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INTRODUCTION

Problems related to the coloring of maps of regions, such as maps of parts of the world,
have generated many results in graph theory. When a map* is colored, two regions with
a common border are customarily assigned different colors. One way to ensure that two
adjacent regions never have the same color is to use a different color for each region.
However, this is inefficient, and on maps with many regions it would be hard to distin-
guish similar colors. Instead, a small number of colors should be used whenever possible.
Consider the problem of determining the least number of colors that can be used to color
amap so that adjacent regions never have the same color. For instance, for the map shown
on the left in Figure 1, four colors suffice, but three colors are not enough. (The reader
should check this.) In the map on the right in Figure 1, three colors are sufficient (but two
are not).

Each map in the plane can be represented by a graph. To set up this correspondence,
each region of the map is represented by a vertex. Edges connect two vertices if the
regions represented by these vertices have a common border. Two regions that touch at
only one point are not considered adjacent. The resulting graph is called the dual graph of
the map. By the way in which dual graphs of maps are constructed, it is clear that any map
in the plane has a planar dual graph. Figure 2 displays the dual graphs that correspond to
the maps shown in Figure 1.

The problem of coloring the regions of a map is equivalent to the problem of coloring
the vertices of the dual graph so that no two adjacent vertices in this graph have the same
color. We now define a graph coloring.

*We will assume that all regions in a map are connected. This eliminates any problems presented by such
geographical entities as Michigan.
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FIGURE 2  Dual Graphs of the Maps in Figure 1.

A coloring of a simple graph is the assignment of a color to each vertex of the graph
so that no two adjacent vertices are assigned the same color.

A graph can be colored by assigning a different color to each of its vertices. However, for
most graphs a coloring can be found that uses fewer colors than the number of vertices
in the graph. What is the least number of colors necessary?

The chromatic number of a graph is the least number of colors needed for a coloring
of this graph.

Note that asking for the chromatic number of a planar graph is the same as asking for
the minimum number of colors required to color a planar map so that no two adjacent
regions are assigned the same color. This question has been studied for more than 100
years. The answer is provided by one of the most famous theorems in mathematics.

THE FOUR COLOR THEOREM The chromatic number of a planar graph is no
greater than four.

ALFRED BRAY KEMPE (1849-1922) Kempe was a barrister and a leading authority on ecclesiastical
law. However, having studied mathematics at Cambridge University, he retained his interest in it, and later
in life he devoted considerable time to mathematical research. Kempe made contributions to kinematics,
the branch of mathematics dealing with motion, and to mathematical logic. However, Kempe is best
remembered for his fallacious proof of the Four Color Theorem.
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The Four Color Theorem was originally posed as a conjecture in the 1850s. It was
finally proved by the American mathematicians Kenneth Appel and Wolfgang Haken in
1976. Prior to 1976, many incorrect proofs were published, often with hard-to-find errors.
In addition, many futile attempts were made to construct counterexamples by drawing
maps that require more than four colors. (Proving the Five Color Theorem is not that
difficult; see Exercise 35.)

Perhaps the most notorious fallacious proof in all of mathematics is the incorrect
proof of the Four Color Theorem published in 1879 by a London barrister and amateur
mathematician, Alfred Kempe. Mathematicians accepted his proof as correct until 1890,
when Percy Heawood found an error that made Kempe’s argument incomplete. However,
Kempe’s line of reasoning turned out to be the basis of the successful proof given by
Appel and Haken. Their proof relies on a careful case-by-case analysis carried out by
computer. They showed that if the Four Color Theorem were false, there would have to
be a counterexample of one of approximately 2000 different types, and they then showed
that none of these types exists. They used over 1000 hours of computer time in their
proof. This proof generated a large amount of controversy, since computers played such
an important role in it. For example, could there be an error in a computer program that
led to incorrect results? Was their argument really a proof if it depended on what could
be unreliable computer output?

Note that the Four Color Theorem applies only to planar graphs. Nonplanar graphs
can have arbitrarily large chromatic numbers, as will be shown in Example 2.

Two things are required to show that the chromatic number of a graph is k. First, we
must show that the graph can be colored with k colors. This can be done by constructing
such a coloring. Second, we must show that the graph cannot be colored using fewer
than & colors. Examples 1-4 illustrate how chromatic numbers can be found.

What are the chromatic numbers of the graphs G and H shown in Figure 3?

Solution: The chromatic number of G is at least three, since the vertices a,b, and ¢
must be assigned different colors. To see if G can be colored with three colors, assign red
to a, blue to b, and green to ¢. Then, d can (and must) be colored red since it is adjacent
to b and c. Furthermore, e can (and must) be colored green since it is adjacent only to
vertices colored red and blue, and f can (and must) be colored blue since it is adjacent
only to vertices colored red and green. Finally, g can (and must) be colored red since it
is adjacent only to vertices colored blue and green. This produces a coloring of G using
exactly three colors. Figure 4 displays such a coloring.

HISTORICALNOTE In 1852, an ex-student of Augustus De Morgan, Francis Guthrie, noticed that the
counties in England could be colored using four colors so that no adjacent counties were assigned the same
color. On this evidence, he conjectured that the Four Color Theorem was true. Francis told his brother
Frederick, at that time a student of De Morgan, about this problem. Frederick in turn asked his teacher
De Morgan about his brother’s conjecture. De Morgan was extremely interested in this problem and
publicized it throughout the mathematical community. In fact, the first written reference to the conjecture
can be found in a letter from De Morgan to Sir William Rowan Hamilton. Although De Morgan thought
Hamilton would be interested in this problem, Hamilton apparently was not interested in it, since it had
nothing to do with quaternions.

HISTORICAL NOTE Although a simpler proof of the Four Color Theorem was found by Robertson,
Sanders, Seymour, and Thomas in 1996, reducing the computational part of the proof to examining 633
configurations, no proof that does not rely on extensive computation has yet been found.
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FIGURE 3 The Simple Graphs G and H.
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FIGURE 4  Colorings of the Graphs G and H.

The graph H is made up of the graph G with an edge connecting @ and g. Any attempt
to color H using three colors must follow the same reasoning as that used to color G.
except at the last stage, when all vertices other than g have been colored. Then, since g is
adjacent (in H) to vertices colored red, blue, and green, a fourth color, say brown, needs
to be used. Hence, H has a chromatic number equal to 4. A coloring of H is shown in
Figure 4. <

What is the chromatic number of K,,?

Solution: A coloring of K, can be constructed using n colors by assigning a different
color to each vertex. Is there a coloring using fewer colors? The answer is no. No two ver-
tices can be assigned the same color, since every two vertices of this graph are adjacent.
Hence, the chromatic number of K, = n. (Recall that K, is not planar when n > 5,
so this result does not contradict the Four Color Theorem.) A coloring of K5 using five
colors is shown in Figure 5. <

What is the chromatic number of the complete bipartite graph K,, ,, where m and n are
positive integers?

Solution: The number of colors needed may seem to depend on m and n. However, only
two colors are needed. Color the set of m vertices with one color and the set of n vertices
with a second color. Since edges connect only a vertex from the set of m vertices and a
vertex from the set of n vertices, no two adjacent vertices have the same color. A coloring
of K3 4 with two colors is displayed in Figure 6. <
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a Red b Blue
a Red b Red ¢ Red
Brown e ¢ Green m
d Yellow d Blue ¢ Blue [ Blue g Blue
FIGURE 5 A Coloring of Ks. FIGURE 6 A Coloring of K; 4.

Every connected bipartite simple graph has a chromatic number of 2, or 1, since the
reasoning used in Example 3 applies to any such graph. Conversely, every graph with a
chromatic number of 2 is bipartite. (See Exercises 25 and 26 at the end of this section.)

Whatis the chromatic number of the graph C,,? (Recall that C,, is the cycle with 1 vertices.)

Solution: We will first consider some individual cases. To begin, let n = 6. Pick a vertex
and color it red. Proceed clockwise in the planar depiction of Cg shown in Figure 7. It is
necessary to assign a second color, say blue, to the next vertex reached. Continue in the
clockwise direction; the third vertex can be colored red, the fourth vertex blue, and the
fifth vertex red. Finally, the sixth vertex, which is adjacent to the first, can be colored blue.
Hence, the chromatic number of Cg is 2. Figure 7 displays the coloring constructed here.

Next,letn = 5 and consider Cs. Pick a vertex and color it red. Proceeding clockwise,
it is necessary to assign a second color, say blue, to the next vertex reached. Continuing
in the clockwise direction, the third vertex can be colored red, and the fourth vertex can
be colored blue. The fifth vertex cannot be colored either red or blue, since it is adjacent
to the fourth vertex and the first vertex. Consequently, a third color is required for this
vertex. Note that we would have also needed three colors if we had colored vertices in
the counterclockwise direction. Thus, the chromatic number of Cs is 3. A coloring of Cs
using three colors is displayed in Figure 7.

In general, two colors are needed to color C,, when #n is even. To construct such a
coloring, simply pick a vertex and color it red. Proceed around the graph in a clockwise
direction (using a planar representation of the graph) coloring the second vertex blue,
the third vertex red, and so on. The nth vertex can be colored blue, since the two vertices
adjacent to it, namely the (n — 1)st and the first vertices, are both colored red.

Blue

Red

f& Blue c

Red

e d

€ 5
FIGURE 7 Colorings of Cs and Cs.
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When 7 is odd and n > 1,the chromatic number of C, is 3. To see this, pick an initial
vertex. To use only two colors, it is necessary to alternate colors as the graph is traversed
in a clockwise direction. However, the nth vertex reached is adjacent to two vertices of
different colors, namely, the first and (n — 1)st. Hence, a third color must be used. <

The best algorithms known for finding the chromatic number of a graph have expo-
nential worst-case time complexity (in the number of vertices of the graph). Even the
problem of finding an approximation to the chromatic number of a graph is difficult. It
has been shown that if there were an algorithm with polynomial worst-case time com-
plexity that could approximate the chromatic number of a graph up to a factor of 2 (that
is, construct a bound which was no more than double the chromatic number of the graph),
then an algorithm with polynomial worst-case time complexity for finding the chromatic
number of the graph would also exist.

APPLICATIONS OF GRAPH COLORINGS

Graph coloring has a variety of applications to problems involving scheduling and assign-
ments. (Note that since no efficient algorithm is known for graph coloring, this does not
lead to efficient algorithms for scheduling and assignments.) Examples of such applica-
tions will be given here. The first application deals with the scheduling of final exams.

Scheduling Final Exams How can the final exams at a university be scheduled so that
no student has two exams at the same time?

Solution: This scheduling problem can be solved using a graph model, with vertices rep-
resenting courses and with an edge between two vertices if there is a common student in
the courses they represent. Each time slot for a final exam is represented by a different
color. A scheduling of the exams corresponds to a coloring of the associated graph.

For instance, suppose there are seven finals to be scheduled. Suppose the courses
are numbered 1 through 7. Suppose that the following pairs of courses have common
students: 1 and 2,1 and 3,1 and 4,1 and 7,2 and 3,2 and 4,2 and 5,2 and 7,3 and 4, 3
and 6,3 and 7,4 and 5,4 and 6,5 and 6,5 and 7,and 6 and 7. In Figure 8 the graph associated
with this set of classes is shown. A scheduling consists of a coloring of this graph.

Since the chromatic number of this graph is 4 (the reader should verify this), four
time slots are needed. A coloring of the graph using four colors and the associated sched-
ule are shown in Figure 9. <

Now consider an application to the assignment of television channels.

Frequency Assignments Television channels 2 through 13 are assigned to stations in
North America so that no two stations within 150 miles can operate on the same channel.
How can the assignment of channels be modeled by graph coloring?

Solution: Construct a graph by assigning a vertex to each station. Two vertices are con-
nected by an edge if they are located within 150 miles of each other. An assignment of
channels corresponds to a coloring of the graph, where each color represents a different
channel. <

An application of graph coloring to compilers is considered in Example 7.
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7 2 Time Period Courses
I 1,6
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I 35
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5 4 5 Green 4 Brown
FIGURE 8 The Graph FIGURE 9 Using a Coloring to Schedule Final Exams.

Representing the Scheduling
of Final Exams.

EXAMPLE 7 Index Registers In efficient compilers the execution of loops is speeded up when fre-
quently used variables are stored temporarily in index registers in the central processing
unit, instead of in regular memory. For a given loop, how many index registers are needed?
This problem can be addressed using a graph coloring model. To set up the model, let each
vertex of a graph represent a variable in the loop. There is an edge between two vertices
if the variables they represent must be stored in index registers at the same time during
the execution of the loop. Thus, the chromatic number of the graph gives the number of
index registers needed, since different registers must be assigned to variables when the
vertices representing these variables are adjacent in the graph. <

Exercises

In Exercises 1-4 construct the dual graph for the map 3.
shown. Then find the number of colors needed to color
the map so that no two adjacent regions have the

o O a7
1

In Exercises 5-11 find the chromatic number of the given
graph.
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12. For the graphs in Exercises 5-11, decide whether it
is possible to decrease the chromatic number by re-
moving a single vertex and all edges incident with it.

13. Which graphs have a chromatic number of 1?

14.

15.
16.

17.

18.

19.

20.
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What is the least number of colors needed to color a
map of the United States? Do not consider adjacent
states that meet only at a corner. Suppose that Michi-
gan is one region. Consider the vertices representing
Alaska and Hawaii as isolated vertices.

What is the chromatic number of W, ?

Show that a simple graph that has a circuit with an
odd number of vertices in it cannot be colored using
two colors.

Schedule the final exams for Math 115, Math 116.
Math 185, Math 195, CS 101, CS 102, CS 273, and
CS 473, using the fewest number of different time
slots, if there are no students taking both Math 115
and CS 473, both Math 116 and CS 473, both
Math 195 and CS 101, both Math 195 and CS 102, both
Math 115 and Math 116,both Math 115 and Math 185,
and both Math 185 and Math 195, but there are stu-
dents in every other combination of courses.

How many different channels are needed for six sta-
tions located at the distances shown in the table, if
two stations cannot use the same channel when they
are within 150 miles of each other?

1 2 3 4 5 6

1| — | 8 | 175 | 200 | 50 | 100
2| 8 | — [ 125 | 175 | 100 | 160
3| 175 | 125 | — | 100 | 200 | 250
4 (200|175 | 100 | — | 210 | 220
5| 50 | 100 | 200 | 210 | — | 100
6 | 100 | 160 | 250 | 220 | 100 | —

The mathematics department has six committees
each meeting once a month. How many differ-
ent meeting times must be used to ensure that
no member is scheduled to attend two meet-
ings at the same time if the committees are
C, = {Arlinghaus, Brand, Zaslavsky}, C,; = {Brand.
Lee, Rosen}, C; = {Arlinghaus, Rosen, Zaslavsky}.
C, = {Lee, Rosen, Zaslavsky}, Cs = {Arlinghaus.
Brand}, and C¢ = {Brand, Rosen, Zaslavsky}?

A zoo wants to set up natural habitats in which to
exhibit its animals. Unfortunately, some animals will
eat some of the others when given the opportunity.
How can a graph model and a coloring be used to de-
termine the number of different habitats needed and
the placement of the animals in these habitats?

An edge coloring of a graph is an assignment of colors to
edges so that edges incident with a common vertex are
assigned different colors. The edge chromatic number of
a graph is the smallest number of colors that can be used
in an edge coloring of the graph.
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