
Appendix C

Markov Chains

Eigenvalues and eigenvectors arise naturally in the study of matrix representa-

tions of linear transformations, but that is far from their only use. In this

Appendix, we present an application to those probabilistic systems known as

Markov chains.

An elementary understanding of Markov chains requires only a little knowledge

of probabilities; in particular, that probabilities describe the likelihoods of

different events occurring, that probabilities are numbers between 0 and 1, and

that if the set of all possible events is limited to a finite number that are mutually

exclusive then the sum of the probabilities of each event occurring is 1. Signifi-

cantly more probability theory is needed to prove the relevant theorems about

Markov chains, so we limit ourselves in this section to simply understanding the

application.

" Definition 1. A finite Markov chain is a set of objects (perhaps

people), a set of consecutive time periods (perhaps five-year intervals),

and a finite set of different states (perhaps employed and unemployed)

such that

(i) during any given time period, each object is in only

one state (although different objects can be in differ-

ent states), and

(ii) the probability that an object will move from one

state to another state (or remain in the same state)

over a time period depends only on the beginning and

ending states. 3

We denote the states as state 1, state 2, state 3, through state N, and let pij

designate the probability of moving in one time period into state i from state

j(i, j ¼ 1, 2, . . . , N). The matrix P ¼ [pij ] is called a transition matrix.
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Example 1

Construct a transition matrix for the following Markov chain. A traffic control

administrator in the Midwest classifies each day as either clear or cloudy.

Historical data show that the probability of a clear day following a cloudy day

is 0.6, whereas the probability of a clear day following a clear day is 0.9.

Solution: Although one can conceive of many other classifications such as

rainy, very cloudy, partly sunny, and so on, this particular administrator opted

for only two, so we have just two states: clear and cloudy, and each day must fall

into one and only one of these two states. Arbitrarily we take clear to be state 1

and cloudy to be state 2. The natural time unit is one day. We are given that

p12 ¼ 0:6, so it must follow that p22 ¼ 0:4, because after a cloudy day the next

day must be either clear or cloudy and the probability that one or the other of

these two events occurring is 1. Similarly, we are given that p11 ¼ 0:9, so it also

follows that p21 ¼ 0:1. The transition matrix is

clear cloudy

P ¼
0:9 0:6

0:1 0:4

� �
clear

cloudy &

Example 2

Construct a transition matrix for the following Markov chain. A medical survey

lists individuals as thin, normal, or obese. A review of yearly check-ups from

doctors’ records showed that 80% of all thin people remained thin one year later

while the other 20% gained enough weight to be reclassified as normal. For

individuals of normal weight, 10% became thin, 60% remained normal, and 30%

became obese the following year. Of all obese people, 90% remained obese one

year later while the other 10% lost sufficient weight to fall into the normal range.

Although some thin people became obese a year later, and vice versa, their

numbers were insignificant when rounded to two decimals.

Solution: We take state 1 to be thin, state 2 to be normal, and state 3 to be

obese. One time period equals one year. Converting each percent to its decimal

representation so that it may also represent a probability, we have p21 ¼ 0:2, the

probability of an individual having normal weight after being thin the previous

year, p32 ¼ 0:3, the probability of an individual becoming obese one year after

having a normal weight, and, in general,

thin normal obese

P ¼
0:8 0:1 0

0:2 0:6 0:1

0 0:3 0:9

2
64

3
75 thin

normal &

obese

A transition matrix

for an N-state

Markov chain is an

N �N matrix with

nonnegative entries;

the sum of the

entries in each

column is 1.
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Powers of a transition matrix have the same properties of a transition matrix: all

elements are between 0 and 1, and every column sum equals 1 (see Problem 20).

Furthermore,

" Theorem 1. If P is a transition matrix for a finite Markov chain, and if

p
(k)
ij denotes the i-j element of P k, the kth power of P, then p

(k)
ij is the

probability of moving to state i from state j in k time periods. 3

For the transition matrix created in Example 2, we calculate the second and third

powers as

thin normal obese

P2 ¼
0:66 0:14 0:01

0:28 0:41 0:15

0:06 0:45 0:84

2
64

3
75 thin

normal

obese

and

thin normal obese

P3 ¼
0:556 0:153 0:023

0:306 0:319 0:176

0:138 0:528 0:801

2
64

3
75 thin

normal &

obese

Here p
(2)
11 5 ¼ 0:66 is the probability of a thin person remaining thin two

years later, p
(2)
32 6 ¼ 0:45 is the probability of a normal person becoming fat

two years later, while p
(2)
13 7 ¼ 0:023 is the probability of a fat person becoming

thin three years later.

For the transition matrix created in Example 1, we calculate the second power

to be

clear cloudy

P2 ¼
0:87 0:78

0:13 0:22

� �
clear

cloudy

Consequently, p
(2)
12 9 ¼ 0:78 is the probability of a cloudy day being followed by

a clear day two days later, while p
(2)
22 10 ¼ 0:22 is the probability of a cloudy day

being followed by a cloudy day two days later. Calculating the tenth power of

this same transition matrix and rounding all entries to four decimal places for

presentation purposes, we have

clear cloudy

P10 ¼
0:8571 0:8571

0:1429 0:1429

� �
clear

cloudy

(C:1)
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Since p
(10)
11 12 ¼ p

(10)
12 13 ¼ 0:8571, it follows that the probability of having a clear

day 10 days after a cloudy day is the same as the probability of having a clear day

10 days after a clear day.

An object in a Markov chain must be in one and only one state at any time, but

that state is not always known with certainty. Often, probabilities are provided

to describe the likelihood of an object being in any one of the states at any given

time. These probabilities can be combined into an n-tuple. A distribution vector d

for an N-state Markov chain at a given time is an N-dimensional column matrix

having as its components, one for each state, the probabilities that an object in

the system is in each of the respective states at that time.

Example 3 Find the distribution vector for the Markov chain described in

Example 1 if the current day is known to be cloudy.

Solution: The objects in the system are days, which are classified as either clear,

state 1, or cloudy, state 2. We are told with certainty that the current day is

cloudy, so the probability that the day is cloudy is 1 and the probability that the

day is clear is 0. Therefore,

d ¼ 0

1

� �
&

Example 4 Find the distribution vector for the Markov chain described in

Example 2 if it is known that currently 7% of the population is thin, 31% of

population is of normal weight, and 62% of the population is obese.

Solution: The objects in the system are people. Converting the stated percentages

into their decimal representations, we have

d ¼
0:07

0:31

0:62

2
4

3
5 &

Different time periods can have different distribution vectors, so we let d(k)

denote a distribution vector after k time periods. In particular, d(1) is a distribu-

tion vector after 1 time period, d(2) is a distribution vector after 2 time periods,

and d(10) is a distribution vector after 10 time periods. An initial distribution

vector for the beginning of a Markov chain is designated by d(0). The distribution

vectors for various time periods are related.

" Theorem 2. If P is a transition matrix for a Markov chain, then

d(k) ¼ Pkd(0) ¼ Pd(k�1),

where Pk denotes the kth power of P. 3

A distribution

vector for an N-state

Markov chain at a

given time is a

column matrix

whose i th

component is the

probability that an

object is in the ith

state at that given

time.
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For the distribution vector and transition matrix created in Examples 1 and 3,

we calculate

d(1) ¼ Pd(0) ¼ 0:9 0:6
0:1 0:4

� �
0

1

� �
¼ 0:6

0:4

� �

d(2) ¼ P2d(0) ¼ 0:87 0:78

0:13 0:22

� �
0

1

� �
¼ 0:78

0:22

� �
(C:2)

d(10) ¼ P10d(0) ¼ 0:8571 0:8571

0:1429 0:1429

� �
0

1

� �
¼ 0:8571

0:1429

� �

The probabilities of following a cloudy day with a cloudy day after 1 time

period, 2 time periods, and 10 time periods, respectively, are 0.4, 0.22, and

0.1429.

For the distribution vector and transition matrix created in Examples 2 and 4, we

calculate

d(3) ¼ P3d(0) ¼
0:556 0:153 0:023

0:306 0:319 0:176

0:138 0:528 0:801

2
4

3
5 0:07

0:31

0:62

2
4

3
5 ¼ 0:10061

0:22943

0:66996

2
4

3
5

Rounding to three decimal places, we have that the probabilities of an arbitrarily

chosen individual being thin, normal weight, or obese after three time periods

(years) are, respectively, 0.101, 0.229, and 0.700.

The tenth power of the transition matrix created in Example 1 is given by

equation (C.1) as

P10 ¼ 0:8571 0:8571

0:1429 0:1429

� �

Continuing to calculate successively higher powers of P we find that each is

identical to P10 when we round all entries to four decimal places. Convergence

is a bit slower for the transition matrix associated with Example 3, but it

also occurs. As we calculate successively higher powers of that matrix, we find

that

P10 ¼
0:2283 0:1287 0:0857

0:2575 0:2280 0:2144

0:5142 0:6433 0:6999

2
4

3
5

P20 ¼
0:1294 0:1139 0:1072

0:2277 0:2230 0:2210

0:6429 0:6631 0:6718

2
4

3
5 (C:3)
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and

lim
n!1

Pn ¼
0:1111 0:1111 0:1111

0:2222 0:2222 0:2222

0:6667 0:6667 0:6667

2
4

3
5

where all entries have been rounded to four decimal places for presentation

purposes.

Not all transition matrices have powers that converge to a limiting matrix L, but

many do. A transition matrix for a finite Markov chain is regular if it or one of

its powers contains only positive elements. Powers of a regular matrix always

converge to a limiting matrix L.

The transition matrix created in Example 1 is regular because all of its elements

are positive. The transition matrix P created in Example 2 is also regular because

all elements of P2, its second power, are positive. In contrast, the transition

matrix

P ¼ 0 1

1 0

� �

is not regular because each of its powers is either itself or the 2� 2 identity

matrix, both of which contain zero entries.

By definition, some power of a regular matrix P, say the mth, contains only

positive elements. Since the elements of P are nonnegative, it follows from

matrix multiplication that every power of P greater than m must also have all

positive components. Furthermore, if L ¼ lim
k!1

Pk, then it is also true that

L ¼ lim
k!1

Pk�1. Therefore,

L ¼ lim
k!1

Pk ¼ lim
k!1

(PPk�1) ¼ P lim
k!1

Pk�1

� �
¼ PL (C:4)

Denote the columns of L as x1, x2, . . . , xN , respectively, so that L ¼
[x1 x2 . . . xN ]. Then equation (C.4) becomes

[x1 x2 . . . xN ] ¼ P[x1 x2 . . . xN ]

where xj ¼ Pxj (j ¼ 1, 2, . . . , N), or Pxj ¼ (1)xj. Thus, each column of L is

an eigenvector of P corresponding to the eigenvalue 1! We have proven part of

the following important result:

" Theorem 3. If an N �N transition matrix P is regular, then successive

integral powers of P converge to a limiting matrix L whose columns are

eigenvectors of P associated with eigenvalue l ¼ 1. The components of

this eigenvector are positive and sum to unity. 3

A transition matrix

is regular if one of

its powers has only

positive elements.
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Even more is true. If P is regular, then its eigenvalue l ¼ 1 has multiplicity 1, and

there is only one linearly independent eigenvector associated with that eigen-

value. This eigenvector will be in terms of one arbitrary constant, which is

uniquely determined by the requirement that the sum of the components is 1.

Thus, each column of L is the same eigenvector.

We define the limiting state distribution vector for an N-state Markov chain as

an N-dimensional column vector d(1) having as its components the limiting

probabilities that an object in the system is in each of the respective states after

a large number of time periods. That is,

d(1) ¼ lim
n!1

d(n)

Consequently,

d(1) ¼ lim
n!1

d(n) ¼ lim
n!1

(P nd(0)) ¼ lim
n!1

P n
� �

d(0) ¼ Ld(0)

Each column of L is identical to every other column, so each row of L contains

a single number repeated N times. Combining this with the fact that d(0) has

components that sum to 1, it follows that the product Ld(0) is equal to each of

the identical columns of L. That is, d(1) is the eigenvector of P corresponding to

l ¼ 1, having the sum of its components equal to 1.

Example 5 Find the limiting state distribution vector for the Markov chain

described in Example 1.

Solution: The transition matrix is

P ¼ 0:9 0:6
0:1 0:4

� �

which is regular. Eigenvectors for this matrix have the form

x ¼ x

y

� �

Eigenvectors corresponding to l ¼ 1 satisfy the matrix equation (P� 1I)x ¼ 0,

or equivalently, the set of equations

�0:1xþ 0:6y ¼ 0
0:1x� 0:6y ¼ 0

Solving by Gaussian elimination, we find x ¼ 6y with y arbitrary. Thus,

x ¼ 6y

y

� �

The limiting state

distribution vector

for a transition

matrix P is the

unique eigenvector

of P corresponding

to l ¼ 1, having

the sum of its

components equal

to 1.
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If we choose y so that the sum of the components of x sum to 1, we have

7y ¼ 1, or y ¼ 1=7. The resulting eigenvector is the limiting state distribution

vector, namely

d(1) ¼ 6=7
1=7

� �

Furthermore,

L ¼ 6=7 6=7
1=7 1=7

� �

Over the long run, six out of seven days will be clear and one out of seven days

will be cloudy. We see from equations (C.1) and (C.2) that convergence to four

decimal places for the limiting state distribution and L is achieved after 10 time

periods. &

Example 6 Find the limiting state distribution vector for the Markov chain

described in Example 2.

Solution: The transition matrix is

P ¼
0:8 0:1 0

0:2 0:6 0:1
0 0:3 0:9

2
4

3
5

P2 has only positive elements, so P is regular. Eigenvectors for this matrix have

the form

x ¼
x

y

z

2
4
3
5

Eigenvectors corresponding to l ¼ 1 satisfy the matrix equation (P� 1I)x ¼ 0,

or equivalently, the set of equations

�0:2xþ 0:1y ¼ 0
0:2x� 0:4yþ 0:1z ¼ 0

0:3y� 0:1z ¼ 0

Solving by Gaussian elimination, we find x ¼ (1=6)z, y ¼ (1=3)z, with z arbitrary.

Thus,

x ¼
z=6
z=3
z

2
4

3
5
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We choose z so that the sum of the components of x sum to 1, hence

(1=6)zþ (1=3)zþ z ¼ 1, or z ¼ 2=3. The resulting eigenvector is the limiting

state distribution vector, namely,

d(1) ¼
1=9
2=9
6=9

2
4

3
5

Furthermore,

L ¼
1=9 1=9 1=9
2=9 2=9 2=9
6=9 6=9 6=9

2
4

3
5

Compare L with equation (C.3). The components of d(1) imply that, over the

long run, one out of nine people will be thin, two out of nine people will be of

normal weight, and six out of nine people will be obese. &

Problems Appendix C

(1) Determine which of the following matrices cannot be transition matrices and

explain why:

(a)
0:15 0:57

0:85 0:43

� �
, (b)

0:27 0:74

0:63 0:16

� �
,

(c)
0:45 0:53

0:65 0:57

� �
, (d)

1:27 0:23

�0:27 0:77

� �
,

(e)

1 1=2 0

0 1=3 0

0 1=6 0

2
4

3
5, (f)

1=2 1=2 1=3
1=4 1=3 1=4
1=4 1=6 7=12

2
4

3
5,

(g)

0:34 0:18 0:53

0:38 0:42 0:21

0:35 0:47 0:19

2
4

3
5, (h)

0:34 0:32 �0:17

0:78 0:65 0:80

�0:12 0:03 0:37

2
4

3
5:

(2) Construct a transition matrix for the following Markov chain: Census figures show

a population shift away from a large midwestern metropolitan city to its suburbs.

Each year, 5% of all families living in the city move to the suburbs while during the

same time period only 1% of those living in the suburbs move into the city. Hint:

Take state 1 to represent families living in the city, state 2 to represent families living

in the suburbs, and one year as one time period.

(3) Construct a transition matrix for the following Markov chain: Every four years,

voters in a New England town elect a new mayor because a town ordinance prohibits

mayors from succeeding themselves. Past data indicate that a Democratic mayor is

succeeded by another Democrat 30% of the time and by a Republican 70% of the
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time. A Republican mayor, however, is succeeded by another Republican 60% of

the time and by a Democrat 40% of the time. Hint: Take state 1 to represent

a Republican mayor in office, state 2 to represent a Democratic mayor in office,

and four years as one time period.

(4) Construct a transition matrix for the following Markov chain: The apple harvest in

New York orchards is classified as poor, average, or good. Historical data indicates

that if the harvest is poor one year then there is a 40% chance of having a good

harvest the next year, a 50% chance of having an average harvest, and a 10% chance

of having another poor harvest. If a harvest is average one year, the chance of a poor,

average, or good harvest the next year is 20%, 60%, and 20%, respectively. If

a harvest is good, then the chance of a poor, average, or good harvest the next year

is 25%, 65%, and 10%, respectively. Hint: Take state 1 to be a poor harvest, state 2 to

be an average harvest, state 3 to be a good harvest, and one year as one time period.

(5) Construct a transition matrix for the following Markov chain: Brand X and brand

Y control the majority of the soap powder market in a particular region, and each

has promoted its own product extensively. As a result of past advertising campaigns,

it is known that over a two-year period of time, 10% of brand Y customers change

to brand X and 25% of all other customers change to brand X. Furthermore, 15%

of brand X customers change to brand Y and 30% of all other customers change

to brand Y. The major brands also lose customers to smaller competitors, with 5% of

brand X customers switching to a minor brand during a two-year time period and 2%

of brand Y customers doing likewise. All other customers remain loyal to their past

brand of soap powder. Hint: Take state 1 to be a brand X customer, state 2 a brand

Y customer, state 3 another brand’s customer, and two years as one time period.

(6) (a) Calculate P2 and P3 for the two-state transition matrix:

P ¼ 0:1 0:4
0:9 0:6

� �

(b) Determine the probability of an object beginning in state 1 and remaining in

state 1 after two time periods.

(c) Determine the probability of an object beginning in state 1 and ending in state 2

after two time periods.

(d) Determine the probability of an object beginning in state 1 and ending in state 2

after three time periods.

(e) Determine the probability of an object beginning in state 2 and remaining in

state 2 after three time periods.

(7) Consider a two-state Markov chain. List the number of ways an object in state 1 can

end in state 1 after three time periods.

(8) Consider the Markov chain described in Problem 2. Determine (a) the probability a

family living in the city will find themselves in the suburbs after two years, and (b) the

probability a family living in the suburbs will find themselves living in the city after

two years.

(9) Consider the Markov chain described in Problem 3. Determine (a) the probability

there will be a Republican mayor eight years after a Republican mayor serves, and

(b) the probability there will be a Republican mayor 12 years after a Republican

mayor serves.
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(10) Consider the Markov chain described in Problem 4. It is known that this year that

the apple harvest was poor. Determine (a) the probability next year’s harvest will be

poor, and (b) the probability that the harvest in two years will be poor.

(11) Consider the Markov chain described in Problem 5. Determine (a) the probability

that a brand X customer will remain a brand X customer after 4 years, (b) after

6 years, and (c) the probability that a brand X customer will become a brand Y

customer after 4 years.

(12) Consider the Markov chain described in Problem 2. (a) Explain the significance of

each component of d(0) ¼ [ 0:6 0:4 ]T. (b) Use this vector to find d(1) and d(2).

(13) Consider the Markov chain described in Problem 3. (a) Explain the significance of

each component of d(0) ¼ [ 0:4 0:5 0:1 ]T. (b) Use this vector to find d(1) and d(2).

(14) Consider the Markov chain described in Problem 4. (a) Determine an initial

distribution vector if the town currently has a Democratic mayor, and (b) show

that the components of d(1) are the probabilities that the next mayor will be

a Republican and a Democrat, respectively.

(15) Consider the Markov chain described in Problem 5. (a) Determine an initial

distribution vector if this year’s crop is known to be poor. (b) Calculate d(2) and

use it to determine the probability that the harvest will be good in two years.

(16) Find the limiting distribution vector for the Markov chain described in Problem 2,

and use it to determine the probability that a family eventually will reside in the city.

(17) Find the limiting distribution vector for the Markov chain described in Problem 3,

and use it to determine the probability of having a Republican mayor over the

long run.

(18) Find the limiting distribution vector for the Markov chain described in Problem 4,

and use it to determine the probability of having a good harvest over the long run.

(19) Find the limiting distribution vector for the Markov chain described in Problem 5,

and use it to determine the probability that a person will become a Brand Y

customer over the long run.

(20) Use mathematical induction to prove that if P is a transition matrix for an n-state

Markov chain, then any integral power of P has the properties that (a) all elements

are nonnegative numbers between zero and 1, and (b) the sum of the elements in

each column is 1.

(21) A nonzero row vector y is a left eigenvector for a matrix A if there exists a scalar l

such that yA ¼ ly. Prove that if x and l are a corresponding pair of eigenvectors

and eigenvalues for a matrix B, then xT and l are a corresponding pair of left

eigenvectors and eigenvalues for BT.

(22) Show directly that the n-dimensional row vector y ¼ [ 1 1 1 . . . 1 ] is a left eigen-

vector for any N �N transition matrix P. Then, using the results of Problem 20,

deduce that l ¼ 1 is an eigenvalue for any transition matrix.

(23) Prove that every eigenvalue l of a transition matrix P satisfies the inequality

jlj # 1. Hint: Let x ¼ [ x1 x2 . . . xN]T be an eigenvector of P corresponding

to the eigenvalue l, and let xi ¼ max {x1, x2, . . . , xN}. Consider the ith component

of the vector equation Px ¼ lx, and show that jljjxij # jxij.
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(24) A state in a Markov chain is absorbing if no objects in the system can leave the state

after they enter it. Describe the ith column of a transition matrix for a Markov

chain in which the ith state is absorbing.

(25) Prove that a transition matrix for a Markov chain with one or more absorbing

states cannot be regular.
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