls that can be chosen from the urn. The fol-
lowing table shows the sums of the numbers on the balls in
each set and the corresponding probabilities:

Subset Sum s Probability that the sum = s

{21, 22} 4 1/6

{21, 5}, {22, 5} 7 2/6

{21, 6}{22, 6} 8 2/6

{5, 6} 11 1/6

So the expected value is 4 · 16 + 7 · 26 + 8 · 26 + 11 · 16 = 7.5.

19. The following table displays the sum of the numbers show-
ing face up on the dice:

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

Each cell in the table represents an outcome whose proba-

bility is 1
36 . Thus the expected value of the sum is

2
(

1
36

)
+ 3

(
2
36

)
+ 4

(
3
36

)
+ 5

(
4
36

)
+ 6

(
5
36

)
+ 7

(
6
36

)
+ 8

(
5
36

)
+ 9

(
4
36

)
+ 10

(
3
36

)
+ 11

(
2
36

)
+ 12

(
1
36

)
= 252

36 = 7.

20. Hint: The answer is about 7.7 cents.

22. Hint: The answer is 1.875.

23. Hint: To derive P20, use the distinct roots theorem from

Section 5.8. The answer is P20 = 5300−520
5300−1 ∼= 1.

Section 9.9
1. P(B) = P(A ∩ B)

P(A | B)
= 1/6

1/2
= 1

3
3. Hint: The answer is 60%.

4. a. Proof: Suppose S is any sample space and A and B are
any events in S such that P(B) �= 0. Note that
(1) A ∪ Ac = S by the complement law for ∪.
(2) B ∩ S = B by the identity law for ∩.
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9.9 Solutions and Hints to Selected Exercises A-91

(3) B ∩ (A ∪ Ac) = (A ∩ B) ∪ (Ac ∩ B) by the dis-
tributive law and commutative laws for sets.

(4) (A ∩ B) ∩ (Ac ∩ B) = ∅ by the complement law
for ∩ and the commutative and associative laws for
sets.

Thus B = (A ∩ B) ∪ (Ac ∩ B), and, by probability
axiom 3, P(B) = P(A ∩ B)+ P(Ac ∩ B). Therefore,
P(Ac ∩ B) = P(B)− P(A ∩ B). By definition of con-
ditional probability, it follows that

P(Ac | B) = P(Ac ∩ B)

P(B)
= P(B)− P(A ∩ B)

P(B)

= 1− P(A ∩ B)

P(B)
= 1− P(A|B).

5. Hints: (1) A = (A ∩ B) ∪ (A ∩ Bc).

(2) The answer is P(A | Bc) = P(A)− P(A | B)P(B)

1− P(B)
.

6. a. Let R1 be the probability that the first ball is red, and let
R2 be the probability that the second ball is red. Then
Rc
1 is the probability that the first ball is not red, and Rc

2

is the probability that the second ball is not red. The tree
diagram shows the various relations among the proba-
bilities.

P(R1) =
 — = —

5
825

40

P(R 2  R 1
) = — = —

8
1324

39

P(R c) = — = —3
8

15
40

R1     R2

R1

R1     R2  
c

P(R  c       R
1) = — = —5

13

15
39

R  
c

1

14
39

P(R  c  
 R  c

 ) = —2
1

2

25
39P(R    R  

c
 ) = —

1 R 
c     R21

R 
c     R 

c
21

1

2

Then

P(R1 ∩ R2) = P(R2 | R1) · P(R1)

= 8

13
· 5
8
= 5

13
∼= 38.5%,

P(R1 ∩ R c
2 ) = P(R c

2 | R1) · P(R1)

= 5

13
· 5
8
= 25

104
∼= 24%,

P(R c
1 ∩ R2) = P(R2 | R c

1 ) · P(R c
1 )

= 25

39
· 3
8
= 25

104
∼= 24%,

P(R c
1 ∩ R c

2 ) = P(R c
2 | R c

1 ) · P(R c
1 )

=14

39
· 3
8
= 14

104
∼= 13.5%

So the probability that both balls are red is 5/13, the
probability that the first ball is red and the second is not
is 25/104, the probability that the first ball is not red and
the second ball is red is 25/104, and the probability that
neither ball is red is 14/104.

b. Note that

R2 =(R2 ∩ R1) ∪ (R2 ∩ R c
1 ) and

(R2 ∩ R1) ∩ (R2 ∩ R c
1 ) = ∅.

Thus the probability that the second ball is red is

P(R2) = P(R2 ∩ R1)+ P(R2 ∩ R c
1 )

= 5

13
+ 25

104
= 65

104
∼= 62.5%.

c. If exactly one ball is red, then either the first ball is red
and the second is not or the first ball is not red and the
second is red, and these possibilities are mutually exclu-
sive. Thus

P(exactly one ball is red) = P(R1 ∩ R c
2 )+ P(R c

1 ∩ R2)

= 25

104
+ 25

104
= 50

104

= 25

52
∼= 48.1%.

The probability that both balls are red is P(R1 ∩ R2) =
5
13
∼= 38.5%. Then

P(at least one ball is red) =P(exactly one ball is red)

+ P(both balls are red)

= 25

52
+ 5

13

= 45

52
∼= 86.5%.

8. a. Let W1 be the event that a woman is chosen on the first
draw,
W2 be the event that a woman is chosen on the second
draw,
M1 be the event that a man is chosen on the first draw,
M2 be the event that a man is chosen on the second draw.

Then P(W1) = 3
10 and P(W2 |W1) = 2

9 , and thus

P(W1 ∩W2) = P(W2 |W1)P(W1) = 2
9 ·

3
10 =

1
15 =

623%.

c. Hint: The answer is 7
15 = 4623 %.

9. Hint: Use the facts that P(Bk | A) = P(Bk ∩ A)

P(A)
and that

(A ∩ B1) ∪ (A ∩ B2) = A.

11. a. Let U1 be the event that the first urn is chosen, U2 the
event that the second urn is chosen, and B the event that
the chosen ball is blue. Then

P(B |U1) = 12
19 and P(B |U2) = 8

27 .

P(B ∩U1) = P(B |U1)P(U1) = 12
19 ·

1
2 =

12
38 .

Also

P(A ∩U2) = P(B |U2)P(U2) = 8
27 ·

1
2 =

8
54 .
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Now B is the disjoint union of B ∩U1 and B ∩U2. So

P(B) = P(B ∩U1)+ P(B ∩U2) = 12
38 +

8
54
∼= 46.4%.

Thus the probability that the chosen ball is blue is
approximately 46.4%.

b. Given that the chosen ball is blue, the probability that it
came from the first urn is P(U1 | B). By Bayes’ theorem
and the computations in part (a),

P(U1 | B) = P(B |U1)P(U1)

P(B |U1)P(U1)+ P(B |U2)P(U2)

= (12/19)(0.5)

(12/19)(0.5)+ (8/27)(0.5)
∼= 68.1%

13. Hint: The answers to parts (a) and (b) are approximately
52.9% and 54.0%, respectively.

14. Let A be the event that a randomly chosen person tests pos-
itive for drugs, let B1 be the event that a randomly cho-
sen person uses drugs, and let B2 be the event that a ran-
domly chosen person does not use drugs. Then Ac is the
event that a randomly chosen person does not test positive
for drugs, and P(B1) = 0.04, P(B2) = 0.96, P(A | B2) =
0.03, and P(Ac | B1) = 0.02. Hence P(A | B1) = 0.97 and
P(Ac | B2) = 0.98.

a. P(B1 | A) = P(A | B1)P(B1)

P(A | B1)P(B1)+ P(A | B2)P(B2)

= (0.97)(0.04)

(0.97)(0.04)+ (0.03)(0.96)
∼= 57.4%

b. P(B2 | Ac) = P(Ac | B2)P(B2)

P(Ac | B1)P(B1)+ P(Ac | B2)P(B2)

= (0.98)(0.96)

(0.02)(0.04)+ (0.98)(0.96)
∼= 99.9%

16. Hint: The answers to parts (a) and (b) are 11.25% and
21 1

3%, respectively.

17. Proof: Suppose A and B are events in a sample space S,
and P(A|B) = P(A) �= 0. Then

P(B|A) = P(B ∩ A)

P(A)
= P(A|B)P(B)

P(A)

= P(A)P(B)

P(A)
= P(B).

19. As in Example 6.9.1, the sample space is the set of all 36
outcomes obtained from rolling the two dice and noting the
numbers showing face up on each. Let A be the event that
the number on the blue die is 2 and B the event that the
number on the gray die is 4 or 5. Then

A = {21, 22, 23, 24, 25, 26},
B = {14, 24, 34, 44, 54, 64, 15, 25, 35, 45, 55, 65}, and

A ∩ B = {24, 25}.
Since the dice are fair (so all outcomes are equally likely),

P(A) = 6
36 , P(B) = 12

36 and P(A ∩ B) = 2
36 . By defini-

tion of conditional probability,

P(A | B) = P(A ∩ B)

P(B)
=

2
36
12
36

= 1
6 and

P(B|A) = P(A∩B)

P(A)
=

2
36
6
36

= 1
3 .

But P(A) = 6
36 =

1
6 and P(B) = 12

36 =
1
3 . Hence

P(A|B) = P(A) and P(B | A) = P(B).

23. Let A be the event that the student answers the first question
correctly, and let B be the event that the student answers
the second answer correctly. Because two choices can be

eliminated on the first question, P(A) = 1
3 , and because no

choices can be eliminated on the second question, P(B) =
1
5 . Thus P(Ac) = 2

3 and P(Bc) = 4
5 .

a. Hint: The probability that the student answers both
questions correctly is

P(A ∩ B) = P(A)P(B) = 1

3
· 1
5
= 1

15
= 6

2

3
%.

b. The probability that the student answers exactly one
question correctly is

P((A ∩ Bc) ∪ (Ac ∩ B))

= P(A ∩ Bc)+ P(Ac ∩ B)

= P(A)P(Bc)+ P(Ac)P(B)

= 1
3 ·

4
5 +

2
3 ·

1
5 =

6
15 =

2
5 = 40%.

c. One solution is to say that the probability that the stu-
dent answers both questions incorrectly is P(Ac ∩ Bc),
and P(Ac ∩ Bc) = P(Ac)P(Bc) by the result of exer-
cise 22. Thus the answer is

P(Ac)P(Bc) = 2

3
· 4
5
= 8

15
= 53

1

3
%.

Another solution uses the fact that the event that the student
answers both questions incorrectly is the complement of
the event that the student answers at least one question cor-
rectly. Thus, by the results of parts (a) and (b), the answer

is 1−
(

1
15 +

2
5

)
= 8

15 = 5313%.

25. Let Hi be the event that the result of toss i is heads, and
let Ti be the event that the result of toss i is tails. Then
P(Hi ) = 0.7 and P(Ti ) = 0.3 for i = 1, 2.
b. The probability of obtaining exactly one head is

P((H1 ∩ T2) ∪ (T1 ∩ H2))

= P(H1 ∩ T2)+ P(T1 ∩ H2)

= P(H1)P(T2)+ P(T1)P(H2)

= (0.7)(0.3)+ (0.3)(0.7) = 42%.

27. Hint: The answer is 1
2 .
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10.1 Solutions and Hints to Selected Exercises A-93

28. a. P(seven heads)

=
⎡
⎣the number of different
ways seven heads can
be obtained in ten tosses

⎤
⎦ (0.7)7(0.3)3

= 120(0.7)7(0.3)3 ∼= 0.267 = 26.7%.

29. a. P(none is defective)

=
⎡
⎣the number of different
ways of having 0 defective
items in the sample of 10

⎤
⎦ (0.03)0(0.97)10

= 1 · (0.3.)0(0.97)10 ∼= 0.737 = 73.7%

30. b. The probability that a woman will have at least one false
positive result over a period of ten years is
1− (0.96)10 ∼= 33.5%.

31. a. P(none is male) ∼= 1.3%
b. P(at least one is male) = 1− P(none is male) ∼=

1− 0.013 = 98.7%

Section 10.1
1. V (G) = {v1, v2, v3, v4}, E(G) = {e1, e2, e3}

Edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v3}

3.

v1

e1

e2
v2 v4 v5

v3

e3

e4

5. Imagine that the edges are strings and the vertices are knots.
You can pick up the left-hand figure and lay it down again
to form the right-hand figure as shown below.

v5

v2

v6

v1 v3

v4

e6

e5

e4

e7

e1 e2

e3

8. (i) e1, e2, and e3 are incident on v1.
(ii) v1, v2, and v3 are adjacent to v3.
(iii) e2, e8, e9, and e3 are adjacent to e1.
(iv) Loops are e6 and e7.
(v) e8 and e9 are parallel; e4 and e5 are parallel.
(vi) v6 is an isolated vertex.

(vii) degree of v3 = 5
(viii) total degree = 20

10. a. Yes. According to the graph, Sports Illustrated is an
instance of a sports magazine, a sports magazine is a
periodical, and a periodical contains printed writing.

12. To solve this puzzle using a graph, introduce a notation in
which, for example, wc/ f g means that the wolf and the
cabbage are on the left bank of the river and the ferry-
man and the goat are on the right bank. Then draw those
arrangements of wolf, cabbage, goat, and ferryman that can
be reached from the initial arrangement (wgc f/) and that
are not arrangements to be avoided (such as (wg/ f c)). At
each stage ask yourself, “Where can I go from here?” and
draw lines or arrows pointing to those arrangements. This
method gives the graph shown at the top of the next column.

wc/fg

wg f /c

w/cfg

cg f /w

c/wfg

wcf /g

wgcf /

gf /wc

/wgcf

g/wfc

Start

End

Examination of the diagram shows the solutions

(wgc f/)→ (wc/g f )→ (wc f/g)→ (w/gc f )→
(wg f/c)→ (g/wc f )→ (g f/wc)→ (/wgc f )

and

(wgc f/)→ (wc/g f )→ (wc f/g)→ (c/wg f )→
(gc f/w)→ (g/wc f )→ (g f/wc)→ (/wgc f )

14. Hint: The answer is yes. Represent possible amounts of
water in jugs A and B by ordered pairs. For instance, the
ordered pair (1, 3) would indicate that there is one quart of
water in jug A and three quarts in jug B. Starting with (0,
0), draw arrows from one ordered pair to another if it is
possible to go from the situation represented by one pair to
that represented by the other by either filling a jug, empty-
ing a jug, or transferring water from one jug to another. You
need only draw arrows from states that have arrows point-
ing to them; the other states cannot be reached. Then find a
directed path (sequence of directed edges) from the initial
state (0, 0) to a final state (1, 0) or (0, 1).
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15. The total degree of the graph is 0+ 2+ 2+ 3+ 9 = 16, so
by Theorem 10.1.1, the number of edges is 16/2 = 8.

17. One such graph is

a

b

c

de

18. If there were a graph with four vertices of degrees 1, 2, 3,
and 3, then its total degree would be 9, which is odd. But
by Corollary 10.1.2, the total degree of the graph must be
even. [This is a contradiction.]Hence there is no such graph.
(Alternatively, if there were such a graph, it would have
an odd number of vertices of odd degree. But by Proposi-
tion 10.1.3 this is impossible.)

21. Suppose there were a simple graph with four vertices of
degrees 1, 2, 3, and 4. Then the vertex of degree 4 would
have to be connected by edges to four distinct vertices other
than itself because of the assumption that the graph is sim-
ple (and hence has no loops or parallel edges.) This con-
tradicts the assumption that the graph has four vertices in
total. Hence there is no simple graph with four vertices of
degrees 1, 2, 3, and 4.

24. v1 v2

v4 v3

26. a. The nonempty subgraphs are as follows:

v1

v2

e1

e2

v2

v1

e2

v1

v2

v2

v1

v2

v1

e1

1 2 3

4 5 6

27. a. Suppose that, in a group of 15 people, each person had
exactly three friends. Then you could draw a graph rep-
resenting each person by a vertex and connecting two
vertices by an edge if the corresponding people were
friends. But such a graph would have 15 vertices, each
of degree 3, for a total degree of 45. This would contra-
dict the fact that the total degree of any graph is even.
Hence the supposition must be false, and in a group of
15 people it is not possible for each to have exactly three
friends.

31. We give two proofs for the following statement, one less
formal and the other more formal.

For all integers n ≥ 0, if a1, a2, a3, . . . , a2n+1 are
odd integers, then

∑2n+1
i=1 ai is odd.

Proof 1 (by mathematical induction): It is certainly true
that the “sum” of one odd integer is odd. Suppose that for
a certain positive odd integer r , the sum of r odd integers
is odd. We must show that the sum of r + 2 odd integers is
odd (because r + 2 is the next odd integer after r ). But any
sum of r + 2 odd integers equals a sum of r odd integers
(which is odd by inductive hypothesis) plus a sum of two
more odd integers (which is even). Thus the total sum is an
odd integer plus an even integer, which is odd. [This is what
was to be shown.]

Proof 2 (by mathematical induction): Let the property
P(n) be the following sentence: “If a1, a2, a3, . . . , a2n+1
are odd integers, then

∑2n+1
i=1 ai is odd.

Show that P(0) is true:

Suppose a1 is an odd integer. Then
∑2 · 0+1

i=1 ai =∑1
i=1 ai =

a1, which is odd.

Show that for all integers k ≥ 0, if P(k) is true then
P(k + 1) is true:

Let k be an integer with k ≥ 0, and suppose that

if a1, a2, . . . , a2k+1 are odd integers, then
2k+1∑
i=1

ai is odd.

[This is the inductive hypothesis P(k).]

Suppose a1, a2, a3, . . . , a2(k+1)+1 are odd integers. [We must
show P(k + 1), namely that

∑2(k+1)+1
i=1 ai is odd, or, equiva-

lently, that
∑2k+3

i=1 ai is odd.] But

2k+3∑
i=1

ai =
2k+1∑
i=1

ai + (a2k+2 + a2k+3).

Since the sum of any two odd integers is even, a2k+2 + a2k+3
is even, and, by inductive hypothesis,

∑2k+1
i=1 ai is odd.

Therefore,
∑2k+3

i=1 ai is the sum of an odd integer and an
even integer, which is odd. [This is what was to be shown.]

32. Hint: Use proof by contradiction.
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33. a. K6:

v1

v6

v3

v4

v5

v2

b. A proof of this fact was given in Section 5.6 using recur-
sion. Try to find a different proof.

Hint for Proof 1: There are as many edges in Kn as there
are subsets of two vertices (the endpoints) that can be
chosen from a set of n vertices.

Hint for Proof 2: Use mathematical induction. A com-
plete graph on k + 1 vertices can be obtained from a
complete graph on k vertices by adding one vertex and
connecting this vertex by k edges to each of the other
vertices.
Hint for Proof 3: Use the fact that the number of edges
of a graph is half the total degree. What is the degree of
each vertex of Kn?

35. Suppose G is a simple graph with n vertices and 2n edges
where n is a positive integer. By exercise 34, its num-

ber of edges cannot exceed
n(n−1)

2 . Thus 2n ≤ n(n−1)
2 ,

or 4n ≤ n2 − n. Equivalently, n2 − 5n ≥ 0, or n(n − 5) ≥
0. This implies that n ≥ 5 since n > 0. Hence a simple
graph with twice as many edges as vertices must have at
least five vertices. But a complete graph with five vertices

has
5(5−1)

2 = 10 edges and 10 = 2 ·5. Consequently, the
answer to the question is yes because K5 is a graph with
twice as many edges as vertices.

36. a. K4,2: v1

v2

v3

v5

v6

v4

37. a. This graph is bipartite.

v1

v3

v2

v4

b. Suppose this graph is bipartite. Then the vertex set can
be partitioned into two mutually disjoint subsets such
that vertices in each subset are connected by edges only

to vertices in the other subset and not to vertices in the
same subset. Now v1 is in one subset of the partition, say
V1. Since v1 is connected by edges to v2 and v3, both v2
and v3 must be in the other subset, V2. But v2 and v3
are connected by an edge to each other. This contradicts
the fact that no vertices in V2 are connected by edges to
other vertices in V2. Hence the supposition is false, and
so the graph is not bipartite.

39. a. v2

v4

v1 v3

41. b. A

B

C

D

E

42. Hint: Consider the graph obtained by taking the vertices
and edges of G plus all the edges of G ′. Use exercise 33(b).

44. c. Hint: Suppose there were a simple graph with n ver-
tices (where n ≥ 2) each of which had a different
degree. Then no vertex could have degree more than
n − 1 (why?), so the degrees of the n vertices must be
0, 1, 2, . . . , n − 1 (why?). This is impossible (why?).

45. Hint: Use the result of exercise 44(c).

46.

b c

e

d

g

f

a
1

2

2

3

2

3
1

Vertex e has maximal degree, so color it with color #1. Ver-
tex a does not share an edge with e, and so color #1 may
also be used for it. From the remaining uncolored vertices,
all of d, g, and f have maximal degree. Choose any one of
them, say d, and use color #2 for it. Observe that vertices
b, c, and f do not share an edge with d, but c and f share
an edge with each other, which means that color #2 may be
used for only one of c or f . So color b with color #2, and
choose to color f with color #2 because the degree of f is
greater than the degree of c. From the remaining uncolored
vertices, g has maximal degree, so color it with color #3.
Then observe that because g does not share an edge with c,
color #3 may also be used for c. At this point, all vertices
have been colored.
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47. Hint: There are two solutions:
(1) Time 1: hiring, library

Time 2: personnel, undergraduate education,
colloquium
Time 3: graduate education

(2) Time 1: hiring, library
Time 2: graduate education, colloquium
Time 3: personnel, undergraduate education

Section 10.2
1. a. trail (no repeated edge), not a path (repeated vertex−v1),

not a circuit
b. walk, not a trail (has repeated edge−e9), not a circuit
c. closed walk (starts and ends at the same vertex), trail

(no repeated edge since no edge), not a path or a circuit
(since no edge)

d. circuit, not a simple circuit (repeated vertex, v4)
e. closed walk (starts and ends at the same vertex but has

repeated edges −{v2, v3} and {v3, v4})
f. path

3. a. No. The notation v1v2v1 could equally well refer to
v1e1v2e2v1 or to v1e2v2e1v1, which are different walks.

4. a. Three (There are three ways to choose the middle edge.)
b. 3! + 3 = 9 (In addition to the three paths, there are

3! with vertices v1, v2, v3, v2, v3, v4. The reason is that
from v2 there are three choices of an edge to go to v3,
then two choices of different edges to go back to v2, and
then one choice of different edge to return to v3. This
makes 3! trails from v2 to v3.)

c. Infinitely many (Since a walk may have repeated edges,
a walk from v1 to v4 may contain an arbitrarily large
number of repetitions of edges joining a pair of vertices
along the way.)

6. a. {v1, v3}, {v2, v3}, {v4, v3}, and {v5, v3} are all the
bridges.

8. a. Three connected components.

a

b g

d

c e hf

1 2 3

9. a. No. This graph has two vertices of odd degree, whereas
all vertices of a graph with an Euler circuit have even
degree.

12. One Euler circuit is e4e5e6e3e2e7e8e1.

14. One Euler circuit is iabihbchgcdg f de f i .

19. There is an Euler path since deg(u) and deg(w) are
odd, all other vertices have positive even degree, and the
graph is connected. One Euler path is uv1v0v7uv2v3v4
v2v6v4wv5v6w.

23. v0v7v1v2v3v4v5v6v0

25. Hint: See the solution to Example 10.2.8.

26. Here is one sequence of reasoning you could use: Call the
given graph G, and suppose G has a Hamiltonian circuit.
Then G has a subgraph H that satisfies conditions (1)–(4)
of Proposition 10.2.6. Since the degree of b in G is 4 and
every vertex in H has degree 2, two edges incident on b
must be removed from G to create H . Edge {a, b} cannot
be removed because doing so would result in vertex d hav-
ing degree less than 2 in H . Similar reasoning shows that
edge {b, c} cannot be removed either. So edges {b, i} and
{b, e}must be removed from G to create H . Because vertex
e must have degree 2 in H and because edge {b, e} is not
in H , both edges {e, d} and {e, f } must be in H . Similarly,
since both vertices c and g must have degree 2 in H , edges
{c, d} and {g, d} must also be in H . But then three edges
incident on d, namely {e, d}, {c, d}, and {g, d}, must be all
in H , which contradicts the fact that vertex d must have
degree 2 in H .

28. Hint: This graph does not have a Hamiltonian circuit.

32. Partial answer:

v0
v1

v4

v2

v3

This graph has an Euler circuit v0v1v2v3v1v4v0 but no
Hamiltonian circuit.

33. Partial answer:

v0 v2

v1

This graph has a Hamiltonian circuit v0v1v2v0 but no Euler
circuit.

34. Partial answer:

v0 v2

v1

The walk v0v1v2v0 is both an Euler circuit and a Hamilto-
nian circuit for this graph.
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10.3 Solutions and Hints to Selected Exercises A-97

35. Partial answer:

v0

v3 v1

v2

e1

e2

e3

e4

e5

e6

This graph has the Euler circuit e1e2e3e4e5e6 and the Hamil-
tonian circuit v0v1v2v3v0. These are not the same.

37. a. Proof: Suppose G is a graph and W is a walk in G that
contains a repeated edge e. Let v and w be the endpoints
of e. In case v = w, then v is a repeated vertex of W . In
case v �= w, then one of the following must occur: (1)
W contains two copies of vew or of wev (for instance,
W might contain a section of the form vewe′vew, as
illustrated below); (2) W contains separate sections of
the form vew and wev (for instance, W might contain
a section of the form vewe′wev, as illustrated below);
or (3) W contains a section of the form vewev or of the
form wevew (as illustrated below). In cases (1) and (2),
both vertices v and w are repeated, and in case (3), one
of v or w is repeated. In all cases, there is at least one
vertex in W that is repeated.

v w

e

v w
e

v
we

e'

1 2

3

e'

38. Proof: Suppose G is a connected graph and v and w are
any particular but arbitrarily chosen vertices of G. [We must
show that u and v can be connected by a path.] Since G is
connected, there is a walk from v to w. If the walk contains
a repeated vertex, then delete the portion of the walk from
the first occurrence of the vertex to its next occurrence.
(For example, in the walk ve1v2e5v7e6v2e3w, the vertex v2
occurs twice. Deleting the portion of the walk from one
occurrence to the next gives ve1v2e3w.) If the resulting
walk still contains a repeated vertex, do the above dele-
tion process another time. Then check again for a repeated
vertex. Continue in this way until all repeated vertices
have been deleted. (This must occur eventually, since the
total number of vertices is finite.) The resulting walk con-
nects v to w but has no repeated vertex. By exercise 37(b),
it has no repeated edge either. Hence it is a path from
v to w.

40. The graph to the right contains a circuit, any edge of
which can be removed without disconnecting the graph.

For instance, if edge e is removed, then the following walk
can be used to go from v1 to v2: v1v5v3v2.

v0
v1

v2

v5

v3
v4

e

42. Hint: Look at the answer to exercise 40 and use the fact
that all graphs have a finite number of edges.

44. Proof: Let G be a connected graph and let C be a circuit
in G. Let G ′ be the subgraph obtained by removing all the
edges of C from G and also any vertices that become iso-
lated when the edges of C are removed. [We must show that
there exists a vertex v such that v is in both C and G ′.] Pick
any vertex v of C and any vertex w of G ′. Since G is con-
nected, there is a path from v to w (by Lemma 10.2.1(a)):

v = v0e1v1e2v2 . . . vi−1eivi ei+1vi+1 . . . vn−1envn = w.

↑ ↑ ↑ ↑
in C in C not in C in G ′

Let i be the largest subscript such that vi is in C . If i = n,
then vn = w is in C and also in G ′, and we are done. If
i < n, then vi is in C and vi+1 is not in C . This implies
that ei+1 is not in C (for if it were, both endpoints would
be in C by definition of circuit). Hence when G ′ is formed
by removing the edges and resulting isolated vertices from
G, then ei+1 is not removed. That means that vi does not
become an isolated vertex, so vi is not removed either.
Hence vi is in G ′. Consequently, vi is in both C and G ′ [as
was to be shown].

45. Proof: Suppose G is a graph with an Euler circuit. If G
has only one vertex, then G is automatically connected.
If v and w are any two vertices of G, then v and w each
appear at least once in the Euler circuit (since an Euler cir-
cuit contains every vertex of the graph). The section of the
circuit between the first occurrence of one of v or w and
the first occurrence of the other is a walk from one of the
two vertices to the other.

Section 10.3
1. a. Equating corresponding entries shows that

a + b = 1,

a − c = 0,

c = −1,
b − a = 3.

Thus a − c = a − (−1) = 0, and so a = −1. Conse-
quently, a + b = (−1)+ b = 1, and hence b = 2. The
last equation should be checked to make sure the answer
is consistent: b − a = 2− (−1) = 3, which agrees.
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A-98 Appendix B Solutions and Hints to Selected Exercises

2. a.

⎡
⎣

v1 v2 v3

v1 0 1 1
v2 1 0 0
v3 0 0 0

⎤
⎦

3. a.
v2

v1

v4

v3

Any labels may be
applied to the edges
because the adjacency
matrix does not
determine edge
labels.

4. a.

⎡
⎢⎢⎣

v1 v2 v3 v4

v1 0 0 1 1
v2 0 0 2 0
v3 1 2 0 0
v4 1 0 0 1

⎤
⎥⎥⎦ c.

⎡
⎢⎢⎣

v1 v2 v3 v4

v1 0 1 1 1
v2 1 0 1 1
v3 1 1 0 1
v4 1 1 1 0

⎤
⎥⎥⎦

5. a.

v2v1

v3

Any labels may be
applied to the edges
because the adjacency
matrix does not
determine edge labels.

6. a. The graph is connected.

8. a. 2 ·1+ (−1) ·3 = −1
9. a.

[
3 −3 12
1 −5 2

]
10. a. no product (A has three columns, and B has two rows.)

b. BA =
[−2 −2 2

1 −5 2

]
f. B2 =

[
4 0
1 9

]

i. AC =
[

2 −1
−5 −2

]

12. One among many possible examples is A = B =
[
0 1
0 0

]
.

14. Hint: If the entries of them × m identity matrix are denoted

by δik , then δik =
{
0 if i �= k

1 if i = k
. The i j th entry of IA is

m∑
k=1

δik Ak j .

15. Proof: Suppose A is an m × m symmetric matrix. Then for
all integers i and j with 1 ≤ i, j ≤ m,

(A2)i j =
m∑

k=1
Aik Akj and (A2) j i =

m∑
k=1

A jk Aki .

But since A is symmetric, Aik = Aki and Akj = A jk for
all i, j , and k, and thus Aik Akj = A jk Aki [by the commuta-
tive law for multiplication of real numbers]. Hence (A2)i j =
(A2) j i for all integers i and j with 1 ≤ i, j ≤ m.

17. Proof (by mathematical induction): Let the property P(n)
be the equation AnA = AAn.

Show that P(1) is true:

We must show that A1A = AA1. But this is true because
A1 = A and AA = AA.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k + 1) is true:

Let k be any integer such that k ≥ 1, and suppose that
AkA = AAk. [This is the inductive hypothesis.] We must
show that Ak+1A = AAk+1. But

Ak+1A = (AAk)A by definition of matrix power

= A(AkA) by exercise 16

= A(AAk) by inductive hypothesis

= A Ak+1 by definition of matrix power.

19. a.
A2 =

⎡
⎣1 1 2
1 0 1
2 1 0

⎤
⎦
⎡
⎣1 1 2
1 0 1
2 1 0

⎤
⎦ =

⎡
⎣6 3 3
3 2 2
3 2 5

⎤
⎦

A3 =
⎡
⎣1 1 2
1 0 1
2 1 0

⎤
⎦
⎡
⎣6 3 3
3 2 2
3 2 5

⎤
⎦ =

⎡
⎣15 9 15

9 5 8
15 8 8

⎤
⎦

20. a. 2 since (A2)23 = 2
b. 3 since (A2)34 = 3
c. 6 since (A3)14 = 6
d. 17 since (A3)23 = 17

22. b. Hint: If G is bipartite, then its vertices can be partitioned
into two sets V1 and V2 so that no vertices in V1 are con-
nected to each other by an edge and no vertices in V2 are
connected to each other by an edge. Label the vertices
in V1 as v1, v2, . . . , vk and label the vertices in V2 as
vk+1, vk+2, . . . , vn . Now look at the matrix of G formed
according to the given vertex labeling.

23. b. Hint: Consider the i j th entry of

A+ A2 + A3 + · · · + An .

If G is connected, then given the vertices vi and v j , there
is a walk connecting vi and v j . If this walk has length
k, then by Theorem 10.3.2, the i j th entry of Ak is not
equal to 0. Use the facts that all entries of each power
of A are nonnegative and a sum of nonnegative numbers
is positive provided that at least one of the numbers is
positive.
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10.4 Solutions and Hints to Selected Exercises A-99

Section 10.4
1. The graphs are isomorphic. One way to define the isomor-

phism is as follows:

v1
v2
v3
v4

w1
w2
w3
w4

g

e1
e2
e3
e4

f1
f2
f3
f4

h

2. The graphs are not isomorphic. G has five vertices and G ′

has six.

6. The graphs are isomorphic. One isomorphism is the follow-
ing:

v1
v2
v3
v4

w1
w2
w3
w4

g

8. The graphs are not isomorphic. G has a simple circuit of
length 3; G ′ does not.

10. The graphs are isomorphic. One way to define the isomor-
phism is as follows:

a

b

c

d

e

f

g

t

u

v

w

x

y

z

g

12. These graphs are isomorphic. One isomorphism is the fol-
lowing:

a

b

c

d

e

f

g

h

s

t

u

v

w

x

y

z

g

14.

1 2

3 4

16.

1 2 3

4 5 6

7 8 9
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A-100 Appendix B Solutions and Hints to Selected Exercises

18. Hint: There are 20.

19.

1 2 3

4 5 6

7 8

10 11

9

21. Proof: Suppose G and G ′ are isomorphic graphs and G has
n vertices, where n is a nonnegative integer. [We must show
that G ′ has n vertices.] By definition of graph isomorphism,
there is a one-to-one correspondence g: V (G)→ V (G ′)
sending vertices of G to vertices of G ′. Since V (G) is a
finite set and g is a one-to-one correspondence, the number
of vertices in V (G ′) equals the number of vertices in V (G).
Hence G ′ has n vertices [as was to be shown].

23. Proof: Suppose G and G ′ are isomorphic graphs and
suppose G has a circuit C of length k, where k is a
nonnegative integer. Let C be v0e1v1e2 . . . ekvk(= v0). By
definition of graph isomorphism, there are one-to-one cor-
respondences g: V (G)→ V (G ′) and h: E(G)→ E(G ′)
that preserve the edge-endpoint functions in the sense
that for all v in V (G) and e in E(G), v is an end-
point of e⇔ g(v) is an endpoint of h(e). Let C ′ be
g(v0)h(e1)g(v1)h(e2) . . . . h(ek)g(vk)(= g(v0)). Then C ′ is
a circuit of length k in G ′. The reason is that (1) because
g and h preserve the edge-endpoint functions, for all i =
0, 1, . . . , k − 1 both g(vi ) and g(vi+1) are incident on
h(ei+1) so that C ′ is a walk from g(v0) to g(v0), and (2)
sinceC is a circuit, then e1, e2, . . . , ek are distinct, and since
h is a one-to-one correspondence, h(e1), h(e2), . . . , h(ek)
are also distinct, which implies that C ′ has k distinct edges.
Therefore, G ′ has a circuit C of length k.

25. Hint: Suppose G and G ′ are isomorphic and G has m
vertices of degree k; call them v1, v2, . . . , vm . Since G
and G ′ are isomorphic, there are one-to-one correspon-
dences g: V (G)→ V (G ′) and h: E(G)→ E(G ′). Show
that g(v1), g(v2), . . . , g(vm) are m distinct vertices of G ′

each of which has degree k.

27. Hint: Suppose G and G ′ are isomorphic and G is con-
nected. To show that G ′ is connected, suppose w and x are
any two vertices of G ′. Show that there is a walk connecting
w with x by finding a walk connecting the corresponding
vertices in G.

Section 10.5
1. a. Math 110

2. a.

< sentence >

< noun phrase > < verb phrase >

< article > < adjective > < noun > < verb >

caught

< noun phrase >

< article > < noun >

the man

the young ball

3. Hint: The answer is 2n − 2. To obtain this result, use the
relationship between the total degree of a graph and the
number of edges of the graph.

4. a. H

H

H C

H

H

C

H

H

C H

d. Hint: Each carbon atom in G is bonded to four other
atoms in G, because otherwise an additional hydrogen
atom could be bonded to it, and this would contra-
dict the assumption that G has the maximum number
of hydrogen atoms for its number of carbon atoms.
Also each hydrogen atom is bonded to exactly one car-
bon atom in G, because otherwise G would not be
connected.

5. Hint: Revise the algorithm given in the proof of Lemma
10.5.1 to keep track of which vertex and edge were cho-
sen in step 1 (by, say, labeling them v0 and e0). Then after
one vertex of degree 1 is found, return to v0 and search for
another vertex of degree 1 by moving along a path outward
from v0 starting with e0.

7. a. Internal vertices: v2, v3, v4, v6
Terminal vertices: v1, v5, v7

8. Any tree with nine vertices has eight edges, not nine. Thus
there is no tree with nine vertices and nine edges.
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10.6 Solutions and Hints to Selected Exercises A-101

9. One such graph is

a

i

b c d

h g f

e

10. One such graph is

a

b

i

c

h

d

g

e

f

11. There is no tree with six vertices and a total degree of 14.
Any tree with six vertices has five edges and hence (by The-
orem 10.1.1) a total degree of 10, not 14.

12. One such tree is shown.

a
b

c

d

e

13. No such graph exists. By Theorem 10.5.4, a connected
graph with six vertices and five edges is a tree. Hence such
a graph cannot have a nontrivial circuit.

14.

v1 v2

22. Yes. Since it is connected and has 12 vertices and 11 edges,
by Theorem 10.5.4 it is a tree. It follows from Lemma
10.5.1 that it has vertex of degree 1.

25. Suppose there were a connected graph with eight vertices
and six edges. Either the graph itself would be a tree or
edges could be eliminated from its circuits to obtain a
tree. In either case, there would be a tree with eight ver-
tices and six or fewer edges. But by Theorem 10.5.2, a
tree with eight vertices has seven edges, not six or fewer.
This contradiction shows that the supposition is false, so
there is no connected graph with eight vertices and six
edges.

26. Hint: See the answer to exercise 25.

27. Yes. Suppose G is a circuit-free graph with ten vertices and
nine edges. Let G1,G2, . . . ,Gk be the connected compo-
nents of G [To show that G is connected, we will show that
k = 1.] Each Gi is a tree since each Gi is connected and
circuit-free. For each i = 1, 2, . . . , k, let Gi have ni ver-
tices. Note that since G has ten vertices in all,

n1 + n2 + · · · + nk = 10.

By Theorem 10.5.2,

G1 has n1 − 1 edges,

G2 has n2 − 1 edges,
...

Gk has nk − 1 edges.

So the number of edges of G equals

(ni − 1)+ (n2 − 1)+ · · · + (nk − 1)

= (n1 + n2 + · · · + nk)− (1+ 1+ · · · + 1)︸ ︷︷ ︸
k 1’s

= 10− k.

But we are given that G has nine edges. Hence 10− k = 9,
and so k = 1. Thus G has just one connected component,
G1, and so G is connected.

28. Hint: See the answer to exercise 27.

31. b. Hint: There are six.

Section 10.6
1. a. 3 b. 0 c. 5 d. u, v

e. d f. k, l g. m, s, t, x, y

3. a.

d

c +a b

–

· /

e

Exercises 4 and 8–10 have other answers in addition to the ones
shown.

4. a

b

d e f g

c

h i j k

5. There is no full binary tree with the given properties
because any full binary tree with five internal vertices has
six terminal vertices, not seven.

6. Any full binary tree with four internal vertices has five ter-
minal vertices for a total of nine, not seven, vertices in all.
Thus there is no full binary tree with the given properties.

7. There is no full binary tree with 12 vertices because any full
binary tree has 2k + 1 vertices, where k is the number of
internal vertices. But 2k + 1 is always odd, and 12 is even.
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8. a

b

d e
f g

c

h i

9.

m nl

a

b

d e f g

c

h i j k

10. a

b

d e
f g

c

h i j k

11. There is no binary tree that has height 3 and nine termi-
nal vertices because any binary tree of height 3 has at most
23 = 8 terminal vertices.

20. a. Height of tree ≥ log2 25 ∼= 4.6. Since the height of any
tree is an integer, the height must be at least 5.

Section 10.7
1.

a b a b

d c d c

a b

d c

3. One of many spanning trees is as follows:

a
b

d

e

f

c

g

5. Minimum spanning tree:

a

b c

d

e

f

g

1
7

4

2

3

6

Order of adding the edges:
{a, b}, {e, f }, {e, d}, {d, c}, {g, f }, {b, c}

7. Minimum spanning tree: same as in exercise 5
Order of adding the edges:
{a, b}, {b, c}, {c, d}, {d, e}, {e, f }, { f, g}

9. There are four minimum spanning trees:

a b

g f

e

d

c
3

1

34
7

10

a b

g f

e

d

c
3

1

3

4

7

10

a b

g f

e

d

c
3

1

34

7

10

a b

g f

e

d

c
3

1

3

4
7 10

When Prim’s algorithm is used, edges are added in any of
the orders obtained by following one of the eight paths from
left to right across the diagram below.

{a, b} {a, e} {b, c}{e, f}

{a, e} {a, b} {e, c}{a, g}

{ f, g}
{c, d}

When Kruskal’s algorithm is used, edges are added in any
of the orders obtained by following one of the eight paths
from left to right across the diagram below.

{a, e} {a, g} {b, c}

{a, b}

{a, b}

{a, e} {e, f } {e, c}

{c, d}{g, f }
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10.7 Solutions and Hints to Selected Exercises A-103

12. Let N = Nashville, S = St. Louis, Lv = Louisville, Ch = Chicago, Cn = Cincinnati, D = Detroit, Mw = Milwaukee, and
Mn =Minneapolis.

Step V(T) E(T) F

0 {N } ∅ {N }
1 {N } ∅ {Lv,Mn}
2 {N , Lv} {{N ,Lv}} {Mn, S,Cn,Ch,D,Mw}
3 {N , Lv,Cn} {{N ,Lv}, {Lv,Ci}} {Mn, S,Ch,D,Mw}
4 {N , Lv,Cn, S} {{N ,Lv}, {Lv,Ci},{Lv, S}} {Mn,Ch,D,Mw}
5 {N , Lv,Cn, S,Ch} {{N ,Lv}, {Lv,Ci},{Lv, S},{Lv,Ch}} {Mn,D,Mw}
6 {N , Lv,Cn, S,Ch,D} {{N ,Lv}, {Lv,Ci},{Lv, S},{Lv,Ch}{Lv,D}} {Mn,Mw}
7 {N , Lv,Cn, S,Ch,D,Mw} {{N ,Lv}, {Lv,Ci},{Lv, S},{Lv,Ch}{Lv,D},{Ch,Mw}} {Mn}
8 {N , Lv,Cn, S,Ch,D,Mw,Mn}

Step L(N) L(S) L(Lv) L(Cn) L(Ch) L(D) L(Mw) L(Mn)

0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 0 ∞ 151 ∞ ∞ ∞ ∞ 695
2 0 393 151 234 420 457 499 695
3 0 393 151 234 420 457 499 695
4 0 393 151 234 420 457 499 695
5 0 393 151 234 420 457 494 695
6 0 393 151 234 420 457 494 695
7 0 393 151 234 420 457 494 695

Thus the shortest path from Nashville to Minneapolis has length L(Mn) = 695 miles.

13. Step V(T) E(T) F L(a) L(b) L(c) L(d) L(e) L(z)

0 {a} ∅ {a} 0 ∞ ∞ ∞ ∞ ∞
1 {a} ∅ {b, d} 0 2 ∞ 1 ∞ ∞
2 {a, d} {{a, d}} {b, c, e} 0 2 6 1 11 ∞
3 {a, b, d} {{a, d}, {a, b}} {c, e} 0 2 5 1 6 ∞
4 {a, b, c, d} {{a, d}, {a, b}, {b, c}} {e, z} 0 2 5 1 6 13
5 {a, b, c, d, e} {{a, d}, {a, b}, {b, c}, {c, e}} {z} 0 2 5 1 6 8
6 {a, b, c, d, e, z} {{a, d}, {a, b}, {b, c}, {c, e}, {e, z}}

Thus the shortest path from a to z has length L(z) = 8.

18. b. Proof: Suppose not. Suppose that for some tree T, u
and v are distinct vertices of T , and P1 and P2

are two distinct paths joining u and v. [We must deduce
a contradiction. In fact, we will show that T contains a cir-
cuit.] Let P1 be denoted u = v0, v1, v2, . . . , vm = v, and
let P2 be denoted u = w0, w1, w2, . . . , wn = v. Because
P1 and P2 are distinct, and T has no parallel edges,
the sequence of vertices in P1 must diverge from the
sequence of vertices in P2 at some point. Let i be the
least integer such that vi �= wi . Then vi−1 = wi−1. Let j
and k be the least integers greater than i so that v j = wk .
(There must be such integers because vm = wn). Then

vi−1vivi+1 . . . v j (= wk)wk−1 . . . wiwi−1(= vi−1)

is a circuit in T . The existence of such a circuit con-
tradicts the fact that T is a tree. Hence the supposition
must be false. That is, given any tree with vertices u and
v, there is a unique path joining u and w.

20. Proof: Suppose G is a connected graph, T is a circuit free
subgraph of G, and if any edge e of G not in T is added to
T , the resulting graph contains a circuit. Suppose that T is
not a spanning tree for G. [We must derive a contradiction.]
Case 1 (T is not connected): In this case, there are vertices
u and v in T such that there is no walk in T from u to v.
Now, since G is connected, there is a walk in G from u to
v, and hence, by Lemma 10.2.1, there is a path in G from u
to v. Let e1, e2, . . . , ek be the edges of this path that are not
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in T . When these edges are added to T , the result is a graph
T ′ in which u and v are connected by a path. In addition,
by hypothesis, each of the edges ei creates a circuit when
added to T . Now remove these edges one by one from T ′.
By the same argument used in the proof of Lemma 10.5.3,
each such removal leaves u and v connected since each ei
is an edge of a circuit when added to T . Hence, after all the
ei have been removed, u and v remain connected. But this
contradicts the fact that there is no walk in T from u to v.

Case 2 (T is connected ): In this case, since T is not a span-
ning tree and T is circuit-free, there is a vertex v in G such
that v is not in T . [For if T were connected, circuit-free, and
contained every vertex in G, then T would be a spanning tree
for G.] Since G is connected, v is not isolated. Thus there
is an edge e in G with v as an endpoint. Let T ′ be the
graph obtained from T by adding e and v. [Note that e is
not already in T because if it were, its endpoint v would also
be in T and it is not.] Then T ′ contains a circuit because,
by hypothesis, addition of any edge to T creates a circuit.
Also T ′ is connected because T is and because when e is
added to T, e becomes part of a circuit in T ′. Now deletion
of an edge from a circuit does not disconnect a graph, so
if e is deleted from T ′ the result is a connected graph. But
the resulting graph contains v, which means that there is an
edge in T connecting v to another vertex of T . This implies
that v is in T [because both endpoints of any edge in a graph
must be part of the vertex set of the graph], which contradicts
the fact that v is not in T .

Thus, in either case, the supposition that T is not a spanning
tree leads to a contradiction. Hence the supposition is false,
and T is a spanning tree for G.

21. a. No. Counterexample: Let G be the following graph.

v1

e1

e2

v2

Then G has the spanning trees shown below.

v1

e1

v2 v1

e2

v2

These trees have no edge in common.

22. Hint: Suppose e is contained in every spanning tree of
G and the graph obtained by removing e from G is con-
nected. Let G ′ be the subgraph of G obtained by removing
e, and let T ′ be a spanning tree for G ′. How is T ′ related
to G?

24. Proof: Suppose that w(e′) > w(e). Form a new graph
T ′ by adding e to T and deleting e′. By exercise 20,
addition of an edge to a spanning tree creates a cir-
cuit, and by Lemma 10.5.3, deletion of an edge from
a circuit does not disconnect a graph. Consequently, T ′

is also a spanning tree for G. Furthermore, w(T ′) <

w(T ) because w(T ′) = w(T )− w(e′)+ w(e) = w(T )−

(w(e′)− w(e)) < w(T ) [since w(e′) > w(e), which implies
that w(e′)− w(e) > 0]. But this contradicts the fact that T
is a minimum spanning tree for G. Hence the supposition
is false, and so w(e′) ≤ w(e).

25. Hint: Suppose e is an edge that has smaller weight than any
other edge of G, and suppose T is a minimum spanning tree
for G that does not contain e. Create a new spanning tree T ′

by adding e to T and removing another edge of T (which
one?). Then w(T ′) < w(T ).

26. Yes. Proof by contradiction: SupposeG is a weighted graph
in which all the weights of all the edges are distinct, and
suppose G has two distinct minimum spanning trees T1
and T2. Let e be the edge of least weight that is in one
of the trees but not the other. Without loss of general-
ity, we may say that e is in T1. Add e to T2 to obtain
a graph G ′. By exercise 19, G ′ contains a nontrivial cir-
cuit. At least one other edge f of this circuit is not in T1
because otherwise T1 would contain the complete circuit,
which would contradict the fact that T1 is a tree. Now f
has weight greater than e because all edges have distinct
weights, f is in T2 and not in T1, and e is the edge of
least weight that is in one of the trees and not the other.
Remove f fromG ′ to obtain a tree T3. Thenw(T3) < w(T2)
because T3 is the same as T2 except that it contains e rather
than f and w(e) < w( f ). Consequently, T3 is a spanning
tree for G of smaller weight than T2. This contradicts the
supposition that T2 is a minimum spanning tree for G.
Thus G cannot have more than one minimum spanning
tree.

28. The output will be a “minimum spanning forest” for the
graph. It will contain a minimum spanning tree for each
connected component of the input graph.

Section 11.1
1. a. f (0) is positive.

b. f (x) = 0 when x = −2 and x = 3 (approximately)
c. x1 = −1 and x2 = 2 (approximately)

d. x = 1 or x = −1
2 (approximately)

e. increase
f. decrease

3.

y = x1/3

y = x1/4

y

x0.5 1 1.5 2

0.5

1

1.5

When 0 < x < 1, x1/3 < x1/4. When x > 1, x1/3 > x1/4.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11.1 Solutions and Hints to Selected Exercises A-105

5.

x1–1–2–3–4 2 3 4
–1

1

2

3

4

5

6

–3

–4

–5

–6

y

y = 2�x�

1–1–2–3–4 2 3 4

1

2

3

4

5

6

–3

–4

–5

–6

y

x

y = �2x�

The graphs show that 2�x� �= �2x� for many values of x .

6.

1–1–2–3–4 2 3 4

1

2

3

–3

–2

–1

y

x

g(x) = �x�
Graph of g

8.
x F(x) = ⌊

x1/2
⌋

0 0
1

2
0

1 1

2 1

3 1

4 2

1 4 9 12 16

1

2

3

4

y

x

Graph of F

10.
n f (n) = |n|
0 0

1 1

2 2

3 3

−1 1

−2 2

−3 3

1–1–2–3 2 3

1

2

3
Graph of f

12.
n h(n) =

⌊n
2

⌋
0 0

1 0

2 1

3 1

4 2

5 2

6 3

7 3

8 4

9 4
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1 2 3 4 5 6 7 8 9

1

2

3

4

Graph of h

14. f is increasing on the intervals
{x ∈ R | − 3 < x < −2} and
{x ∈ R | 0 < x < 2.5}, and f is decreasing on
{x ∈ R | − 2 < x < 0} and {x ∈ R | 2.5 < x < 4} (approx-
imately).

15. Proof: Suppose x1 and x2 are particular but arbitrarily cho-
sen real numbers such that x1 < x2. [We must show that
f (x1) < f (x2).] Since

x1 < x2

then 2x1 < 2x2

and 2x1 − 3 < 2x2 − 3

by basic properties of inequalities. But then, by definition
of f ,

f (x1) < f (x2)

[as was to be shown]. Hence f is increasing on the set of all
real numbers.

17. a. Proof: Suppose x1 and x2 are real numbers with x1 <

x2 < 0. [We must show that h(x1) > h(x2).]Multiply both
sides of x1 < x2 by x1 to obtain (x1)2 > x1x2 [by T23
of Appendix A since x1 < 0], and multiply both sides of
x1 < x2 by x2 to obtain x1x2 > (x2)2 [by T23 of Appendix
A since x2 < 0]. By transitivity of order [Appendix A,
T18] (x2)2 < (x1)2, and so, by definition of h, h(x2) <

h(x1).

18. a. Preliminaries: If both x1 and x2 are positive, then by the
rules for working with inequalities (see Appendix A),

x1 − 1

x1
<

x2 − 1

x2
⇒ x2(x1 − 1) < x1(x2 − 1)

by multiplying both sides
by x1x2 (which is positive)

⇒ x1x2 − x2 < x1x2 − x1
by multiplying out

⇒ −x2 < −x1
by subtracting x1x2 from
both sides

⇒ x2 > x1 by multiplying by −1.
Are these steps reversible? Yes!

Proof: Suppose that x1 and x2 are positive real numbers
and x1 < x2. [We must show that k(x1) < k(x2).] Then

x1 < x2

⇒ −x2 < −x1 by multiplying by −1
⇒ x1x2 − x2 < x1x2 − x1 by adding x1x2

to both sides

⇒ x2(x1 − 1) < x1(x2 − 1) by factoring both sides

⇒ x1 − 1

x1
<

x2 − 1

x2

by dividing both sides by
the positive number x1x2

⇒ k(x1) < k(x2) by definition of k.

[This is what was to be shown.]

19. Proof: Suppose f : R→ R is increasing. [We must show that
f is one-to-one. In other words, we must show that for all real
numbers x1 and x2, if x1 �= x2 then f (x1) �= f (x2).] Suppose
x1 and x2 are real numbers and x1 �= x2. By the trichotomy
law [Appendix A, T17] x1 < x2, or x1 > x2. In case x1 < x2,
then since f is increasing, f (x1) < f (x2) and so f (x1) �=
f (x2). Similarly in case x1 > x2, then f (x1) > f (x2) and
so f (x1) �= f (x2). Thus in either case, f (x1) �= f (x2) [as
was to be shown].

21. a. Proof: Suppose u and v are nonnegative real numbers
with u < v. [We must show that f (u) < f (v).] Note that
v = u + h for some positive real number h. By substi-
tution and the binomial theorem,

vm = (u + h)m

= um +
[(

m
1

)
um−1h +

(
m
2

)
um−2h2 + · · ·

+
(

m
m − 1

)
uhm−1 + hm

]
.

The bracketed sum is positive because u ≥ 0 and h > 0,
and a sum of nonnegative terms that includes at least one
positive term is positive. Hence

vm = um + a positive number,

and so f (u) = um < vm = f (v) [as was to be shown].

22.

1

1

–3

2

3

–2–3–5–6 2 3 4 5 6

Graph of 3 f
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24. Proof: Suppose that f is a real-valued function of a real
variable, f is decreasing on a set S, and M is any positive
real number. [We must show that M f is decreasing on S. In
other words, we must show that for all x1 and x2 in S, if x1 < x2
then (M f )(x1) > (M f )(x2).] Suppose x1 and x2 are in S
and x1 < x2. Since f is decreasing on S, f (x1) > f (x2),
and since M is positive, M f (x1) > M f (x2) [because when
both sides of an inequality are multiplied by a positive num-
ber, the direction of the inequality is unchanged]. It follows
by definition of M f that (M f )(x1) > (M f )(x2) [as was to
be shown].

27. To find the answer algebraically, solve the equation 2x2 =
x2 + 10x + 11 for x . Subtracting x2 from both sides gives
x2 − 10x − 11 = 0, and either factoring x2 − 10x − 11 =
(x − 11)(x + 1) or using the quadratic formula gives x =
11 (since x > 0). To find an approximate answer with a
graphing calculator, plot both f (x) = x2 + 10x + 11 and
2g(x) = 2x2 for x > 0, as shown in the figure, and find
that 2g(x) > f (x) when x > 11 (approximately). You can
obtain only an approximate answer from a graphing cal-
culator because the calculator computes values only to an
accuracy of a finite number of decimal places.

x

y

2 4 6 8 10 12 14 16 18 20

100

200

300

400

500

600

700

2g(x) = 2x2

f (x) = x2 + 10x + 11

Section 11.2
1. a. ∀ positive real numbers a and A, ∃x > a such that

A|g(x)| > | f (x)|.
b. No matter what positive real numbers a and A might be

chosen, it is possible to find a number x greater than a
with the property that A|g(x)| > | f (x)|.

4. 5x8 − 9x7 + 2x5 + 3x − 1 is O(x8)

5.
(x2 − 1)(12x + 25)

3x2 + 4
is �(x)

6.
(x2 − 7)2(10x1/2 + 3)

x + 1
is �(x7/2)

10. Proof: Suppose f and g are real-valued functions of a real
variable that are defined on the same set of nonnegative real
numbers, and suppose g(x) is O( f (x)). By definition of
O-notation, there exist positive real numbers b and B such
that |g(x)| ≤ B| f (x)| for all real numbers x > b. Divide

both sides of the inequality by B to obtain 1
B |g(x)| ≤

| f (x)|. Let A = 1
B and let a = b. Then A|g(x)| ≤ | f (x)|

for all real numbers x > a, and so, by definition of �-
notation, f (x) is �(g(x)).

12. Proof: Suppose f, g, h, and k are real-valued functions
of a real variable that are defined on the same set
D of nonnegative real numbers, and suppose f (x) is
O(h(x)) and g(x) is O(k(x)). By definition of O-notation,
there exist positive real numbers b1, B1, b2, and B2 such
that | f (x)| ≤ B1|h(x)| for all real numbers x > b1, and
|g(x)| ≤ B2|k(x)| for all real numbers x > b2. For each
x in D, define G(x) = max(|h(x)|, |k(x)|), and let b =
max(b1, b2) and B = B1 + B2. Note that the triangle
inequality for absolute value (Theorem 4.4.6) implies that

| f (x)+ g(x)| ≤ | f (x)| + |g(x)|
for all real numbers x in D. Suppose that x > b. Then
because b is greater than both b1 and b2,

| f (x)| ≤ B1|h(x)| and |g(x)| ≤ B2|h(x)|,
and so, by adding the inequalities (Appendix A, T26), we
get

| f (x)| + |g(x)| ≤ B1|h(x)| + B2|k(x)|.
Thus, by the transitive law for inequalities (Appendix A,
T18),

| f (x)+ g(x)| ≤ B1|h(x)| + B2|k(x)|.
Now, because each value of G(x) = |G(x)| is greater than
or equal to |h(x)| and |k(x)|,
B1|h(x)| + B2|k(x)| ≤ B1|G(x)|

+ B2|G(x)| ≤ (B1 + B2)|G(x)|.
Hence, again by transitivity and because B = B1 + B2,

| f (x)+ g(x)| ≤ B|G(x)| for all real numbers x > b.

Therefore, by definition of O-notation, f (x)+ g(x) is
O(G(x)).

14. Start of proof: Suppose f, g, h, and k are real-valued
functions of a real variable that are defined on the same
set D of nonnegative real numbers, and suppose f (x) is
O(h(x)) and g(x) is O(k(x)). By definition of O-notation,
there exist positive real numbers b1, B1, b2, and B2 such
that | f (x)| ≤ B1|h(x)| for all real numbers x > b1, and
|g(x)| ≤ B2|k(x)| for all real numbers x > b2. Let B =
B1B2 and let b = max(b1, b2).

15. b. Hint: By the laws of exponents, xn−m = xn

xm . Thus if

xn−m > 1, then xn

xm > 1.

16. a. For all real numbers x > 1, x2 + 15x + 4 ≥ 0 because
all terms are nonnegative. Adding x2 to both sides gives
2x2 + 15x + 4 ≥ x2. By the nonnegativity of all terms
when x > 1, absolute value signs may be added to both
sides of the inequality. Thus |x2| ≤ |2x2 + 15x + 4| for
all real numbers x > 1.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A-108 Appendix B Solutions and Hints to Selected Exercises

b. For all real numbers x > 1,

|2x2 + 15x + 4| = 2x2 + 15x + 4
because 2x2 + 15x + 4
is positive (since x > 1)

⇒ |2x2 + 15x + 4| ≤ 2x2 + 15x2 + 4x2

because since x > 1,
then x < x2 and 1 < x2

⇒ |2x2 + 15x + 4| ≤ 21x2 because 2+ 15+ 4 = 21

⇒ |2x2 + 15x + 4| ≤ 21|x2| because x2 is positive.

c. Let A = 1 and a = 1. Then by part (a), A|x2| ≤ |2x2 +
15x + 4| for all real numbers x > a, and so, by defini-
tion of �-notation, 2x2 + 15x + 4 is �(x2).
Let B = 21 and b = 1. Then, by part (b), |2x2 + 15x +
4| ≤ B|x2| for all real numbers x > b, and so, by defi-
nition of O-notation, 2x2 + 15x + 4 is O(x2).

d. Let k = 1, A = 1, and B = 21. By parts (a) and (b), for
all real numbers x > k,

A|x2| ≤ |2x2 + 15x + 4| ≤ B|x2|
and thus, by definition of �-notation, 2x2 + 15x + 4
is �(x2). In other words, 2x2 + 15x + 4 has order x2.
(Alternatively, Theorem 11.2.1(1) could be used to
derive this result.)

18. First observe that for all real numbers x > 1, 4x3 + 65x +
30 ≥ 0 because all terms are nonnegative. Adding x3 to
both sides gives 5x3 + 65x + 30 ≥ x3. By the nonnega-
tivity of the terms when x > 1, absolute value signs may
be added to both sides of the inequality to obtain |x3| ≤
|5x3 + 65x + 30| for all real numbers x > 1. Let a = 1
and A = 1. Then A|x3| ≤ |5x3 + 65x + 30| (*) for all real
numbers x > a.

Second, note that when x > 1,

|5x3 + 65x + 30| ≤ 5x3 + 65x + 30
because all the terms are
positive since x > 1.

⇒ |5x3 + 65x + 30| ≤ 5x3 + 65x3 + 30x3

because since x > 1, then
65x ≤ 65x3 and 30 ≤ 30x3

⇒ |5x3 + 65x + 30| ≤ 100x3

because 5+ 65+ 30 = 100

⇒ |5x3 + 65x + 30| ≤ 100|x3|
because x3 is positive since x > 1.

Let b = 1 and B = 100. Then |5x3 + 65x + 30| ≤ B|x3|
(**) for all real numbers x > b.

Let k = max(a, b). Putting inequalities (*) and (**)
together gives that for all real numbers x > k,

A|x3| ≤ |5x3 + 65x + 30| ≤ B|x3|.
Hence, by definition of �-notation, 5x3 + 65x + 30 is
�(x3); in other words, 5x3 + 65x + 30 has order x3.

20. a. By definition of ceiling, for any real number x,
⌈
x2
⌉
is

that integer n such that n − 1 < x2 ≤ n, and thus, by

substitution, x2 ≤ ⌈
x2
⌉
. Since x > 1, both sides of the

inequality are positive, and so |x2| ≤ ∣∣⌈x2⌉∣∣.
b. As in part (a),

⌈
x2
⌉
is that integer n such that n − 1 <

x2 ≤ n. Adding 1 to all parts of this inequality gives
n < x2 + 1 ≤ n + 1, so

⌈
x2
⌉

< x2 + 1. Thus if x is any
real number with x > 1, then∣∣⌈x2⌉∣∣ ≤ ⌈

x2
⌉

because
⌈
x2
⌉
is positive

⇒ ∣∣⌈x2⌉∣∣ ≤ x2 + 1 by the argument above

⇒ ∣∣⌈x2⌉∣∣ ≤ x2 + x2 because 1 < x2 since x > 1

⇒ ∣∣⌈x2⌉∣∣ ≤ 2x2

⇒ ∣∣⌈x2⌉∣∣ ≤ 2
∣∣x2∣∣ because x2 is positive.

c. Let A = 1 and a = 1. Then, by part (a),
∣∣x2∣∣ ≤ A|�x2�|

for all real numbers x > a, and thus, by definition of
�-notation,

⌈
x2
⌉
is �(x2).

Let B = 2 and b = 1. Then, by part (b),
∣∣x2∣∣ ≤ B

∣∣⌈x2⌉∣∣
for all real numbers x > b, and thus, by definition of O-
notation,

⌈
x2
⌉
is O(x2).

d. We conclude that
⌈
x2
⌉
is�(x2) by part (c) and Theorem

11.2.1(1). Alternatively, we can use the results of parts
(a) and (b), letting k = max(a, b), to obtain the result
that for all real numbers x > k,

A
∣∣x2∣∣ ≤ ∣∣⌈x2⌉∣∣ ≤ B

∣∣x2∣∣
and conclude directly from the definition of �-notation
that

⌈
x2
⌉
is �(x2).

22. a. For all real numbers x > 1,

|7x4 − 95x3 + 3| ≤ |7x4| + |95x3| + |3|
by the triangle inequality

⇒ |7x4 − 95x3 + 3| ≤ 7x4 + 95x3 + 3

because all terms are positive
since x > 1

⇒ |7x4 − 95x3 + 3| ≤ 7x4 + 95x4 + 3x4

because x > 1 implies that
x3 ≤ x4 and 1 ≤ x4

⇒ |7x4 − 95x3 + 3| ≤ 105|x4|
because 7+ 95+ 3 = 105
and x4 > 0.

b. 7x4 − 95x3 + 3 is O(x4)

25. Hint: Use an argument by contradiction similar to the one
in Example 11.2.8.

26. Proof: Suppose a0, a1, a2, . . . , an are real numbers and
an �= 0. By the generalized triangle inequality,

|anxn + an−1xn−1 + · · · + a1x + a0|
≤ |anxn| + |an−1xn−1| + · · · + |a1x | + |a0|,

and because the absolute value of a product is the product
of the absolute values (exercise 44, Section 4.4),

|anxn | + |an−1xn−1| + · · · + |a1x | + |a0|
≤ |an||xn| + |an−1||xn−1| + · · · + |a1||x | + |a0|.
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In addition, when x > 1, property (11.2.1) implies that

xn ≤ xn, xn−1 ≤ xn, . . . , x2 ≤ xn, x ≤ xn, 1 ≤ xn,

and also xn = |xn | because x > 1. Thus∣∣anxn + an−1xn−1 + · · · + a1x + a0
∣∣

≤ |an ||xn| + |an−1||xn| + · · · + |a1||xn | + |a0||xn|
≤ (|an| + |an−1| + · · · + |a1| + |a0|)|xn|.

Let b = 1 and B = |an | + |an−1| + · · · + |a1| + |a0|. Then
for all real numbers x > b,∣∣anxn + an−1xn−1 + · · · + a1x + a0| ≤ B|xn∣∣
and so, by definition of O-notation,

anx
n + an−1xn−1 + · · · + a1x + a0 is O(xn).

28. Let a =
(
95+3
7

)
·2 = 28, and let A = 7

2 . If x > a, then

x ≥
(
95+3
7

)
·2

⇒ x ≥ 95
7 ·2+

3
7 ·2

⇒ x ≥ 95
7 ·2+

3
7 ·2

1

x3

because
1
x3 < 1 since x > 28

⇒ 7
2 x

4 ≥ 95x3 + 3
by multiplying both sides by 7x3

2

⇒
(
7− 7

2

)
x4 ≥ 95x3 − 3

because 95x3 + 3 ≥ 95x3 − 3

and 7− 7
2 =

7
2

⇒ 7x4 − 7
2 x

4 ≥ 95x3 − 3
by multiplying out

⇒ 7x4 − 95x3 + 3 ≥ 7
2 x

4

by adding 7
2 x

4 − 95x3 + 3
to both sides

⇒ 7x4 − 95x3 + 3 ≥ Ax4

because A = 7
2

⇒ |7x4 − 95x3 + 3| ≥ A|x4|
because both sides are nonnegative.

Hence, by definiton of �-notation, 7x4 − 95x3 + 3 is
�(x4).

31. By exercise 22, 7x4 − 95x3 + 3 is O(x4), and by exercise
28, 7x4 − 95x3 + 3 is �(x4). Thus, by Theorem 11.2.1(1),
7x4 − 95x3 + 3 is �(x4).

34.
(x+1)(x−2)

4 = x2−x−2
4 = 1

4 x
2 − 1

4 x −
1
2 is �(x2)

by the theorem on polynomial orders.

37.
n(n+1)(2n+1)

6 = 2n3+3n2+n
6 = 1

3n
3 + 1

2n
2 + 1

6n,

which is �(n3) by the theorem on polynomial orders.

40. By exercise 10 of Section 5.2, 12 + 22 + 32 + · · · + n2 =

n(n+1)(2n+1)
6 , and, by exercise 37 above,

n(n+1)(2n+1)
6 is

�(n3). Hence 12 + 22 + 32 + · · · + n2 is �(n3).

42. By Theorem 5.2.2, 2+ 4+ 6+ · · · + 2n = 2
(
n(n+1)

2

)
=

n2 + n, and by the theorem on polynomial orders, n2 + n is
�(n2). Thus 2+ 4+ 6+ · · · + 2n is �(n2).

44. By direct calculation or by Theorem 5.1.1,
∑n

i=1(4i − 9) =
4
∑n

i=1 i −
∑n

i=1 9 = 4
(
n(n+1)

2

)
− 9n. The last equality

holds because of Theorem 5.2.2 and the fact that∑n
i=1 9 = 9+ 9+ · · · + 9 (n summands) = 9n.

Then 4
(
n(n+1)

2

)
− 9n = 2n2 + 2n − 9n = 2n2 − 7n, and

hence
∑n

i=1(4i − 9) = 2n2 − 7n. But 2n2 − 7n is �(n2)

by the theorem on polynomial orders. Thus
∑n

i=1(4i − 9)
is �(n2).

46. Hint: Use the result of exercise 13 from Section 5.2.

48. Hints:

a.
anxn + an−1xn−1 + · · · + a1x + a0

anxn

= 1+ an−1
an
· 1
x
+ an−2

an
· 1
x2
+ · · · + a1

an
· 1

xn−1
+ a0

an
· 1
xn

.

b. limn→∞ f (x) = L means that given any real number
ε > 0, there is a real number M > 0 such that L − ε <

f (x) < L + ε for all real numbers x > M . Apply the

definition of limit to the result of part (a), using ε = 1
2 .

49. a. Let f, g, and h be functions from R to R, and sup-
pose f (x) is O(h(x)) and g(x) is O(h(x)). Then there
exist real numbers b1, b2, B1, and B2 such that | f (x)| ≤
B1|h(x)| for all x > b1 and |g(x)| ≤ B2|h(x)| for all
x > b2. Let B = B1 + B2, and let b be the greater of
b1 and b2. Then, for all x > b,

| f (x)+ g(x)| < | f (x)| + |g(x)|
by the triangle inequality

⇒ | f (x)+ g(x)| ≤ B1|h(x)| + B2|h(x)|
by hypothesis

⇒ | f (x)+ g(x)| ≤ (B1 + B2)|h(x)|
by algebra

⇒ | f (x)+ g(x)| ≤ B|h(x)| because B = B1 + B2.

Hence, by definition of O-notation, f (x)+ g(x) is
O(h(x)).

b. By exercise 15, for all x > 1, x2 < x4. Hence |x2| ≤
1 · |x4| for all x > 1. Thus, by definition of O-notation,
x2 is O(x4). Clearly also, |x4| ≤ 1 · |x4| for all x , and so
x4 is O(x4). It follows by part (a) that x2 + x4 is O(x4).

50. d. Hint: If p, q, and s are positive integers, r is a
nonnegative integer, and

p
q >

r
s , then ps > qr and

so ps − qr > 0. Also x p/q

xr/s = x (p/q−r/s) = x (pq−rs)/qs .
Apply part (c) to x1/qs , and use the fact that ps − qr
is an integer and ps − qr > 0 to make use of the result
of exercise 15.
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51. By part (d) of exercise 50, for all x > 1, x ≤ x4/3 and
1 = x0 ≤ x4/3. Hence, by definition of O-notation (since
all expressions are positive), x is O(x4/3) and 1 is O(x4/3).
Also, by exercise 13, x4/3 is O(x4/3). By part (c) of
exercise 49, then, −15x = (−15)x is O(x4/3) and 7 =
7 ·1 is O(x4/3). It follows, by part (a) of exercise 49
(applied twice), that 4x4/3 − 15x + 7 = 4x4/3 + (−15x)+
7 is O(x4/3).

53. Hint: The proof is similar to the solution in Example 11.2.8.
(Choose a real number x so that x > B1/(r−s), x > 1, and
x > b.)

54. f (x) =
√
x(3x + 5)

2x + 1
= 3x3/2 + 5x1/2

2x + 1
. The numerator of

f (x) is a sum of rational power functions with highest
power 3/2, and the denominator is a sum of rational power
functions with highest power 1. Because 3/2− 1 = 1/2,
Theorem 11.2.4 implies that f (x) is �(x1/2).

57. a. Proof (by mathematical induction): Let the property
P(n) be the inequality

√
1+√2+√3+ · · · + √n ≤ n3/2.

Show that P(1) is true:

When n = 1, the left-hand side of the inequality is 1, and
the right-hand side is 13/2, which is also 1. Thus P(1) is
true.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k + 1) is true:

Let k be any integer with k ≥ 1, and suppose
√
1+√2+√3+ · · · + √k ≤ k3/2.

[inductive hypothesis]

We must show that
√
1+√2+√3+ · · · + √k + 1 ≤ (k + 1)3/2.

But √
1+√2+√3+ · · · + √k + 1

= √1+√2+√3+ · · · + √k +√k + 1
by making the next-to-
last term explicit

⇒ √
1+√2+√3+ · · · + √k + 1 ≤ k3/2 +√k + 1

by inductive hypothesis

⇒ √
1+√2+√3+ · · · + √k + 1 ≤ k

√
k +√k + 1

because k3/2 = k
√
k

⇒ √
1+√2+√3+ · · · + √k + 1

≤ k
√
k + 1+√k + 1

because
√
k <
√
k + 1

⇒ √
1+√2+√3+ · · · + √k + 1 ≤ (k + 1)

√
k + 1

by factoring out
√
k + 1

⇒ √
1+√2+√3+ · · · + √k + 1 ≤ (k + 1)3/2.

[This is what was to be shown.]

b. Hint: When k ≥ 1, k2 ≥ k2 − 1. Use the fact that k2 −
1 = (k − 1)(k + 1) and divide both sides by k(k − 1)

to obtain k
k−1 ≥

k+1
k . But k+1

k ≥ 1, and any number
greater than or equal to 1 is greater than or equal to its

own square root. Thus k
k−1 ≥

k+1
k ≥

√
k+1
k =

√
k+1√
k

.

Hence k
√
k ≥ (k − 1)

√
k + 1 = (k + 1− 2)

√
k + 1 =

(k + 1)
√
k + 1− 2

√
k + 1, and so k

√
k + 2

√
k + 1 ≥

(k + 1)
√
k + 1.

c.
√
1+√2+√3+ · · · + √n is �(x3/2).

59. Proof: Suppose f (x) is o(g(x)). By definition of o-

notation, limx→∞
f (x)
g(x) = 0. By definition of limit, this

implies that given any real number ε > 0, there exists a

real number x0 such that
∣∣∣ f (x)g(x) − 0

∣∣∣ < ε for all x > x0.

Let b = max(x0, 1). Then | f (x)| ≤ ε|g(x)| for all x > b.
Choose ε = 1, and set B = 1. Then there exists a real num-
ber b such that | f (x)| ≤ B|g(x)| for all x > b. Hence, by
definition of O-notation, f (x) is O(g(x)).

Section 11.3
1. a. log2(200) = ln 200

ln 2
∼= 7.6 nanoseconds =

0.0000000076 second
d. 2002 = 40,000 nanoseconds = 0.00004 second
e. 2008 = 2.56× 1018 nanoseconds ∼=

2.56×1018
109 ·60 ·60 ·24 · (365.25) years ∼= 81.1215 years

[because there are 109 nanoseconds in a second, 60 sec-
onds in a minute, 60 minutes in an hour, 24 hours in a day
and approximately 365.25 days in a year on average].

2. a. When the input size is increased fromm to 2m, the num-
ber of operations increases from cm2 to c(2m)2 = 4cm2.

b. By part (a), the number of operations increases by a fac-
tor of (4cm2)/cm2 = 4.

c. When the input size is increased by a factor of 10 (from
m to 10m), the number of operations increases by a fac-
tor of (c(10m)2)/(cm2) = (100cm2)/cm2 = 100.

4. a. Algorithm A has order n2 and algorithm B has order
n3/2.

b. Algorithm A is more efficient than algorithm B when
2n2 < 80n3/2. This occurs exactly when

n2 < 40n3/2 ⇔ n2

n3/2
< 40⇔ n1/2 < 40⇔ n < 402.

Thus, algorithm A is more efficient than algorithm B
when n < 1,600.

c. Algorithm B is at least 100 times more efficient than
algorithm A for values of n with 100(80n3/2) ≤ 2n2.
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This occurs exactly when 8,000n3/2 ≤ 2n2 ⇔ 4, 000 ≤
n2

n3/2
⇔ 4,000 ≤ √n ⇔ 16,000,000 ≤ n. Thus, algo-

rithm B is at least 100 times more efficient than algo-
rithm A when n ≥ 16,000,000.

6. a. There are two multiplications, one addition, and one
subtraction for each iteration of the loop, so there are
four times as many operations as there are iterations of
the loop. The loop is iterated (n − 1)− 3+ 1 = n − 3
times (since the number of iterations equals the top
minus the bottom index plus 1). Thus the total number
of operations is 4(n − 3) = 4n − 12.

b. By the theorem on polynomial orders, 4n − 12 is �(n),
so the algorithm segment has order n.

8. a. There is one subtraction for each iteration of the loop,
and there are �n/2� iterations of the loop.

b. �n/2� =
{
n/2 if n is even

(n − 1)/2 if n is odd

is �(n) by theorem on polynomial orders, so the algo-
rithm segment has order n.

9. a. For each iteration of the inner loop, there are two mul-
tiplications and one addition. There are 2n iterations of
the inner loop for each iteration of the outer loop, and
there are n iterations of the outer loop. Therefore, the
number of iterations of the inner loop is 2n ·n = 2n2. It
follows that the total number of elementary operations
that must be performed when the algorithm is executed
is 3 ·2n2 = 6n2.

b. Since 6n2 is �(n2) (by the theorem on polynomial
orders), the algorithm segment has order n2.

11. a. There is one addition for each iteration of the inner
loop. The number of iterations in the inner loop can be
deduced from the table on the right, which shows the
values of k and j for which the inner loop is executed.

Hence the total number of iterations of the inner loop is

2+ 3+ · · · + n = (1+ 2+ 3+ · · · + n)− 1

= n(n + 1)

2
− 1 = 1

2
n2 + 1

2
n − 1

(by Theorem 5.2.2). Because one operation is performed
for each iteration of the inner loop, the total number of

operations is 1
2n

2 + 1
2n − 1.

b. By the theorem on polynomial orders, 12n
2 + 1

2n − 1 is

�(n2), and so the algorithm segment has order n2.

k 1 2 3 . . . n−1

j 1 2 1 2 3 1 2 3 4 . . . 1 2 3 . . . n︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
2 3 4 n

14. a. There is one addition for each iteration of the inner loop,
and there is one additional addition and one multipli-
cation for each iteration of the outer loop. The number
of iterations in the inner loop can be deduced from the
following table, which shows the values of i and j for
which the inner loop is executed.

i 1 2 3 · · · n

j 1 1 2 1 2 3 · · · 1 2 3 · · · n︸︷︷︸︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
1 2 3 n

Hence the total number of iterations of the inner loop is

1+ 2+ 3+ · · · + n = (1+ 2+ 3+ · · · + n)

= n(n + 1)

2
= 1

2
n2 + 1

2
n

(by Theorem 5.2.2). Because one addition is performed
for each iteration of the inner loop, the number of oper-
ations performed when the inner loop is executed is
1
2n

2 + 1
2 . Now an additional two operations are per-

formed each time the outer loop is executed, and because
the outer loop is executed n times, this gives an addi-
tional 2n operations. Therefore, the total number of
operations is

1

2
n2 + 1

2
n + 2n = 1

2
n2 + 5

2
n.

b. By the theorem on polynomial orders, 1
2n

2 + 5
2n is

�(n2), and so the algorithm segment has order n2.

17. a. There are two subtractions and one multipliction for
each iteration of the inner loop.

If n is odd, the number of iterations of the inner loop
can be deduced from the following table, which shows
the values of i and j for which the inner loop is exe-
cuted.

i 1 2 3 4 5 6 . . . n − 1 . . . n . . .⌊
i+1
2

⌋
1 1 2 2 3 3 . . .

n−1
2 . . .

n+1
2 . . .

j 1 1 1 2 1 2 1 2 3 1 2 3 . . . 1 2 · · · n−1
2 1 2 . . .

n+1
2︸︷︷︸︸︷︷︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

1 1 2 2 3 3
n−1
2

n+1
2
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Thus the number of iterations of the inner loop is

1+ 1+ 2+ 2+ · · · + n − 1

2
+ n − 1

2
+ n + 1

2

= 2 ·
(
1+ 2+ 3+ · · · + n − 1

2

)
+ n + 1

2

= 2 ·
n − 1

2

(
n − 1

2
+ 1

)
2

+ n + 1

2
by Theorem 5.2.2

= n2 − 2n + 1

4
+ n − 1

2
+ n + 1

2

= 1

4
n2 + 1

2
n + 1

4
.

By similar reasoning, if n is even, then the number of
iterations of the inner loop is

1+ 1+ 2+ 2+ 3+ 3+ · · · + n

2
+ n

2

= 2 ·
(
1+ 2+ 3+ · · · + n

2

)

= 2 ·

⎛
⎝ n

2

(n
2
+ 1

)
2

⎞
⎠

by Theorem 5.2.2

= n2

4
+ n

2
.

Because three operations are performed for each itera-

tion of the inner loop, the answer is 3

(
n2

4 +
n
2

)
when

n is even and 3
(

1
4n

2 + 1
2n + 1

4

)
when n is odd.

b. Since 3

(
n2

4 +
n
2

)
is �(n2) and 3

(
1
4n

2 + 1
2n +

1
4

)
is

also �(n2) (by the theorem on polynomial orders), this
algorithm segment has order n2.

19. Hint: See Section 9.6 for a discussion of how to count the
number of iterations of the innermost loop.

20. a[1] a[2] a[3] a[4] a[5]
Initial order 6 2 1 8 4

Result of step 1 2 6 1 8 4

Result of step 2 1 2 6 8 4

Result of step 3 1 2 6 8 4

Final order 1 2 4 6 8

22. n 5

a[1] 6 2 1

a[2] 2 6 2

a[3] 1 6 4

a[4] 8 8 6

a[5] 4 8

k 2 3 4 5 6

x 2 1 8 4

j 1 0 2 1 0 3 4 3 2

24. There are 14 comparisons. Each iteration of the while loop
involves two comparisons, one to test whether j �= 0 and
one in the if statement to compare x and a[ j]. When k = 2,
the while loop executes one time, giving 2 comparisons;
when k = 3, it executes twice, giving 4 comparisons, when
k = 4, it executes once, giving 2 comparisons and when
k = 5, it executes three times, giving 6 comparisons. Thus
the total is 2+ 4+ 2+ 6 = 14 comparisons.

27. Hint: The answer to part (a) is En = 3+ 4+ · · · + (n + 1),
which equals (1+ 2+ 3+ · · · + (n + 1))− (1+ 2).

28. The top row of the table below shows the initial values of
the array, and the bottom row shows the final values. The
result for each value of k is shown in a separate row.

a[1] a[2] a[3] a[4] a[5]
5 3 4 6 2

2 3 4 6 5

2 3 4 6 5

2 3 4 6 5

2 3 4 5 6

30. n 5

a[1] 5 2

a[2] 3

a[3] 4

a[4] 6 5

a[5] 2 5 6

k 1 2 3 4 5

IndexOfMin 1 2 5 2 3 4 5

i 2 3 4 5 3 4 5 4 5 5

temp 5 6

32. There is one comparison for each combination of values of
k and i : namely, 4+ 3+ 2+ 1 = 10.

35. b. n − 3+ 1 = n − 2 d. Hint: The answer is n2.
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36. n 3

a[0] 2

a[1] 1

a[2] −1
a[3] 3

x 2

polyval 2 4 0 24

i 1 2 3

term 1 2 −1 −2 −4 3 6 12 24

j 1 1 2 1 2 3

38. Number of multiplications

= number of iterations of the inner loop

= 1+ 2+ 3+ · · · + n

= n(n + 1)

2
by Theorem 5.2.2

number of additions

= number of iterations of the outer loop

= n

Hence the total number of multiplications and additions is

n(n + 1)

2
+ n = 1

2
n2 + 3

2
n.

40. n 3

a[0] 2

a[1] 1

a[2] −1
a[3] 3

x 2

polyval 3 5 11 24

i 1 2 3

42. Hint: The answer is tn = 2n.

Section 11.4
1.

x f (x) = 3x

0 30 = 1

1 31 = 3

2 32 = 9

−1 3−1 = 1/3

−2 3−2 = 1/9

1/2 31/2 ∼= 1.7

−(1/2) 3−(1/2) ∼= 0.6

x

y

1 2 3–1–2–3

1

2

3

4

(1, 3)

y = 3x

3.
x h(x) = log10 x

1 0

10 1

100 2

1/10 −1
1/100 −2

x

y

5 10 15 20–1

1
h(x) = log10 x

5.
x �log2 x�

1 ≤ x < 2 0

2 ≤ x < 4 1

4 ≤ x < 8 2

8 ≤ x < 16 3

1/2 ≤ x < 1 −1
1/4 ≤ x < 1/2 −2

2 4 6 8 10 12 14 16

1

–1

–2

2

3

4

y

x

F(x) = �log2 x�
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7.
x x log2 x

1 1 ·0 = 0

2 2 ·1 = 2

4 4 ·2 = 8

8 8 ·3 = 24

1/8 (1/8) ·(−3) = −3/8
1/4 (1/4) ·(−2) = −1/2
3/8 (3/8) ·(log2(3/8)) ∼= −0.53

2 4 6 8

8

16

24

x

y

y = x log2 x

9. The distance above the axis is (264 units) ·
(
1
4

inch
unit

)
=

264

4 inches = 264

4 ·12 ·5280 miles ∼= 72,785,448,520,000

miles. The ratio of the height of the point to the aver-
age distance of the earth to the sun is approximately
72785448520000/93000000 ∼= 782,639. (If you perform
the computation using metric units and the approximation
0.635 cm ∼= 1/4 inch, the ratio comes out to be approxi-
mately 780,912.)

10. b. By definition of logarithm, logb x is the exponent to
which b must be raised to obtain x . Thus when b is
actually raised to this exponent, x is obtained. That is,
blogb x = x .

11. b.

1

1

3

5

–1–3–5 3 5

–3

–5

–1
x

y

y = x
(3, 5)

(5, 3)

(4, 1)

(1, 4)

(–3, 1)

(–4, –2)

(–2, –4)

(1, –3)

Each pair of points
(u, v) and (v, u) are
"mirror image reflections"
across the line y = x.

13. Hints: (1) �log10 x� = m, (2) See Example 11.4.1.

15. No. Counterexample: Let n = 2. Then
�log2(n − 1)� = �log2 1� = �0� = 0,
whereas �log2 n� = �log2 2� = �1� = 1.

16. Hint: The statement is true.

18. �log2 148206� + 1 = 18

21. a. a1 = 1

a2 = a�2/2� + 2 = a1 + 2 = 1+ 2

a3 = a�3/2� + 2 = a1 + 2 = 1+ 2

a4 = a�4/2� + 2 = a2 + 2 = (1+ 2)+ 2

= 1+ 2 ·2
a5 = a�5/2� + 2 = a2 + 2 = (1+ 2)+ 2

= 1+ 2 ·2
a6 = a�6/2� + 2 = a3 + 2 = (1+ 2)+ 2

= 1+ 2 ·2
a7 = a�7/2� + 2 = a3 + 2 = (1+ 2)+ 2

= 1+ 2 ·2
a8 = a�8/2� + 2 = a4 + 2

= (1+ 2 ·2)+ 2 = 1+ 3 ·2
a9 = a�9/2� + 2 = a4 + 2

= (1+ 2 ·2)+ 2 = 1+ 3 ·2
...

a15 = a�15/2� + 2 = a7 + 2

= (1+ 2 ·2)+ 2 = 1+ 3 ·2
a16 = a�16/2� + 2 = a8 + 2

= (1+ 3 ·2)+ 2 = 1+ 4 ·2
...

Guess:

an = 1+ 2�log2 n�
b. Proof: Suppose the sequence a1, a2, a3, . . . is defined

recursively as follows: a1 = 1 and ak = a�k/2� + 2 for
all integers k ≥ 2. We will show by strong mathemat-
ical induction that the following property, P(n), is true
for all integers n ≥ 2 : an = 1+ 2�log n�.
Show that P(1) is true: P(1) is the equation
1+ 2�log2 1� = 1+ 2 ·0 = 1, which is the value of a1.

Show that for any integer k ≥ 1, if P(i) is true for
all integers i from 1 through k, then P(k+ 1) is true:
Let k be any integer with k ≥ 1, and suppose ai =
1+ 2�log2 i� for all integers i from 1 through k. [This
is the inductive hypothesis.] We must show that ak+1 =
1+ 2�log2(k + 1)�.
Case 1 (k is odd): In this case k + 1 is even, and

ak+1 = a�(k+1)/2� + 2

by the recursive definition of a1, a2, a3, . . .

= a(k+1)/2 + 2

because k + 1 is even (Theorem 4.5.2)
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11.4 Solutions and Hints to Selected Exercises A-115

= 1+ 2�log2((k + 1)/2)� + 2
by inductive hypothesis

= 3+ 2�log2(k + 1)− log2 2�
by Theorem 7.2.1(b)

= 3+ 2�log2(k + 1)− 1�
because log2 2 = 1

= 3+ 2(�log2(k + 1)� − 1)
because for all real numbers x, �x − 1� = �x� − 1
by exercise 15, Section 4.5

= 1+ 2�log2(k + 1)�
by algebra.

Case 2 (k is even): In this case k + 1 is odd, and

ak+1 = a�(k+1)/2� + 2
by the recursive definition of a1, a2, a3, · · ·

= ak/2 + 2
by Theorem 4.5.2 because k + 1 is odd.

= 1+ 2�log2(k/2)� + 2
by inductive hypothesis

= 3+ 2�log2 k − log2 2�
by Theorem 7.2.1(b)

= 3+ 2�log2 k − 1�
because log2 2 = 1

= 3+ 2(�log2 k� − 1)
because for all real numbers x, �x − 1� =
�x� − 1 by exercise 15, Section 4.5

= 1+ 2�log2 k�
by algebra.

= 1+ 2�log2(k + 1)�
by property 11.4.3.

Thus in either case, ak+1 = 1+ 2�log2(k + 1)� [as was
to be shown].

23. Hint: When k ≥ 2, then k2 ≥ 2k, and so k ≤ k2

2 . Hence
k2

2 + k ≤ k2

2 +
k2

2 = k2. Also when k ≥ 2, then k2 > 1,

and so 1
2 <

k2

2 . Consequently, k
2

2 +
1
2 <

k2

2 +
k2

2 = k2.

24. Hint: Here is the argument for the inductive step in the case
where k is odd and k + 1 is even.

ck+1 = 2c�(k+1)/2� + (k + 1)
by the recursive definition of c1, c2, c3, · · ·

⇒ ck+1 = c(k+1)/2 + (k + 1)
by Theorem 4.5.2 because k + 1 is even

⇒ ≤ 2
⌊
k+1
2 log2

(
k+1
2

)⌋
+ (k + 1)

by inductive hypothesis
⇒ ≤ (k + 1)(log2(k + 1)− log2 2)+ (k + 1)

by algebra and Theorem 7.2.1(b)
⇒ ≤ (k + 1)(log2(k + 1)− 1)+ (k + 1)

because log2 2 = 1
⇒ ≤ (k + 1)(log2(k + 1))

by algebra

25. Solution 1: One way to solve this problem is to compare
values for log2 x and x1/10 for conveniently chosen, large
values of x . For instance, if powers of 10 are used, the
following results are obtained: log2(10

10) = 10 log2 10 ∼=

33.2 and (1010)1/10 = 1010 · (1/10) = 101 = 10. Thus the
value x = 1010 does not work.

However, since log2(10
20) = 20 log2 10 ∼= 66.4 and

(1020)1/10 = 1020 · (1/10) = 102 = 100, and since 66.4 <

100, the value x = 1020 works.

Solution 2:Another approach is to use a graphing calculator
or computer to sketch graphs of y = log2 x and y = x1/10,
taking seriously the hint to “think big” in choosing the inter-
val size for the x’s. A few tries and use of the zoom and
trace features make it appear that the graph of y = x1/10

crosses above the graph of y = log2 x at about 4.9155×
1017. Thus, for values of x larger than this, x1/10 > log2 x .

27. As with exercise 25, you can solve this problem either by
numerical exploration or by exploring with a graphing cal-
culator or computer. For instance, if you raise 1.0001 to
successive large powers of 10, you can find the solution
x = 106 = 1,000,000. That is,
(1.0001)1000000 > 2.67× 1043 > 1,000,000.
(This is the first power of 10 that works.)

Alternatively, you can use a graphing calculator or com-
puter to sketch graphs of y1 = (1.0001)x and y2 = x and
look to see where the graph of y1 = (1.0001)x rises above
the graph of y2 = x . You will need to zoom in carefully to
obtain an accurate answer. If you use this method, you will
find that if x > 116703, then (1.0001)x > x .

29. 7x2 + 3x log2 x is �(x2).

30. [To show that 2x + log2 x is �(x), we must find positive real
numbers A, B, and k such that A|x | ≤ |2x + log2 x | ≤ B|x |
for all x > k.] It is clear from the graphs of y = log2 x and
y = x that for all x > 0, log2 x ≤ x . Adding 2x to both
sides gives 2x + log2 x ≤ 3x , or, because all terms are pos-
itive,

|2x + log2 x | ≤ 3|x |.
Also, when x > 1, then log2 x > 0, and so 0 < x + log2 x .
Adding x to both sides gives x < 2x + log2 x . Thus when
x > 1,

|x | ≤ |2x + log2 x |
Therefore, let k = 1, A = 1, and B = 3. Then for all real
numbers x > k,

A|x | ≤ |2x + log2 x | ≤ B|x |
and hence, by definition of �-notation, 2x + log2 x is
�(x).

32. For all integers n, 2n ≤ n2 + 2n . Also, by property
(11.4.10), there is a real number k such that n2 ≤ 2n for all
n > k. Adding 2n to both sides gives n2 + 2n ≤ 2n + 2n =
2 ·2n . Because all quantities are nonnegative, we can write

|2n| ≤ |n2 + 2n | ≤ 2 · |2n| for all integers n > k.

Let A = 1 and B = 2. Then

A|2n | ≤ |n2 + 2n | ≤ B|2n | for all integers n > k,

and hence, by definition of �-notation, n2 + 2n is �(2n).
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33. Hint: 2n+1 = 2 ·2n
34. Hint: Use a proof by contradiction. Start by supposing

that there are positive real numbers B and b such that
4n ≤ B ·2n for all real numbers n > b, and use the fact that
4n

2n =
(
4
2

)n = 2n to obtain a contradiction.

35. By Theorem 5.2.3, for all integers n ≥ 0,

1+ 2+ 22 + · · · + 2n = 2n+1 − 1

2− 1
= 2n+1 − 1.

Also

2n+1 − 1 ≤ 2n+1 = 2 ·2n .
Thus, by transitivity of order,

1+ 2+ 22 + · · · + 2n ≤ 2 ·2n . (*)

Moreover, if n > 0, then

2n ≤ 1+ 2+ 22 + · · · + 2n . (**)

Combining (*) and (**) gives

1 ·2n ≤ 1+ 2+ 22 + · · · + 2n ≤ 2 ·2n,
and so, because all parts are positive,

1 · |2n| ≤ |1+ 2+ 22 + · · · + 2n | ≤ 2 · |2n|.
Let A = 1, B = 2, and k = 1. Then for all integers n > k,

A · |2n| ≤ |1+ 2+ 22 + · · · + 2n | ≤ B · |2n|.
Thus, by definition of �-notation, 1+ 2+ 22 + · · · + 2n is
�(2n).

36. Hint: This is similar to the solution for exercise 35.
Use the fact that 4+ 42 + 43 + · · · + 4n =
4(1+ 4+ 42 + 43 + · · · + 4n−1).

39. Factor out the n to obtain

n + n

2
+ n

4
+ · · · + n

2n

= n

(
1+ 1

2
+ 1

4
+ · · · + 1

2n

)

= n

⎛
⎜⎝
(
1
2

)n+1 − 1

1
2 − 1

⎞
⎟⎠ by Theorem 5.2.3

= n

(
1− 2n+1

2n(1− 2)

)
by multiplying numerator
and denominator by 2n+1

= n

(
2n+1 − 1

2n

)

= n

(
2− 1

2n

)
by algebra.

Now 1 ≤ 2− 1

2n
≤ 2 when n > 1. Thus

1 ·n ≤ n

(
2− 1

2n

)
≤ 2 ·n,

and so, by substitution,

1 ·n ≤ n + n

2
+ n

4
+ · · · + n

2n
≤ 2 ·n.

Let A = 1, B = 2, and k = 1. Then, because all quantities
are positive, for all integers n > k,

A · |n| ≤
∣∣∣n + n

2
+ n

4
+ · · · + n

2n

∣∣∣ ≤ B · |n|.

Hence, by definition of �-notation, n + n
2 +

n
4 + · · · +

n
2n

is �(n).

43. If n is any integer with n ≥ 3, then

n + n

2
+ n

3
+ · · · + n

n
= n

(
1+ 1

2
+ 1

3
+ · · · + 1

n

)
.

By Example 11.4.7,

ln(n) ≤ 1+ 1

2
+ 1

3
+ · · · + 1

n
≤ 2 ln(n).

If n > 1, then we may multiply through by n and use the
fact that all quantities are positive to obtain

|n ln(n)| ≤
∣∣∣n + n

2
+ n

3
+ · · · + n

n

∣∣∣ ≤ 2 |n ln(n)|.
Let A = 1, B = 2, and k = 1. Then for all integers n > k,

A · |n ln(n)| ≤
∣∣∣n + n

2
+ n

3
+ · · · + n

n

∣∣∣ ≤ B · |n ln(n)|

and so, by definition of �-notation, n + n
2 +

n
3 + · · · +

n
n

is �(n ln(n)).

46. Proof (by mathematical induction): Let the property P(n)
be the inequality n ≤ 10n .

Show that P(1) is true:

When n = 1, the inequality is 1 ≤ 10, which is true.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k + 1) is true:

Let k be any integer with k ≥ 1, and suppose k ≤ 10k .
[This is the inductive hypothesis.] We must show that
k + 1 ≤ 10k+1. By inductive hypothesis, k ≤ 10k . Adding
1 to both sides gives k + 1 ≤ 10k + 1. But when
k ≥ 1, 10k + 1 ≤ 10k + 9 ·10k = 10 ·10k = 10k+1. Thus,
by transitivity of order, k + 1 ≤ 10k+1 [as was to be shown].

47. Hint: To prove the inductive step, use the fact that if k > 1,
then k + 1 ≤ 2k. Apply the logarithmic function with base
2 to both sides of this inequality, and use properties of log-
arithms.

48. Hint: 2 ·2 ·2 · · · 2︸ ︷︷ ︸ ≤ 2 ·(2 ·3 ·4 · · · n) = 2 ·n!
n factors

49. a. Proof: Suppose n is a variable that takes positive integer
values. Then

n! = n ·(n − 1) ·(n − 2) · . . . ·2 ·1︸ ︷︷ ︸
n factors

≤ n ·n ·n ·n · . . . ·n︸ ︷︷ ︸ = nn

n factors
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because (n − 1) ≤ n, (n − 2) ≤ n, . . . , and 1 ≤ n. Let
B = 1 and b = 1. It follows from the displayed inequal-
ity and the fact that n! and nn are positive that |n!| ≤
B · |nn| for all integers n > b. Hence, by definition of
O-notation, n! is O(nn).

c. Hint: (n!)2 = n! ·n! = (1 ·2 ·3 · · · n)(n ·(n − 1) · · · 3 ·2 ·1)
=

(
n∏

r=1
r

)(
n∏

r=1
(n − r + 1)

)
=

n∏
r=1

r(n − r + 1). Show

that for all integers r = 1, 2, . . . , n, nr − n2 +
r ≥ n.

50. a. Let n be a positive integer. For any real number x > 1,
properties of exponents and logarithms (see Sec-
tion 7.2) imply that 0 ≤ log2(x) = log2((x

1/n)n) =
n log2(x

1/n) < nx1/n (where the last inequality holds by
substituting x1/n in place of u in log2 u < u).

b. Let B = n and b = 1. Then if x > x0, | log2 x | =
log2 x ≤ B · |x1/n|, and so log2 x is O(x1/n).

52. Let n be a positive integer, and suppose that x > (2n)2n . By
properties of logarithms,

log2 x = (2n)

(
1

2n

)
(log2 x)

= (2n) log2
(
x

1
2n

)
< 2nx

1
2n (*)

(where the last inequality holds by substituting x
1
2n in place

of u in log2 u < u). But raising both sides of x > (2n)2n to
the 1/2 power gives x1/2 > ((2n)2n)1/2 = (2n)n . When both
sides are multiplied by x1/2, the result is x = x1/2x1/2 >

x1/2(2n)n = x1/2(2n)n , or, more compactly,

x1/2(2n)n < x .

Then, since the power function defined by x → x1/n is
increasing for all x > 0 (see exercise 21 of Section 11.1),
we can take the nth root of both sides of the inequality and
use the laws of exponents to obtain

(x1/2(2n)n)1/n < x1/n

or, equivalently,

2nx
1
2n < x1/n . (**)

Now use transitivity of order (Appendix A, T18) to com-
bine (*) and (**) and conclude that log2 x < x1/n [as was to
be shown].

54. Proof (by mathematical induction): Let b be a real number
with b > 1, and let the property P(n) be the equation

lim
x→∞

(
xn

bx

)
= 0.

Show that P(1) is true:

By L’Hôpital’s rule, limx→∞

(
x1

bx

)
= limx→∞

(
1

bx (ln b)

)
=

0. Thus P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k + 1) is true:

Let k be any integer with k ≥ 1, and suppose

limx→∞

(
xk

bx

)
= 0. [This is the inductive hypothesis.] We

must show that limx→∞

(
xk+1
bx

)
= 0. But by

L’Hôpital’s rule, limx→∞
xk+1
bx = limx→∞

(k+1)xk
(ln b)bx =

(k+1)
(ln b) limx→∞

xk

bx =
(k+1)
(ln b) ·0 [by inductive hypothesis]= 0.

[This is what was to be shown.]
b. By the result of part (a) and the definition of limit,

given any real number ε > 0, there exists an integer N

such that | xnbn − 0| < ε for all x > N . In this case take

ε = 1. It follows that for all x > N , | xnbx | = |
xn

bx | < 1.
Multiply both sides by |bx | to obtain |xn| < |bx |. Let
B = 1 and b = N . Then |xn| < B · |bx | for all x > b.
Hence, by definition of O-notation, xn is O(bx ).

Section 11.5
1. log2 1000 = log2(10

3) = 3 log2 10 ∼= 3(3.32) ∼= 9.96
log2(1,000,000) = log2(10

6) = 6 log2 10 ∼= 6(3.32)
∼= 19.92

log2(1,000,000,000,000) = log2(10
12) = 12 log2 10∼= 12(3.32) = 39.84

2. a. If m = 2k , where k is a positive integer, then the algo-
rithm requires c�log2(2k)� = c�k� = ck operations. If
the input size is increased to m2 = (2k)2 = 22k , then
the number of operations required is c�log2(22k)� =
c�2k� = 2(ck). Hence the number of operations dou-
bles.

b. As in part (a), for an input of size m = 2k , where
k is a positive integer, the algorithm requires ck
operations. If the input size is increased to m10 =
(2k)10 = 210k , then the number of operations required is
c�log2(210k)� = c�10k� = 10(ck). Thus the number of
operations increases by a factor of 10.

c. When the input size is increased from 27 to 228, the
factor by which the number of operations increases is
c�log2(228)�
c�log2(27)�

= 28c

7c
= 4.

3. A little numerical exploration can help find an initial
window to use to draw the graphs of y = x and y =⌊
50 log2 x

⌋
. Note that when x = 28 = 256,

⌊
50 log2 x

⌋ =⌊
50 log2(2

8)
⌋ = �50 ·8� = �400� = 400 > 256 = x . But

when x = 29 = 512,
⌊
50 log2 x

⌋ = ⌊
50 log2(2

9)
⌋ =

�50 ·9� = �450� = 450 < 512 = x . So a good choice of
initial window would be the interval from 256 to 512.
Drawing the graphs, zooming if necessary, and using the
trace feature reveal that when n < 438, n <

⌊
50 log2 n

⌋
.

5. a. index 0 1

bot 1

top 10 4 1

mid 5 2 1
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b. index 0

bot 1 6 7

top 10 7 6

mid 5 8 6 7

7. a. top− bot+ 1
b. Proof: Suppose top and bot are particular but arbitrar-

ily chosen positive integers such that top− bot+ 1 is
an odd number. Then, by definition of odd, there is an
integer k such that

top− bot+ 1 = 2k + 1

Adding 2 ·bot− 1 to both sides gives

bot+ top = 2 ·bot− 1+ 2k + 1

= 2(bot+ k).

But bot+ k is an integer. Hence, by definition of even,
bot+ top is even.

8. n 27 13 6 3 1 0

9. For each positive integer n, n div 2 = �n/2�. Thus when the
algorithm segment is run for a particular n and the while
loop has iterated one time, the input to the next iteration is
�n/2�. It follows that the number of iterations of the loop
for n is one more than the number of iterations for �n/2�.
That is, an = 1+ a�n/2�. Also a1 = 1.

10. The recurrence relation and initial condition of
a1, a2, a3, . . . derived in exercise 9 are the same as those
for the sequence w1, w2, w3, . . . discussed in the worst-
case analysis of the binary search algorithm. Thus the gen-
eral formulas for the two sequences are the same. That is,
an = 1+ ⌊

log2 n
⌋
, for all integers n ≥ 1.

11. In the analysis of the binary search algorithm, it was shown
that 1+ ⌊

log2 n
⌋
is �(log2 n). Thus the algorithm segment

has order log2 n.

14. Hint: The formula is bn = 1+ ⌊
log3 n

⌋
.

20.

1 2 3 4 5 6 7 8

5

6

3

9

12

4

2

7

9

11

9 10

22.

R G

R

R

R

R

G

G

G

B

B U

B

B

B

G

U

U

U

U

R G B U

C F H G

B C F G G H R U

C

C

F

G

F

F

C

C

H

H

G

F

G

G

H

H

C F H G

Initial array:

Final array:

split

split split

split

merge

merge merge

merge

split split

split

merge merge

merge

24. b. Refer to Figure 11.5.3 and observe that when k is odd,
the subarray a[bot], a[bot+ 1], . . . , a[mid] has length
(k + 1)/2 = �k/2� and that when k is even, it also has
length k/2 = �k/2�.

25. Hint: The following are the steps for part (a) in the case
where k is odd and k + 1 is even:

mk+1 = m�(k+1)/2� + m�(k+1)/2� + (k + 1)− 1

⇒ mk+1 = m(k+1)/2 + m(k+1)/2 + (k + 1)− 1
by Theorem 4.5.2 and exercise 19 in
Section 4.5 because k + 1 is even

⇒ mk+1 = 2m(k+1)/2 + k

⇒ mk+1 ≥ 2 · [ 12 · ( k+12 )
log2

(
k+1
2

)]+ k
by inductive hypothesis

⇒ mk+1 ≥ (
k+1
2

) [log2(k + 1)− log2 2] + k

⇒ mk+1 ≥ 1
2 (k + 1)[log2(k + 1)− 1] + k

⇒ mk+1 ≥ 1
2 (k + 1) log2(k + 1)− (

k+1
2

)+ 2k
2

⇒ mk+1 ≥ 1
2 (k + 1) log2(k + 1)+ k−1

2

⇒ mk+1 ≥ 1
2 (k + 1) log2(k + 1)

Section 12.1
1. a. L1 = {ε, x, y, xx, yy, xxx, xyx, yxy, yyy, xxxx,

xyyx, yxxy, yyyy}
b. L2 = {x, xx, xy, xxx, xxy, xyx, xyy}

3. a. (a + b) ·(c + d)
b. Partial answer: 11∗ = 1 ·1 = 1, 12∗ = 1 ·2 = 2,

21/ = 2/1 = 2
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12.2 Solutions and Hints to Selected Exercises A-119

4. L1L2 is the set of all strings of a’s and b’s that start with an
a and contain an odd number of a’s.

L1 ∪ L2 is the set of all strings of a’s and b’s that contain an
even number of a’s or that start with an a and contain only
that one a. (Note that because 0 is an even number, both ε

and b are in L1 ∪ L2.)

(L1 ∪ L2)
∗ is the set of all strings of a’s and b’s. The reason

is that a and b are both in L1 ∪ L2, and thus every string in
a and b is in (L1 ∪ L2)

∗.
7. (a | ((b∗)b))((a∗) | (ab))

10. (ab∗ | cb∗)(ac | bc)
13. L(ε | ab) = L(ε) ∪ L(ab) = {ε} ∪ L(a)L(b)

= {ε} ∪ {xy | x ∈ L(a) and y ∈ L(b)}
= {ε} ∪ {xy | x ∈ {a} and y ∈ {b}}
= {ε} ∪ {ab} = {ε, ab}

16. Here are five strings out of infinitely many: 0101, 1, 01,
10000, and 011100.

19. The language consists of all strings of a’s and b’s that con-
tain exactly three a’s and end in an a.

22. aaaba is in the language but baabb is not because if a
string in the language contains a b to the right of the left-
most a, then it must contain another a to the right of the
all b’s.

25. One solution is 0∗10∗(0∗10∗10∗)∗.
28. L((r | s)t) = L(r | s)L(t) = (L(r) ∪ L(s))L(t)

= {xy | x ∈ (L(r) ∪ L(s)) and y ∈ L(t)}
= {xy | (x ∈ L(r) or x ∈ L(s)) and y ∈ L(t)}
= {xy | (x ∈ L(r) and y ∈ L(t)) or

(x ∈ L(s) and y ∈ L(t))}
= {xy | xy ∈ L(r t) or xy ∈ L(st)}
= L(r t) ∪ L(st)
= L(r t | st)

31. pre[a − z]+
34. [a − z]∗(a | e | i | o | u)[a − z]∗
37. [0− 9]{3} - [0− 9]{2} - [0− 9]{4}
39. ([+ −] | ε)[0− 9]∗(\. | ε)[0− 9]∗
40. Hint: Leap years from 1980 to 2079 are 1980, 1984, 1988,

1992, 1996, 2000, 2004, etc. Note that the fourth digit
is 0, 4, or 8 for the ones whose third digit is even and
that the fourth digit is 2 or 6 for those whose third digit
is odd.

Section 12.2
1. a. $1 or more deposited

2. a. s0, s1, s2 b. 0, 1 c. s0 d. s2
e. Annotated next-state table:

Input
0 1

→ s0 s1 s0
State s1 s1 s2

� s2 s2 s2

5. a. A, B,C, D, E, F b. x, y c. A d. D, E
e. Annotated next-state table:

Input
x y

→ A C B
B F D

State C E F
� D F D
� E E F

F F F

7. a. s0, s1, s2, s3 b. 0, 1 c. s0 d. s0, s2
e. Annotated next-state table:

Input
0 1

→ � s0 s0 s1
State s1 s1 s2

� s2 s2 s3
s3 s3 s0

8. a. s0, s1, s2 b. 0, 1 c. s0 d. s2
e.

0

1 1

1

0

0
s0

s2

s1

10. a. N (s1, 1) = s2, N (s0, 1) = s3
c. N ∗(s0, 10011) = s2, N ∗(s1, 01001) = s2

11. a. N (s3, 0) = s4, N (s2, 1) = s4
c. N ∗(s0, 010011) = s3, N ∗(s3, 01101) = s4

Note that multiple correct answers exist for part (d) of exercises
12 and 13, part (b) of exercises 14–19, and for exercises 20–48.

12. a. (i) s2 (ii) s2 (iii) s1
b. those in (i) and (ii) but not (iii)
c. The language accepted by this automaton is the set of all

strings of 0’s and 1’s that contain at least one 0 followed
(not necessarily immediately) by at least one 1.

d. 1∗00∗1(0 | 1)∗
14. a. The language accepted by this automaton is the set of all

strings of 0’s and 1’s that end 00.
b. (0 | 1)∗00

15. a. The language accepted by this automaton is the set of all
strings of x’s and y’s of length at least two that consist
either entirely of x’s or entirely of y’s.

b. xxx∗ | yyy∗
17. a. The language accepted by this automaton is the set of

all strings of 0’s and 1’s with the following property: If
n is the number of 1’s in the string, then n mod 4 = 0
or n mod 4 = 2. This is equivalent to saying that n is
even.

b. 0∗ | (0∗10∗10∗)∗
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18. a. The language accepted by this automaton is the set of all
strings of 0’s and 1’s that end in 1.

b. (0 | 1)∗1
20. a. Call the automaton being constructed A. Acceptance of

a string by A depends on the values of three consecutive
inputs. Thus A requires at least four states:

s0: initial state

s1: state indicating that the last input character was a 1

s2: state indicating that the last two input characters were
1’s

s3: state indicating that the last three input characters
were 1’s, the acceptance state

If a 0 is input to A when it is in state s0, no progress is
made toward achieving a string of three consecutive 1’s.
Hence A should remain in state s0. If a 1 is input to A
when it is in state s0, it goes to state s1, which indicates
that the last input character of the string is a 1. From state
s1, A goes to state s2 if a 1 is input. This indicates that
the last two characters of the string are 1’s. But if a 0 is
input, A should return to s0 because the wait for a string
of three consecutive 1’s must start all over again. When
A is in state s2 and a 1 is input, then a string of three
consecutive 1’s is achieved, so A should go to state s3.
If a 0 is input when A is in state s2, then progress toward
accumulating a sequence of three consecutive 1’s is lost,
so A should return to s0. When A is in a state s3 and a 1
is input, then the final three symbols of the input string
are 1’s, and so A should stay in state s3. If a 0 is input
when A is in state s3, then A should return to state s0 to
await the input of more 1’s. Thus the transition diagram
is as follows:

11 1
1

s1s0 s2 s3

0 0

0

0

b. (0 | 1)∗111
21. Hint: Use five states: s0 (the initial state), s1 (the state indi-

cating that the previous input symbol was an a), s2 (the state
indicating that the previous input symbol was a b), s3 (the
state indicating that the previous two input symbols were
a’s), and s4 (the state indicating that the previous two input
symbols were b’s).

23. a.

s0 s1

s3

s2
0 1

0

10
1

0

1

b. 01(0 | 1)∗

25. a.

0

1

0

0

1

1

s0 s1 s2

b. (0 | 1)∗10
26. a.

a a a, b
a

s0 s1 s3s2
b b b

b. a∗ba∗ba∗

28. a.
1 0

0, 1

s0 s1 s2 s3
0 1

1

0

b. (0 | 1)∗010(0 | 1)∗
29.

0

1

0, 1

s0 s1

31.

x

y

x

y

y
y

x

x

s1 s3s2

s4

s0

33.

s0 s1 s2

s4

s3
1

1

1 1

0

0

0

0, 1

0

36.
0

1

1

0

s0 s1

39. Let P̂ denote a list of all letters of a lower-case alphabet
except p, R̂ denote a list of all the letters of a lower-case
alphabet except r , and Ê denote a list of all the letters of a
lower-case alphabet except e.
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12.3 Solutions and Hints to Selected Exercises A-121

s0 s1

s5

s2 s3 s4
p r [a–z]

[a–z]
e

P̂
R̂ Ê

42. Let C denote a list of all the consonants in a lower-case
alphabet.

s0 s1
a, e, i, o, u

[a–z]

45.

s0 s1 s2 s3

s12

s4 s5

s11

[0–9] [0–9] [0–9]

[0–9]

–

– –

–
––

–
[0–9], –

[0–9]

s10 s9 s8 s7 s6
[0–9]

[0–9]
[0–9]

[0–9][0–9][0–9] –

– – –

51. Hint: This proof is virtually identical to that of Example
12.2.8. Just take p and q in that proof so that p > q. From
the fact that A accepts apbp , you can deduce that A accepts
aqbp . Since p > q, this string is not in L .

53. Hint: Suppose the automaton A has N states. Choose an
integer m such that (m + 1)2 − m2 > N . Consider strings
of a’s of lengths between m2 and (m + 1)2.
Since there are more strings than states, at least two strings
must send A to the same state si :

(m + 1)2︷ ︸︸ ︷
aa . . . a︸ ︷︷ ︸aa . . . aaa . . . aaa . . . a

m2 ↑ ↗
after both of these
inputs, A is in state si

It follows (by removing the a’s shown in color) that the
automaton must accept a string of the form ak , where
m2 < k < (m + 1)2.

Section 12.3
1. a. 0-equivalence classes: {s0, s1, s3, s4}, {s2, s5}

1-equivalence classes: {s0, s3}, {s1, s4}, {s2, s5}
2-equivalence classes: {s0, s3}, {s1, s4}, {s2, s5}

b. 1

01[s0] [s1] [s2]

0 1 0

4. a. 0-equivalence classes: {s0, s1, s2}, {s3, s4, s5}
1-equivalence classes: {s0, s1, s2}, {s3, s5}, {s4}
2-equivalence classes: {s0, s2}, {s1}, {s3, s5}{s4}
3-equivalence classes: {s0, s2}, {s1}, {s3, s5}, {s4}

b.

1

0

0

0

1

1

[s0]

[s1]

[s4][s3]
0, 1

6. a. Hint: The 3-equivalence classes are {s0}, {s1}, {s2}, {s3},
{s4}, {s5}, and {s6}.

7. Yes. For A:

0-equivalence classes: {s0, s2}, {s1, s3}
1-equivalence classes: {s0}, {s2}, {s1, s3}
2-equivalence classes: {s0}, {s2}, {s1, s3}

Transition diagram for A :
[s2]

[s1]

0

[s0]

1
0

0

1

1

For A′:

0-equivalence classes:
{
s ′0, s

′
1, s

′
2

}
,
{
s ′3
}

1-equivalence classes:
{
s ′0, s

′
2

}
,
{
s ′1
}
,
{
s ′3
}

2-equivalence classes:
{
s ′0, s

′
2

}
,
{
s ′1
}
,
{
s ′3
}

Transition diagram for A′ :
[s'1]

[s'3]

0

[s'0]

1
0

0

1

1

Except for the labeling of the states, the transition diagrams
for A and A′ are identical. Hence A and A′ accept the same
language, and so, by Theorem 12.3.3, A and A′ also accept
the same language. Thus A and A′ are equivalent automata.
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9. For A:

0-equivalence classes: {s1, s2, s4, s5}, {s0, s3}
1-equivalence classes: {s1, s2}, {s4, s5}, {s0, s3}
2-equivalence classes: {s1}, {s2}, {s4, s5}, {s0, s3}
3-equivalence classes: {s1}, {s2}, {s4, s5}, {s0, s3}

Therefore, the states of A are the 3-equivalence classes
of A.

For A′:

0-equivalence classes:
{
s ′2, s

′
3, s

′
4, s

′
5

}
,
{
s ′0, s

′
1

}
1-equivalence classes:

{
s ′2, s

′
3, s

′
4, s

′
5

}
,
{
s ′0, s

′
1

}
Therefore, the states of A′ are the 1-equivalence classes
of A′.
According to the text, two automata are equivalent if, and
only if, their quotient automata are isomorphic, provided
inaccessible states have first been removed. Now A and A′

have no inaccessible states, and A has four states whereas
A′ has only two states. Therefore, A and A′ are not equiva-
lent.

This result can also be obtained by noting, for example, that
the string 11 is accepted by A′ but not by A.

11. Partial answer: Suppose A is a finite-state automaton with
set of states S and relation R∗ of ∗-equivalence of states.
[To show that R∗ is an equivalence relation, we must show that
R is reflexive, symmetric, and transitive.]

Proof that R∗ is symmetric:
[We must show that for all states s and t, if s R∗ t then t R∗ s.]
Suppose that s and t are states of A such that sR∗t . [We
must show that t R∗ s.] Since s R∗ t , then for all input
strings w,[

N ∗(s, w) is an
accepting state

]
⇔

[
N ∗(t, w) is an
accepting state

]

where N ∗ is the eventual-state function on A. But then,
by symmetry of the⇔ relation, it is true that for all input
strings w,[

N ∗(t, w) is an
accepting state

]
⇔

[
N ∗(s, w) is an
accepting state

]
Hence t R∗ s [as was to be shown], so R∗ is symmetric.

12. The proof is identical to the proof of property (12.3.1) given
in the solution to exercise 11 provided each occurrence of
“for all input strings w” is replaced by “for all input strings
w of length less than or equal to k.”

13. Proof: By property (12.3.2), for each integer k ≥ 0, k-
equivalence is an equivalence relation. But by Theorem
10.3.4, the distinct equivalence classes of an equivalence
relation form a partition of the set on which the relation is
defined. In this case, the relation is defined on the states of
the automaton. So the k-equivalence classes form a parti-
tion of the set of all states of the automaton.

15. Hint 1: Suppose Ck is a particular but arbitrarily chosen k-
equivalence class. You must show that there is a (k − 1)-
equivalence class Ck−1 such that Ck ⊆ Ck−1.
Hint 2: If s is any element in Ck , then s is a state of
the automaton. Now the (k − 1)-equivalence classes par-
tition the set of all states of the automaton into a union
of mutually disjoint subsets, so s ∈ Ck−1 for some (k − 1)-
equivalence class Ck−1.
Hint 3: To show that Ck ⊆ Ck−1, you must show that for
any state t , if t ∈ Ck , then t ∈ Ck−1.

17. Hint: If m < k, then every input string of length less than
or equal to m has length less than or equal to k.

19. Hint: Suppose two states s and t are equivalent. You must
show that for any input symbol m, the next-states N (s,m)

and N (t,m) are equivalent. To do this, use the definition of
equivalence and the fact that for any stringw′, input symbol
m, and state s, N ∗(N (s,m), w′) = N ∗(s,mw′).
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