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Foreword 

Decisions, decisions, decisions~ Everyone's lifetime is filled with an endless string of 
opportunities and challenges to decide or choose among alternative courses of ac
tion, and for each of these the consequences are real. Some are good, some are bad. 
and most are somewhere in between. Not everyone relishes the idea of making de
cisions, preferring the role of an interested bystander content with just letting things 
happen. Obviously there are consequences even if one decides to watch and not 
choose. 

Civil and environmental engineers rarely have the luxury of being spectators 
since invariably they are retained primarily to present alternatives (choices) that 
serve the interests of their clients. Every client has a unique set of interests and per
spectives. While such interests or concerns ofttimes have quite personal underpin
nings, the overall goals and objectives of the decision maker may reflect very 
different concerns depending upon whether they see themselves as being in the pri-

vate or public sector. 
For example, a client who is a private developer of housing may recognize the 

need to build a water supply system in order that her houses are saleable. In doing 
so she is motivated to create a system that will meet acceptable design standards, but 
wants to spend the least amount possible on these facilities. (After all, she wants to 
sell houses-not water.) In contrast, a municipal engineer faced with a similar chal
lenge, providing water supply for a new subdivision within the community, is surely 
concerned about creating a cost-effective system, but would also have other con
cerns in mind. Such things as design and useful life of the facilities, sources of supply. 

xvii 



xviii Foreword 

future growth, cost of money, choice of technology, etc. are factors that are likely to 
produce different alternatives and consequences. The engineering science might be 
the same in each instance, but the engineering decision-making environments are 
very different. 

Just as there are powerful engineering technologies for designing water supply 
systems, there are powerful engineering management technologies for designing en
gineering decision strategies.1l1is book presents these technologies in the context of 
civil and environmental engineering management. The authors bring to this volume 
the expertise and experience of superb model builders and extraordinary skills as 
teachers. Building models and finding ways to solve them are highly developed art 
forms that are essential elements of engineering. All engineering designs depend 
upon building and applying models that represent reality in a way that is manage
able and sufficiently accurate. The test, of course, is whether they produce results 
that are meaningful and useful. 

What the authors present in this excellent volume are the powerful tools that 
enhance and facilitate the decision-making processes, which is the very substance of 
what engineers have been and will continue to be asked to do. That's what systems 
engineering is about. And because these tools and skills can be applied in an endless 
variety of problems, issues, etc. they provide civil and environmental engineers the 
ability to address a broad range of management, policy, and design challenges. 
Armed with these tools, civil and environmental engineers will be better prepared 
not only to find better engineering alternatives, but also to extend the influence of 
our profession into spheres of planning and policy making, thereby improving the 
quality of life for us all from a more technical perspective. 

WALTER R. LYNN 

Professor Emeritus of Civil & Environmental Engineering 
Cornell University 



Preface 

ABOUTTHETEXT 

This text is designed for a junior or senior year course on systems analysis, or sys
tems analysis and economics, as applied to civil engineering. This civil system/engi
neering economics course has evolved over roughly the last 30 years and draws on 
the fields of operations research and economics to create skills in problem solving. 
Because of the presence in the book of several more advanced sections and sections 
focusing on applications, the book may also find use as a text for first-year graduate 
courses that introduce students to civil systems. 

As the field of operations research evolved from its origins during World War IL 
one area in particular grew in popularity. That area, known as mathematical pro
gramming, found wide application not only as a means to optimize the design of 
chemical and mechanical systems in industry but also as a means to find promising 
alternatives in civil and environmental engineering decision problems. Most popu
lar among the computer-based optimization techniques has been and continues to 
be the method known as linear programming, a procedure that operates on one or 
more objectives subject to economic, resource, or logic constraints. 

Mathematical programming and linear programming, in particular, have 
found wide application in civil engineering problem solving. These techniques have 
been used in structural design, in highway alignment, in intersection light timing, in 
subway and rail route design, in traffic prediction, in terminal location, in the rout
ing of collection vehicles, in the routing of hazardous wastes, in equipment selection. 
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in landfill location, in the siting of transfer stations, in crew scheduling and alloca
tion, in waste treatment plant design and location, in waste load allocations on a riv
er, in the design of hydrologic models, in the selection of projects to bid on, in the 
design of water distribution systems and sewer systems, in cost sharing, in reservoir 
design and operation, in fire station siting, in ambulance deployment, and in many 
other civil and environmental engineering areas. The power of these tools to devel
op efficient alternatives is enormous. So many applications have been created that a 
number of journals have been established principally emphasizing civil systems op
timization problems~ these include Water Resources Planning and Management, 
Transportation Science, Civil Engineering Systems, Water Resources Research, and 
The Journal of Infrastructure Systems, among others. 

Our treatment of linear programming and other forms of optimization is prag
matic. We prove no theorems but do, however, provide a description of how and why 
linear programming works. If we did not, we would be handing the student a "black 
box'' and telling the student to ''believe." Instead of theory, we offer application in 
large quantities to motivate the student to learn the methodologies. We first offer 
problems that are not terribly difficult to formulate, and then problems that demand 
greater skill to put in solvable forms. Our thrust is to build up skills in an orderly 
fashion as there are greater and lesser challenges in formulation and greater and 
lesser challenges in solution method. Later chapters are, of course, the most de
manding. These later chapters are a unique feature of this text. Titled "Lessons in 
Context" followed by the name of an application field, these chapters offer new 
techniques within the framework of a problem setting, a problem setting that de
mands the new methodologies that are then introduced. Our experience suggests 
that the "need" for the methodologies helps to motivate students to learn them. 

A second focus of this book, in addition to linear programming and associated 
tools of optimization, is the closely allied field of engineering economics. At first 
glance, our treatment of engineering economics would appear to be guided by the 
need to cover all topics necessary to prepare undergraduate engineers for the pro
fessional engineers' examination on this important topic. These topics include the 
time value of money, cash flow analysis, and selection of economic alternatives. Cost 
analysis and economic analysis over time are important considerations in the devel
opment of models that help identify optimal management decisions. This is because 
virtually all engineering management decisions in the public sector involve signifi
cant, and often enormous, cost considerations over potentially very long periods of 
time. Hence, our presentation of engineering economics is designed to provide stu
dents a solid foundation upon which to compute important model parameters. In
deed, the modeling context provided for this important topic gives added relevance 
to this all too often supposititious subject. 

These two related topics, optimization/systems analysis and engineering eco
nomics, are the core of this book. When the student has completed a course in these 
topics using this text, or has read this book independently, as it is quite possible to 
do, he or she will have learned the most modern skills available for the design, oper
ation, and evaluation of civil and environmental systems. 



Preface 

CHANGES IN THE SECOND EDITION TO CIVIL 
AND ENVIRONMENTAL SYSTEMS ENGINEERING 

xxi 

The ~irst 40% of t~e book has been extensively reorganized as weJJ as supplement
ed with new matenals in response to requests from faculty who use the text in their 
courses in civil and environmental systems engineering. Faculty requested a more 
p~ced_ start for th_e text,~ start in which students were not asked to formulate opti
m1zatton models m the first chapter. Instead, they preferred that more of the philos
ophy and the ideas behind model building be presented at the outset. We have done 
precisely this. The first chapter is now devoted to a combination of historical devel
opment of systems analysis and the steps a model builder follows in structuring an 
optimization model. The formulated linear programming examples that appeared in 
Chapter 1 in the first edition are now distributed later in the text. Verbal descrip
tions of settings where models can be employed are now offered in Chapter 1. and 
the student is challenged to identify, in the context of these settings, not only con
straints and appropriate decision variables but also needed parameters and problem 
objectives. Nine new end-of-chapter exercises expand the number of verbally de
scribed settings and offer the student further opportunity to develop formulation 
skills without the necessity of employing mathematics. 

The new Chapter 2 now consists of the general form of the linear programming 
problem and nine example or stylized problems that are described in detail as well as 
solved to help introduce the student to the concept of optimization modeling. Of 
these example problems, four are entirely new to the text, expanding the range of 
problem settings that the student now encounters. These new problems include: 

1. an air pollution linear programming problem in which cost is minimized subject 
to air quality constraints, 

2. a land and species preservation integer programming problem in which the least 
number of parcels are chosen to preserve a set of endangered species, 

3. a nonlinear programming problem in cost-efficient building design, and 

4. a nonlinear optimization problem that seeks the design of a maximum volume tent. 

Also, the shared recycling problem has been moved to later in the text, as faculty users 
requested, and the bidding problem, from a later chapter, is now included here to pro
vide another example of a zero-one programming problem. End-of-chapter exercises 
for Chapter 2 include exercises that appeared at the end of old Chapter l. 

Chapter 3 presents the graphical solution of the simplex plus more complex 
problems and Chapter 4 goes on to the mathematics of the simplex rules. Both chap
ters were generally applauded in the previous edition and so ha~e not ~ee~ altered 
extensively, a statement that can be made, as well, about multiple-objective pro-

gramming presented now in Chapter 5. . 
Significant organizational and presentational changes ~haractenze C~apters _6 

and 7, the chapters on network flow and integer programmm~. In th: previous edi
tion, these two topics were interwoven to emphasize the very mterestmg conceptual 
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relations between these two subjects. The organization was recognized by faculty as 
well-intended but eclectic. And the organization of the first edition seems to have 
made the subject of network flows less accessible to the average student. We have 
chosen in this edition to present network flows in its own chapter, Chapter 6, and to 
draw together in one chapter all of the major network flow concepts for ease of ac
cess. This organization was field tested in 2002 and offers definite advantages. Stu
dents penetrated this material relatively easily-as compared to the topics of 
integer programming models and the technique of branch and bound. A new set of 
end-of-chapter exercises are included in Chapter 6 with more civil systems engi
neering examples. These problems are easier than the integer programming exercises 
in the old Chapter 5, but still sufficiently challenging to sort out the best students 
from the pack. The topics of Chapter 6 are the shortest path problem, trans-shipment 
problems, transportation problems, the traveling salesman problem, and maximum 
flow. 

The topics of integer programming, branch and bound, and applications of in
teger programming are now ensconced in their own chapter, Chapter 7, without the 
network flow models. While these IP topics are certainly important subjects in many 
civil and environmental systems courses, we have, by choice opted to place these 
topics in their own chapter, allowing the instructor the freedom to easily choose 
these topics or not. And we still make it possible to study independently the classical 
and widely applicable models of network flows. This organizational and perspective 
change is an improvement that many instructors will welcome. 

In addition to the changes to the optimization chapters that are described 
above, a number of new end-of chapter exercises have been added to enhance the 
already well-received engineering economics chapters and to heighten the students' 
experience in this core area. 

We would like to acknowledge the following people who reviewed the first edi
tion of the book and offered us helpful and thoughtful suggestions for its improve
ment. Our thanks go to Teresa Adams, a specialist in transportation infrastructure 
management at the University of Wisconsin-Madison, to David Ahlfeld a specialist in 
groundwater management and environmental systems modeling at University of 
Massachusetts, to David Lange whose specialties include materials, engineering eco
nomics. systems and structures at the University of Illinois at Urbana, to Jon Liebman, 
a pioneer in the application of systems methodologies to numerous areas of civil and 
environmental engineering at the University of Illinois at Urbana, and to David Yates, 
a systems specialist at University of Colorado at Boulder and at the National Center 
for Atmospheric Research. 
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Explaining Systems 
Analysis 

1.A INTRODUCTION: BUILDING MODELS 

This introductory chapter is about building mathematical models that assist in the 
design or management of natural or constructed systems. These models may also as
sist in the development of policy relative to these systems. Mathematical models 
may not be a familiar term, but virtually all people have experience with other types 
of models. 

As children, many will have built and flown paper airplanes. Some will have 
built model airplanes of balsa or plastic. Many will have built model villages in 
school exercises. In the adult world, architects build scale models to see how pro
posed buildings fit within their intended environments. Engineers build model cars 
and test them in wind tunnels for drag resistance in order to develop fuel-efficient 
cars. Such physical models that mimic their larger and real cousins are termed iconic 

models. 
In addition to physical models, most of us, especially when we were younger. 

participated in models of human systems. These models or simulations gave us the 
opportunity to experiment with other roles. You may well have played cops and rob
bers, cowboys and Indians, space invaders, house, doctor/hospital. circus, or any of a 
number of other games that allowed the simulation of other environments. Al
though Monopoly1 M is entertainment, it tested financial acumen in an environment 
with much randomness. Checkers and chess helped to develop our spatial intuition 

1 
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and our ability to foresee the consequences of our actions. Military forces regularly 
conduct ··war games" to test the readiness of their troops in realistic situations. Fire 
drills are used to simulate the conditions and situations that may occur during fire 
episodes. Pilots may test their flying skills in a "flight simulator." Iconic and role
playing (participatory) models pervade society and enrich it with the insights they 
provide. 

Scientists have been using models as well~ they have been building mathemat
ical models at least since the time of Newton in the late seventeenth century. By the 
late 1800s and early 1900s, physicists, engineers, chemists, biologists, mathemati
cians, and statisticians were all actively building such quantitative models-to assist 
them in their understanding of atomic, mechanical, chemical, and biological systems. 
In the last half of the twentieth century, economists joined in the model building 
movement-in an attempt to predict future economic conditions. 

For the most part, these models from the various disciplines were built using 
differential and difference equations. Such models are still regularly being built 
throughout the sciences. social sciences. and engineering as a means to explain, to 
comprehend. and to predict natural phenomena. These mathematical representa
tions are collectively called descriptive models because they offer, for a given set of 
inputs and initial conditions. a description of the outputs through time of the phe
nomena under study. For instance~ a common model in biology predicts the popula
tion of a species. given initial population and growth parameters. 

Since World War It however, two important developments have transformed 
the world of mathematical modeling. The first development was the creation of a 
new mathematics~ a mathematics that focused on the science of decision making and 
policy development. The second development was the invention and continual im
provement of the digital computer-a development made possible by the silicon 
chip. The invention and subsequent development of the computer have dramatically 
extended the power of descriptive models. Such models are now far more capable of 
mimicking natural phenomena successfully-even on a global scale. 

The invention of a mathematics of decision making, on the other hand, has 
opened avenues of research not previously thought possible. Although this new 
mathematics was originally applied only to small problems, much as descriptive 
models initially were applied. the rapid evolution of the computer has now made 
possible the study and consideration of enormously large problems. These problems 
have gone far beyond the limits imagined by those who originated the mathematics 
of decision making. Thus, the computer greatly facilitated the application and devel
opment of both descriptive and decision-making mathematics. 

We called the first type of mathematical representation a descriptive model 
because it describes. In contrast, the representation that uses the mathematics of 
decision making is called a prescriptive model because it prescribes a course of ac
tion, a design, or a policy. The descriptive model is said to answer the question, "If I 
follow this course of action, what will happen?" In contrast, the prescriptive model 
may be said to answer the question," What is the best course of action that I might 
follow?" For a particular strategy that was specified in advance, the descriptive 
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model predicts the quantitative outcomes, possibly through time. The prescriptive 
m~del, on the othe~ hand, finds and suggests the best strategy to choose out of the 
~m.verse of all possible ~trategies. Implied in the question of what strategy to select 
IS hkely to be some notion of cost or of effectiveness. That is, the course of action 
derived by the decision model is chosen to be the least costly or the most effective 
or the most cost-effective. 

. ~n~ther term ~sed for a prescriptive model is to call it an optimizing or 
optJm1zatmn model, m the sense that the policy or design that is selected achieves 
the best value of some objective. This chapter will focus on prescriptive models. hut 
it is often true that descriptive models may be contained within prescriptive models. 
These descriptive models are sometimes so simple that a reader may not even real
ize that a descriptive model is being used. Often, the descriptive model may consist 
of the simple assumption that the amount of a particular resource consumed is 
directly proportional to the number of items manufactured of a given type. 

The descriptive/prescriptive classifications are just one of several ways we can 
divide types of mathematical models. Another realistic way we can divide model 
types is by the kind of data that they utilize. Some models utilize data that are con
sidered to be known with relative certainty. An example might be the number of 
table tops of a given size that can be cut from a 4 ft. x 8 ft. sheet of plywood. Except 
for very occasional cutting errors or flaws in the plywood, that number is fixed and 
known. Another example is the operation through time of a materials stockpile. say 
heating oil or even beer or grain. In such a situation, the size of a given month's de
mand for the product is fairly predictable year to year. Models of this type, in which 
data elements are not thought of as variable but are relatively fixed and predictable 
quantities, are referred to as deterministic models. 

In deterministic models, parameter values are determined and known at the 
outset. Given the initial contents of the stockpile and a specified release of materials 
and a stated purchase or manufacture of new materials during a unit of time. a de
terministic model suggests that there is just one possibility for the final, end-of-period 
condition of the stockpile. That is, only a single outcome can occur from a month's 
events given the choice of action (see Figure l.la). The stockpile's contents is pre
cisely the sum of the initial storage plus new purchases less the stated release. 

In contrast to deterministic models, other models might utilize data elements 
that are not precisely known but can be characterized by a mean and some random 
variation about the mean. The September inflow to a reservoir might fit in this cate
gory. September is part of hurricane season in the eastern United States. During 
some Septembers, hurricanes may cross the Northeastern states and will produce 
very large rainfalls and runoff. In other Septembers, when no ~urricane trac.ks 
across the Northeast, little rain may occur and inflows to reserv01rs may be qmte 
low. No one really knows in advance whether hurricanes will cross a .particula~ geo
graphic area in September, so reservoir inflows cannot reall~ be precisely pred1ct~d. 

Models in which the data elements are random or variable-capable of takmg 
on any value from a range of values-are called stochastic models. Given an initial 
value of the storage in the reservoir, and a known amount of release for water supply. 
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Figure 1.1 Deterministic 
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the stochastic model suggests that the end-of-month contents of the reservoir can be 
stated, but with some uncertainty. This is because of the random inflow to the 
reservoir-an inflow that cannot be predicted but will fall within some range of pos
sible inflows. Many end-of-period values of storage are possible and final storages 
will be in some range of outcomes. (See Figure l.lb.) These two additional model 
classifications, deterministic and stochastic, allow us to classify models into four ba
sic types; these are summarized in Table 1.1, discussed more fully shortly. 

Positioned in concept somewhere between the deterministic and stochastic 
model is a statistical model. In a statistical model, system inputs have been observed 
or recorded, and system outputs have been measured. The relationship, however, 

TABLE 1.1 TYPES OF MODELS BASED ON TWO-WAY CLASSIFICATION 

Deterministic Stochastic 

':J Linear programming Stochastic programming 
-~ 
a. Integer programming 
·c 
u Multiobjective programming VJ 
<:) 
~ 

0.. Dynamic programming 

':J Difference equations Stochastic differential equations .:=: 
a. Differential equations Queueing theory ·c 
u 

Monte Carlo simulation Vl 
(!) 

0 
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b~tween syste~s. inputs ~?d outputs does not seem to be consistent. As an example, 
?1trogen-contammg fertilizer may be applied to a field at the beginning of the grow
~ng season for a corn crop. The additional yield of corn from an increment of fertil
izer may prove to be different in different years, perhaps because of rainfall, and 
perhaps because of different soil characteristics of fields. Data may be gathered 
f~om many exp.eriments, and the yield of corn per hectare may be plotted against 
kilo~ram~ of mtrogen applied per hectare. The data do not appear to fall on a 
straight hne or even a smooth curve, but are scattered above and below the line that 
one might draw to approximately fit the curve. 

A statistical model is a hypothesis of the relationship between output (corn 
yield) and input (fertilizer applied). The model may suggest that the relationship is 
linear or nonlinear. A statistical model may be thought of as neither deterministic 
nor stochastic, but a model that provides the most likely or expected outcome of 
conditions (yield) given the input (fertilizer) and uncertain events (rainfall). 

The intersections of these two sets of categories-deterministic/stochastic and 
prescriptive/descriptive-give rise to a four-component classification table that con
tains (except for statistical models) nearly all major model types that are utilized to
day. Referring to Table 1.1, models that are deterministic and descriptive are 
typically differential equation models or models that use difference equations. 
These are models that a scientist or engineer probably encountered in a calculus or 
applied mathematics course. The models typically incorporate empirically derived 
parameters, rate constants, and known (or at least assumed) initial conditions. These 
models may be linear or nonlinear, depending on the nature of the system or on the 
degree of realism needed for the model structure in the particular application. 

The intersection of descriptive and stochastic models contains several types of 
models. One is the differential equation/difference equation model coupled with pa
rameters that are random variables. Such equations are called stochastic differential 
equations-a form of mathematics that becomes exceedingly complex when the 
equation(s) contain more than one random parameter. As soon as two random pa
rameters are introduced, the structure of the correlation between the parameters 
also needs to be known in order to create the range of model outcomes. As an ex
ample, July streamflows may be a function of both July rainfall and temperature
but the rainfall and temperature are themselves interrelated, lower rainfalls being 
associated with higher temperatures. 

A second model form at the intersection of descriptive and stochastic models 
is embodied in the mathematics of queueing theory or, more generally. the field 
known as stochastic processes. The mathematics of stochastic processes presume 
known parameters that describe arrivals and departures in a random envi~onme.nt. 
A third model type at this intersection is known as simulation, a computer-mten_s1ve 
form of modeling that generates realistic events and system responses through time. 
Here, the statistics of the events and the responses are designed to correspond to the 
actual statistics of parameters in the system being studied. As an example, the back
up of cars at a toll plaza is modeled using the r~te of arrival ~f vehicles at a toll 
booth and rate of collecting tolls. The toll collection process might be modeled to 
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observe the impact or influence of different numbers of toll collectors and of auto
mated toll booths on the number of cars that get backed up at the plaza. All three 
model types that describe systems responding to random variation-differential 
equation models, stochastic process models, and simulation models-allow the mod
eler to observe the range of possible outputs that might evolve through time from 
different sets of initial conditions and control actions. 

Another intersection in the two-way table is that of prescriptive models with 
deterministic models. These are the deterministic optimization models and are 
known by various names. TI1e names of the models depend on whether the mathe
matical descriptions are linear or nonlinear~ they may depend on whether the mod
els are static or evolve through time: and they depend on whether the variables are 
restricted to integers or are continuous. One of the model names is linear program
ming (LP). the form of optimization that is arguably the most popular form of opti
mization. Linear programming models have a linear or linearizable objective and 
linear constraints. Exact algorithms, solution procedures that are iterative in nature 
and which find global optimal solutions, exist for linear programming problems. 
Furthermore, computer software that implements the algorithms is widely available 
to solve even very large linear programming problems. 

Other model names and forms of optimization include quadratic programming, 
gradient methods. optimal control theory, dynamic programming, multi-objective pro
gramming. and integer programming. These names reflect either the mathematical 
forms being used or are descriptive of the algorithm or the setting. 

Quadratic programming deals with problems having a quadratic objective 
function. Gradient methods direct computations to follow slopes of objective func
tions to locally optimal or optimal solutions. Optimal control theory finds an opti
mal control or decision function in time or an optimal trajectory to achieve some 
goal. D)·namic programming typically considers problems with a number of time 
stages. Multiobjective programming operates on problems with more than one ob
jective and derives tradeoffs between those objectives. Integer programming con
siders only integer-valued decisions as practical or desirable. 

The reader will be interested in the meaning of the word programming in this 
context. The body or collection of all optimization methods is known as 
mathematical programming, and its subspecialties are known as linear program
ming. dynamic programming. integer programming, and so on. It is common for the 
student without familiarity with these methods to presume that the term 
programming, which is used to describe optimization models and methods, is associat
ed with and means computer programming. It does not, however, refer to the use of 
the computer. The "programming" in mathematical programming is a term that 
means scheduling, the setting of an agenda, or the creation of a plan of activities. 
Some confusion seems inevitable, however, because virtually all optimization, ex
cept that done as learning exercises for homework, classes, or labs, requires exten
sive use of digital computation. 
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The re~aining intersection of model categories in the four-component table is 
th.at of prescriptive and stochastic models. There is a form of optimization that deals 
with models whose parameters are random variables; that is, the parameters can 
take on any of a number of values or any value in a range of values simply bv 
ch~nce. The form of optimization is known as stochastic programming. and it rc-
qmres of the student a relatively strong background in probability theorv. The im
portance of stochastic programming to applied studies is growing. but- it is also 
probably one of the most challenging forms of mathematical programming and is 
the province of specialists. 

Of the various forms of programming or optimization, the most widclv used 
in practice is linear programming. The wide application of linear program;,ing is 
not simply a matter of the existence of an efficient and exact method of solution
although an efficient and exact solution method is available. No matter how effi
cient a solution procedure may be, a methodology for a form of optimization that 
does not match the needs of real problem settings would not be expected to be uti
lized widely. It follows that the wide use of linear programming is not driven by the 
availability of a solution method so much as it is driven by the form of the linear 
program. A linear programming problem statement has a widely applicable and uni
versally appealing structure. Its form places an objective or goal alongside 
constraints. The objective is the element to be optimized-perhaps it is cost that is to 
be minimized or profit that is to be maximized. Constraints are conditions that any 
and every solution must satisfy-for instance, resources cannot be exceeded. 

Many objectives are possible for a linear programming problem. These include. 
but are not limited to, minimum cost, maximum production, maximum equity. maxi
mum access, minimum waiting time, minimum waste, and maximum profit. Con
straints, on the other hand, are natural limits on achievement or imposed limits on 
resources use. The most commonly constrained quantities are resources such as per
sonnel, vehicles, level of investment, time, and materials. Other constraints that might 
be used in integer programming problems enforce the logic of system development. 
For instance, a particular nearby link of a road network must be built before some other 
more remote link can be built. Finally, some constraints provide only definitions. 

Remarkably, the language of objectives and constraints of the linear program
ming problem turns out to be the language of real problem statements. Practical 
problems are often stated in precisely this format of objective and constraints. These 
problem statements are frequently offered by people who have absolutely no train
ing in modeling or in systems engineering or in optimization. It is an absol~t~ly 
striking and unforgettable phenomenon to find people without an~ systems tramm.g 
describing their problems in the language of the linear programming problem. It is 
the naturalness of the linear programming problem statement that accounts for the 
widespread appeal of this form of optimization. Some ot?er forms o~ optimization 
also have this structure, but no methodology that uses this structure is more versa-
tile and more available than is linear programming. 
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1.B HISTORY OF SYSTEMS AND OPTIMIZATION 

Two great events punctuate the history of applied mathematics.1l1e first step, the in
vention of calculus. occurred in the seventeenth century. Sir Isaac Newton was one 
of two inventors of the calculus. Although Newton in Britain was the first to create 
the calculus in 1665-1666. Baron von Gottfried Wilhelm Liebniz independently in
vented the calculus in 1675. In that era, publication of ideas was often long delayed. 
Liebniz published his calculus in 1684, nine years after he conceived the idea. New
ton. in order to retain claim to his invention. rushed into print by 1687. The world of 
mathematics was never the same. 

Interestingly. the stimulus for Newton ·s invention of the calculus was not a 
consideration of abstract mathematical issues. Instead, Newton was interested in ex
plaining the effects of the planets on one another, and in the process of this quest, he 
needed to create the calculus. That is. the calculus was invented to solve a general 
problem that Newton was considering. In the same way, the invention of linear pro
gramming was propelled by the necessity of solving real problems. 

Almost three centuries later. another event shook and reoriented not only the 
world of mathematics. but also the fields of economics and engineering. The inven
tion of linear programming was to influence not only economics but would form the 
core of an entirely new discipline. operations research or systems engineering. In the 
same way that the calculus can be traced to two central figures, the development of 
linear programming is attributed to several towering people. 

At about the same time, Koopmans in the United Kingdom and Kantorovich 
in the former U.S.S.R. independently attacked the problem of least-cost distribu
tion of items. Kantorovich 's work (1939) was suppressed for more than twenty 
years by Soviet authorities. Koopmans came to the United States where he en
countered a young George Dantzig who had just created an algorithm, a set of 
semi-automated mathematical steps, to solve linear programming problems. 
Dantzig's algorithm provided a practical method of solution to the problem Koop
mans had been studying. Dantzig invented the simplex procedure for solving linear 
programming problems in 1947 as part of a U.S. Air Force research project. His 
procedure. with modifications and enhancements to take advantage of modern 
computers. is in wide use today. 

In the period 1948-1952. Charnes and his coworkers pioneered industrial ap
plications of linear programming and created the simplex tableau-the special tabu
lar data storage methodology used in the repeated calculations of the simplex 
procedure. Charnes and coworkers went on to adapt linear programming to deal 
with convex rather than linear functions, to invent goal programming, and to create 
new forms of optimization to deal with problems that operated with random para
meters. Charnes did not stop at industrial applications of linear programming. With 
students and coworkers he pushed on to the first applications of linear programming 
to civil and environmental engineering. Dantzig went on to make major contribu
tions to the solution of network and logistic problems. Koopmans and Kantorovich 
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received t~~ 1975 N~bel Prize in Economics for their work in linear programming. 
The magmf1cent achievements of Dantzig and Charnes have not been honored in 
such a way. 

Tuer~ is mo~e to t~e history of systems, though, than the development of the 
mathematics and its application in new settings. Dantzig tells us that the calculations 
and data manipulations that were needed for the first application of the simplex 
procedure were so extensive and voluminous that the application was carried out on 
a large tablecloth. (Of course, the computers of the time were too primitive for such 
c~lculations.) T11is calculation procedure was carried out for a linear problem of a 
size that the reader can do by hand. In fact, the problem was minute by today's stan
dard. Problems solved today may have dimensions that are more than four orders of 
magnitude (10,000 times) larger than those first linear programming problems. The 
difference, of course, that makes the solution of such large problems possible is the 
appearance and explosive evolution of the computer. From the 1950s onward, com
puters have advanced in speed and power, making possible the solution of larger 
and larger linear programming problems. 

Whereas a careful person may solve-by hand calculations alone-a problem 
with perhaps ten variables and five constraints, modern codes on up-to-date 
personal computers can easily handle problems with more than 20,000 variables and 
5,000 constraints. With continual advances in computer technology, even these num
bers will soon be far surpassed. We can say with complete assurance that linear pro
gramming would today only be a fascinating but small branch of applied 
mathematics and economics if it were not for the co-development in time of the 
electronic computer. With the development and evolution of the computer, linear 
programming has become the foremost mathematical tool of operations research. of 
management science, industrial engineering, and engineering management. 

Up to now, we have been using the terms systems and systems analysis without 
any sort of definition, although we have attempted to operate with an intuitive feel 
for the terms. Before going on to examples of systems analysis applications, it is ap
propriate to offer some definition of the term systems analysis, so that the examples 
can be viewed in the context of our definition. Of course, the easiest definition can 
be offered by re-interpreting the words systems analysis so that we get the phrase 
"an analysis of systems.'' By this we mean that we are investigating the behavior of a 
system, typically by choosing various options for the control or management of the 

system. . 
For example, we might be investigating a river system, and we would try van-

ous levels of pollution control at cities along the river to see what levels of water 
quality result. From this study, we can enumerate the ~arious measures of .co?trol 
that achieve some particular desired level of water quahty. Further, from this hst of 
many choices for control, all of which achieve the desired leve~ of water qu~lity. we 
can select that sinole set of choices for pollution control that yields the desired wa
ter quality at the least system-wide cost. So systems analysi~ implies the organized 
study of alternatives and options for the management or design of a system. 
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The alternatives in a systems analysis can be generated by almost any of the 
model types we have discussed above-from simulation with many different sets of 
control options in place, from solution of differential equations with an exploration 
of many possible management strategies, etc. With this definition in mind, we now 
need to explain how optimization methods such as linear programming fit within 
the idea of systems analysis, although the answer may be nearly evident by now. Op
timization via linear programming arrives at the "best" mathematical alternative by 
iteration. The iterations automatically consider only the control options that achieve 
the required outcome, in terms of, let us say, constraints on water quality. However, 
the iterations are internal to the process, invisible in a sense because the options ex
amined along the way, in the iteration process, are usually never seen by the analyst. 
The optimization process provides only the final and best strategy to the analyst for 
further study and consideration. Hence, we may think of optimization as an 
automated form of systems analysis in which many many examined strategies are im
plicitly (internally) generated and investigated. Typically, only one of those many ex
amined strategies will be presented by the optimization code to the analyst for 
further study. Optimization may be thought of as systems analysis automated; it 
may be considered a "power'' systems analysis, in contrast to the older style of ex
plicit exploration of numerous feasible alternatives. The preceding description, 
while accurate. may not yet be fully clear; clarity should come when the simplex so
lution procedure of linear programming is ultimately understood. 

We next provide a description of typical and important members of the broad 
array of applications of our automated form of systems analysis----of optimization 
applications. 

1.C APPLICATIONS OF LINEAR PROGRAMMING 

To provide you with an idea of how widely utilized linear programming and its de
rivative types of optimization are, we describe a number of settings in the public sec
tor, in industry, and in business where linear programming and allied methods have 
been put to use. 

1.C.1 Distribution, Warehousing, and Industrial Siting 

From the beginning, distribution has played a key role in the development of linear 
programming. It was the problem of least-cost distribution of goods from multiple 
sources to multiple destinations that motivated both Koopmans and Kantorovich 
to structure their linear programs; these problems are known today as transporta
tion problems, and very large problems are solved routinely, even on desktop com
puters. Transportation problems assume that direct and separate shipments are 
made over known routes. Another class of problems, known as delivery or routing 
problems, also move goods from multiple origins to multiple destinations. However, 
the challenge of delivery and routing problems is to find the tours or routes for 



Sec. 1.C Applications of Linear Programming 11 

vehicles that will drop off the needed amounts at multiple destinations as the vehi
cles traverse the prescribed route. These problems can be structured as linear inte
ger programs. 

Ware.house pr~blems, another class of problem that has been solved by linear 
~r?grammmg, exanune the optimal stocking of goods and suggest the release quan
tities of those goods through time to the distribution system. The siting of ware
houses be~ween factories and markets has also been studied with linear integer 
programmmg, as has the siting of manufacturing plants, which may supply either 
warehouses or customers. 

1.C.2 Solid Waste Management 

Within the environmental area, linear programming and allied methods have been 
used to site landfills and the stations at which small trucks transfer their loads to 
larger trucks. As well, these methods have been utilized to outline solid waste col
lection districts. These techniques have also been directed at the routing of solid 
waste collection vehicles through street networks and, within the framework of haz
ardous waste management, the routing of spent nuclear fuel from power plants to 
storage sites. 

1.C.3 Manufacturing, Refining, and Processing 

Some of the earliest applications of linear programming took place in these areas. 
The problem Koopmans called activity analysis consists of choosing which items of 
many to manufacture in order to achieve either least cost or maximum profit. In 
these problems, constraints limit the total amount of each of various resources that 
would be consumed in the manufacturing process. Another manufacturing area to 
which linear programming and allied methods have been applied is the design of 
factory floors. Known as the facility layout problem, this model sites the various ac
tivities on the factory floor to minimize interaction costs. 

The operation of a refinery, especially the blending of aviation fuel, was stud
ied early in the history of linear programming-in this case by Charnes and cowork
ers. Chemical process design remains a fertile area to this day for the application of 
linear programming. 

1.C.4 Educational Systems 

Educational systems are a rich setting for the application of systems methodology. 
Linear proorammino and allied procedures have been applied to class scheduling 

b b . d 
and room scheduling. These methods have also been used in school bu~ ~outm~ ~n 
to draw school district boundaries for efficient transportation and efficient ut1hza
tion of school capacity. LP has also been utilized to allocate pupils to schools to 
achieve mandated desegregation plans. LP models have also been used for enroll-

ment planning at colleges. 
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1.C.5 Personnel Scheduling and Assignment 

Systems techniques have found application in the scheduling of personnel through 
shift rotations. They have also been used to assign people to jobs or tasks in large or
ganizations. The scheduling and assignment of airline crews to flight legs is an ongo
ing and important use of linear integer programming. Manpower planning models 
have also been developed using linear programming to project needs and policies 
relative to such areas as physician and nurse availability.1l1e efficient assignment of 
crews to snow plows for winter highway maintenance has also been structured as a 
linear programming problem. 

1.C.6 Emergency Systems 

Since the late 1960s, linear programming and allied methods have been applied to 
the siting of fire engines, fire trucks. fire stations, and ambulances. Early problem 
statements focused on minimizing average travel time, given budget constraints. 
Later formulations required or sought "coverage," the stationing of at least one ve
hicle within a travel time or distance standard of every point of demand. Cost was 
either a constraint or an objective in these models. Most recently, congestion in 
emergency systems has been investigated with the emphasis on ensuring the actual 
availability of a server within the time standard at the moment of a call. Dozens of 
linear programming models have been built in the area of emergency facility siting. 
Other areas of siting have also been investigated, and these are referred to in 
Section l.C.1. "'Distribution, Warehousing, and Industrial Siting." 

1.C. 7 The Transportation Sector 

Linear programming or variants have been used extensively in the design of trans
portation networks including highway networks, rail networks, and airline networks. 
Efficiency and cost objectives have been utilized in such formulations with con
straints on connectivity (or continuity) of the network or on population proximity to 
the network. LP and integer programming have also been used to design bus routes, 
assign drivers to buses, schedule buses, and choose bus stop locations. Traffic light 
timing at intersections and at freeway entrance ramps have also been approached as 
linear programming problems. 

Goods movement as mentioned in Section l.C.1, "Distribution, Warehousing, 
and Industrial Siting." is a classic application of linear programming. Empty railcar 
movement has also been structured as a linear programming problem, as has the se
lection of freight terminals to open or close and the specification of hubs in an air
line network. The development of pipeline networks for oil and natural gas can also 
be structured as a linear programming problem. Military applications of linear pro
gramming are often of a goods movement/logistics nature. The vertical alignment or 
grade design of highways, as well as the determination of optimal cut-and-fill strate
gies. can be cast as linear programming problems. 
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1.C.8 Sales 

Sales has proved to .be an important area for the application of linear programming. 
The f~mous travelmg salesman problem, whose first solution was provided hy 
D.antz1g and coworkers, seeks the routing of a salesperson through a set of cities 
with the goal of least-total-route length. The design of sales territories considers the 
cre.ation of compact districts of roughly equal sales potential for the sales represen
tatives to cover. Compactness is sought to reduce the salesperson's travel time. Me
dia selection, that is, selection of the mix of magazines, broadcast networks. and so 
on for the display of advertisements, has been approached as a linear programming 
problem. Executive compensation is a famous application of linear programming 
due to Charnes and coworkers. 

1.C.9 Electric Utility Applications and Air Quality Management 

Linear programming has found extensive application in the electric utility industry. 
Applications include the design of transmission networks, power dispatching be
tween and among utilities, and power plant siting, to name a few areas of focus. Re
lated to power plant siting is the environmental area of air quality management from 
stationary sources (such as power plants). Here the problem is to select the level of 
pollutant removal (say, sulfur dioxide) from stack gases at power plants in a region so 
that all downwind concentrations of the pollutant are less than some critical level or 
standard. 

1.C.10 Telecommunications 

A relative newcomer to optimization applications is the area of telecommunica
tions. Although the allocation of radio frequencies has been approached as a linear 
programming problem, most efforts have been directed toward the creation of effi
cient telecommunications networks. This latter area has very strong relations to 
transportation network design but with certain added features. For instance, com
puter networks can be structured with a central computer having connections to 
smaller computers, which themselves have dispersed users. Both the smaller com
puters and central computer need to be sited. Telephone networks begin with cus
tomers connected to local exchanges, but the local exchanges are connected to a 
central exchange, which is linked to long-distance lines. Customers may require a 
backup connection so that if their local exchange goes down, communication is not 

disrupted. 

1.C.11 Water Resources and Water Quality Management 

Of all the environmental areas to adopt systems methodology, probably the most ac
tive applications have taken place in water resources and water quality manag~
ment. Initiated by Charnes, Lynn, and researchers at the Harvard Water Program m 
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the late 1950s and early 1960s, linear programming has been widely applied to the 
design and operation of reservoirs. Optimization models have been built to operate 
reservoirs in both deterministic and stochastic environments. Models have dealt not 
only with single-purpose reservoirs, such as those devoted only to water supply, but 
also to multi-purpose reservoirs, which may have a variety of conflicting uses: flood 
control, recreation, habitat preservation, irrigated agriculture, and the like. In addi
tion, models have been extended to consider a number of reservoirs operating on a 
number of rivers to be used jointly toward one or more common purposes, such as 
drinking-water supply, irrigation, or hydropower. 

Water distribution networks and sewer networks have also been designed by 
means of linear programming and allied methods. In addition, water quality man
agement models have been built using linear programming: these models seek the 
needed removal of oxygen-depleting organic wastes from each of many wastewater 
treatment plants on a river. Levels of dissolved oxygen in the river may be con
strained to be greater than some required standard in order to ensure the survival of 
aquatic species. The cost of treatment, because it is a cost borne across society, is to 
be as small as possible. 

1.C.12 Agriculture and Forestry 

Linear programming has been used to choose the set of activities on a farm that 
maximizes profit. LP has also been applied to determining optimal volumes for 
grain reserves and to site grain reserves in developing nations. In forestry, linear 
programming has seen wide adoption for the management of timber harvesting in 
the National Forests. The timing and the spatial allocation of cutting have been 
sought while seeking to maximize the value of the harvest through time. Spatial lim
itations on cutting activities are meant to maintain aesthetic values as well as to en
sure re-growth and prevent erosion. 

1.C.13 Civil Infrastructure and Construction 

Civil works planning provides a number of areas where linear programming has 
found important application. Linear programming and allied methods have also 
been used to site regional wastewater treatment plants and to allocate communities 
to those plants. Determining the share of costs that each community should bear in 
such a system has also been structured as a linear programming problem, where the 
objectives of the problem were to achieve both full cooperation and equal treat
ment of potential partners. 

The sequence of repair of road networks, including determining which bridges 
to repair. and the siting of repair and maintenance garages along the network are 
other applications in infrastructure planning. The timing of the building of new 
reservoirs is also a linear programming problem. The building process itself, the or
dering of construction activities, is a linear program of some note. Excavation in 
highway construction can also be approached by linear programming; the movement 
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of earth fr?m the site of cutting to the borrow pits can be determined by a linear 
pr~grammmg model. The vertical alignment of a highway is likewise a problem in 
wluch t?e extent of cut and fill need to be determined subject to grade and curvature 
cons tram ts. 

1.D RULES FOR MODELING 

The wide diversity of applications referred to above, applications that use the 
optimization framework, suggests that numerous linear programmino and related 
optimization problems remain to be built. This chapter is aimed at tea;hing-by ex
ample-conceptually how to build decision models for real situations. Unfortu
nately, no formula exists for the way in which these models should be built. There 
are, however, approaches that generally work-although they do not work in all 
situations. 

It is not pretentious to say that building decision models is an art, an art that is 
built up through experience-in the same way that a fine cabinetmaker learns the 
art of carving and creating from the constructing of many pieces of furniture. We can 
provide a few thoughts on model building, but then the art must be pursued. example 
by example. If you pursue model building, you may encounter times and cases when 
no amount of art or prior experience will be sufficient to build a solvable model. 
Does the fact that sometimes no solvable model can be built mean that the reader·s 
art is simply not developed enough? Not necessarily~ some problem settings may 
not yield to the modeler's art. We hope, however, that you will find and pursue such 
problems, for there is much to be learned about the operation and design of a real 
system when a student attempts to structure a decision model. 

The famous French artist Paul Gauguin once said, "Art is either plagiarism or 
revolution." Either is acceptable in the quest for efficient solutions to difficult plan
ning and management problems. The novice model builder is well advised to borrow 
as much experience as possible from those who have walked these paths before. 
These are the rules that we can offer: 

1. Keep the model as absolutely simple as possible while still answering the ques
tion at hand. Try to use only those parameters-such as size, temperature, ele
vation, composition, cost, distance, and so on-whose values can be obtained 
or estimated reasonably. The level of uncertainty about the values themselves 
should be relatively small. 

2. Let x equal the unknown level of a decision or, where many decisions are 
involved-as is most commonly the case-let xi equal the unknown level of 
the jth decision. Determining those problem features that can be controlled is 
crucial to creating decision variables. 

3. Try to list all possible constraints and to articulat~ the obj~cti~e ~r objectives. 
A constraint is what you must achieve without fail. An objective is a goal you 
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would like to achieve as nearly as possible; the relative achievement of a goal 
is the way you evaluate the merit of alternative solutions. 

A constraint might be a composition of gravel with at least a certain per
centage of coarse material or a road with a slope at no more than a certain 
grade. A goal might be the least-cost gravel mixture or the least-cost road 
profile-the degree of attainment of these goals is limited by the constraints to 
which one must adhere. 

4. Solving models will probably be easiest when processes are additive and pro
portional; by this we mean linear. 

You should remember the following warning. Although the simplex algorithm 
and other procedures may produce an optimal or near optimal solution to the math
ematical problem (model) you will structure, the model is not intended to provide an 
optimal solution for a decision maker to implement. An analyst who asserts to a de
cision maker that a model solution should be implemented because it is "optimal" 
may earn the distrust, even the enmity, of the decision maker. 

Models are used as tools for evaluation, as providers of insights. The real world 
is far too complex to claim that a model can portray its processes so accurately that 
the optimal mathematical solution is, in fact, the optimal "real-world" solution. In
stead, we hope that model solutions are good solutions, reflecting possible desirable 
alternatives to consider, and, further, that an analysis of tradeoffs will provide deeper 
insight for decision making. Perhaps such warnings temper the reader's enthusiasm. 
They should not. Models can provide insight and understanding that intuition and 
human judgment simply cannot achieve. 

Probably someone could make up more rules than this. They might or might 
not be helpful. In a certain sense, we have just handed you a chisel, told you the angle 
at which to hold it, and said you are ready to carve-well, almost ready. First, we will 
take a look at a number of model settings that others have conceived. That is, we will 
identify problem settings in multiple situations. Then we will consider these settings 
and identify problem objectives, problem constraints, the required data or input pa
rameters, and, finally. the decision variables. We will not actually build the models in 
this chapter. but hopefully you will develop ideas about how to proceed. For now, we 
will focus principally on spatial problems in this brief tour of model settings. 

1.E SAMPLE DECISION MODEL SETTINGS 

The first problem setting we consider is the siting of a system of health clinics in a 
rural region of a developing country. Perhaps a government agency is given this task, 
and funds have been allocated by a legislative body. The legislative body has autho
rized, for purposes of our discussion, 10 health clinics for the region. The agency has 
superimposed a requirement that all communities of over 1,000 people will be able to 
reach a clinic with no more than 10 miles of travel-which travel would likely occur 
via public transportation. A clinic can only be sited in a community of 10,000 or more 
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with an electrical supply. For this setting, we have to define the data that is neces
sary, and we need to articulate an objective, as well as constraints on acceptable per
formance, and decision variables. 

Articulating an objective is an important first step because it may influence 
our ~ata. needs. A reasonable and oft-chosen objective is to suggest that the clinics 
be sited m such a way that the average distance traveled by all of the clinic users is 
as small as possible. In terms of data, then, we will need to know the population of 
each community in the region. We also need to know the distance in miles between 
all communities and those communities with a population of at least 10,000 (where 
the clinics are eligible to be sited). There are several basic constraints types for this 
problem. First, only communities of 10,000 or more can have a clinic. Second. in the 
ring of eligible facility sites around any community, at least one of the sites that are 
within 10 miles of the community must have a health clinic. Third, only 10 clinics can 
be sited in the entire region. Finally, we need decision variables-these indicate 
which communities assign to which clinics and which communities house the clinics 
themselves. 

A second problem setting is the building of a reservoir to supply water to a 
city. We need to define data requirements, goals or objectives, decision variables. 
and the constraints defining acceptable performance. In terms of data, we need the 
projected volumetric demand for water in each month for the future year for which 
the system is being planned. We also need to know, by month, the worst historical 
sequence of volumetric inflows to the reservoir. We would obtain this from long 
records of historical streamflows. Our goal might be the smallest capacity reservoir 
necessary to provide the projected demand throughout the duration of the worst 
drought that was ever recorded. The decision variables would include not only the 
reservoir capacity but also the storages planned for the end of each month, given 
that the required monthly water supplies will always be capable of delivery. Two 
kinds of constraints follow from this description. First, no more water can be stored 
in the reservoir than the reservoir capacity level chosen by the model. Water that 
arrives in excess of this capacity after delivery of the monthly water demand must 
be released to the stream. Second, in order to be capable always of delivering the 
needed supply, the reservoir must never go dry before a month is up. To achieve 
that condition, end-of-month reservoir contents must always be greater than or 
equal to zero. 

The third problem setting might be the development or upgrading of the links 
in a highway network in a developing nation. One objective of the development/up
grade might be to maximize the population connected to and by the upgrade~ net
work where "connection" mioht be either a direct highway link to a commumty or 
havidg the upgraded networkb within some distan.ce .standard of t~e community for 
ready access. Another objective might be to maximize the potential trade b~tween 
the cities that might be connected. The building program may ~ell be constramed by 
a specified budget from the transport ministry-a fund which can be tapped for 
highway improvements, but which is limited in extent. 
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Data needed for analysis includes not only the cost of each link that might be 
built or upgraded, but also the population of each city that might be connected to 
the upgraded network. If trade maximization is the goal, the projected trade be
tween each pair of cities, as well as exports from the system, would need to be esti
mated. The analyst would likely create decision variables that indicate which 
points/cities to connect or include in the upgraded network and which links to im
prove in the planned upgrade. Probably, the analyst would want to display the trade
off between the population that can be connected and the investment that is made 
in the network improvement program. 

The fourth setting is the positioning of fire stations in an urban area. Once 
again, an objective is needed; data are required; acceptable performance must be 
defined; and decision variables must be created. The area is partitioned into sectors of 
the city. Acceptable perfom1ance might be defined as each sector of the city having a 
fire station that is within five minutes vehicle travel time of its centroid. Any sector 
is presumed an eligible home for a fire station. 111e goal might be the least number 
of fire stations to achieve the five-minute performance standard. Required data in 
this simplified model would be the travel time between all centroids of the city's sec
tors. The decision variables would be simple yes (1) or no (0) variables indicating 
whether to site a fire station in a given sector. 

This problem can be made more complicated if there is a limitation on the 
number of fire stations and that number is less than the minimum number needed to 
"cover·' all sectors. The limitat~on constitutes a new constraint and at the same time 
demands the statement of a new objective. A possible new objective, given the limit 
on the number of fire stations, would be to seek coverage of the largest number of 
sectors by one or more fire stations within the five minute performance standard. 
Alternatively, if historical calls per day for fire service could be obtained for each 
sector, the objective might be stated as coverage of the greatest number of calls 
(rather than sectors) within the five minute standard. 

The last example setting is the development and expansion of an electric power 
system for a state or province or region. To simplify the problem, we assume that the 
power lines between stations and cities are largely in place and that new power sta
tions will be sited not far from the grid network of existing lines. Demand is expect
ed to grow over the next twenty years, so new power stations are needed to supply 
that demand. Clearly then, demand for electric power must be projected for each 
city. In addition to demand, other needed data include the cost to build and operate 
various sizes of hydroelectric plants, coal-fired electric plants, and nuclear power 
plants. Proportional power losses along the segments of the network would likely be 
important information to have as well. The objective is to meet demands for power 
at the least total cost where cost is the cost of building and operating the expanded 
system of power plants. The constraints are that each city must be assigned sufficient 
power resources from among all the plants, previously established or newly built. 
Good candidates for the decision variables are variables that are 1 or O. A variable 
for a plant of type k (say. nuclear) at site i built to size j would be 1 if such plant were 
established and 0 otherwise. 
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These five settings are meant to illustrate some of the vast range of decision 
models. Probably, linear or linear integer programming modc]s can be bui1t to solve 
all of these problems, but the building phase is left for other chapters. Nonetheless. 
the reader now has set a telescope to view and investigate the universe of decision 
models. In coming chapters, the telescope will be focused more sharp1y on specific 
instances of problems like these. 

CHAPTER SUMMARY 

Our first focus in this chapter has been to locate the topic of optimization within the 
broad framework of mathematical approaches to model bui1ding and problem solv
ing. To accomplish this, we described the many kinds of mathematical models that 
scientists and engineers build and showed where optimization fits within that ma
trix. We then described the historical development of systems ana]ysis. referring to 
the great achievements of its founders, Koopmans, Kantorovich. Dantzig, and 
Chames, each of whom made signal contributions to the topics in which you will 
shortly become expert. Our focus then shifted to the multiple setting for applica
tions of optimization and especially of linear programming. These areas included 
distribution, warehousing, industrial siting, solid wastes management. manufactur
ing, education, personnel scheduling, emergency system design, public and private 
transportation, sales, telecommunications, water management, agriculture and 
forestry, and civil infrastructure. As a jumping off point for your further study. we 
next offered the steps a model builder employs in structuring optimization models. 
including the easy but important advice to let x equal the unknown as well as the 
well known direction to identify objectives, constraints, and parameters. We concluded 
the chapter with purely verbal descriptions of five practical problem settings where 
optimization models might well be employed. In the context of these settings. we 
identified not only constraints and appropriate decision variables but also needed 
parameters and problem objectives. 

EXERCISES 

For problems 1.1-1.8, identify the following problem components: 
(a) decision variables; 
(b) parameters; 
(c) the objective function in words; and 
(d) constraints in words. 

1.1. Environmental. Acid rain in the northeastern part of the U.S. has been attributed in 
large part to sulfur dioxide emissions from coal-fired power plants ~n .Ohio and other 
states of the Midwest. Generally, northeasterly winds blow the em1ss1ons from these 
electric power plants toward the. Midat.lan~ic. ~ortheast~rn, an~ N~w Engla~d s.tates~ 
Studies have indicated that the au quality m this downwind region 1s .not equall) ~on 
tributed by all power plants in the large geographic region of the Midwest. That is. a 
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pound of sulfur dioxide emitted from each of two different plants in the Midwest does 
not result in the same reduction in air quality at each monitoring site in the Northeast. 
This differing impact is due to the different locations of the two plants and the winds 
that blow past them. Said differently, a pound of sulfur dioxide emitted at each power 
plant site in the Midwest has a characteristic and predictable impact on air quality at 
each of the manv downwind sites in the Northeast. A factor may be derived that trans
lates each pound emitted at each origin site into a concentration contribution of sulfur 
dioxide at each of the many destination sites where air quality is measured. The con
centration at each monitoring site is the sum of contributions from each of the power 
plants in the Midwest. 

In addition. the unit cost of sulfur removal from the air waste stream of plants in the 
Midwest differs significantly by plant. For some plants. it is less expensive to reduce 
emissions. for others it is more costly. It is also obvious that not all plants are the same 
size or technology. Therefore. the amount of untreated sulfur dioxide-the amount pri
or to cleanup-found at each plant differs. Any clean-up plan must also consider equi
ty of impact among the sources: widely varying clean-up efficiencies or removal levels 
across the electric power plants will be viewed as discriminatory. FurtheL since the con
sumer of the electricity must ultimately pay the clean-up cost in electric rates, a strong 
effort must be made to keep total costs as low as possible. A control strategy-a re
moval level for each midwestem power plant-is needed in order to reduce emissions 
to levels that ensure the air quality concentrations at all downwind monitoring sites 
meet environmental standards. 

1.2. H~·d.raulics. A city needs a certain amount of water from a river that is 300 feet below 
and three miles from the city's water treatment plant. The city engineer must decide on 
the internal diameter of the pipeline to the city and the head capacity of the pump to be 
installed at the river. The engineer knows that a smaller pipe is less expensive but re
sults in greater head loss due to friction and therefore requires a greater head capacity 
for the pump. which increases the cost of the pump. Conversely, a larger pipe is more 
expensive, but permits a less expensive pump lo meet the fixed head and flow require
ment at the water treatment plant. The engineer is also aware that the range of pump 
capacities and pipeline diameters is limited in order to avoid a long waiting period for 
delivery. The most economical pump/pipe combination is desired. 

1.3. Transportation. A state highway department is planning a new toll exit for an existing 
turnpike. The number of toll booths to put at the exit is in question. The department 
wants to keep costs low by having as few booths as possible. but if the waiting lines get 
too long during rush hour and other peak periods it will hurt public relations, reduce 
the number of people who will use the exit, and, in the worst case, back waiting vehicles 
onto the highway-an unacceptable and potentially hazardous situation. The highway 
department believes that no more than six cars-on average across the lines-should 
be stored in the waiting lines during rush hour, but is willing to examine other average 
waiting-line lengths. 

From data elsewhere. it estimates the arrivals at the exit during each two-minute 
segment of the rush hour. It knows that it takes 17 seconds to service a car at a booth, 
resulting in 3.53 vehicles being processed each minute by a toll attendant. The highway 
department decides to develop an optimization model to analyze the problem. The goal 
is to assess the impact of the number of toll booths on the average length of the waiting 
line. 
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1.4. 

1.5. 

1.6. 

1.7. 

Structures. A singly reinforced rectangular concrete beam must carry a known imposed 
moment and shear. The span length is also known, and the deflection of the beam must 
not exceed a certain value. The width and depth of the beam arc to be determined. as is 
the area of steel to be placed in the bottom of the beam. The cost of concrete per-cuhic
yard and th~ cost of steel per-pound is known, as is the compressive strength of the con
crete and yield strength of the steel. The designer wants to design the least-cost beam. 
The code for such beams states that a certain minimum amount of steel, as a percent of 
the total effective cross sectional area, must be present in order to avoid excessive 
cracking on the bottom of the beam due to temperature fluctuations. The code also 
gives a limit on the maximum amount of steel, again expressed as a percentage of the 
total effective cross sectional area of the beam, that can be present to avoid sudden 
compressive failure in the concrete at the top of the beam. 

Materials. A contractor can sell several classes of concrete at a different price per-ton 
for each class. The materials specification for each class of concrete allows the percent
age by weight of cement, sand, and gravel to range between certain upper and lower 
bounds. The contractor knows the unit cost (cost per-pound) to the company for each 
of the three components of concrete, and how much of each component that is avail
able for the company to purchase. The amount of concrete of each type that the con
tractor can sell is limited but known. (Hint: This problem has a maximization objective 
function, not minimization.) 

Construction. A construction contractor employs a given force of skilled workers and 
has a limited set of specialized machinery. There are a number of categories of skilled 
workers, as well as a number of classes of specialized machinery. The contractor has a 
number of construction projects underway and has committed the company to comple
tion dates for each of them. Certain job items (activities) are common to the various 
projects and require the same inputs of labor and equipment. The activities occur on 
various dates throughout the time span from project start to project completion. 

However, the contractor does not have enough labor and equipment to work on 
these job items on the same day on all projects. Hence, the contractor wants to schedule 
(stagger) the specialized work forces and specialized equipment on the projects so that 
ideally no labor or equipment shortages exist on any day and so that each project is 
done on time. If any shortages do exist, extra costs must be incurred for temporary 
workers or for equipment. A predetermined payment has already been received for 
each project. Now, the contractor wants to keep construction costs to a bare minimum. 

Remote sensing. A national space administration is trying to select measurement instru
ments to place aboard an earth-orbiting satellite. Each instrument under consideration 
has its own specific capacity to gather information of a particular type. Some instruments 
can gather information on a wide variety of earth features, but the quality of information 
varies by instrument and feature. The administration has assigned a value to the quality 
of information each instrument gathers on each earth feature, and it is assumed that such 
"values" can be mathematically combined across instruments to give a total value for a 
feature. A budget has been established for the purchase of instruments (instrument 
prices are known), and the budgeted amount cannot be exceeded. ~e instrument total 
payload weight and volume are also constrained to not exceed certam amou~ts. and the 
weights and volumes of the various candidate instruments are known. The 1~strument 
package (the set of instruments to be included) that gives th~ g~eatest ~~tecllon effec
tiveness is desired, considering the limits imposed on the satellite s capac1t1es. 
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1.8. Gcotechnical. TI1c design engineer for a large building must determine the foundation 
type and size that will ensure that excessive settlement of the building does not occur. 
Damage costs to the building increase with the degree of settlement. The engineer has 
some idea of the probability of finding a certain soil strength, but a better estimate can 
be obtained from field experiments and from laboratory tests. There are many possible 
experiments available, and generally the reliability of an experimental test result in
creases with the cost of the test. However, for every test there is still a chance that the 
test result is not representative of the average soil condition. From past experience and 
data. the engineer can estimate the probability of having a certain soil strength given a 
particular experimental result from a particular test. The engineer wants the total ex
pected cost of designing. constructing. and maintaining the building to be a minimum
including the costs of soil testing. 

1.9. Compose your own systems problem. Describe the problem, identify the decision vari
ables. constants~ state variables~ forcing function, and write the objective function and 
constraints in words. Be sure to explain the tradeoffs among the objectives that are pre
sent in your problem. For example. a larger budget or more personnel results in shorter 
completion times. 
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Models in Civil and 
Environmental 
Engineering 

2.A INTRODUCTION 

By civil and environmental systems engineering, we mean that branch of civil and 
environmental engineering that develops and implements optimization and other 
models to guide decision making and policy development in these areas. Examples 
of such decisions include which landfill sites to operate, what road segment to repair 
next, the time staging of water treatment facilities, the allocation of pollution control 
burdens, the sharing of costs in regional facilities, the sizing of a reservoir, the spatial 
planning of water infrastructure, and many more similar issues. Each of the models 
presented in this second chapter is simplified somewhat to make it intelligible. but 
underlying these models are more complex and realistic representatives of prob
lems in decision making that have been used successfully in practice. 

While the appearance of these models will seem quite different from one an
other, they actually share a common structure. The common structure reflects not 
only the underlying type of mathematics needed for solution of the problem: the 
common structure also represents a fundamental way of viewing engineering and 
decision problems. Such problems show the same form or structure, again and again. 
A cost-related objective is to be minimized, or an achievement objective is to be 
maximized. Further, constraints limit the range of possible activities or design spec
ifications that might be applied. For the linear programming (LP) models. the spe
cial common structure allows even the largest of the models to be solved quickly 
and efficiently, as will be discussed in subsequent chapters. 

23 
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2.8 THE FORM OF A MATHEMATICAL PROGRAM 

As we indicated above. all Hmathematical programs'' or optimization problems have 
a common structure-an objective to be maximized or minimized and constraints 
that limit the range of decisions or actions. Occasionally, a mathematical program 
may be unconstrained. In the general case, the objective and constraints can have 
any form-they can be linear in form or can assume any nonlinear form. Linear pro
grams, decision models with both a linear objective and linear constraints, can be 
solved readily by modern computers. 

Problems with a nonlinear objective, or nonlinear constraints, or both must be 
examined carefully to determine the solution method that can most profitably be 
utilized. Such careful investigation is needed because, on occasion, nonlinear opti
mization problems may be encountered to which no method can be applied. That is, 
no technique can hsolve ., the specific set of forms of the particular optimization 
problem at hand. 

Our approach to presenting the form of a mathematical program will proceed 
from the particular to the general. That is, we first investigate the form that is in most 
common use-the linear program. Linear programming is emphasized in this book 
because of its remarkable versatility in representing numerous real problems and be
cause efficient solution methods are available for LP problems. The linear program
ming model has. as indicated earlier, a linear objective and linear constraints. Once 
this special and important model is conceptually laid out, we will proceed to develop 
conceptually the general optimization or mathematical programming problem, 
showing the respects in which it differs from the linear programming or linear opti
mization problem. Then. to illustrate the model forms of the linear program and of 
the nonlinear program, we will offer a number of examples. 

To present the linear programming problem, it is useful to examine a well 
known problem of a very general character. We have chosen to discuss the activity 
analysis problem-this is the problem that Koopmans and Dantzig were both 
working on when linear programming was still just an idea and when the simplex 
algorithm was still being born. 

The activity analysis problem chooses the extent to which each of a number of 
activities (indexed by j) is to be undertaken, for example, how many items of a given 
type to manufacture. Each activity brings a constant degree of profit as it is in
creased in extent, or as the amount of product j is increased. Each activity utilizes 
one or more resources, also at a constant rate, and each of the resources is available 
in only limited quantity. 

We define the following parameters (constants) and variables for an n-variable 
m-constraint problem: 

j, n = index and total number of activities or decisions; 

i, m = the index and total number of resources; 

x1 = the extent of the jth activity or decision; 
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Cj = profit or payoff for each unit of the jth activity that is undertaken; 

a;j = the coefficient of the jth activity in the ith constraint. The coefficient 
represents the amount of resource i that is consumed for each unit of 
activity j that is undertaken; and 

b; = the amount of each resource i avaiJab]e to the manufacturing process. 

The objective of profit maximization is written 

The constraint that limits the use of resource i to bi units in tota] is 

This form of constraint must be written for each kind of resource i that is consumed 
in the group of activities, that is, for i = 1, 2, ... , m. The reader who checks the units 
of each term in the above sum will find that each term is composed of a coefficient 
a;j, the units of resource i consumed by each unit of activity j, multiplied by the num
ber of units of activity j. The sum, of course, is the number of units of resource icon
sumed in all n activities. 

Each activity must be undertaken to either some positive extent or not at all. 
That is, 

Note that the objective is the sum of linear terms and only linear terms; for example. 
c1x1 and c2x2 are linear in x1 and x2, respectively. Further, the constraint for the ith 
resource, and hence for any resource, has only linear terms. 

The complete linear program is summarized as 

Subject to: 

Xt ~ 0, X2 ~ 0, X3 ~ 0, ... , X 11 ~ 0. 

A general linear programming problem allows either maxumzation or 
minimization of the objective and permits the relationship between the left-hand 
and right-hand sides of the constraints to be of any form, less than or equal to, greater 
than or equal to, or simply equal to. The general statement of the linear program
ming problem also places all linear terms on the left-hand side and all constant (un
multiplied) terms on the right-hand side of the relational indicator. 

It is this simple form, composed of optimizing an objective subject to con
straints, that you will see in the examples that follow and throughout this text. Fur
thermore it is this form that seems to have universal appeal in the conceptual 
structuri~g of decision problems. And it is the linear form above that you will strive 
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to reproduce most often when you structure decision problems-because you know 
that this form can be solved. 

However, other problem statements that are not composed of linear functions 
are certainly possible. Some of these more general problems can be converted to lin
ear forms and some cannot. Those that cannot be linearized (converted to a linear 
form) must be solved in some other way-if they can be solved at all. That's right. 
Not all constrained optimization problems can be solved; some mathematical pro
grams are resistant to the best efforts of mathematical scientists. Tilat is why we seek 
to structure problems in linear form or to convert them to linear forms. And that is 
why, in part, there is a theoretical branch of mathematical programming. We present 
next a statement of the general mathematical programming problem-a problem in 
which there are no requirements for linearity. 

Again. the extent of the jth activity is represented by x j' and the amount of the 
ith resource available is b,.. TI1e objective function is some complicated (nonlinear) 
function of the decision variables. We will call it 

where the function implied is a perfectly general form that could include linear 
terms but could also include many nonlinearities. 

The resource constraints likewise use some general function of the decision 
variables on the left-hand sides and place the resource limit b; on the right-hand 
side. We represent the general function of the decision variables for the amount of 
the ith resource that is consumed as 

These resource consumption functions could include linear as well as nonlin
ear terms containing the decision variables. The mathematical program is stated as 

Maximize or minimize Z = f(xb x2, ... , x 11 ) 

Subject to g;(xi, x2 •..• , x,i) · b; i = 1, 2, ... , m 

where the dot indicates that the relation could be of any form-inequality or equal
ity. This problem statement is vague; its physical significance is not at all clear from 
its presentation. Nonetheless, it is an accurate statement of the general problem. If 
the functions are linear in the decision variables, we have a statement of a pure lin
ear program~ and we also have a method of solution. If all of the functions are nonlin
ear, or some functions are linear and some are not, we still have a correct 
presentation of the problem~ although the solution technique chosen, if there is one, 
is not knowable unless all the forms are explicitly stated. 

A number of example mathematical programs follow. Remember, as you read 
these first examples, that they are highly stylized to convey the essence of the prob
lems they are used to examine. The problems solved in industry and by governments 
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are generally far larger and far more complex. Such larger and more complex prob
lems follow later in the text. 

2.C EXAMPLE MATHEMATICAL PROGRAMS 

2.C.1 Example 2-1: Blending Water Supplies 

Problem Statement. A city is growing in population and the public works 
department projects the need for an increased water supply. The current water sup
ply is drawn from a reservoir on a local stream and is of good quality, but future 
sources-the ones to be tapped next-have various problems. Water from a nearby 
aquifer is available in adequate supply, but its hardness level is too high unless it is 
blended with a lower hardness source. The total pounds of hardness per million gal
lons is limited to 1,200 (143 ppm in possibly more familiar terms) in the final blend
ed supply. Water from a distant stream is of sufficient quality, but a pipeline would 
have to be built to convey it, and the cost to pump the water to the water treatment 
plant is quite high. 

The city is conducting its planning in stages. The first stage is to plan for ten 
years from the present. The three sources are: source 1-the current supply, source 
2-the aquifer, and source 3-the distant stream. The costs to obtain water in dollars 
per million gallons, the supply limits in millions of gallons per day, and the hardness 
in pounds per million gallons are given in Table 2.1. For example, if the present water 
supply is developed further, up to 25 million gallons per day (mgd) could be made 
available from source 1 at a cost of $500 per million gallons. Each additional million 
gallons from this source would contribute 200 pounds of hardness to the total water 
supply. A total of 150 additional million gallons per day is needed by the end of ten 
years. The city council members are interested in a least-cost strategy for expanding 
the water supply, while ensuring that the water supply remains of sufficient quality. 

Model Formulation. 

Let: x1 = millions of gallons per day to be drawn from source 1; 

x2 = millions of gallons per day to be drawn from source 2; and 

x3 = millions of gallons per day to be drawn from source 3. 

TABLE 2.1 COST, SUPPLY, AND QUALITY OF AVAILABLE WATER SOURCES 

Source 1 Source 2 Source 3 

Cost ($/mgd) 500 1,000 2,000 

Supply limit (mgd) 25 120 100 

Hardness (lb/mg) 200 2,300 70 
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The linear programming formulation for the problem that the city wants to solve is: 

Minimize Z = 500x1 + 1000x2 + 2000x3 

Subject to: Xt + Xz + 
200x1 + 2300x2 + 700x3 ~ (1200)(150) 

Xi ~ 25, Xz ~ 120, X3 ~ 100 

Xi, Xz, X3 ;::::: 0. 

The objective is to choose the minimum cost set of water sources. The first con
straint indicates the requirement for 150 million gallons per day, somehow divided 
among the three sources. 1l1e second constraint calculates the total hardness from 
the three sources and limits that value to the maximum allowable pounds of hard
ness in the blended water. If the hardness concentration is limited to 1200 pounds 
per million gallons and 150 million gallons are required, the total pounds of hard
ness is limited to 1200 x 150 = 180.000 pounds. 

The solution to this problem is xi* = 25.0. x2* = 54.7, and x 3* = 70.3 in mil
lion gallons per day (rounded to the nearest one-tenth) with an objective function 
value of Z* = $207 ,800 at optimality. The reader will note that the superscript * is 
used to indicate the value of a decision variable at optimality. We have not indicated 
at this stage how the optimal solution with its least cost and particular values of the 
variables was found. We will show one method-a graphical method-to find the 
optimal solution in the next chapter. A more general computational method will be 
developed in Chapter 4. 

2.C.2 Example 2-2: A Furniture Factory-An Activity Analysis 

Problem Statement. A furniture factory specializes in dormitory furni
ture. making its product of substantial weight and very durable. It makes only stu
dent desks. desk chairs, and dressers. It also makes tables that are used in lounge 
space. The factory uses maple for exterior surfaces, where resistance to direct im
pact is important. and pine for interior applications. Limited amounts of maple and 
pine are available each month to the factory. Different amounts of maple and pine 
are required in each of the four pieces of furniture and the costs of the two woods 
are different as well. Table 2.2 indicates costs and availabilities of the resources as 
well as the board-feet of wood used in each of the four products. The selling prices 
of the four products are also included. For example, each desk chair that the com
pany produces requires 1.5 board-feet of pine and 4 board-feet of maple and sells 
for $100. A total of 4,000 board-feet of pine is available each month at a cost of 
$2.00 per board-foot. 

Assuming that labor and other resources such as shop and inventory space, 
and machines and tools are adequate, what items should the factory produce each 
month and what quantities of those items should be manufactured to maximize 
its profit? 
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TABLE 2.2 PRICES, COSTS, UTILIZATION FACTORS, AND SUPPLIES FOR EXAMPLE 2-2 

Desk 
Desks chairs Dressers Ta hies 

Item (I) (2) (3) (4) 

Pine 7 1.5 10 4 

Maple 15 4 22 10 

Revenue $150 $100 $250 $170 

Model Formulation. 

Let: x1 = the number of desks to make; 

X2 = the number of desk chairs to make; 

x3 = the number of dressers to make; and 

x4 = the number of tables to make. 

Amount 
availahlc Cost 
(hoard-ft) (S!hoard-ft) 

4000 2.00 

2000 4.00 

The constraint on the pine resource ensures that the amount of pine utilized is not 

greater than the amount available: 

7x1 + l.5x2 + 10x3 + 4x4 ~ 4000. 

I 

I 
I 

I 

It is interesting here to note that we are using a set of four simple linear 
models to predict the amount of pine that will be consumed in the four activities. 
That is, we are assuming that pine consumption in desk making is directly pro
portional by the factor of seven to the number of desks that will be made. The 
first desk, the last desk, and all desks in between will each consume 7 board-feet 
of pine. This is a predictive model of the form we discussed earlier and it is being 

embedded in the constraints of a prescriptive model. 
The constraint on maple limits the amount used in all four products to not 

more than the amount of maple available: 

15x1 + 4x2 + 22x3 + l0x4 ~ 2000. 

The cost of making these items in terms of the value of wood resources is the cost of 
pine times the amount of pine utilized plus the cost of maple times the amount of 

maple utilized. The appropriate cost function is computed as 

cost = 2(7x1 + l.5x2 + l0x3 + 4x4) + 4(15x1 + 4x2 + 22x3 + l0x4) 

or 

cost = 74x1 + l9x2 + l08x3 + 48x4. 
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Similarly, total revenue from sale of the items can be computed using a linear 
function of these same decision variables: 

revenue = 150x1 + 100x2 + 250x3 + 170x4 

so that profit Z, the difference between revenue and cost, is 

Z = 76x1 + 81x2 + 142x3 + 122.t4. 

The complete linear program to be solved can be summarized as 

Maximize Z = 76x1 + 81x2 + 142.t3 + 122.t4 

Subject to: 7x1 + l.5x2 + 10x3 + 4x4 :::; 4000 

15x1 + 4x2 + 22x3 + l0x4 :::; 2000 

Even though this is a very small linear program-one having only four deci
sion variables and two simple constraints-the optimal solution is not at all obvious. 
The maximum monthly profit for the furniture factory ( Z* = $40,500) would result 
from the manufacture of 500 desk chairs (x2* = 500) and no other products! Yet 
desk chairs do not seem, at first glance, the most profitable product line for the 
company-in the sense that their selling price is only two-thirds of the next higher 
priced item of manufacture. Examine the formulation and convince yourself that 
this production strategy would indeed make sense given the constraint equations 
and parameters given. You should be able to develop an explanation that you might 
use in making a production recommendation to the factory manager. 

Are there other factors that might be important in determining a final produc
tion strategy that have not been considered explicitly in your model? An important 
aspect of modeling is gaining an appreciation for both the strengths and limitations 
of models and their solutions. 

2.C.3 Example 2-3: Grading a Portion of a Highway-An Application of the 
Transportation Problem 

Problem Statement. A portion of a highway through hilly terrain is to be 
graded to elevations that meet acceptable standards of vertical curvature. That is, 
the slope and rate of change of slope of the road must be within preset bounds. To 
achieve this vertical alignment, an acceptably smooth curve is superimposed con
ceptually on the surface, resulting in two areas to be cut and three areas to be filled. 
The areas to be cut and the volume to be cut from them are listed in Table 2.3 as a1 
and a2. In a similar fashion, the areas to be filled and the volume of fill required, 
b1, bi, and b3, are also shown in Table 2.3. 

The remainder of Table 2.3 consists of blocks whose elements are the amounts 
to be transported from a particular cut area to a specific fill area. Since these 
amounts are not known in advance, each value is represented by a decision variable 
X;j whose subscripts (ij) indicate the amount transported from cut area i to fill area 
j. Thus, for example, X12 is the amount transported from cut area 1 to fill area 2. The 
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TABLE 2.3 REQUIREMENTS AND DECISIONS IN THE CUT-AND-FILL PROBLEM 

Fill areas (j) => Amount 

~cut areas (i) j = 1 
Relationship availahlc from 

j = 2 j = 3 of row sum cut area i 

i = 1 ~ u LlJ 
X11 X12 X13 

::::::; a I 

i = 2 ~ ~ ~ ~ a 2 X21 Xz2 X23 

Relationship of 
~ ~ ~ column sum 

Amount required 
bi b2 b3 for fill area j 

relations of the decision variables in the constraints can be inferred from their 
arrangement in the table. The two kinds of constraints are cut constraints and fill 
constraints. The cut constraints say that no more material can be transported from 
area i to the three fill areas than is available for cutting at area i. namely. a;. The fill 
constraints ensure that a certain amount of material, bj, is required to be supplied at 
each j from the two cut areas. 

Within each cell in Table 2.3 is a small square in the northwest corner of the 
cell. The number in the small square, cij, is the cost to transport one unit of material 
from cut area i to fill area j. The specific value reflects mainly the distance separa
tion between the two sites. Each value or cost is indicated, and this allows us to con
struct an objective function of minimum cost. Again, all variables must be positive 
or zero; none can be negative. More total volume of earth is available from cuts than 
is needed for fills, and any excess material can be used to build up the margin along
side the line of the road. 

Model Formulation. The problem we have just described is a form of the 
Transportation Problem, one of the very earliest linear programming problems to be 
formulated and solved. It is a problem on which both Koopmans and Kantorovitch. 
as well as others, worked in the earliest days of mathematical programming. 

The problem can now be stated, as read from Table 2.3, as follows: 

Minimize Z = c 11x 11 + c12X12 + c13x13 + c21X21 + c22X22 + C23X23 

Subject to: Xu + X12 + X13 :5 a1 

X21 + X22 + X23 :5 az 

X11 + 

X13 + 

I 
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The solution to this linear program would be an optimal strategy for trans
porting cut material from each roadway section requiring excavation to sections re
quiring fill so as to achieve the least-cost earthwork management plan. TI1is example 
differs from the previous ones in that the model constants-transport costs, section 
cut availability. and section fill requirements-are represented symbolically rather 
than numerically. While for this small example problem a symbolic representation is 
probably not necessary. an actual application of the transportation model may con
tain hundreds or even thousands or tens of thousands of sections, each with its own 
set of parameters. Symbolic notation allows even the largest of models to be formu
lated and specified in an efficient manner. 

2.C.4 Example 2-4: Designing a Building for Cost 

Problem Statement. A large company has decided to build a new office 
building on a large downtown site that it already owns. The building needs to pro
vide 400.000 square feet of space to accommodate the company's business, and the 
unimaginative CEO has chosen to have the building be square. 

A consultant to the company has provided a formula for the cost of construc
tion. To develop the formula. we let 

x = the length in feet of the side of the building, and 

z = number of floors of the building. 

The formula includes a cost of the foundation and a cost for the total square feet in 
the building. ll1e foundation formula suggests that the foundation cost is propor
tional to the footprint area multiplied by the number of floors raised to the (1/4)th 
power. that is~ 

Foundation cost = Ax2z114
• 

The area formula says that the portion of the building cost is directly proportional to 
the product of floor area and the number of floors raised to the (3/2) power: 

Building cost = Bx2z312 

so that the total cost = Ax2z114 + Bx2z312• 

ll1e company needs to determine the footprint and number of stories for their 
building so that cost is minimum and the floor space provided is 400,000 square feet. 

Model Formulation. The problem is cast as an optimization problem with a 
single constraint. Cost is to be minimum and floor space is 400,000 square feet. That is, 

Minimize Ax2z114 + Bx2z312 

Subject to: x 2z ~ 400,000. 
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Since we will not build the building larger than needed, the single constraint hc
comes an equality.1l1is problem has a nonlinear objective (hoth terms arc nonlin
ear) and a single nonlinear constraint. 

2.C.5 Example 2-5: Cleaning Up the Linear River 

Problem Statement. Two communities are on the Linear River shown in 
Figure 2.1. Each has been discharging its untreated wastewater. which is high in dis
solved organic material, into the Linear River. The biological oxidation of the organ
ic material by microbes results in low dissolved oxygen levels, foul odors. and a lack 
of desirable fish in the river. Dissolved oxygen levels above 5 milligrams per liter gen
erally reflect good stream health, but 6 milligrams per liter is better and 4 might be 
acceptable in some circumstances. The two communities have both agreed to clean 
up their wastewater by installing water pollution control plants. Their goal is to in
crease the dissolved oxygen levels in the river by removing the organic wastes from 
the wastewater. Because the organic wastes will be at lower concentrations. it follows 
that less dissolved oxygen will be demanded from the flowing river to degrade the 
wastes. The lower demand for oxygen from the river improves the dissolved oxygen 
levels and results in a more natural and perhaps even fishable river environment. 

The two communities have decided to share the costs of cleanup. so they are 
seeking the fractional removal levels for organics that will achieve dissolved oxygen 
levels above 5 milligrams per liter, but at the least total cost. By suitable calculation. 1 

the lowest dissolved oxygen level in the reach between communities 1 and 2 can be 
shown to be a linear function of the fractional organic removal (or efficiency) at the 
treatment plant at community 1. In a similar fashion, the lowest dissolved oxygen in 
the reach below community 2 can be written as a function of the fractional organic 

Community 1 

wastewater 
discharge 

Figure 2.1 The Hypothetical Linear River. The river receives wastewater discharges from Com

munity 1 and Community 2. 

1 See Re Yelle. Loucks. and Lynn, "A Management Model for Water Quality Control." loumal of 

the Water Pollution Control Federation (July 1967). 
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removals (efficiencies) of wastewater treatment at each of communities 1 and 2. 
These two functions are 

and 

where 

1.0 + O. le1 = lowest dissolved oxygen in the first reach 

2.0 + 0.02e1 + 0.02e2 = lowest dissolved oxygen in the second reach, 

e1 = the organic removal efficiency (in percent) of the 
treatment plant of community 1, and 

e2 = the organic removal efficiency (in percent) of the 
treatment plant of community 2 

For physical reasons, both efficiency levels must be greater than 35% (reflecting the 
removal of settleable solids). The communities have decided that the dissolved oxy
gen in the upper reach must be kept above 6 milligrams per liter, and the dissolved 
oxygen in the lower reach above 4 milligrams per liter. The cost-per-unit of efficien
cy at the first treatment plant is $20,000. The cost-per-unit of efficiency at the second 
treatment plant is $10,000. 

Model Formulation. The optimization problem is to minimize the total cost 
expenditure of the two communities subject to dissolved oxygen constraints. All ef
ficiencies must be zero or positive. That is, 

Minimize Z = 20,000e1 + 10,000e2 

Subject to: 1.0 + O.le1 ~6 

Modifying both constraints such that all terms containing decision variables are on 
the left of the relation and all constant terms are on the right of the relation, the con
straint set becomes 

e1 ~ 50 

e1 + e2 ~ 100 

s 2 ~ 35 

The solution for this problem is s 1 * = 50, e2* = 50, and Z* = $150, 000. 
That is, each of the two wastewater treatment plants on the Linear River is to 

operate at 50% efficiency. 
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2.C.6 Example 2-6: Selecting Projects for Bidding-A Zero-One 
Programming Problem 

35 

Problem Statement. A contractor has identified a set of eight major con
struction projects that are to be awarded on the basis of sealed bids. The contractor 
is reasonably confident of being able to submit the low bid on each of the projects, 
but does not have the resources to undertake all of them. The projects are large in 
scale, and each will require different levels of labor, materials, and equipment to 
complete. 111e contractor's labor and equipment resources are limited. Each bid 
also requires time and special expertise to prepare, and these are limited as well. 
111e question facing the contractor is which projects should be selected for bidding. 

The relevant data for each of the eight projects are presented in Table 2.4, includ
ing the time necessary to prepare a bid and the expected profit that would result from 
being awarded and completing each project. Estimates for the major resources needed 
for a particular project are also included. For example, project 3-the redecking of an 
urban bridge crossing a major river-would require a skilled labor input of about 4.000 
hours and the use of a very large crane during almost the entire project. The bid for this 
project would be the first of its kind undertaken by this contractor, and would thus take 
approximately 13 person weeks to prepare. The profit resulting from being awarded 
and successfully completing this project is estimated to be $100,000. 

The resources available to the contractor for preparing bids and completing 
projects that might be awarded are limited. The company owns three cranes, each of 
which is suitable for any of the projects. Only 30,000 hours of skilled labor are ex
pected to be available to the contractor during the period of the projects. A team of 
four project estimators will prepare all bids so that over the next three months, a to
tal of only 50 person-weeks is available. The company confidently assumes that it 
will win any bid that it prepares. Which projects should be pursued? 

TABLE 2.4 ESTIMATED RESOURCES NEEDED AND PROFIT FOR THE BIDDING PROBLEM 

Crane Required 
Time to Prepare Thousands of for the Project? Profit IF 

Bid Hours of Skilled (1 = yes) Project Won 
Project# (person-weeks) Labor Needed (0 = no) ($1000) 

1 8 6 1 80 

2 12 5 0 110 

3 13 4 1 100 

4 11 7 0 90 

5 9 8 0 70 

6 7 3 1 80 

7 8 4 1 90 

8 8 5 1 60 
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Model Formulation. The objective function for a model that will help ana
lyze this problem is the maximization of expected profit. As in previous models, the 
decision variables that we define must allow the computation of overall profit. Un
like those previous models, these decision variables are different in that, at optimal
ity, their values must be discrete values, either 1 or 0: 

Let: xi = 1 or O~ it is 1 if project j is selected for bidding, and 0 otherwise. 

These decision variables allow formulation of the maximum profit objective. They 
also allow formulation of the constraint on bid preparation time and the constraints 
on equipment and labor resources: 

Maximize Z = 80x1 + 110x2 + 100x3 + 90x4 + 70xs + 80x6 + 90x1 + 60xs 

Subject to: 8x1 + 12x2 + 13x3 + llx4 + 9x5 + 7x6 + Sx1 + Bxs s 50 

6x1 + 5x2 + 4x3 + 7 x 4 + Sx5 + 3x6 + 4x7 + Sxs s 30 

X3 + 

The optimal solution is x2* = x 3* = x5* = x 6* = x1* = 1, x1 * = x4* = x 8* = 0, 
resulting in a total expected profit of $450,000. 

The requirement that the decision variables in a linear program be restricted to 
the discrete values of 0 and 1 at optimality allows the formulation of more realistic 
models. It also provides the opportunity for the analyst to incorporate more complicat
ed logic in the model structure. For example, the following constraint might be added to 
the bid selection model because of the physical distance between the projects: 

This constraint would enforce the condition that, at most, two of projects 3, 5, and 6 
could be selected for bid preparation, but that none of these would be required to be 
selected. A complete discussion of integer linear programs, including their formula
tion and solution, is the topic of Chapter 7. 

2.C.7 Example 2-7: A Contest in Tent Design 

Problem Statement. A group of scouts who are interested in architecture 
are challenged with the following problem. They are given a tarpaulin that is 10 feet 
by 10 feet and are asked to construct a vertically symmetric tent with straight sides 
that is open on both ends. The tent will be supported by a single rope stretched be
tween two tent poles, and the sides of the tent will be anchored with tent stakes. Set
ting up a tent is a common problem for scouts. The challenge, however, in this 
special problem is to select the height of the tent poles-and the height of the tent
so that the volume under the tent is as absolutely large as possible. Since the tent is 
symmetric, we know that the side of the tent is five feet in length from peak to ground. 
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~odel Formulation. The scouts will likely have to experiment with differ
ent designs, perhaps using pencil, paper, and calculator. Our approach however is 
to let the unk~own height of the tent be represented by h and the bas~ of the t~nt 
{the cross sectional base) be b. The volume under the tent is the cross sectional area 
of the tent, which is 1/2bh, multiplied by the length of the tent. which, of course, is Io 
feet, so that the volume is 5bh. Thus the objective (which is nonlinear) is 

Maximize Z = Sbh. 

. The single constraint for the problem is the required relation between the 
var.iab~es b and h and the length of the side of the tent, namely ( b/2 )2 + Jz 2 = 52• 

which is the Pythagorean theorem. Hence the entire problem is to 

Maximize Z = Sbh 

Subject to: ( b/2 )2 + h2 = 52. 

Both the objective and the single constraint for this problem are nonlinear. The 
reader may wish to try to solve this problem; it is a relatively simple problem using 
the calculus and results in a tent height of 3.535 feet and a tent base of 7.071 feet. A 
simple sketch and division reveals that this gives a half tent base of 3.535, giving two 
adjacent isosceles right triangles as the cross section of the tent. 

2.C.8 Example 2-8: An Air Pollution Control Problem 

Problem Statement. The government of a small nation has relied on two 
coal-fired power plants to provide electricity to its two major cities. The power 
plants are distant from the cities, each of the power plants being at the mouth of a 
coal mine that provides its fuel. The plants were located at the mines to save on coal 
transportation costs and to prevent the sulfur dioxide from the plants from polluting 
the air of the cities. Tall stacks were placed at the plants to disperse and dilute the 
stack gases. A network of power lines exists to transport the electricity between the 
power plants and the cities. 

Unfortunately, because the plants were extremely large and had very high lev
els of emissions, high altitude winds were able to transport the pollutant from the 
plants across the downwind landscape-resulting in deposition of high sulfate levels 
at the cities. Now the government has determined that it wants to ··scrub'' sulfur 
dioxide out of the stack gases at the two plants to prevent the long-distance trans
port of the pollutant to the cities. For each plant and each city, there is. a ~ransp~rt 
coefficient that converts thousands of kilograms per month of sulfur d1ox1de emit
ted into the atmosphere to grams per month per unit area of sulfate deposition at 
each city. These transport coefficients are shown in Table 2.5. . 

Currently, power plants 1 and 2 are discharging 12,000 an~ 20,000 kilograms 
of sulfur dioxide per month, respectively. These two levels of discharge are to be 
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TABLE 2.5 TRANSPORT COEFFICIENTS 

City 1 City2 

Power plant 1 0.0075 0.0025 

Power plant 2 0.0025 0.0075 

cut back in a way that reduces the sulfate deposition at cities 1 and 2 to just 50 
grams/unit area per month. The cost of reducing emissions to yield this level of 
local deposition is to be as small as possible. The cost of reducing emissions at 
plant 1 and plant 2 is the same and equal to $1,000 per year per kilogram per 
month. 

Model Formulation. We create the following decision variables: 

x1 = the kilograms per month reduction at plant 1, and 

x 2 = the kilograms per month reduction at plant 2. 

The emissions at plant 1 and plant 2 are ( 12,000 - x1) and (20,000 - x2), respec
tively. This allows us to calculate the deposition at City 1 as 0.0075 ( 12,000 - x1) 

+ 0.0025(20,000 - x2 ) and the deposition at City 2 as 0.0025(12,000 - xi) 
+ 0.0075(20.000 - x2 ). Since both depositions are to be less than 50, we can derive 
the following constraints on sulfur dioxide reductions (the reader will want to check 
the calculation): 

(3/4)x1 + (1/4)x2 ~ 9000 and 

( 1/4 )x1 + (3/4 )x2 ~ 13,000 

which are solved under an objective of 

Minimize Z = l ,OOOx 1 + l ,000x2. 

2.C.9 Example 2-9: A Problem in Land and Species Preservation 

Problem Statement. An agricultural region, which has been threatened 
by suburban development, has been surveyed by wildlife biologists to determine 
whether a certain set of target species can be preserved by the setting aside of 
parcels that contain those species. The biologists know that they cannot recom
mend all the parcels in the region and that their suggestions will be viewed as most 
reasonable if they can offer the fewest number of parcels that preserve all of the 
four key species they have identified in the region. The map (Figure 2.2) shows the 
presence of species A, B, C, and D by parcel in the 9-parcel threatened region. 
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Model .Formulation. We let xj = 1 if parcel j is selected for preservation. 
and 0 otherwise. 

. Since species A needs to be preserved in at least one of the 9 parcels. we can 
wnte 

X1 + X3 + X5 ~ 1. 

Si~ce species B needs to be represented at least somewhere in the system, we would 
wnte 

X1 + X6 + X7 + Xg ~ 1 

and because species C and D also need representation, we write two additional con
straints, namely: 

X3 + X4 + X9 ~ 1 and 
X2 + X5 + X9 ~ 1. 

The objective is to choose the fewest number of parcels that ensure the representa
tion of species A, B, C, and D, or 

Minimize Z = x 1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9• 

The answer, which in this simple case can be obtained by inspection of Figure 2.2. is 
to select parcels 1 and 9; that is, x1 * = x9* = 1. 

CHAPTER SUMMARY 

We have examined a considerable number of diverse examples in which decision 
models can be drawn from relatively realistic but simplified cases. We have observed 
that decision support models can provide a mechanism that allows engineers to ex
plore the design and operations of civil and environmental systems. Management and 
planning alternatives can be evaluated in a systematic manner, allowing the explicit 
evaluation of different options. We saw that different modeling frameworks supported 
the formulation and analysis of problems displaying different characteristics. Some 



40 Models in Civil and Environmental Engineering Chap. 2 

modeling methodologies provide descriptions of how systems operate and thus how 
they might respond to changing conditions. Others provide recommendations about 
how a system should be managed to best achieve a desired outcome. Some models 
are designed to acknowledge the explicit stochastic nature of a system, while others 
assume that the system of interest is deterministic. or may safely be assumed so. The 
challenge for students of engineering systems analysis is to understand the strengths 
and weaknesses of available modeling methodologies, and to be able to adopt and 
adapt the most appropriate one for a given problem application. 

The focus of this book is the design and use of optimization models to study en
gineering decision making. Models of this type (1) specify a solution space consisting 
of all decision alternatives that satisfy a set of precisely defined constraint equa
tions. and (2) evaluate implicitly all of these alternatives using an objective function 
that measures how well a particular alternative within this solution space performs. 

These models are able to determine which alternative is "best" within the con
text of the assumptions being made about system structure and function. When the 
system being studied can be adequately represented by a system of linear constraint 
equations and a linear objective function, an efficient procedure is available for 
finding the optimal solution. A wide range of important engineering problems can 
be formulated and, therefore, solved in this manner. 

EXERCISES 

2.1. Consider a typical summer day in your hometown. List the public sector services that 
you encounter and try to envision the decision maker who is responsible for providing 
those services. For each service you are able to identify, list the major objectives in the 
mind of that decision maker while (s)he is developing management strategies. 

2.2. The administration of your college or university includes an office that is responsible 
for scheduling classes and making classroom assignments. What are the objectives be
hind the development and evaluation of different assignments? What are the con
straints within which these assignments are made? 

2.3. List five personal decisions you have made in the last 24 hours that could be specified 
within the framework of the mathematical program (for example, selecting what to 
wear today)~ and list the objectives and constraints you considered in identifying alter
natives and making your decision. 

2.4. Your city council has just approved the use of municipal revenues for building a new 
fire station that will also house a rapid-response paramedic unit and a rescue vehicle. 
You have been appointed as the citizens' representative to a committee that will select 
the location for this new facility. List, as specifically as you can, the objectives to be op
timized in selecting the location. Prioritize these objectives from the perspectives of 
each of the following groups: 

a. the mayor of your city 

b. the chamber of commerce for your city 
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c. the residents of your city 

d. the association of realtors in your city 

c. the merchants association in your city 
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2.5. The local transit authority has received a grant to expand its bus fleet by 30%. This ex
pansion will provide the opportunity for approximately ten new service routes. Suggest 
how an optimization model might be structured to assist with the design of these new 
routes and the modification of existing routes. 

2.6. Due lo demographic changes and the resulting reduction in tax revenues, your commu
nity school corporation is faced with the problem of closing one or more elementary 
schools, and redrawing service areas for those scheduled to remain open. Describe in 
general terms the structure of an optimization model that could be developed to help 
suggest an optimal strategy for school consolidation. Include in your description: 

a. what constraints should be considered in your model, 

b. what would be the most appropriate objective function for your model. and 

c. what data would need to be collected in order to build your model. 

If you had such a model, suggest how it might be used to address specific complaints 
that might arise regarding any one specific consolidation alternative. 

2.7. The solid waste landfill that serves your community is nearing capacity. The city council 
is starting to explore alternatives to avoid disruption in service. Options that have been 
proposed include 

a. expanding the existing landfill, 

b. buying land and building a new city-owned landfill, 

c. contracting with a company that will take waste out of the region. and 

d. building an incineration facility and. at the same time. expanding the existing recy

cling program. 

How would you structure an optimization model to help evaluate these alternatives? 
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CHAPTER 

3 A Graphical Solution 
Procedure and Further 
Examples 

3.A INTRODUCTION 

In this chapter we continue to explore the linear programming problem anJ its 
variations, but we also provide a first method of solution. The solution procedure 
we describe is easy to understand, but to use it, we need to restrict our attention to 
problems with two, or at most three decision variables. Such problems Jo occur. but 
rarely, and may be contrived. Nonetheless, the procedure demonstrates that these 
problems can be solved. More importantly, the procedure provides extremely valu
able insights about the geometric and mathematical properties of solutions to lin
ear programming problems. Using the set of geometric and mathematical insights 
as a foundation, we present in Chapter 4 a general algorithmic procedure that can 
be used to solve any linear program. This general procedure. as we will point out 
again, can be implemented by hand but, more significantly~ can also be coded for 
computer solution. 

In contrast, the method of solution demonstrated in this chapter is graphical in 
nature. We apply it to two different problems: the first (Example 3-1) is a problem of 
managing a materials production operation, and the second (Example 3-2) is a 
problem that seeks to allocate work effort efficiently between two mines. Although 
the two models we formulate to demonstrate the graphical solution procedure are 
quite different, their basic structures, as well as the solution procedure used to solve 
the models, are identical. This second example is then extended as Example 3-3. and 
the formulation is modified to incorporate a nonlinear objective function. 
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In addition to solving these small linear programs, we also present several 
additional problems and model formulations in this chapter (Examples 3-4 
through 3-7). Although these additional problems are too large to be solved 
graphically~ they represent additional examples of the flexibility and wide applic
ability of the linear program for use in engineering management. Later chapters 
will present systematic procedures for solving these increasingly sophisticated 
management models. 

3.8 SOLVING LINEAR PROGRAMS GRAPHICALLY 

3.8.1Example3-1: Homewood Masonry-A Materials Production Problem 

Problem Statement. Homewood Masonry is a small owner-operated firm 
that produces construction materials for the residential and commercial construc
tion industry in the region. TI1e company specializes in the manufacture of two 
widely used building products: ( l) a universal concrete patching product called 
HYDIT and (2) a decorative brick mortar called FILIT.111ese products are in great 
demand. and Homewood can sell all of the HYDIT it produces for a profit of $140 
per ton. and all the FILIT it can produce for a profit of $160 per ton. 

Unfortunately. some of the resources needed to manufacture these products 
arc in limited supply. First. the demand for both HYDIT and FILIT is due in large 
part to their special adhesive characteristics. which result from the use of a special 
ingredient in the blending process-Wabash Red Clay (from the banks of the 
Wabash River in Indiana). Each ton of HYDIT produced requires 2 cubic meters of 
this red clay. and each ton of FILIT produced requires 4 cubic meters. 

\\'abash Red Clay is in limited supply~ a maximum of 28 cubic meters of the 
clay is available each week. Second. the operator of the machine used to blend these 
products can work only a maximum of 50 hours per week. This machine blends a ton 
of either product at a time. and the blending process requires 5 hours to complete. 
Last. each material must be stored in a separate curing vat~ further limiting the over
all production volume of each product. The curing vats for HYDIT and FILIT have 
capacities of 8 and 6 tons. respectively. These resource limitations are summarized in 
Table 3.1. 

TABLE 3.1 RESOURCE REQUIREMENTS AND AVAILABILITY FOR THE HOMEWOOD 
MASONRY PROBLEM 

Resource HYDIT FI LIT Available 

Wabash Red Clay 2 m3/ton 4 m3/ton 28 m3/wk 

Blending time 5 hr/ton 5 hr/ton 50 hr/wk 

Curing vat capacity 8 tons 6 tons 

Profit $140/ton $160/ton 
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You. have been. hired to help with the development of a ~tratcgy for operating 
the matenal product10n process. What is the optimal production strategy for Home-
wood Masonry given these data? · 

Model Formulation. The formulation of a production model for the 
Homewood Masonry problem begins by translating the major clement~ of the 
~roblem as pre~entcd above into a pseudo-model: a word description of the equa
tions that we will need to capture the important clements of the prohlcm. In thi"i 
case, the objective of our model is to determine the amount of each product to 
make each week so as lo maximize the overall profits resulting from sales. while 
satisfying four production conditions: 

1. The total available supply of Wabash Red Clay cannot be exceeded each 
week; 

2. The blending machine cannot be used for more than 50 hours per week: 

3. 1l1e storage capacity for HYDIT may not be exceeded each week; and 
4. The storage capacity for FI LIT may not be exceeded each week. 

For a given solution to be feasible, it must satisfy all four of these constraint condi
tions simultaneously. For a given solution to be optimal, it must. in addition. provide 
the largest value for the objective function (total profit). For any linear program
ming formulation, the constraint relationships define feasibility. while the objective 
function is used to determine optimality. 

To translate the pseudo-model into a linear program, it is necessary to define 
the decision variables that will be used in the model. In this case we might first ask 
ourselves the following question: In determining a production policy for the manu
facture of HYDIT and FILIT, what is the set of decision variables that the produc
tion engineer controls? Clearly, the engineer does not control profit-per-volume of 
product sold (at least not directly), nor does he/she control the availability of 
resources. As the problem is stated, the engineer is faced with the decision of how 
much of each product to manufacture. Indeed, we assume that the engineer has total 
control over, and responsibility for, this decision. 

Let: x1 = the number of tons of HYDIT to produce each week. 

x2 = the number of tons of FILIT to produce each week. 

We may now write an expression for total profit as a function of weekly sales as 

follows: 

total weekly profit = 140x1 + l60x2 

or, written as the objective function for our model, 

Maximize Z = 140x1 + 160xz. 

This expression will be used to evaluate a (generally, very large) number of feasible 

problem solutions. 
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We can use these decision variables to write general expressions that will 
relate any possible level of production to the resulting level of resource usage. For 
example, the total volume of the red clay resource that will be used for a given pro
duction strategy is a linear function of production volumes of our two materials as 
presented in Table 3.1: 

total red clay used = 2x 1 + 4.rz. 

Because our production strategy may be constrained by the availability of this ma
terial, our model must include an explicit constraint on the consumption of red clay: 

Similarly, we can write expressions for the usage of the blending machine as a func
tion of production: 

total blending machine time = 5x1 + 5x2 

or, written as a linear constraint: 

5x1 + 5x2 :::; 50. 

Finally. two additional model constraints will ensure that storage for the materials 
will not be exceeded: 

or 

HYDIT produced each week :::; 8 tons, 

FILIT produced each week :::; 6 tons, 

X1 $ 8, 

The complete linear program for the Homewood Masonry production model 
may now be presented: 

Maximize Z = l 40x 1 + l 60x2 

Subject to: 2x1 + 4x2 :::; 28 

5x1 + 5x2 :::; 50 

X1 $ 8 

Xz $ 6 

~e last term in ou~ formulati~n restricts our decision variables from taking on neg
ative values. Negative product10n of one type of material is not physically feasible
even though doing so in a theoretical sense might result in more resources being 
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availa?l.e lo m~nufac~ure a~ additional amount of the other material. Non-negativity 
of dec1s1on. variables 1s an important assumption that will be more fully appreciated 
when we discuss the algorithm used to solve linear programs having large numhers of 
decision variables. 

Because this model formulated to solve the Homewood Masonry production 
problem uses only two decision variables, we can solve this problem graphically as 
presented in 3.B.2. 

3.8.2 A Graphical Solution for the Homewood Masonry Problem 

Problems containing fewer than four decision variables can be solved graphically 
because the solution space for all possible combinations of these variables can be 
mapped into 2-space in the case of two variables, and 3-space in the case of three 
variables. In addition, that solution space can be further partitioned by plotting the 
constraint equations. Finally, the objective function can be plotted and used to find 
the optimal solution. 

Consider a solution space for the Homewood Masonry problem as presented 
in Figure 3.1, where the total volume of production of HYDIT is plotted on the hor
izontal axis (xi), and the total volume of production of FILIT on the vertical axis 
(x2 ). All possible combinations of production levels can be represented within this 
space. Next, each constraint equation from our model can be plotted as a line con
taining all points that satisfy that equation with strict equality. All points on one side 
of these lines-the side indicated by the open arrow-satisfy the original inequality. 
while all points on the other side of these lines violate that constraint. In the case of 
an equality constraint, only points falling directly on the corresponding line would 
satisfy that condition. 
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Figure 3.1 Feasible solutions for a linear 
programming problem are those points 
that satisfy all constraints simultaneously: 
the shaded region in the graph above. Note 
that the boundary of the feasible region is 

feasible. 
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The feasible region for a linear program is defined as the set of solutions 
(values for the decision variables) that satisfy all constraint equations, including 
non-negativity conditions, simultaneously. The feasible region for the Homewood 
Masonry problem is thus the shaded area of Figure 3.1. Convince yourself that the 
solution space for a linear program will always consist of one of three possibilities: 
(1) an infinite number of feasible solutions, (2) a single feasible solution, or (3) no 
solutions (it is possible that no point satisfies all constraints). 

After the feasible region has been identified (graphed), the objective function 
can be used to evaluate all feasible solutions. Figure 3.2 shows the feasible region for 
the Homewood Masonry problem with the objective function, Z = 140x1 + 160x2, 

plotted at four different locations in decision space: Z = 0, Z = 560, Z = 1120, and 
Z = 1480. Note that each of these dotted lines is parallel to all of the others. TI1is is 
because, regardless of the value of the objective function at a particular solution, the 
slope of the objective function line is constant, as determined by the coefficients 
that multiply the decision variables in the objective function. 

At the lower left-hand portion of Figure 3.2, the line representing the objec
tive function is plotted passing through the origin (x1 = 0, x 2 = 0) such that each 
point on this line will produce a value of zero for the objective function Z. Note that 
the only point on this line segment that is feasible (intersects with the feasible re
gion in decision space) is the origin. 

Next, we plot the objective function gradient passing through the points ( 4, 0) 
and (0, 3.5). These points. as well as all points on that line, result in a value for the ob
jective function of 560, which, because we are maximizing the objective function, is 
an improvement over the first objective function. Furthermore there are an infinite 
number of feasible solutions that give this same value for the objective function-all 
points on the line segment joining ( 4. 0) with (0, 3.5) are feasible and give an objective 

Figure 3.2 As the objective function is 
passed through the feasible region from 
the origin, the value of the objective 
function increases. Because the objective 
function is being maximized, the point at 
which it last intersects the feasible re
gion is the optimal solution. 
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fun~tion v~lue of 560. We continue to "move" the objective function line in the di
rection of improvement-upwards and to the right in this case (or Northeast), as in
dicated by the solid arrow near the "Direction of Objective Function Improvement .. 
notation on the graph. 

As we move the line, we can graphically evaluate the objective function value 
at all points in the feasible region. That point where the objective function. in its 
movement to the Northeast, last intersects the feasible region is the feasible solution 
that provides the best (optimal) value of Z while still satisfying all problem con
straints. This point is thus the optimal solution to this problem: in this example. that 
point is Xi = 6, x2 = 4 with an objective function value Z = 1480. It should be 
obvious that the point x1 = 0, x2 = 0 would be the optimal solution if the prob
lem were a minimization problem, though the feasible region and the objective 
function line would be the same. Note, also, that the optimal solution occurred ··on 
the edge" of the feasible region-in this situation at just a point, although it might 
have occurred along a line (or in 3-space along a plane). The optimal solution. it 
turns out, will always occur at a point, an edge or a plane. 

The models that can be solved graphically are generally too small to be of 
practical value. Nonetheless, the visual solution procedure just described is enor
mously important in understanding how analytical solution methodologies work. 
The concepts of feasibility and optimality are precisely the same regardless of 
problem size. And the occurrence of the solution along a plane or line or at a point 
carries over to the largest of problems. 

3.B.3 Types of Linear Programming Solutions 

Whenever a linear programming model is formulated and solved, the result will 
be one of four characteristic solution types. The graphical framework just devel
oped while solving the Homewood Masonry problem is useful for visualizing 
these solution types. 

Problems Having Unique Optima. The solution to the Homewood Mason
ry problem was achieved by (1) graphing the feasible region in decision sp~ce. 
(2) plotting the line of the objective function on the same grap?,_and (~)then sh1ftmg 
the objective function line in the direction of improvement until it last mtersected_the 
feasible region (see Figure 3.3a). In this case the intersection between the feasible 
region and the set of points satisfying the equation 

140x1 + l60x2 = 1480 

consisted of a single point x1 = 6 and x2 = 4. This point is the only point on th~s 
line that satisfies all constraint equations simultaneously. Co~se~uen~ly, the opti
mal solution to the linear program is a unique one; the solution is said to have a 
unique optimum or unique optimal solution. It is ~ossible, however. t.hat more than 
one solution (perhaps an infinite number of solut10ns) would be optimal. 
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Fi~urc 3.3 Sol\'ing a linear program results in one of four possible outcomes: (a) problems having 
unique optima (a single optimal solution). (b) problems having alternate optima, (c) problems having 
no feasible solution. and (d) problems that are unbounded. 

Problems Having Alternate Optima. As demonstrated in the previous 
section. the orientation of the objective function in decision space is determined by 
the coefficients that multiply the decision variables. For example, if the coefficient of 
x2 in the original objective function is decreased relative to the coefficient on x1' the 
slope or gradient becomes steeper (more negative). Suppose the original objective 
function were replaced by 

Maximize 140x 1 + l 40x2 

and the problem were resolved graphically. Then the intersection of the objective 
function line and the feasible region at optimality becomes a line segment as shown 
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in Fig~rc 3.3b, and all points on the ]inc segment connecting the points ( 6.4) and 
(8,2) yield the same value for the objective function and satisfy the equation 

140x1 + 140x2 = 1400. 

This problem thus has an infinite number of optima] so]utions. or is said to 
have alternate optima. Alternate optima are actually more common as the size of the 
linear programming problem (number of decision variables and constraints) in
creases, and it is of value to be able to recognize their presence. It will be important 
in our discussion of a general solution procedure for Jinear programs to identify the 
conditions that signal the presence of alternate optima] solutions. This topic will be 
taken up in Chapter 4. 

Problems Having No Feasible Solution. It is possible that there arc no 
feasible solutions for a given problem formulation. This can occur quite naturally 
when constraints conflict with one another, or the condition may be due to errors in 
formulating logical constraints. Such a condition can also occur because of mistakes 
in entering a problem formulation to a model solver (computer program). In any 
event, the problem is observed to be overconstrained to the extent that there is no 
solution satisfying all constraints simultaneously. 

Figure 3.3c shows three constraints of a hypothetical model plotted in decision 
space in such a way that there is no feasible solution; the problem is said to be 
infeasible. When solving linear programs graphically, infeasible solutions are easy to 
detect and avoid-because the problems are so small and relations can be seen. In 
larger problems, it is sometimes difficult to identify if the model is incorrectly for
mulated, or if an input data coding error has been made. Such obvious errors as an 
incorrect relation, or a more subtle error such as a typographical error in a variable 
name, are tough to spot visually. We will discuss in Chapter 4 how infeasible solu
tions are detected by generalized solution procedures. 

Problems That Are Unbounded. Just as infeasible problems result from 
problems that are overconstrained, we may also encounter problems that are un
derconstrained. For example, consider the feasible region of a hypothetical problem 
presented in Figure 3.3d. As before, the feasible region is shown shaded and 
constrained by three constraints. The objective function line and its direction of im
provement are also shown. Note that for any feasible solution in this decision 
space, we can always find another solution that gives a better value of the objective 
function such that the objective function for this problem could be moved upwards 
and to the right without limit. Such a problem is said to be unbounded. This situation 
can also be identified by the solution procedure to be presented in the next chapter. 
Like infeasible solutions, unbounded solutions generally indicate that logical or 
typographical errors have been made in model ~ormulation or in~ut. Detection o~ un
bounded solutions when using analytical solution procedures will also be described 

more fully in Chapter 4. 
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3.8.4 Example 3-2: Allocating Work Effort at Two Mines 

Problem Statement. A company that produces both copper and nickel 
owns two mines whose ores contain both minerals. The two mines have different 
costs and different production rates. Furthermore, their products are different as 
well. The following data describe the mines and their outputs: 

Fraction of ore of mine 1 that is copper = 0.025 

Fraction of ore of mine 2 that is copper = 0.015 

Fraction of ore of mine 1 that is nickel = 0.00875 

Fraction of ore of mine 2 that is nickel = 0.035 

Tons of ore per day produced by mine 1 = 1600 

Tons of ore per day produced by mine 2 = 1000 

Cost in thousands of dollars to operate mine 1 daily = 3 

Cost in thousands of dollars to operate mine 2 daily = 9. 

From these data we can calculate the tons of ores that can be produced for each day 
of operation of each of the mines. For example, the tons of copper produced per day 
from mine 1 is 

fraction copper from mine 1 x daily tons of ore from mine 1 

or 

0.025 x 1600 = 40. 

Tons per day of copper from mine 2 and tons per day of nickel from each mine are 
calculated in a similar fashion. 

The company has contracted to provide 100 tons per week of copper and 140 
tons per week of nickel. Daily operating costs have been estimated at $3,000 and 
$9.000 for mine 1 and mine 2. respectively. We will assume that neither mine can be 
in operation for more than 5 days per week. A summary of these problem data is 
provided in Table 3.2. Our goal is to set up a linear program that will show the com
pany how to meet its contract obligations at least total cost. 

TABLE 3.2 PARAMETERS FOR THE MINING PROBLEM 

Weekly 
Resource Mine 1 Mine 2 Requirements (tons) 

Daily tons of copper 40 15 100 

Daily tons of nickel 14 35 140 

Daily operating costs($) $3000 $9000 
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Model Formulation. To formulate a production model for the mining oper
ation problem, we again begin with a pseudo-model. The objective of our model i~ to 
determine a strategy for operating both mines so as to minimize total operating 
costs. 

Minimize total operating cost while adhering to all production constrainh: 

• At least I 00 tons of copper must be mined each week: 

• At least 140 tons of nickel must be mined each week: 

• Mine 1 may not be operated more than 5 days each week: and 

• Mine 2 may not be operated more than 5 days each week. 

As the problem is specified, mining cost is a function of the number of days 
that each mine is operated. Indeed, the manager of the operation is responsible for 
deciding how many days each mine wi11 be in operation during a given week. Our 
model decision variables are defined accordingly. 

Let: x 1 = number of days per week that mine 1 is operated. and 

x2 = number of days per week that mine 2 is operated. 

Total weekly production cost in thousands of dollars may be expressed as a linear 
function of these decision variables: 

total cost = 3x1 + 9xz. 

The tons of copper per week from mines 1 and 2 may then be computed as 

weekly copper production = 40x1 + 15x2 

and our model must ensure that at least 100 tons are produced each week. The cor
responding constraint equation is thus 

40x1 + 15x2 ~ 100. 

Similarly for total nickel production: 

weekly nickel production = 14x1 + 35x2 

which must be at least 140 tons per week: 

14x1 + 35x2 ~ 140. 

Two additional constraints must be included in our model to res.trict the operation 
of each mine to no more than 5 days each week. The complete lmear program for-

mulation for the mining operation problem is then: 
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Minimize Z = 3x1 + 9.tz 

Subject to: 40x1 + 15.t2 ~ 100 

14x1 + 35x2 ~ 140 

X1 :5 5 

X2 :5 5 

X1.Xz~O. 

Chap. 3 

Problem Solution. Because the mining problem has two decision variables. 
a graphical solution is again possible by first plotting the model constraints to de
scribe the feasible region. and then evaluating the goodness of all feasible solutions 
using the objective function. Titc graphical solution for this example problem is 
presented as Figure 3.4. 

As with the previous example. the f casible region for the mining operation 
problem is shown as the shaded portion of the solution space. Note. in particular. 
that the f casiblc region includes four comer points-points at which pairs of con
straint equations arc satisfied as strict equalities. Titese points are labeled A, B, C. 
and D in Figure 3.4 and in Table 3.3. In this example. the solution that satisfies all 
constraints and that provides the smallest value of the objective function is the opti
mal solution-point D. Perhaps you have figured out that an alternate solution 
method might be to solve each of the pairs of constraint equations for x 1 and x2 and 
simply select that solution having the lowest value. Indeed. there will always be an 
optimal solution for a linear program at one (or more) of these corner point 

Fi~urc 3.4 Graphical so
lution to the problem of 
allocating effort between 
two mines. 
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TABLE 3.3 PARAMETERS FOR THE MINING PROBLEM 
-·--- ---

Comer Point X1 \"; < Jh1cct1h· f·unct111n \',du 
-4--------

A I J/17 .l 9/17 Y~.2'J 

B .5/8 5 -!f1.K:"i 

c 5 5 6(J.()() 

·-- -----.j 

D 5 2 1.l(J() 

solutions. You can see this property from the graphical solutions for hoth exampk 
problems, and later, we will discuss the special properties of a linear pro£!ram that 
ensure this property. ~, 

Unfortunately, for all but very small linear programs. there arc so manv of 
these extreme point solutions that it is impossible to enumerate them all. cn;n ~~•ith 
the most sophisticated computer technology. Consequently. we must rely on efficient 
analytical solution methods that don't require the identification of all corner point 
solutions. Fortunately, there exist very powerful procedures that can solve lint.:ar 
programs having tens of thousands of variables and constraints. with verv little com
putational effort. The most widely used of those methodologies will be presented in 

detail in Chapter 4. 

3.C MORE EXAMPLE PROBLEMS 

3.C.1 Example 3-3: The Mining Company Problem with a Nonlinear 
Objective Function 

The mining company that we described in Example 3-2 is now negotiating contracts 
with several new customers that would increase its weekly requirement for produc
ing copper to 330 tons and nickel to 225 tons. To do achieve this rate of production. 
management might have to operate one or both mines on the weekends. which 
would mean increased labor costs. It is estimated that these costs would be $6.000 
per weekend day for mine 1 and $12,000 per weekend day for mine 2. How can we 
modify our model to incorporate this new information? 

As a first step, we might draw the cumulative cost curve for the operation of 
mine 1 as a function of days worked and then the cumulative cost curve for the op
eration of mine 2 as in Figure 3.5. Next, we define two new decision variables that 
will allow this additional cost information to be incorporated explicitly into our 

model. 

Let: y
1 

= additional (weekend) days that mine 1 is operated. and 

Y2 = additional (weekend) days that mine 2 is operated 

where both y
1 

and Y2 are limited to two days or less. The objective function and 

constraints for this problem are now 
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Figure 3.5 Modified cost function for the 
mine operation problem. 
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Days of operation 

Minimize Z = 3x1 + 6y1 + 9x2 + 12)'2 

Subject to: 40x1 + 40y1 + 15x2 + 15y2 ;::: 330 

14x1 + 14y1 + 35x2 + 35y2 ;::: 225 

Xi :5 5 

Y1 :5 2 

X2 :5 5 

Y2 :5 2 

Because this model has more than three decision variables, it is not possible to plot 
the feasible solution nor to solve the problem graphically. However, computer pro
grams for solving such a problem are widely available for virtually any computer. 
The computer generated solution for this problem is 

x7 = 5, x; = 3.7, y~ = 1.9, y; = 0, and z* = $60,000. 

That is~ to fulfill contractual obligations at the least possible total cost, mine 1 will 
operate 5 days during the week and 1.9 days on the weekend, while mine 2 will only 
operate 3.7 days during the week and will not operate on weekends. 

This model is slightly larger than that presented in Example 3-2, but its overall 
structure is identical. Yet the problem that the model addresses is more realistic be
cause the cost function-which is actually the sum of two nonlinear functions-more 
accurately reflects the true costs faced by company management. Does this solution 
make sense? You should also consider the following questions: 
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1. How difficult would it be to identify this solution using an exhaustive search 
procedure? 

2. How difficult would it be to modify this model to incorporate changes in para
m~ters such as ore production rates, operating costs, changing demand re
qmrements, and so on? 

3. Why can an optimal solution still be obtained by linear programming even 
though the cost function is nonlinear? 

3.C.2 Example 3-4: The Thumbsmasher Lumber and Home Center 

Part I-Producing Paints of Various Qualities Using Ratio Constraints 

Problem Statement. The Thumbsmasher Lumber and Home Center is so 
large that it produces its own brand of paint. This problem is concerned with the 
development of a strategy for the 11mmbsmasher company in making its brand of inte
rior latex paint. Its interior latex paint is available in two product forms known by the 
staff as "economy interior" and "superior interior." The home center purchases three 
qualities of latex base, A, B, and C, which it blends to make the two paint products. The 
blending process follows a set of rules for the proportions of latex bases in each of the 
two paints. The specifications are given in Table 3.4. Also in the table are the monthly 
availability and prices of the latex bases and the prices of the two paint products as they 
are sold from the home center. For example, Thumbsmasher can purchase up to 2000 
gallons of Latex base A each month at a unit price of $2.50 per gallon. Economy interi
or paint consists of at least 20% of this substance but not more than 60% of Latex base 
C. Each gallon of Economy interior paint produced can be sold for $9.00. 

The paint staff at Thumbsmasher's central headquarters wishes to blend the 
three latex bases to produce the two paints in such a way that profit is maximum. 
Profit is defined here as the difference between the revenue from the sale of the 
paint and the cost of the base material that goes into it. The task is to formulate a lin
ear program that will help to determine the exact blends for maximizing total profit. 

Model Formulation. The objective function for this model is composed of 
the difference between revenue and cost. Revenue is the product of price times the 
gallons of superior paint and price times the gallons of economy paint. Because the 
cost of each gallon of product depends on the fraction of latex base of each type 
that is used, we must define our decision variables to be able to identify these paint 

mixture components: 

Let: xAE = the number of gallons of Latex A used in the economy paint; 

xAs = the number of gallons of Latex A to be used in the superior paint: 

xBE = the number of gallons of Latex Bused in the economy paint: 

x
85 

= the number of gallons of Latex B to be used in the superior paint: 

xcE = the number of gallons of Latex C used in the economy paint: and 

Xcs = the number of gallons of Latex C to be used in the superior paint. 
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TABLE 3.4 PAINT SPECIFICATIONS FOR THE TWO PAINTS 

-Latex A Latex B Latex C Price/Gallon 

-
Cost ($/gallon) 2.50 2.00 1.00 

-
Economy 2:20% None :S60% $9.00 

-
Superior ~50% 2!:20% :SlQo/o $15.00 

-
Amount available 

2000 1500 3000 
(gallons/month) 

Total revenue is the product of price times the gallons of superior paint-total 
volume of all constituent bases-plus price times the gallons of economy paint 
produced: 

total revenue = 15.00 (xAs + x8 s + Xcs) + 9.00(xAE + xsE + xcE)· 

Similarly, cost is the sum of the price of each latex base times the amount of each la
tex base used: 

total cost = 2.5 (xAE + xAs) + 2.00(xnE + Xss) + 1.00(xcE + Xcs). 

When revenue is subtracted from cost, the profit objective function can be written as 

Maximize Z = l2.50xAs + 6.50xAE + 13.00x8 s + 7.00x8E + 14.00xcs + 8.00xCE· 

Next, a set of constraints must be provided to control the quality of the paint mix
tures: at least 20% of Economy interior paint must be made up of Latex A: 

XAE ~ 0.2; 
XAE + XnE + XcE 

at least 50% of Superior interior paint must be made up of Latex A: 

at least 20% of Superior interior paint must be made up of Latex B: 

Xss 
------- ~ 0.2; 
xAs + Xns + Xcs 

not more than 60% of the Economy interior paint can be made up of Latex C: 

XcE ~ 0.fr 
XAE + XBE + XcE ' 

I 
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and not more than 10% of Superior interior paint can be made up of Latex C: 

Xcs 
------ :5 0.1. 
XAs + XBs + Xcs 

Limits on the availability of the latex bases must also be considered. That is, 

XAE + XAS :5 2000 

XsE + xas :5 1500 

XCE + Xcs :5 3000. 

59 

The first five constraints must also be expressed in linear form using the fol
lowing translation: 

XAE 
------- 2: 0.2 
XAE + XsE + XcE 

which is equivalent to 

or 

O.SxAE - 0.2x8 E - 0.2xcE 2: 0. 

Hence the entire problem formulation can be written as 

Maximize Z = 12.SOxAs + 6.50xAE + 13.00xss + 7.00xBE + 14.00xcs + 8.00xcE 

Subject to: O.Sx AE - 0.2x8E - 0.2xcE ;;::: 0 

O.Sx AS - 0.5x8 s - O.Sxcs 2: 0 

- 0.2x AS + 0.8x8 s - 0.2xcs 2: 0 

-0.6xAE - 0.6XaE + 0.4xcE :5 0 

-0.lxAs - 0.lx8 s + 0.9xcs :5 0 

XAE + XAS :5 2000 

XBE + XBS :5 1500 

xcE + xcs :5 3000 

x AE' x AS' XaE' Xss, XcE, Xcs 2: 0. 

The optimal solution to this problem is. x~s = 90~, x~E = 110?, x~s = 72~, 
* - 780 * = 180 and x * = 2820 with a resultmg total profit of approx1-

x8E - ' Xcs ' . CE ' 

mately $58,300. 
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TABLE 3.5 COMPOSITION OF SOURCE AGGREGATE MATERIALS -
% Coarse % Fine % Sand Cost ($/lb) 

Source l 35 30 35 

Source 2 IO 50 40 

Source 3 60 30 10 

Source 4 50 35 15 

3.C.3 Example 3-5: Mixing Gravels to Produce an Aggregate: A 
Multiobjective Optimization Problem 

-
.20 

-
.30 

-
.45 

.65 

Problem Statement. An aggregate mixture of a defined composition is 
needed for a very large construction project. The composition is not exact, but con
sists of target ranges of coarse material, fine material, and sand. Coarse material 
should be present in no greater proportion than 55%, but should at least compose 
48 % of the mixture by weight. Fine materials should be in the range of 30-35 % by 
weight. and sand should be in the range of 15-20% by weight. 

No single source of material that is available for the project meets these re
quirements. but the material from a number of sources can be blended to produce 
the desired composition. The sources from which the raw material for blending is 
purchased are listed in Table 3.5 along with the costs for each unit of raw material 
and the composition as taken from the source. Because it would be too costly to 
separate the raw materials at each source into their constituent parts and reblend 
them into their desired mixture, raw input materials from each source are to be 
purchased. 

For example. each pound of material from Source 3 costs $0.45 and is guaran
teed to contain 60% Coarse material, 30% Fine material, and 10% Sand. The costs 
include the cost to dig, refine. and transport the material from each of the sources to 
the project. Materials from one or more sources will be purchased and used to blend 
construction products whose composition falls within the specified ranges. Formulate 
a linear program that will suggest an optimal strategy for acquiring raw materials. 

Model Formulation. The decision variables are the amounts of raw material 
to be purchased from each source for every unit, say 1,000 pounds, of final aggregate 
mixture to be blended. For the purposes of this problem, it is too costly to separate the 
levels of size and then reblend them in the desired mixture. 

Let: x1 = amount in pounds of material to purchase from Source 1; 

x2 = amount in pounds of material to purchase from Source 2; 

x3 = amount in pounds of material to purchase from Source 3; and 

X4 = amount in pounds of material to purchase from Source 4. 
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The 0 ?vi?us objective is to minimize the cost of aggregate. The first and obvi
ous constra~n.t IS ~hat 1,000 pounds of the aggregate mixture are to be made. Second. 
~h~ compos1t1on m terms of coarse material must be in the range of 48 to 55%. That 
Is, m 1,000 pounds of the aggregate, coarse material must constitute at least 480 of 
those pounds but no more than 550 pounds. In a similar fashion, the fine materials 
can range from 300 to 350 pounds, and the amount of sand must be between 150 and 
200 pounds. TI1e complete model formulation is 

Minimize Z = 0.20x 1 + 0.30x2 + 0.45x3 + 0.65x4 

Subject to: x 1 + x2 + x3 + x4 = 1000 

0.35x1 + O.lOx2 + 0.60x3 + 0.50x4 2:: 480 

0.35x1 + O.l0x2 + 0.60x3 + 0.50x4 $ 550 

0.30x1 + 0.50x2 + 0.30x3 + 0.35x4 2:: 300 

0.30x1 + 0.50x2 + 0.30x3 + 0.35x4 $ 350 

0.35x1 + 0.40x2 + O.l0x3 + O.l5x4 2:: 150 

0.35x1 + 0.40x2 + O.l0x3 + 0.15x4 $ 200 

The solution to this problem is x~ = 400, x; = 0, xi = 600, and x~ = 0 with 
z* = $350. 

Although the cost minimization objective function used in this model is some
what obvious, the supervisor of the aggregate plant has other management concerns. 
Sources 1 and 3 are, in fact, only reachable via a disputed right-of-way across private 
land. The manager would like to create a leastcost aggregate, but would also like to 
minimize the amount of material taken from Sources 1 and 3, because each truckload 
from these sources creates a risk of confrontation. In particular, the manager would 
like to know the shape of the tradeoff surface between cost and combined amount 
drawn from Sources 1 and 3. If total cost does not increase substantially with a 
decrease in the volume purchased from Sources 1 and 3, the manager might pref er a 
more costly but less risky solution. 

While the constraint set and, therefore, the feasible region resulting from 
this modification to the original problem are unchanged, the problem now has two 
distinct objective functions: 

minimize total cost ( Zi) = 0.20x1 + 0.30x2 + 0.45x3 + 0.65x4 

and 

minimize amount purchased from Sources 1and3 (Z2) = Xi + x3. 

The tradeoff relationship between these objectives is shown in Figure 3.6. Solution 
A is the cost minimization solution (z; = 350 with x; = 400 and x; = 600) found 
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Figure 3.6 Tradeoff relationship between 
objectives in the gravel mixing problem. 

N 100 200 300 400 500 600 700 
Z 1-Total cost of raw materials ($) 

previously. The value for Z2 at this solution is 1000 (x1 =400, x3 = 600). Solution F 
is the optimal solution found when objective Z2 is substituted for Z 1 and the prob
lem resolved (z; = 0 because x~, xi = 0 but the value of Z1 at this solution is $650). 
Solutions B. C. D, and E represent other possible management strategies that reflect 
tradeoffs between these two objectives and may be selected by the engineering 
manager as best compromise rather than optimal solutions. 

Problems having multiple and conflicting management objectives are common in 
the realm of public sector engineering management. In fact, it is difficult to cite a major 
civil or environmental investment that does not have multiple management objectives 
and usually multiple decision makers as well. The focus of Chapter 5 is a framework for 
analyzing problems having multiple objectives, and presents a systematic procedure for 
finding a set of best compromise solutions for which no better solutions exist. 

3.C.4 Example 3-6: A Recycling Program Shared by Neighboring 
Communities 

Three communities, A, B. and C, that are not too distant from one another are indi
vidually considering recycling programs/projects. Thoughtful citizens in the three 
communities have suggested that cost savings might result if the towns cooperate in a 
joint project to be located somewhere between the three. Others have suggested that 
some pair of towns may be suited to cooperate, but not all three. The towns have a 
tradition of independence that suggests that cooperation may not be in the cards, 
even if some coalition appears cost-effective in that it provides savings to the joint 
participants. The least excuse could sink a cooperative project because of the tradi
tion the towns have of going it alone. 

The planning boards of each of the towns have voted jointly to engage an engi
neering consultant to evaluate and compare five alternatives. These five alternatives, 
shown in Figure 3.7, are 
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CityB 

Cc= $2.2 
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Figure 3.7 Each of three 
cities has four options and as
sociated costs for communitv 
recycling programs. The leas-t
cost regional solution is the 
development of a facilitv that 
would he shared by all ~ities: 
total cost = $3.6 million. 

1. A, B, and C operating independently of one another, each with their own recv-
cling project; · 

2. A and B cooperating in a joint effort called AB while C acts alone; 
3. B and C cooperating in a joint effort called BC, while A acts alone: 
4. A and C cooperating in a joint effort called AC, while B acts alone; and 
5. A, B, and C cooperating in a unified project, called ABC. 

As the situation turns out, the joint project consisting of A, B, and C in a com
mon venture is the most cost-effective alternative. Costs in millions of dollars of all 
the alternatives, including go-it-alone costs, are shown in the figure. 

The grand coalition is clearly to be preferred from a cost standpoint. Neverthe
less, it still is possible for the cost shares to be allocated in inequitable and inefficient 
ways, ways that cause the potential participants to decline to join. For instance. be
cause the cost of the grand coalition is 20% less than the sum of the go-it-alone costs. 
we could try to distribute that 20% savings to each of the potential participants. That 
is, each participant gets a 20% discount from its go-it-alone cost. This distribution of 
savings ensures that the money collected from the three communities will be enough 
to pay for the grand coalition. This efficient regional solution would allocate a cost of 
$0.8 million to A, $1.04 million to B, and $1.76 million to C, for a total of 3.6 million. 
the cost of the grand coalition. 

Unfortunately, cities A and B also have the option of developing a joint facil
ity, and that facility would exclude city C. This total cost to cities A and B would be 
$1.7 million, which is $0.14 million less in total than they could spend if they each 
accepted a 20% discount to join the grand coalition. Cities A and B would not be 
expected to join the grand coalition under the allocation of 20% discounts to each 
participant. With city C going it alone, the total regional cost would be $3.9 million. 
The problem is that the total least-cost solution will not be feas~~le from a pra~tical 
perspective with the 20% across-the-board discount, because cities A ~nd B will be 
reluctant to participate in the grand coalition. Cities A and B would view that allo-

cation as a partial subsidy to city C. 
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Some method is needed to allocate costs that will not favor this sub-coalition. 
which is inferior from a cost perspective to the grand coalition. We will try linear 
programming. Define the following notation: 

YA = cost allocated to city A; 

YB = cost allocated to city B; and 

Ye = cost allocated to city C. 

A constraint can now be written that ensures that the sum of the costs allocated to 
A and B must be no greater than the cost they would face if they formed a partner
ship AB ($1.7 million). That is, 

YA + Y8 $ $1.7. 

Similarly. the sum of the costs allocated to A and C must be no greater than the cos, 
they would face if they formed a partnership AC. That is, 

YA + Ye $ $2.7. 

In addition. the sum of the cost allocated to B and C must be no greater than the 
cost they would face if they formed a partnership BC. That is, 

Y8 + Ye $ $2.9. 

Finally, the total of costs allocated to all three participants should be as large as 
possible so that sufficient monies are available to undertake the project associated 
with the grand coalition. That is, 

Maximize Z = YA + Y8 + Ye. 

The problem is summarized as 

Maximize Z = YA + Y8 + Ye 

Subject to: YA + YB $ $2.7 

and all allocations must be positive: 

YA+ Ye$ $2.7 

YB+ Ye$ $2.9 

YA $ 1, Y8 $ 1.3, Ye $ 2.2 

YA, YB, Ye ~ 0. 

The solution that maximizes the objective while satisfying all three constraints 
is ~ = 0.75, Yi = 0.95, and Ye = 1.95. The total of costs allocated is z* = $3.65, 
enough to build the project associated with the grand coalition, and with costs allo· 
cated in such a way that no city prefers a subcoalition that will lead to higher system 
costs. In addition, money is left over ($.05 million) that perhaps could be used for 
administrative costs. 
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TABLE 3.7 REQUIREMENTS FOR DIFFERENT SIZED PRECUT COMPONENTS 

Furniture Component Size Number Needed 
(dimensions in feet) Each Weck 

Shelving 1 x 4 200 

Small desk tops 2 x 4 40 

Large desk tops 3 x 6 30 

Table tops 4 x 4 20 

3.C.5 Example 3-7: The Thumbsmasher Lumber and Home Center 

Part II-Cutting Plywood: An Integer Programming Problem with Hidden 
Variables 

65 

I 

: 

Problem Statement. The lumber yard department of Thumbsmasher, 
Inc., provides precut pieces in various sizes of 1/2-inch birch veneer plywood for 
the do-it-yourselfer furniture hobbyist. The weekly estimated demand for different 
sized pieces and the dimensions of each are presented in Table 3.7. Management 
wishes to provide these sizes by cutting up the fewest possible number of 
4 ft. X 8 ft. plywood sheets. Pieces cut to nonrequired sizes will be expected to be 

scrapped. 

Model Formulation. This problem is starkly different from the previous 
problems you have seen. Those problems had very obvious decision variables: the 
number of tons, the amount of treatment, the number of chairs, the number of gal
lons, the number of days, and so on. This problem's variables are generally not evi
dent at first glance unless you have encountered such problems before. Accordingly, 
we call such a situation a problem with hidden variables. 

Each precut piece has a fixed size and shape, and all pieces are to be cut from 
individual plywood boards that also have a uniform 4 ft. x 8 ft. size and shape. Con
sequently, each plywood board will generate, depending on the cutting pattern, a 
fixed number of pieces, with some possible residual waste, which is too small or not 
the correct shape to be used. Four possible cutting patterns are shown in Figure 3.8. 
There are, in fact, a finite number of cutting patterns for the plywood stock, each 
producing a different mix of pieces. Table 3.8 lists most of these cutting patterns
including those shown in Figure 3.8-and the corresponding yield of each in terms 
of pre-cut pieces. It might be noted that for a number of these patterns, there may be 
several geometric ways to give the same result in terms of the number of pieces of 
each size. For this problem, we enumerate all possible unique cutting patterns and 
compute the yield of the various precut pieces from each pattern. Then the critical 
decision becomes how many 4 ft. x 8 ft. boards to cut in each of the cutting pat-

terns. Hence, the decision variables are defined as 
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Xj = number of plywood boards to cut according to the jth pattern, 

j=l,2, ... ,n, 

where n is the total number of cutting patterns that have been identified-a total of 
ten in this example. The objective function is simply to minimize the total number of 
4 ft. x 8 ft. boards that need to be cut. Constraints are added to ensure that a suffi
cient number of each precut piece is produced. TI1e complete formulation is: 

Minimize z = Xi + X2 + X3 + X4 + X5 + x6 + X7 + Xs + X9 + X10 

Subject to: 8x1 + 6x2 + 

Xz + 

X5 + 

X9 + 3x10 2! 200 

2! 40 

X9 + X10 2! 30 

2! 20 

The solution is obtained by integer linear programming (see Chapter 7) and re-
. * * 8 * * qmres a total of 64 sheets of plywood to be cut: x1 = 3, x 2 = 1 , X3 = 10, Xs = 3, 

x; = 11, and x~0 = 19, and all other patterns unused. 

Figure 3.8 Four possible 
cutting patterns for plywood 
sheets. 
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TABLE 3.8 CUTTING PATTERNS AND THE NUMBER OF COMPONENTS RESULTING FROM 
EACH 

Cutting Pattern and Yield 
Furniture 

Component Size 1 2 3 4 5 6 7 8 9 10 

shelves 1 x 4 8 6 0 4 2 2 0 0 1 3 
-

small desk tops 2 x 4 0 1 0 2 1 3 2 4 1 0 
-

large desk tops 3 x 6 0 0 0 0 0 0 0 0 1 1 
-

table tops 4 x 4 0 0 2 0 1 0 1 0 0 0 
-
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. This ~roblem res.em.bles the integer programming problems in Chapter 2. se
lectmg p~oJects for b1ddmg (Example 2-6), and a problem in land and species 
preservation (Example 2-9). This problem resembles those problems in the sense 
that all variables must be integers, but in those problems the variables were onlv 
allowed to be zero or one. Here, any feasible nonnegative integer is eligible. I~ 
Chapter 7, we will see that the methodologies for solving the two problems. while 
based on a similar concept, are somewhat different. 

CHAPTER SUMMARY 

The solution of very small linear programs using the graphical method emphasizes 
that feasible solutions to optimization problems are determined by model con
straints, while optimality is determined by the objective function. For problems hav
ing a single optimal solution, that solution will be a corner point of the feasible 
region. Problems with more than one optimal solution are common, and are said to 
have alternate optima. Problems having no feasible region are said to be infeasible. 
while problems with an infinite feasible region may be unbounded. 

A number of important variations to the basic linear program formulation are 
possible, allowing special characteristics to be modeled. Those characteristics include 
having nonlinear objective functions, requirements for integer valued decision vari
ables, or the display of multiple objective functions. A general-purpose algorithm 
for solving linear programs is presented in the next chapter. 

EXERCISES 

3.1. Solve the following linear program using the graphical method. Compute the value of 
the objective function and decision variables at optimality. and indicate which state
ment best describes the solution: 

Maximize Z = 12x1 + l8x2 

Subject to: 4x1 + 5x2 2: lO 

X1 + 4X2 $ 12 

x, $ 4 

X2 2: 1 

Xi, X2 2: 0 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

( c) this linear program is infeasible 

( d) this linear program is unbounded 

3.2. Solve the following linear program using the graphic.al m.ethod. ~o~pute th: v:l~e tof 
the objective function and decision variables at ophmahty, and m icate w ic s a e-

ment best describes the solution: 

Minimize Z = 2x1 - 13.t2 

Subject to: - x 1 + 2x2 2: 8 

2x 1 + 2x2 =:::; 16 

3x1 2: 9 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

( c) this linear program is infeasible 

( d) this linear program is unbounded 
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3.3. Solve the following linear program using the graphical method. Compute the value of 
the objective function and decision variables at optimality, and indicate which state
ment best describes the solution: 

Minimize Z = -4x1 - 6x2 (a) this linear program has a unique optimal solution 

Subject to: -4xi - 5x2 s -10 (b) this linear program has alternate optima 

-xi - 4x2 ;:::: -12 (c) this linear program is infeasible 

-xi ;:::: -4 (d) this linear program is unbounded 

X2 2:: 1 

Xi,X2 2:: Q 

3.4. Solve the following linear program using the graphical method. Compute the value of 
the objective function and decision variables at optimality, and indicate which state
ment best describes the solution: 

Minimize Z = 2xi + x2 

Subject to: 2x1 + 3x2 ;:::: 3 

Xi + 5x2 S 10 

2x1 + x2 s 4 

X1 X2 :5 1 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

( c) this linear program is infeasible 

( d) this linear program is unbounded 

3.5. Solve the following linear program using the graphical method. Compute the value of 
the objective function and decision variables at optimality, and indicate which state
ment best describes the solution: 

Minimize Z = 4xi + 6x2 

Subject to: x 1 - x 2 ;:::: -4 

3x1 - 2x2 :5 6 

X1 + X2 2:: 5 

X1 + Xz :5 10 

X2 :5 6 

Xb X2 2 0 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

( c) this linear program is infeasible 

( d) this linear program is unbounded 

3.6. Solve the following linear program using the graphical method. Compute the value of 
the objective function and decision variables at optimality, and indicate which state
ment best describes the solution: 

Maximize Z = 24x1 + 20x 2 

Subject to: x 1 - x2 2 -4 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 
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Xt + X2 ;::: 5 

6x1 + 5x2 s; 10 

(c) this linear program is infcasihlc 

(d) this linear program is unbounded 
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3.7. Solve t.he ~allowing. linear program using the graphical method. Compute the value of 
the Objective funclton and decision variables at optimality, and indicate which state
ment best describes the solution: 

Maximize Z = 7x 1 + 9x2 

Subject to: 2x1 - 2x2 =:::; 2 

4x1 - 3x2 ::: -6 

4x1 + 2x2 ::: 8 

4x1 ::: 4 

4x2 ::: 6 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

(c) this linear program is infeasible 

(d) this linear program is unbounded 

3.8. Solve the following linear program using the graphical method. Compute the value of 
the objective function and decision variables at optimality, and indicate which state
ment best describes the solution: 

Minimize Z = 8x1 + 4x2 

Subject to: 2x1 - 2x2 =:::; 2 

4x1 - 3x2 ::: -6 

4x1 + 2x2 ::: 8 

4x 1 ::: 4 

4x2 ::: 6 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

( c) this linear program is infeasible 

(d) this linear program is unbounded 

3.9. Solve the following linear program using the graphical method. Compute the value of 
the objective function and decision variables at optimality, and indicate which state-

ment best describes the solution: 

Maximize Z = 3x1 + 6x2 

Subject to: 4x1 + 3x2 ::: 4 

6x1 - 5x2 = 6 

3x1 + 8x2 ~ 18 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

( c) this linear program is infeasible 

(d) this linear program is unbounded 



70 A Graphical Solution Procedure and Further Examples Chap. 3 

3.10. Solve the following linear program using the graphical method. Compute the value of 
the objective function and decision variables al optimality, and indicate which state
ment best describes the solution: 

Maximize Z = 7xi + 9x2 

Subject to: 4xi + 3x2 ~ 36 

Xi + 2X2 ~ 12 

Xi~ 4 

X2 ~ 1 

Xi, X2 ~ 0 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

( c) this linear program is infeasible 

( d) this linear program is unbounded 

3.11. Solve the following linear program using the graphical method. Compute the value of 
the objective function and decision variables at optimality, and indicate which state
ment best describes the solution: 

Minimize Z = 10x1 + 4x2 

Subject to: 5x1 - 6x2 ~ 30 

5x1 + 2x2 ~ 30 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

( c) this linear program is infeasible 

( d) this linear program is unbounded 

3.U. Solve the following linear program using the graphical method. Compute the value of 
the objective function and decision variables at optimality, and indicate which state
ment best describes the solution: 

Maximize Z = 10x 1 + 4x2 

Subject to: 5x 1 - 6x2 ~ 30 

5x 1 + 2x2 ~ 30 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

( c) this linear program is infeasible 

( d) this linear program is unbounded 

3.13. Solve the following linear program using the graphical method. Then write an alternate 
objective function for this model formulation such that the corner points (6, 5) and ( 4, 6) 
would be alternate optimal solutions. 

Maximize Z = 3x1 + 2x2 

Subject to: -3x 1 + 4x2 ~ 12 

2x1 + 4x2 ~ 32 

X1 ~ 6 

X1~X2 ~ 0 
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3.14. You are the ma~ager of a firm that provides fill gravel to construction sites. You pur
chase the matenal from three different suppliers (A, B, and C) for $160/ton, $140/ton 
and $~ 70/ton, r~spectively, and have a contract to meet weekly demand for gravel at 
four d1.fferent sites. The available supply, demand, and per-unit shipping costs for your 
operation are presented in the table below: 

For example, Supplier B can provide you a maximum of 1,206 tons of gravel per week 
at $140/ton and for every ton of that material you ship to Site 3, you incur a cost of 
$27.00. You are contracted to supply a total of 720 tons each week to Site 3. 

Supplier Site 1 Site 2 Site 3 Site 4 Supply 

A $32 $19 $42 $38 730 

B $42 $38 $27 $36 1206 

c $24 $18 $26 $29 672 

Demand 460 575 720 670 

Formulate a linear program that will identify the optimal shipment strategy for 
your operation to keep your overall costs as low as possible. 

3.15. As county engineer, it is your responsibility to design a master plan for refuse dispos
al for a 4-city area. All waste is delivered to one of two transfer stations where it is 
compacted and placed into large transport vehicles for shipment to one of three land
fills. Each transfer station can process 700 tons of refuse daily, and the capacities of 
the three landfills are 500, 420, and 600 tons of waste per day, respectively. All ship
ping costs are directly proportional to the travel distances shown in the table below, 
but shipments from the transfer stations are 50% lower per mile than are those of the 
route trucks that transport refuse directly from residence to transfer station: 

Transport Distances 

From City 
Daily Refuse 
Production Transfer Station 1 Transfer Station 2 

Pleasantville 205 45 58 

Odors burg 369 39 79 

Scentington 340 74 93 

Smellberry 408 25 44 

To Landfill Daily Capacity 

Landfill No. 1 500 157 175 

420 234 136 
Landfill No. 2 

600 146 192 
Landfill No. 3 
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For example, a unit of refuse transported by route truck from Pleasantville to Transfer 
Station Number 1 travels a distance of 45 miles. If that unit of refuse is then transport
ed to Landfill No. 3. it will be moved another 146 miles but at a 50% lower unit trans
port cost. Pleasantville generates 205 tons of waste each day. and Landfill No. 3 can 
process a total of 600 tons per day from both transfer stations. 

Formulate a linear program that will help you plan a policy for managing the 
disposal operation at least cost. 

3.16. Suppose that all four communities from Problem 3.15 were concerned about the ulti
mate capacities of the landfills. Modify your formulation so that the optimal transship
ment strategy results in each city utilizing each landfill in proportion to their daily 
refuse production. 

3.17. You are responsible for scheduling the activities required for construction of a small 
commercial establishment. These activities, the expected duration of each, and an indi
cation of which other activities must precede each are shown in the table below: 

Job Description Duration Must follow Job(s) 

1 Land leveling and excavation 9 -

2 Pour retaining walls and foundation 7 1 

3 Install basement support structure 5 2 

4 Install floor joists 3 2 

5 Construct exterior walls 6 3,4 

6 Install walls and flooring 7 4 

7 Install ceiling/roof superstructure 4 5,6 

8 Install electrical/mechanical/plumbing 9 6 

9 Rough finish interior (wallboard. etc.) 7 6 

10 Install roofing material 5 7 

11 Finish interior 8 9 

12 Landscaping 11 1 

i 

I 
i 

I 

For example, construction of the exterior walls of the facility is estimated to take six crew 
days. and may not begin until the basement support structure has been completed
Job 3-and the floor joists have been installed-Job 4. 

Formulate a linear program that will determine the starting time for each indi
vidual activity such that the facility may be in operation as soon as possible. 

3.18. An alternate approach to solving the job scheduling problem presented in Problem 3.17 
is one that seeks to minimize total project costs. This assumes that the costs for each job 
are also known in advance. Furthermore, it may be possible to accelerate some or all of 
the construction activities by allocating more resources to those jobs. 
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Consider the costs indicated f h f . . .. 
the table below The d . . or ea~ o. the construction act1v1t1es presented in 
base costs for e~ch . :sc~1pl1on of each JOb is the same as in Problem 3.17 with the 
ed in the tabl F Job md1cated. ~n alter?ate completion time and cost is also includ-

m
ally t k f e. dor example, the mstallat1on of the ceiling superstructure. which nor-

a es our ays al a total cost of $2 I oo b · 
Wl

·11· 
1 

· • , can e completed m two days if vou arc 
mg o increase that cost to $3,600. · 

Job Base Cost Base Duration Crash Cost Crash Duration 

1 $2,500 9 $3.100 6 

2 $2,700 7 $3,200 5 

3 $1,800 5 $2.600 3 

4 $1,400 3 $1.700 2 

5 $4.200 6 $6,300 3 

6 $3,200 7 $5,600 4 

7 $2,100 4 $3,600 2 

8 $4,200 9 $8.300 5 

9 $2,300 7 $4.600 4 

10 $4,200 5 $4,900 4 

11 $3,800 8 $5,200 5 

12 $4,000 11 $6.400 7 

Your contract also has a penalty clause that if the project is not finished in 20 days. you 
must pay a penalty computed using the following formula: 

Penalty = 6.38 (number of days over 20)2 

Formulate a linear program that determines the scheduled starting time for each job 
so as to minimize total project cost, including penalty that might be owed. 

3.19. Reconsider the problem of allocating costs to neighboring communities for implemen
tation of a shared three-party-combined recycling program (presented as Example 3-
6 ). Consider how the optimal cost allocation strategy of Y~ = $0.75 million. Y~ = 

$0.95 million, and Y~ = $1.95 million might be different if the cost of a cooperative 
facility between City B and City C were lower. Would a three-way partnership be the 
optimal solution to this problem regardless of the cost of this two-city coalition? 
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The Simplex Algorithm 
for Solving Linear 
Programs 

4.A PROPERTIES OF THE FEASIBLE REGION 

The graphical solution to the Homewood Masonry linear programming formulation 
that was presented as Example 3-1, Homewood Masonry-A Materials Production 
Problem, in the previous chapter was possible because the feasible region in deci
sion space for problems having three or fewer variables can be shown graphically. 
Larger problems can be solved using special-purpose solution algorithms that usu
ally require the use of a computer program. In this section, we describe in detail the 
most widely used algorithm for solving linear programs-the simplex algorithm. 

4.A.1 Characterization of Extreme Points 

Recall that the optimal solution to the Homewood Masonry problem was that solu
tion providing the best (largest, in this case) value of the objective function as it was 
moved through the feasible region. It was shown graphically in Figure 3.2 that when 
the feasible region exists, and is bounded in the direction of improving the objective 
function, the optimal solution or solutions to the model will lie on the boundary of 
the feasible region. This results from three important properties for any feasible re-

gion of a linear program: 

1. TI
1
e feasible region of a linear program is convex. Any point on the interior of 

a line segment connecting two points in the feasible region is feasible. 

75 
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2. The feasible region of a linear program is compact. The feasible region of a lin
ear program contains its boundary. All solutions on the boundary of a feasible 
region are themselves feasible. 

3. The feasible region of a linear program is continuous. There are no "holes'' or 
ugaps'~ in the feasible region of a linear program. 

The significance of these properties is that to find solutions which optimize the val
ue of any objective function, we need only evaluate those on the boundary of the 
feasible region. For any point in the interior of the feasible region, there will always 
exist another point providing a better value for the objective function. 

Note also from the graphical solution for Example 3-1 (Figure 3.2) that the op
timal solution was one for which two of the model's original constraint equations 
were met with strict equality. At the optimal solution-point (x1 = 6, X2 = 4 )-the 
constraints on ( 1) the availability of Wabash Red Clay and (2) the availability of the 
blending machine are satisfied as follows: 

2t1 + 4x2 = 28 and 5x1 + Sx2 = 50. 

These constraints are said to be binding because the right-hand sides of these equa
tions at this solution are limiting the value of the objective function. If either of 
these right-hand side values could be increased, the feasible region in decision space 
would be increased and the objective function could be improved. The other con
straints.however-storage vat capacities for HYDIT and FILIT-are not constrain
ing the current solution; the preparation of (6) tons of HYDIT and ( 4) tons of FILIT 
will not require the use of all available capacity of the storage vats: 

x 1 :s 8 and x2 :s 6. 

If increased storage in either vat were available to the production manager for 
Homewood Masonry. it should have no effect on the optimal production strategy. 
The feasible region shown in Figure 3.2 would be larger, but the value of the objec
tive function could not be increased. In the language of linear programming, these 
constraints are nonbinding. 

All solutions that lie at the intersection of constraint equations that are satis
fied with strict equality are called extreme points or corner points of the feasible re
gion. More precisely, if the linear program consists of n decision variables and m 
constraints. any point at which exactly n constraints are satisfied with strict equality 
represents a unique extreme point of the feasible region for that problem. 

The significance of extreme points should become clear by further reviewing 
the graphical solutions to the Homewood Masonry problem presented in Chapter 3. 
Whenever the solution to a linear program is a unique optimal solution, that solu
tion lies at an extreme point of the feasible region (see Figure 3.3a). When alternate 
optima exist, at least two of the alternate optimal solutions will be extreme points of 
the feasible region (see Figure 3.3b ). The fundamental rationale behind the simplex 
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Figure 4.1 Extreme points for the 
Homewood Masonry problem fall at 

M the intersections of constraint equa-
B L 

~ tions. There are 15 such extreme 

2 3 4 5 6 7 8 9 10 points: points M. N. and 0 are not plot-

Tons of HYDIT to produce (x 1) ted because they lie outside the figure. 

algorithm is that the set of optimal solutions to a given linear program will alwavs 
include at least one corner point solution. · 

More important, for any feasible region determined by a set of linear con
straints, the number of extreme points is finite and relatively easy to compute. For 
example, for the Homewood Masonry problem, the extreme points are shown 
and labeled A-0 in decision space (Figure 4.1); there are exactly 15 extreme 
points for this problem. (Points M, N, and 0 are not plotted on Figure 4.1: point M 
lies at the intersection of the red clay constraint and the x1 axis: points N and 0 
lie at the (theoretical) intersections of the third and fourth constraints with the x2 

and x 1 axes, respectively. The verification of the existence of these points will be 
made clear.) 

Optimal solutions to linear programs always lie at extreme points of the feasi-
ble region, and extreme points of the feasible region always lie at the intersection of 
constraint equations expressed as strict equalities. Thus, to be able to identify all 
possible solutions that could be optimal for a given problem, we could simply iden
tify all possible extreme points. One way this could be done is to translate the con
straints of our model into a form that identically represents the feasible region in 
decision space, but does so with a set of equality equations. Fortunately, this trans-

formation is easy to accomplish. 
Consider our constraint on clay material from the Homewood Masonry prob-

lem, which restricted the amount of Wabash Red Clay that was available: 

2x1 + 4x2 ~ 28. 
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For any solution in decision space. we can create a new variable defined as: 

S1 = the amount of Wabash Red Clay not used 

such that 

Wabash Red Clay not used = 28 - (2t1 + 4x2) 

or 

in standard form 

Verify that whenever this constraint is met with strict equality, it is functionally iden
tical to our original (inequality) constraint on clay material and the value of S1 is ze. 
ro. When this new constraint is not satisfied with strict equality, S1 takes on a value 
equal to the difference between how much red clay is available and how much 
would be used at that solution. Consequently, S1 is referred to as a slack variable. For 
constraints of the greater-than-or-equal-to variety, the same thing could be accom
plished by subtracting a surplus variable. 

By augmenting the original model formulation using the appropriate vari
ables--one for each constraint-we can transform any model into one whose con
straint set is comprised only of equality constraints. The Homewood Masonry 
problem presented in Chapter 3, Section 3.B.2, becomes identically written as: 

Maximize Z = l 40x 1 + 160x2 

Subject to: 2x1 + 4x2 + S1 = 28 

= 50 

=8 

This fully augmented problem consists of n structural variables (original decision vari
ables), 111 constraints, and n + 111 total variables (structural, plus slack and surplus 
variables). We have also seen that whenever exactly n of these variables are set to ze
ro, the resulting solution represents a unique extreme point of the feasible region. Fi
nally, because we have m constraints and (n + m) - n = m nonzero-valued 
variables at extreme points, we can solve these equations deterministically, to get an 
exact solution for any extreme point. 
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At any extreme point sol~tion, _the set of n variables whose values arc set equal 
to zero a~e _called the non-basic variables; these are the variables not in the hasis. 
The remamm~ 1~1 varia?les may be solved for by a number of means. Most or many 
of these rema1?mg variables are non-zero and are said to be in the basis. or mem
bers of the basis. 

By transforming the constraint set to a system of equality equations made up of 
str~ctural ~nd s~a~k. and surplus variables, we can easily identify unique extreme 
pomt solutions; it is Just a matter of solving m equations form unknown values for 
each basis. One approach to the solution of the linear program might be to identifv 
the s~t of all such solutions (we know that this set must contain the optimal feasibl~ 
s~l~tlon), solve the objective function at each solution, and simply select the one pro
v1dmg the best value of the objective function. While this approach might sound rea
sonable, it is impractical for any reasonably sized problem for two important reasons. 

4.A.2 Feasibility of Extreme Points 

First, as can be seen in Figure 4.1, not all extreme points are feasible; only those inci
dent to the feasible region in decision space satisfy all problem constraints. An infea
sible extreme point solution might provide a better value for our objective function. 
yet would not be a practical production strategy. For example, point H is an extreme 
point having a basis BH = {x2 = 10, 51 = -12, 53 = 8, and 54 = -4} but is infeasi
ble; the constraints on the availability of Wabash Red Clay and FILIT curing vat 
availability are violated. Yet the value of the objective function at this extreme point 
is $1,600-considerably better than the optimal solution for this problem determined 
graphically ($1,440). Points G, I, J, K, L, M, N, and 0 are also infeasible; at each of 
these points, at least one constraint is violated in the original problem. How can we 
identify these infeasible solutions without the benefit of a graphical solution space? 

All extreme point solutions for the Homewood Masonry problem are present
ed in Table 4.1. Each row corresponds to a unique solution labeled on Figure 4.1, and 
the entry in each column shows the values for the corresponding variable (structural. 
and slack and surplus) at that solution. Recall that for each solution, exactly n vari
ables (two, in this case) are nonbasic at that solution (zero values are shaded for each 
nonbasic variable, and there are exactly two shaded cells in each row). For example. 
the solution x1 = 0, x2 = 0 (point A) represents the solution where no production 
takes place, such that the difference between th~ left-hand sides ~nd_ the right-~and 
sides of all constraints in the original model are simply equal to their right-hand sides: 
28, 50, and 4, respectively. The basis BA consists of the set { 51• S2. S3, S4} for this solu
tion. At point D-the optimal solution from our graphical procedure (see Figure 3.1)
the values of S and 52 are zero because the constraints corresponding to those slack 
variables are r:iet with strict equality, the value of S3 is equal to the unused storage 
vat capacity for HYDIT (2 tons), the value of S4 is equal to the unused FILIT vat 
storage capacity (2 tons), and x1 and x2 ~re the optimal p~oduc!iog ~vel~ (~tons) for 
HYDIT and 4 tons for FILIT, respectively. More precisely, B - {.t1 •. tz, S3. S4}. 
with NBD = { 5

1
, s2}. The asterisk denotes this basis as optimal. 
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TABLE 4.1 VARIABLES AND THEIR VALUES FOR ALL EXTREME POINT SOLUTIONS OF THE 
HOMEWOOD MASONRY PROBLEM: EXAMPLE 3-1 

Point x, X2 S'1 S2 s_~ S4 z 

A 0 0 28 so 8 6 0 

B 8 0 12 10 0 6 1120 

c 8 2 4 0 0 4 1440 

D 6 4 0 0 2 2 1480 

E 2 6 0 10 6 0 1240 

F 0 6 4 20 8 0 960 

0 7 0 15 8 -1 

0 10 -12 0 8 -4 

4 6 -4 0 4 0 

8 6 -12 -20 0 0 

8 3 0 -5 0 3 

10 0 8 0 -2 6 

10 0 0 -20 -6 6 

cx:i 0 -00 -00 -00 0 

0 00 -00 -oo 0 -oo 

At point H. BH = {x2• 51• 53, S4 }, the constraints on the availability of Wabash 
Red Clay and FILIT vat storage in our original model are violated. Yet the corre
sponding constraints in our augmented problem formulation are satisfied if 
51 = -12 and s~ = -4 at that solution. By identifying all extreme point solutions 
that are clearly infeasible in Table 4.1 (points G, H, I, J, K, L, M, N, and 0), and ex
amining the corresponding values of variables at those solutions (Table 4.1 ), it can 
be seen that infeasible solutions are characterized by the presence of at least one 
negative valued variable. Any solution to a linear program is infeasible if any vari
able in the augmented problem representation is negative at that solution. The opti
mal solution to a linear program must always be a basic feasible solution. 

4.A.3 Adjacency of Extreme Points 

The second difficulty with an exhaustive enumeration approach to solving linear 
programs is computational: for all but very small problems, there are simply too 
many extreme point solutions that would have to be evaluated. Recall from your 
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basic statistics course that th b f . 
f 

c num er o ways of selecting a unique suh~ct n from a 
superset o elements /1 + m is given as 

(
" + m) _ (n + m) ! 

n - n! ( (n + m) - -n-)!· 

For the Homewood Masonry problem. the number of extreme point solutions mav 
be computed: " 

(
2 + 4) - (2 + 4)! 6! 720 

2 - 2! ((2 + 4) - 2)! = 2!4! = 48 = 15· 

. . How many extreme points would there be for a relatively small prohlem con
s1stmg of, say, 50 structural variables and 200 constraints? 

(
250) - 250! - 53 . . 
50 - 200!50! - 1.35 X 10 possible solutions 

How many extreme points would there be for a moderately sized problem consist
ing of, say, 1000 variables and 5000 constraints? 

As will be shown in the following section, the simplex algorithm operates bv 
first identifying a feasible extreme point, then systematically moving from that basi~ 
feasible solution to another basic feasible solution until no further improvement can 
be made to the objective function. Adjacency of extreme points in this context de
scribes the relationship between solutions in terms of their respective bases. rather 
than a physical interpretation. 

Consider the list of basic feasible solutions for the Homewood Masonry prob
lem as presented in Table 4.1. As discussed previously, each extreme point solution 
can be determined by setting exactly two variables to zero and solving for the re
maining (basic) variables; any basic solution will have exactly n basic variables and 
m nonbasic variables. Whenever any two extreme point solutions share all except 
one nonbasic variable, those solutions are said to be adjacent. By this definition, so
lution A is adjacent to solution B, F, G, H, L, M, N, and 0. Solution D is adjacent to 
eight extreme points too, four of which are not adjacent to solution A and four of 
which are. How many of the extreme points adjacent to point E are feasible? Adja
cency for these, and all other extreme points, is easily determined from the informa-

tion in Table 4.1. 
Adjacency is important in the simplex algorithm because it allows the identifi-

cation of a subset of all feasible extreme points to which a given solution can "move·· 
in such a way as to improve the value of the objective function. In addition. an evalu
ation of adjacent solutions allows us to identify w?en such a ~~v~ would cause a ~o
lution to become infeasible. Suppose that we begm at the ongm m Figure 4.2 (pomt 
Ao in Table 4.2), which is the basic. feasible sol~tion for th.e. H~m_ewood Masonry 
problem in which the set of slack vanables compnses the basis. B - {Si- Sz. S3. S.~}. 
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Figure 4.2 Incrementally increasing the val 
uc of a nonbasic variable moves a solution 
awav from a corner point, and towards an 
adja.cent basic solution. If all variables arc 
nonnegative for any solution. that solution is 
feasible. 

TABLE 4.2 CHANGES IN THE VALUES OF VARIABLES WHILE MOVING INCREMENTALLY 
FROM ONE EXTREME POINT TO ANOTHER 

Point Xt x."'. S1 S2 s'.\ S.i z 

A 0 0 28 50 8 6 0 

A1 0 1 24 45 8 5 160 

A: 0 2 20 40 8 4 230 

A.1 0 3 16 35 8 3 480 

A.i 0 4 12 30 8 2 540 

A5 0 5 8 25 8 1 640 

F 0 6 4 20 8 0 960 
-

0 7 0 15 8 -1 1120 -

As we move away from point A toward point F, x2 increases in value. At point 
A1. X2 = 1, and x 1 becomes the only zero-valued variable. This is consistent with the 
argument that extreme point solutions have exactly two zero-valued variables; At is 
clearly not an extreme point solution. Note also that at point Ai, the values for the 
other basic variables have changed; verify that the value of the objective function has 
improved from $0 to $160. As production activity increases, the amount of unused 
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resources (as measured by the slack variahJcs) decreases. As we continue 10 incrca'ic 
the ':aluc of X2 (moving to points A2 ... A_, ... etc.), the values for the hasic variethlcs 
co~tmu~s t~ decrease until we reach point A,,, which corresponds to the extreme 
pomt. Fm Figure 4.2 and 'fable 4.2. At this point. x 2 has hccn increased to a value of 
6. '~hilc S:i has been ~educed to a value of zero. TI1is is reinforced by the fact that so
lu.t1on F. hes on t.he lme in which the constraint on Ff LIT curing vat capacity is met 
with stnct cq~ahty. We say that at solution F. variahle x 2 enters the hasis while SJ. 
leaves the basis. and x 1 is a nonbasic variable in both solutions. Therefore. solutions A 
and F share all except one nonbasic variable; they arc adjacent. All solutions on the 
line segment connecting points A and F arc f casihlc because all variahles arc always 
nonnegative, but these intermediate feasible solutions arc not basic. or extreme 
point, solutions. 

By increasing further the value of x2• the solution begins to move outside the 
feasible region. The variable S4 must take on a negative value to satisfy the condition: 

At extreme point G, the value of S4 will be -1, and as we continue to increase the val
ue of x2 toward extreme point H, S4 becomes increasingly negative. Had we instead 
elected to move from point F to point E, variable x 1 would have entered the basis. 
and variable S1 would have been driven to zero (leaving the basis). Verify that it 
would not have been possible to move from point A to point E with the exchange of 
a single nonbasic variable in A, for a single basic variable in E; these solutions are not 
adjacent. 

The important concept is that for any given basic feasible solution. we need 
only evaluate a relatively small subset of basic feasible solutions to determine how 
we might improve the value of the objective function. Furthermore, we can ensure 
that the problem will remain feasible with any such exchange we might make. Last
ly, when we can make no additional moves without either (1) causing the problem to 
become infeasible or (2) worsening the value of the objective function. the current 
solution is optimal. This is precisely what is achieved for any linear programming 
model by using the simplex algorithm. 

4.B THE SIMPLEX ALGORITHM 

The simplex algorithm is rather easy to describe: 

Begin with any basic feasible solution. If one ca?not be fo~nd_. the pro~lem i~ ~nfeas~
ble. If one can be found, it can be evaluated usmg the objecllv~ funcllon_. Gt\ en ~his 
current basic feasible solution, move to any adjacent basi~ feasible_ solution ~hat t~-

th lue for the obj. ective function. Continue movmg to adjacent basic feas1-
proves e va . · · f · 
ble solutions until no additional improvement m the value of the .object.1ve unct~on 

b d If t this solution it is possible to move to another basic feasible solution 
can e ma e. , a ' · l I · 

· h · the value of the objective function, alternate optima so ut1ons are 
wit out worsenmg . b d h th t th 1 e 

t If the move to an adjacent feasible solullon can e ma e sue . a e va u 
~~et~een ~bjective function can be improved without limit. the problem 1s unbounded. 
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In this section, we present the simplex algorithm in the context of the Home
wood Masonry problem as a set of answers to several basic questions that are asked 
as we "search·~ for an optimal solution: 

1. Where (from which basic solution) do we begin the procedure? 

Assuming that the current basic solution is feasible: 

2. Is the current solution optimal? 

3. If not. which variable should enter the basis so as to improve the current 
solution? 

4. How big should the value of the incoming variable be upon entering the basi~ 
so that the solution remains f casible? 

5. Which variable should leave the basis (be driven to zero)? 

6. What arc the new values for the other basic variables? 

7. How do we recognize an infeasible solution? 

8. How do we recognize an unbounded solution? 

9. Ho\\·' do we detect alternate optima? 

A thorough understanding of how these questions are answered within the context of 
the linear programming formulation and characterization of basic solutions will pro
vide a sufficient understanding of the simplex algorithm. A description of the compu
tational implementation of the algorithm is beyond the scope of this text. 

4.8.1 Where Do We Begin the Simplex Algorithm? 

The simplex algorithm is usually presented as consisting of two phases. Phase I starts 
at a basic solution. and tries to find a basic feasible solution. Phase II begins at that 
basic feasible solution. and tries to improve it. For our purposes, we will begin with a 
discussion of the phase II component of the algorithm, and assume that our starting 
solution is feasible. A second example problem will later be used to demonstrate the 
phase I component. 

A convenient starting solution for the Homewood Masonry problem is the ba
sic feasible solution represented by an all-slack basis. That is, we select our n struc
tural variables to be set equal to zero-NBA = {xi, x2}-and solve for the basis 
consisting of the variables that we used to augment the constraint set, 
BA = {Sb S2• S3• S4 }. Actually, it really does not matter which basic feasible solu
tion we use to begin the simplex algorithm. The algorithm is guaranteed to find an 
optimal solution (assuming that there are feasible solutions) regardless of the start
ing solution. Generally, however, the all-slack/surplus basis offers a convenient place 
to begin. 

We discuss the algorithm using a bookkeeping method that allows us to conve
niently portray any basic solution (basis representation) by writing the basic variables 
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and the objective function a· f t' f h · · . . s a unc ion o t c nonhasic vanahlcs at ttny rarticular 
extreme po.mt. For the Homewood Masonry problem. the hasic fcasihlc solution 
corresponding to the all-slack basis B'' = { (" c c ,. } · · ·'I· ·'2· .)_'\ .. )., 1s wnttcn 

Basis Representation for 9A = {S1, Si_, ~, SJ 

51 = 28 - 2.r1 - 4x2 

S2 = 50 - 5x1 - 5x2 

S.'\ = 8 - .r 1 

S4 = 6 - X2 

Z = 0 + 140x1 + 160.r2• 

The format for this basis representation is that each basic variable is written as a 
function of the nonbasic variables, whose values are. of course, zero. The value of the 
basic :ariabl:s are simply the constant terms in the right-hand side of the respective 
equaltons wntten above a separator line. Below that line is an expression for the ob
jective function, again, in terms of the nonbasic variables. 1 For example. the all-slack 
basic feasible solution (corresponding to point A in Figure 4.1 and Table 4.1) con
tains the basis S1 = 28, S2 = 50, 53 = 8, and S4 = 6, and nonbasic variables x 1 = 0 
and X2 = 0, with an objective function value of zero ( 140x1 + 160x2). Once again. 
the basic variables, their values at this solution, and the coefficients that multiply the 
nonbasic variables in the basis representation are unique for this solution. 

4.8.2 Is the Current Solution Optimal? 

For each basis representation, we first must determine if the current solution is opti
mal. This is done by examining the coefficients that multiply the nonbasic variables 
in the objective function row. These coefficients indicate by how much the objective 
function would be changed if the corresponding nonbasic variable is brought into 
the basis at a value of one. For example, in the current solution, the value of the ob
jective function is zero, and the coefficients that multiply x1 and x2 in the objective 
function expression are both positive: 140 and 160, respectively. This means that if x1 

(currently zero) could be brought into the basis at a value of 1, the objective would 
increase by 140. Similarly, if x2 (currently zero) could be brought into the basis at a 
value of 1, the objective would increase by 160. Because the objective function is be
ing maximized, either of these "moves'' would result in an improvement over the 
current solution. Thus, the current solution is not optimal. Verify that for a mini
mization problem, improvement in the current value .of th.e obj:ctive fu~cti.on 
would be indicated by negative coefficients on the nonbasic vanables m the objective 

function. 

1 In no way does this line mean that the constraints arc to be summed or operated on by some other 
arithmetic operation across constraints. H's just a separator. 
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4.8.3 If Not, Which Variable Should Enter the Basis? 

1l1c coefficient that multiplies a variable in the objective function row of the basis 
representation is referred to as the reduced cost of the associated nonbasic variable. 
and is defined as the amount by which the value of the objective function will 
change if the corresponding nonbasic variable is brought into the basis at a value of 
one. If the problem is a maximization, any nonbasic variable having a positive re. 
duced cost is a candidate for entering the basis: doing so will improve the current so
lution. If the formulation is a minimization, selecting a variable with a positiw 
reduced cost to enter the basis will result in a worse solution: a larger objective f unc
tion value. What do you suppose is indicated by a basis representation indicatinc 
one or more nonbasic variables having zero reduced cost? 

If more than one nonbasic variable in the objective function expression has : 
reduced cost indicating that improvement would result from bringing this variabJ. 
into the basis. then choosing any such variable to enter the basis will be sufficient. L· 
general. there may be a very large number of such coefficients, and not all need tl 
be evaluated. In this case. bringing either x1 or x2 into the basis would improve thl 
value of the objective function. but at different rates. As will be shown in the curren 
example. the incoming variable that will improve the value of the objective functior 
the "fastest·· will not necessarily be the one that will improve it the most. 

1l1c same procedure is used if the problem is a minimization. If this were thr_· 
case for the current basis representation, then either of these "moves" would resuh 
in a solution that is worse than the current solution (examine Figure 4.2 and Table 
4.2 to verify that in this case. the current solution would be optimal). If the coeffi
cient were zero. bringing the corresponding nonbasic variable into the basis would 
have no impact on the value of the objective function. 

4.B.4 How Big Should the Value of the Incoming Variable Be upon Entering 
the Basis so That the Solution Remains Feasible? 

Bringing a nonbasic variable into the basis will improve the objective function at a 
rate consistent with its reduced cost. At the current solution, the reduced cost of X1 

is 140 and the reduced cost of x 2 is 160. Because this problem is being modeled as a 
maximization. it is desirable to bring in the entering variable at a value that is as 
large as possible~ without causing the solution to become infeasible. In other words, 
bring the entering variable into the basis at the largest possible value, while ensuring 
that the variable that will leave the basis does not become negative. 

For example. suppose that after examining the basis representation BA and se
lecting x1 as the incoming variable, we arbitrarily select basic variable S1 to leave the 
basis. That is. 5 1 would be driven from the basis (reduced in value to zero) if the val
ue of x 1 were increased sufficiently. If x 1 were increased beyond that point, then 51 
would have to take on a negative value, and the new solution would be infeasible: 

S1 ~ 0 requires that x 1 :::;; 14. 
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1l1is means that if t replac S · h. b · • I c cs 1 m t c as1s from the current solution. its value 
could not exceed 14 or else S Id h , · . , . •. wou ave to assume a negative value. and the new 
s?lut1on \~ould ~ecomc mfeas1ble. TilC same condition must he satisfied for all po~
s1ble leaving vanables: 

For 52 = 50 - 5x1 - 5x2• 

For S3 = 8 - x 1• 

S2 ;::: 0 requires that x 1 ::::; IO. 

S3 2: 0 requires that x 1 :::::;: 8. 

For S4 = 6 - X2, S.i ;::: 0 requires that x1 :s 'X. 

Clearly, if X1 is chosen to enter the basis. the largest its value can be is the smallest of 
these limits established by the requirement to remain feasible (8). The same analvscs 
would have been required if x2 is selected as the incoming basic variable: .. 

For S1 = 28 - 2x1 - 4xz, S1 ;::: 0 requires that x2 ::s 7. 

For S2 = 50 - 5x1 - 5x2, 52 ;::: 0 requires that x2 ::s 10. 

For S3 = 8 - x1• 53 ;::: 0 requires that x2 :5 -x,. 

For S4 = 6 - X2, 54 ;::: 0 requires that x2 :5 6. 

In this case, X2 would replace 54 as the new basic variable brought in at a value of 6. 
Reexamine Figure 4.2 and Table 4.2 where we moved from the origin of the 

feasible region (point A) in the direction x2 > 0 until, at point F. the basic variable 
S4 was driven to zero. Any additional increase in the value of x2 would have result
ed in an infeasible solution. 

4.B.5 Which Variable Should Leave the Basis (Be Driven to Zero)? 

The (nonbasic) variable that will leave the basis is the one that first goes to zero as 
the value of the incoming variable is increased from zero. The result will be a sim
plex move or pivot from one basic feasible solution to an adjacent basic feasible 

solution. 

4.B.6 What Are the New Values for the Other Basic Variables? 

The new values for the basic variables at the new solution are computed by first de
termining the value for the new incoming basic variable as a function of the new 
nonbasic variables. Bringing x1 into the basis in place of S3 gives 

Xi = 8 - S3. 

This new expression for x 1 can be substituted. into ~he previous functions defining 
the basic variables in terms of the new nonbasic variables. For example. the expres-

sion for the basic variable S1 becomes 

s
1 

= 28 - 2(8 - S3) - 4x2 or S1 = 12 - 4x2 + 253. 
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Similarly, the new expressions for basic variables S2 and S4 are now 

and 

Last, we compute the new value for the objective function at our new solution: 

Z = 0 + 140(8 - S3) + 160x2 or Z = 1120 - 140S3 + 160x2• 

We have successfully completed our first simplex pivot, having moved from 
point A to point Bin Figure 3.1. lllat move involved the exchange of exactly one non
basic variable (x1) in solution A for exactly one basic variable (S3 ) resulting in a new 
feasible extreme point solution as reflected by the following basis representation: 

Basis Representation for 88 = {51, 52, x1, SJ 

S 1 = 12 - 4x2 + 25 3 

52 = 10 - 5x2 + 553 

X1 = 8 - 53 

54 = 6 - Xz 

Z = 1120 + 160x2 - 14053• 

S1 ~ 0 requires x2 ::; 3 

S2 ~ 0 requires x2 ::; 2 

x 1 ~ 0 requires x2 ::; oo 

S4 ~ 0 requires x2 :5 6 

As anticipated, bringing x 1 into the basis at a value of 8 resulted in an improve
ment in the value of the objective function: 140(8) = 1,120. Compare this improve
ment with that resulting from bringing x 2 into the basis. Even though the rate of 
change in the objective function from a unit increase in x2 was greater (160 per unit in
crease) than that for a unit increase of x1 (140 per unit increase) brought into the ba
sis, feasibility requirements allowed x 1 to be brought into the basis at a higher value. 

Returning to question 2. "Is the current solution optimal?," we can check the 
current solution for optimality. In this case, the coefficients that multiply the nonba
sic variables in the objective function expression are + 160 for x2 and -140 for 53. 
This means that a move that would bring x2 into the basis at a value of 1 would im
prove the value of the objective function by 160. Because we are maximizing, this 
would be an improvement in the current solution. However, bringing S3 into the ba
sis at a value of 1 would reduce the value of the objective function by 140 units, and 
would thus be undesirable. We therefore choose to bring x2 into the basis. 

Again~ we would like the incoming variable to be as large as possible. Checking 
our feasibility conditions for the current basic variables in the current basis representa
tion, we find that the largest increase possible for the value of x2 as it enters the basis is 
2, constrained by the feasibility requirement for basic variable 52. Thus, x2 will enter the 
basis at a value of 2, the objective function will increase in value by 160(2) = 320, and 
the new basic feasible solution will be Be = {51, x2, xi, 54}, with Z = 1,440. Once 
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again, we can solve for the incom · b · . b . 
b · · bl . mg asic vana le ( x2) and wnte expressions for all 

astc vana es as functions of the new nonbasic variables (52 ands_,): 

. - 10 - 52 + 553 1 
X2 - = 2 - -5 + 5 5 5 2 3 

51 = 12 - 4( 2 - ~52 + 53) + 253 = 4 + ~52 - 253 

Xi = 8 - 53 

54 = 6 - ( 2 - ~ 52 + 53) = 4 + ~ 52 - 53. 

TI1e new value for the objective function is computed in the same manner: 

Z = 1120 + 160( 2 - ~52 + 53) - 14053 = 1440 - 3252 + 2053 

resulting in the new basis representation. 

Basis Representation for BC = {S,, X2, x,, S4} 

51 = 4 + ~52 - 253 

x2 = 2 - ~ 52 + 53 

Xt = 8 - 53 

54 = 4 + ~ 52 - 53 

z = 1440 - 3252 + 2053. 

51 ;::::: 0 requires 53 ::; 2 

x2 ;::::: 0 requires 53 ::; ex:: 

x1 ;::::: 0 requires 53 ::; 8 

54 ;::::: 0 requires 53 ::; 4 

By examining the objective function row, we find that the new basic feasible 
solution is still not optimal. The positive reduced cost of the nonbasic variable 53 in 
the objective function indicates that for every unit of this variable brought into the 
basis, the objective function would increase by 20 units. Furthermore, we see that the 
largest value possible for 53 as it enters the basis is 2, when 51 would leave the basis. 
Make this simplex pivot and compute our new basis representation. 

Basis Representation for B0 = {~, x2, x,, S4} 

z = 1480 - 1051 - 2452. 

By examining our optimality conditions prese~t in t_his basis representation, 
we see that the coefficients that multiply the nonbasic variables 51 and 53 are both 
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negative. This means that if we bring either of these variables into the basis at a val
ue of 1, the value of the objective function would decrease. Because we are maxi
mizing this problem. such a solution would be worse than the current solution. 
Because the current basic feasible solution cannot be improved by moving to an ad
jacent basic feasible solution, the current solution is optimal. 

Even though the feasible region of the Homewood Masonry problem included 
six feasible extreme points, we needed to perform only three simplex pivots to find 
an optimal solution. Compare each of the basis representations for the extreme 
points that we visited during our progression toward the optimal solution to the 
points plotted on Figure 4.1 and listed in Table 4.1. In particular, review how the lev
el of slack for each constraint shifted as we moved from solution to solution. Does i1 
make sense to you that S3 left the basis during one simplex pivot, and reentered dur
ing another? Suppose we had chosen x2 to enter the basis for the first pivot insteal1 
of x1• How many pivots would have been required to reach the optimal solution·: 
The simplex algorithm is dramatically efficient in finding optimal solutions in thi
manner~ usually~ only a small fraction of extreme point solutions need to be consid· 
ered. As you formulate and solve larger and larger problems, notice the number o 
iterations that are required (most linear program solvers report iterations or pivot" 
as a normal output from the solution process, though some require the user to re· 
quest such information explicitly). 

4.8.7 How Do We Recognize an Unbounded Solution? 

The Homewood Masonry problem is clearly bounded. We saw this from the graphi
cal solution. and the optimal basis representation indicates that it is not possible to 
improve the current value of the objective function. Indeed, as shown in Figure 3.3d. 
an unbounded solution is one in which the value of the objective function can be im
proved without limit. So where within the simplex algorithm described would we 
have been able to identify an unbounded solution? 

During our last simplex pivot in the problem we just solved, we had selected 53 
as the variable that would be brought into the basis so that we could improve the 
value of the objective function. When we checked feasibility conditions in order to 
determine the appropriate variable to leave the basis, we found that it would not be 
possible to drive x2 from the basis; regardless of how large we might make S3, X2 

would never be forced to a value of zero. Had all possible leaving variables been un
able to be driven from the basis, the problem would have been unbounded. 

4.B.8 How Do We Detect Alternate Optima? 

Alternate optimal solutions exist when more than one basic feasible solution gives 
the same value of the objective function at optimality. Recall that from Figure 3Jb, 
when the objective function for the Homewood Masonry problem was changed to 

Maximize 140x1 + l40x2, 
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s?lutions C and ~were alternate optimal solutions.Verify that the basis representa
tion shown next is that for solution C of such a modified problem: 

Basis Representation for (Alternate) ec - {S x x S } - ,, 21 ,, 4 

S1 = 4 + ~S2 - 253 

X2 = 2 - ~S2 + S3 

Xi = 8 - S3 

S4 = 4 + ~S2 - S3 

Z = 1400 - 3252 + OS3• 

At this solution, optimality is indicated because there does not exist a positive reduced 
cost for any nonbasic variable in the objective function. This means that no adjacent 
feasible extreme point can provide a better value for the objective function. However. 
note that the coefficient on nonbasic variable S3 in the objective function is zero. indi
cating that if S3 is brought into the basis at a value of one, the value for the objective 
function would not change; that new basic feasible solution would be no worse than 
the current solution. These two solutions would thus be alternate optima. If. at opti
mality, it is possible to move to an adjacent basic feasible solution without worsening 
the value of the objective function, alternate optimal solutions are present. 

4.B.9 How Do We Recognize an Infeasible Solution? 

As discussed in Section 4.A.2, any basic solution having one or more zero-valued 
basic variables is infeasible. In some cases, the all-slack/surplus basis-the conve
nient starting point that we used to begin our solution of Example 3-1-is infeasible. 
For example, suppose that we added a production constraint to our model that re
quired at least 3 tons of material be produced each week: 

X1 + X2 2::: 3 

or in augmented form 

X1 + X2 - S5 = 3. 

The all-slack/surplus basis representation for this problem would become the 

following: 

Basis Representation for BA= {S,, Si, S3, S4, Ssl 
S1 = 28 - 2x1 - 4x2 

S2 = 50 - 5x i - 5x2 

S3 = 8 - Xi 

S4 = 6 - X2 

S- = -3 + Xi + X2 ) 

z = O + 140xi + 160xz. 
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5x1+5x2$50 

Feasible region 
in decision space 

2 3 4 5 6 7 8 9 10 
Tons of HYDIT to produce (x1) 

Figure 4.3 Adding the requirement that at 

least three units of material be produced 
each week results in a modification to the 
feasible region such that the origin, which 
corresponds to the all-slack/surplus basis, is 
no longer a feasible extreme point solution. 

The feasible region for this modified formulation is shown as Figure 4.3. 
Note that at this solution~ the initial basic solution is infeasible; the value of the 

surplus variable associated with the new constraint is negative at this solution. Be
fore we can initiate the simplex algorithm, we must find a basic feasible solution 
from which to begin. To do this~ we must apply the phase I simplex procedure. 

4.C FINDING AN INITIAL FEASIBLE EXTREME POINT SOLUTION 

To demonstrate a method for finding an initial feasible solution when the all
slack/surplus basis is infeasible~ we will solve the problem of allocating work effort 
between two mines that was presented as Example 3-2 in Section 3.B.4 of the previ
ous chapter. That problem formulation is repeated here: 

Minimize Z = 3x1 + 9x2 

Subject to: 40x1 + 15x2 ~ 100 

14x1 + 35x2 ~ 140 
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Recall the feasible region for this problem, shown in Figure 3.4, and notice that the 
extreme point that corresponds to the all-slack/surplus basis is not feasible; the first 
two constraints are violated at this origin. Because we can graph the feasible region 
for this problem, it is clear that feasible solutions do exist. For larger problems, when 
the origin solution is infeasible, (1) the problem may have no feasible solutions and 
(2) if the problem does have a feasible region, a feasible basis representation may 
not be obvious. In order for the simplex algorithm to be used as described earlier, a 
basic feasible solution must be available. 

One method for finding a basic feasible solution (if one exists) for a problem 
having an infeasible all-slack/surplus basis is to transform the formulation into one 
that is guaranteed to have a feasible region. This can always be accomplished by 
adding "artificial" variables to the problem. If a feasible solution to this modified 
problem can be found such that the value of the artificial variables is zero, this solu
tion is also a basic feasible solution to the original problem. If one cannot be found~ 
then the original problem is infeasible. 

Let A be an artificial variable that can be set arbitrarily large such that 
there will certainly be a feasible solution for the modified constraint set shown 
here: 

40x1 + 15x2 + A ~ 100 

14x1 + 35x2 + A ~ 140 

X1 - A :::;; 5 

X2 - A :::;; 5. 

If a feasible solution can be found such that A = 0 for this modified constraint set, 
that solution is feasible for the original constraint set. Thus th~ .objective fun.ctio.n 
for this auxiliary problem is to minimize A; the augmented aux1hary formulation IS 

shown here: 

Subject to: 

Minimize A 

40x1 + l5x2 + A - 51 = 100 

14x1 + 35x2 + A - 52 = 140 

-A+53=5 X1 

X2 - A+ 54 = 5 

x1, x2, 51, S2, S3, S4, A ~ 0. 

d t make a distinction between slack and surplus vari-
The notation used oe~ noted identically throughout the simplex algorith~. The 
abl~s because th~y arfe rhea 11 slack/surplus basis for this auxiliary problem IS the 
basis representation or t ea 
following: 
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Basis Representation for eorigin = {S,, ~, 53, S4} 

S1 = -100 + 40x1 + 15.t2 +A 

S2 = -140 + 14x1 + 35x2 + A 

S3 = 5 - X1 + A 

S4 = 5 - X2 + A 

Z=O+A 

Chap. 4 

which is clearly infeasible~ the basic variables S1 and S2 are negative at this solution. 
However, if the artificial variable A were to enter the basis in place of the most neg
ative of these basic variables. the resulting basis representation would be feasible fo~ 
the auxiliary problem: 

Basis Representation for B = {51, A, ~, 5 4 } 

S1 = 40 + 26x1 - 20x2 + S2 

A = 140 - l 4x 1 - 35x2 + S2 

S3 = 145 - 15x1 - 35x2 + S2 

S4 = 145 - 14.t1 - 36x2 + S2 

Z = 140 - 14x1 - 35x2 + S2. 

Because the auxiliary problem has an objective function that is being minimized, the 
negative reduced costs for x 1 and x2 in this basis representation indicate that the 
current solution can be improved by bringing either of these variables into the basis. 
If x2 is selected to enter the basis, it would replace Si, and the resulting basis repre
sentation would be the following: 

13 1 1 
X2 = 2 + 15x1 - 25S1 + 25S2 

119 7 3 
A= 70 - z-x1 + 4S1 - 4S2 

121 7 3 
S3 = 75 - z-x1 + 4S1 - 4S2 

304 9 4 
54 = 73 - 5x1 + 5S1 - 5S2 

119 75 35 Z = 70 - zXl + 4 I - 4 2· 

This solution is still not optimal for the auxiliary problem because it could be im
proved by bringing either x 1 or S2 into the basis. Verify that if we select x 1 to enter the 
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basis, it would replace the artificial variable A. That is, A would become nonbasic. and 
therefore t~~e.on a v~lue of zero. If we select S2 to enter the basis, it would replace S

4
• 

and th~ arll~1c1al v.anable A would remain basic. Driving the artificial variable from 
the basis wl11le mamtaini~g feasibility is exactly what we are trying to accomplish; we 
select X1 to enter the basis and recompute the basis representation: 

Basis Representation for B = {x2, x1, S3, S4} 

Z=O+A. 

This solution is optimal for the auxiliary problem, it is feasible, and the value of the 
objective function is zero. We have thus found a basic feasible solution for the origi
nal problem. Had we found an optimal solution for the auxiliary problem such that 
the artificial variable remained in the basis with a value strictly greater than zero. we 
would conclude that the original problem is infeasible. In this case, however the op
timal solution to the auxiliary problem can be used as a starting solution for the 
phase II simplex algorithm. 

The basis representation for the initial phase II basic feasible solution of the 
original problem may be found by (1) deleting all terms in the optimal auxiliary prob
lem containing the artificial variable A (because it is nonbasic, the artificial variable 
has value of zero, it is of no further use) and (2) substituting the original objective 
function written in terms of the optimal basic variables from the auxiliary problem: 

or 

( 
20 1 3 ) ( 60 1 4 ) 

Z= 3 17+34S1 -238 52 + 9 17-85 51 +119 52 

or 

600 3 9 
Z = - - -Si + -Sz. 

17 170 34 

The initial basic feasible solution for the phase II simplex algorithm becomes the 

following: 
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Basis Representation for eA = {X2, x,, ~, S4} 

60 1 4 s 
X2 = 17 - SS S1 + 119 2 

20 is 3s x 1 = 17 + 34 1 - 238 2 

65 1 3 s s 3 = 17 - 34s1 + 238 2 

25 1 s 4 s S4 = 17 + 85 t - fi9 2 

600 3 9 s 
z = 17 - 170s1 + 34 2. 

This solution is not optimal because the reduced cost of S1 at this solution indicates 
that the objective function could be improved; because we are minimizing the ob
jective function, a negative reduced cost indicates the potential for improvement 
Performing this pivot results in the optimal solution, which can be verified by exam
ining Figure 3.4 and Table 3.3. 

Basis Representation for B0 = {x2, x1, S1, S4} 

1 2 
X2 = 2 + 35S2 - 5S3 

X1 = 5 - S3 

S1 = 130 + ~S2 - 34S3 
1 2 

S4 = 3 - 35S2 - 5S3 

9 3 
Z = 33 + 35 S2 + 5 S3. 

Optimality is indicated by this basis representation because the reduced costs of 
the nonbasic variables are positive for this minimization problem. The interpretation of 
reduced cost is the same as when we solved the maximization problem (Example 3-2); 
it is the unit change in the value of the objective function if the corresponding nonba
sic variable is brought into the basis. As will be shown in the next section, this eco
nomic interpretation of the relative value of model variables at different solutions is 
one of several important characteristics of linear program solutions. 

4.D SENSITIVITY ANALYSIS 

The benefits from being able to formulate an engineering management model as a 
linear program result from the ability of solution procedures such as the simplex al
gorithm to evaluate a very large number of solutions, and to be able to determine 
the optimal solution(s). These techniques can guarantee that, if the feasible region 
exists and is bounded in the direction of optimization, an optimal solution can be 
found within a time that is practical for most problems. The weakness of this model
ing procedure is that, frequently, the problem domain must be abstracted in order to 
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conform to restrictions on Jin ·t · d I . . . . ean y, mo e parameters are assumed to be such that 
l~ne~r constrai~ts and Objective functions can be written. Fortunately, in addition to 
fmdmg t~e optim~l ~~lution to. a linear program formulation, the simplex algorithm 
also prov.ides exphc1t mformation about the quality of any given optimal solution. If 
a. n:io.del IS known ~o be extremely sensitive to changes in model coefficients in the 
v1cm1ty of the optimal solution, then greater care should be taken in cstimatina 
model parameters. If the model ca~ be shown to be less sensitive to such change; 
then th~ analyst may be more confident about the assumptions that were made in 
developing the model. 

. This. information results from something called sensitivity analysis. In this sec-
ho~, we discuss the basic approach to sensitivity analysis using the graphical presen
tation of the Homewood Masonry problem presented in Chapter 3. 

4.D.1 An Overview of Sensitivity Analysis 

Two different types of sensitivity analysis are particularly important: right-hand side 
(RHS) sensitivity analysis and objective function sensitivity analysis. In both cases 
we are interested in two types of information: (1) What is the result of a modifica
tion to our original model formulation? and (2) Over what range of such a change is 
this result valid? 

Right-hand side sensitivity analysis is used to measure the sensitivity of an op
timal solution to changes in the original right-hand side vector of model constants. 
In the Homewood Masonry problem, for example, the linear program formulation 
was based on the assumption that the amount of Wabash Red Clay available to the 
production process was 28 cubic meters per week. When the simplex algorithm was 
used to solve the formulation, the optimal solution required the use of all this re
source. This constraint is thus binding in the sense that the availability of this re
source limits the value of the objective function. 

But suppose that this assumption were found to be incorrect, and we actually 
had access to 31 cubic meters of this material. Would this mean that the solution we 
computed is no longer optimal? Would a different production policy result in a 
greater return and a different strategy for using resources? It would be reasonable 
to assume that having more of a limiting resource would allow us to find a better so
lution. But beyond some additional availability, having more may not be desirable. 

Similarly, the limit on blending machine time was assumed to be 50 ho~rs per 
week, yet our optimal solution required the.use of only. 40.hours. Be.cau~e this co~
straint was not satisfied with strict equality, it was nonbmdmg at ophmahty. What 1f 
instead of our assumed 50 hours of blending time available each week. we could 
only manage 45 hours per week? Would this change our management strategy? Not 
only would it be desirable to be able to judge the impact .of ~uc~ ~hanges to our 
model, it would be desirable to have a mechanism for valumg md1v1dual resources 

in the production process. : . . 
Objective function sensitivity analysis is used to measure the ~ens1t1V1ty ~f. an 

optimal solution to changes in the values of the coefficients that multiply the dec1s10n 
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variables in the objective function of a linear program. For example, in the Home
wood Masonry problem, return from the manufacture and sale of one unit of HY
DIT was $140 per ton, and for FILIT, $160 per ton. But suppose that the return on 
HYDIT increased by $1 relative to the return on FILIT (return from the sale of 
HYDIT = $140.50, return from the sale of FILIT = $159.50, for example). Clear
ly, if our production strategy remained the same (x1 = 6, X2 = 4 ), the optimal value 
of the objective function would change ($140.50x1 + $159.50x2 = $1481). But 
would the optimal solution strategy change? If so, how would it change? If not, at 
what point would it change? (If the return on FILIT dropped to zero, would not thC' 
optimal solution certainly change?) 

Objective and RHS sensitivity analysis provide explicit information about thl' 
effects of such changes. To understand the rationale for these analyses, we return k 

the graphical representation of the Homewood Masonry problem. 

4.D.2 Graphical Interpretation of Sensitivity Analysis 

A graphical depiction of the results of varying parameters and data found in a linea 
program provides a good framework for understanding sensitivity analysis and it. 
vocabulary. We will use the Homewood Masonry production strategy example tc · 
show how sensitivity analysis information is derived and used in linear program
ming postoptimality analysis. 

Right-Hand Side Sensitivity and Dual Prices. The rationale behind RHS 
sensitivity analysis is that the RHSs of a moders constraints are often subject to 
change~ or are based on uncertain data. Consequently, the analyst should be pre
pared to answer questions about the validity of his or her model based on changing 
or uncertain conditions and parameters that the model assumes to be constant and 
certain. 

Consider the constraint from the original model that restricted the amount of 
Wabash Red Clay that was available to 28 cubic meters each week: 

2x1 + 4x2 ~ 28. 

A natural question that might arise in the development of the production strat
egy is: What would happen if we could get access to more clay or if the amount 
we currently receive were reduced? Recall from the way in which the feasible 
region for our solution to the Homewood Masonry problem was constructed in 
Figure 3.1 that the right-hand side coefficient determined the location of its 
corresponding constraint. The coefficients that multiply the decision variables 
in a given constraint determined the angle or orientation of that constraint. 
And the sense of the inequality determined which half-space created by that 
constraint was feasible. Consequently~ a change in the right-hand side of a con
straint will result in a corresponding shift in the position of the constraint, but 
not orientation. 
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Increasing or decreasing the amount of red clay available simply moves the 
constraint up or down, respectively, in the two-dimensional decision space with its 
slope remaining constant. When a constraint is moved in decision space. we must be 
concerned with how its movement affects the extreme points associated with it: as 
we have seen, it is the set of feasible extreme points that define the possible loca
tions for the optimal solution. So when extreme points are changed due to modifi
cations in the RHSs of constraints, we must determine what effect these changes 
have on the optimal solution to the problem. The movement of a constraint could 
have no effect on the optimal solution (basis), could change the value of the optimal 
solution but not the extreme point (basis) associated with it, or could cause the op
timal solution to move to a new extreme point. 

At the optimal solution to the Homewood Masonry problem, the constraint 
on the use of Wabash Red Clay was binding because the optima] solution to that 
problem was such that the slack variable associated with that constraint-51-was 
zero. That solution is labeled as solution D in Figure 4.4. A change in the position of 
this constraint will change the value of the optimal solution. For example, if the 
amount of clay were increased by one unit, to 29 cubic meters, the constraint would 
shift upwards and to the right (indicated by the dashed line in Figure 4.4), the size of 
the feasible region would increase by the shaded area, and the new optimal solution 
would shift to point D 1 (x1 = 5.5, x2 = 4.5, and z* = 1490). But the optimal basic 
feasible solution-the set of basic variables at optimality-is unchanged: 
s0 = {xi, x2, S3, S4}. This means that for one extra cubic meter of red clay, Home
wood Masonry revenues would increase by $10. We call this parameter the shadow 
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......... 
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Objective 
function 

... ........ ...... .... ...... 

.. .. .... .... .... .. 
', 2r1+4x.,$29 .... -...... 

2 3 4 5 6 7 s 9 
Tons of HYDIT to produce (x,) 

10 

Figure 4.4 A change in the RHS of a 
constraint will change the location. but 
not the orientation of that constraint. 
This may change the size of the feasible 
region. and if this constraint is binding. 
th~ value of the objective function may 

change as well. 
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price (or dual price) of this resource. Stated ~nother way, Hom~wood Masonry 
would be indifferent between its present production strategy and this new strategy if 
the price for an additional cubic meter of Wabash Red Clay is $10. In the termino}o. 
gy of sensitivity analysis it is stated as follows: given the current optimal production 
strategy, the marginal value of an additional unit of the red clay resource is $10. If 
the price of additional clay were less than $10, Homewood Masonry would be better 
off to purchase additional units. If the price were greater than $10 for additional 
units. Homewood Masonry would not be willing to do so. 

The next logical question is: uFor how many extra units of red clay would 
Homewood Masonry be willing to pay up to $10 per unitrThis question can be an
swered by again referring to Figure 4.4 and noting that we can continue to increasl· 
the right-hand side of the clay supply constraint until the constraint intersects ex
treme point I (shown as a dotted line). If this right-hand side is increased further, th.· 
constraint moves through point I, and a new basic feasible solution becomes opf 
mal: B1 = {xi, x2, Si, S3}. This new optimal solution is bounded by two differen 
constraints. Specifically, S4 leaves the basis and S1 enters. Increasing the right-han:' 
side of this constraint beyond the point at which all three constraints intersect a 
point I would not improve the value of the objective function; this resource wouk 
no longer be binding. This upper bound on the right-hand side of the red clay re
source constraint is 32 units. 

The logic that applied to a possible increase in the right-hand side value alsr· 
applies to a decrease in the right-hand side of the supply constraint. Referring to 
Figure 4.4, a reduction in red clay would shift the constraint downward and to the 
left. The same solution would remain optimal until a lower limit of 24 units was 
reached at point C (lowermost dotted line). Any further decrease in the right-hand 
side of this constraint would result in a new optimal solution (basis). Note that in 
this case however, the constraint on red clay would continue to be binding, though 
its shadow price would change. Each unit decrease results in the same rate of change 
in objective function value that was calculated for unit increases, $10 per cubic me
ter. For example, if the supplier of red clay to Homewood Masonry failed to deliver 
the full contracted amount of 28 cubic meters of material, the shadow price would 
indicate the minimum compensation that Homewood Masonry should be willing to 
accept for each unit of shortfall. 

Right-hand side sensitivity analysis of the red clay resource can be summa
rized as follows. If the availability of red clay for the Homewood Masonry produc
tion process is between 24 and 32 units, the current basic feasible solution will 
remain optimal and the value of the objective function will increase or decrease by 
$10 per unit for every unit of increase or decrease from the base level of 28 cubic 
meters, respectively. The fact that the optimal basis does not change over this range 
means that the same constraints will be binding over this range of change; the pre
sent capacities of the curing vats will not impact the overall production policy, but 
the availability of blending time will remain a limiting factor. The same analyses can 
be performed for the other model constraints, and are summarized in Table 4.3. Be
cause. at the current optimal solution, the constraints on curing vat capacities are 
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TABLE 4.3 SUMMARY OF RIGHT-HAND SIDE SENSITIVITY INFORMATION FOR EXAMPLE 3.1 

Current Optimal Allowable Allowable Shadow 
Constraint RHS Usage Decrease Increase Price 

Red clay 
28 m3 28 m3 

resource 4 m3 4m1 $10 

Blending 
50 hr machine time 50 hr 10 hr 5 hr $24 

HYO IT curing 
8m3 6 m3 

vat capacity 2 m3 unlimited so 

FILIT curing 
6m3 4 m3 2m1 

vat capacity 
unlimited so 

not binding, th~ir_ shadow prices are $0. The manager of Homewood Masonry 
should not. be wilhng to pay anything to increase these capacities, because doing so 
~~uld not mcrease the profitability of the production operation. In fact both capac
ities could be reduced by 2 cubic meters without changing the optimal solution or 
production policy. Study the graphical solution for Example 3-1 until you are com
fortable with this interpretation of right-hand side sensitivity analysis. Later we will 
discuss how this information can be obtained from the optimal basis representation 
for problems of any size. 

For each of the three constraints above, the dual price has a definite economic 
interpretation. This is because the units of the objective function are in dollars. In 
cases where the objective function units are not in dollars the dual price may have 
no direct economic interpretation, but may be extremely valuable nonetheless. An 
example of such a case would be maximizing hydropower production potential from 
a reservoir subject to capacity limits where the dual price might be kilowatt-hours 
per cubic meter of water storage. In any case, the dual price reflects the relative val
ue of the corresponding constraint in terms of both the validity of the current opti
mal solution (basic feasible solution), as well as on the value of the objective function 

at optimality. 

Objective Function Sensitivity. Like right-hand side sensitivity analysis, ob
jective function sensitivity analysis can be obtained from the optimal solution of a lin
ear program. The rationale behind objective sensitivity analysis is that the c~efficients 
on the decision variables in the objective function could be based on uncertam data or 
a decision maker's subjective judgment of the situation being modeled. When we 
changed the RHS value of a constraint, the constraint n:i~ved in _decisi_on space _wit~ a 
constant slope. When we change a coe~ficient o! a dec1s1on ~anable ~n. the obJ~CtI~e 
function, the objective function slope will vary with t~e changmg coeffic1en~, but 1t will 
graphically stay anchored at the optimal extreme pomt and rotate around 1t. 
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Consider the objective function of the original Homewood Masonry problem: 

Maximize 140x1 + 160.tz. 

TI1e coefficients that multiplied x1 and x2 are the estimated dollar return from a unit 
production of products: $140 per unit for HYDIT and $160 per unit of FILIT, re
spectively. The optimal solution was found graphically by moving the objective func
tion through the feasible region until it last intersected that feasible region at one or 
more extreme point solutions that were optimal. 111ese coefficients determined the 
gradient or slope of that objective function, and thus determined which extreme 
point solution(s) was optimal. 

A 

Suppose. for example, that instead of $140 per ton of HYDIT producel:. 
Homewood Masonry received only $139. Would the policy of producing 6 units c.: 
HYDIT and 4 units of FILIT still be optimal? l11e graphical solution for this prol· 
lem is repeated in Figure 4.5 with the original objective function labeled as lin. 
OFl, and this new objective function as line OF2. This change in profit level, whil. 
changing slightly the orientation of the objective function, does not result in a di 
ferent optimal extreme point solution, though the optimal value of the objectiv 
function would be reduced by $6. But what if the profitability of HYDIT continue~. 
to fall? The slope of the objective function would continue to fall. How much of: 
reduction could be tolerated before a new production strategy would be optima1·· 
By continuing to rotate the objective function in Figure 4.5 in this counterclockwis•: 
direction by reducing the coefficient on xi, the objective function would continue tu 

2 3 4 5 6 7 8 9 IO 

Tons of HYDIT to produce (x 1) 

Figure 4.5 A change in the coefficients that 
multiply the decision variables in the objec
tive function will change the gradient of the 
objective function, which may in turn result 
in a different extreme point solution being 
optimal. 
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TABLE 4·4 SUMMARY OF OBJECTIVE FUNCTION SENSITIVITY INFORMATION FOR 
EXAMPLE 3-1 

Structural Optimal 
Allowable Allowahlc Unit 

Current Coefficient Coefficient Change in Variable Value Coefficient Decrease Increase Profit 

x, 6 units $140/unit $60 $20 S6 
Xz 4 units $160/unit $20 $120 s..i 
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pivot around point (xi = 6, Xz = 4) until when the return on x1 is reduced to $80. 
alternate optimal solutions result as indicated by OF3· both solutions D and E 
would result in a total return of $1120. Any further decr~ase of the return on HY
DIT would result in solution D becoming a new unique optimal solution as shown 
by OF4. 

Similarly, if the marginal return on xi increased relative to that of X-J. the ora
dient of the objective function would rotate in the clockwise direction: with 

0

the 
same solution remaining optimal until the gradient of the objective function became 
the same as the constraint on blending machine time, or 

Maximize 160x1 + 160x2. 

At this point, solutions D and C would be alternate optima, and the total return to 
Homewood Masonry would be $1600. Objective sensitivities for both objective 
function coefficients are summarized in Table 4.4. 

The graphical explanation that we have just presented may lead the reader to 
believe that sensitivity analysis is a simplistic and trivial concept. We have merely 
laid the foundation for the concepts that are vital for an understanding of the sensi
tivity analysis information that linear programming software will present to the 
modeler. When the problem size reaches hundreds or thousands of variables and 
there are no graphs to help in the explanation or understanding of the model results. 
the systems analyst must often rely on the seemingly cryptic computer output to un
ravel the complex, multidimensional relationships between problem data~ variable 
values, and the optimal solution. 

4.D.3 Analytical Interpretation of. Sensitivity Analysis 

The optimal basis representation contains a wealth of sensitivity inform~tion that 
provides valuable insights for the analyst ab?ut the robustness o~ the optimal solu
tion as well as the reliability of the assumpt10ns that were used m model formula
tion. Many important management questions can be answered_ using t~is kind of 
information. In this section we'll look at how to extract such mformatlon by re
turning to the familiar optimal basis representation for the Homewood Masonry 

problem: 
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Basis Representation for e0 = {53, X2, x,, S4} 

1 25 5:. = 2 - 251 + 5 2 

15 15 X2 = 4 - 2 1 + S 2 

1 25 
X1 = 6 + 251 - 5 2 

54 = 2 + ~ 51 - ~ 52 

Z = 1480 - 1051 - 2452. 

Reduced Cost of Nonbasic Variables. Recall that when we solved the 
Homewood Masonry problem using the simplex method, optimality condition,, 
were evaluated for each new basis representation. If a nonbasic variable had a pos;. 
tive coefficient for a maximization problem (negative coefficient for a minimizatio . 
problem). then the current solution was not optimal; bringing that nonbasic variabl 
into the basis would improve the value of the objective function. The magnitude < 

the coefficient indicated the marginal change in the value of the objective functio
that could be expected: the change in the value of the objective function for a un · 
increase in the value of that nonbasic variable as it enters the basis. This is mor 
commonly referred to as the reduced cost of that variable. 

The optimal solution for Example 3-1 shows the reduced costs for the nonba
sic variables at that solution: -10 and -24 for 51 and 52, respectively. This means 
that if we bring S1 into the basis. we will pivot to a feasible extreme point that would 
decrease the value of the objective function by $10 multiplied by the resulting value 
of S 1. Because in this case S 1 is a slack variable, the economic interpretation of such 
a requirement pertains to the right-hand side limit of the associated constraint equa
tion. The reduced cost of a slack or surplus variable that is nonbasic at optimality is 
the marginal value of a unit change in the right-hand side of the corresponding con
straint-the shadow price for that resource, as discussed earlier. Because the re
duced cost of all basic variables is zero, the marginal value of a change to the 
right-hand side of a nonbinding constraint is also shown to be zero. This is also con
sistent with our earlier observation that if a slack or surplus variable is basic at opti
mality, the associated constraint is nonbinding. 

You may have recognized that it is possible that a basic variable can have a 
value of zero. If there is a tie for which variable will leave the basis during a simplex 
pivoL the basic variable that remains in the basis will be zero following that pivot. A 
graphical interpretation of such a condition in two dimensions might be the case 
where three constraint equations intersect at a single extreme point. For the basis 
representation of such a point, all three of the slack/surplus variables associated 
with these three constraints have a value of zero, but only two would be nonbasic
and thus have nonzero reduced costs. The other would be basic with value zero, but 
would have a reduced cost of zero. Do you see that such a situation would actually 
be one where the basis representation would indicate alternate optima? This causes 
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only ?1in~r practical problems in the simplex algorithm as will be discussed briefly 
later m this chapter . 

. TI1e same reasoni.n~ applies to. str~ctural variables that arc nonbasic at opti
£?ahly, but the. economic mterpretat1on 1s usually viewed from a different perspec
tive. If the opt1m~I solution to the Homewood Masonry problem. for example. had 
been ~xtreme pomt B, then X2 would have been nonbasic at optimality (no FIUT 
matenal produce~), an~ its reduced cost would have been nonpositive. From a man
agement perspecllv~, th1.s reduce~ cost would be interpreted as the amount by which 
the value of the Objective function would decrease if Homewood Masonry were 
forced to produce a unit of the FILIT product. 

Right-Hand Side Sensitivity Range. Our graphical interpretation of the 
right-hand side sensitivity information presented in Figure 4.4 demonstrated that 
for Example 3.1, the right-hand side of the blending machine constraint which was 
originally 50 cubic meters per week, could have fallen within a range of values for 
which the current solution B0 = {xi, x2, S3, S.d remains optimal. This range for the 
value of that right-hand side was shown to be from 40 to 55 hours, with a constant 
rate of change over that range equal to the shadow price of that constraint: $24 per 
hour. How would we extract the endpoints of this range from the basis representa
tion above? 

For slack and surplus variables that are nonbasic at optimality-such as S 1 and 
S2 in the current example-the adjacent basic feasible solutions to which we would 
pivot by increasing or decreasing the right-hand side of the associated constraint are 
the points at which the optimal basis would change. For example, if the nonbasic vari
able S2 were forced into the basis from the current optimal solution. its value would be 
limited by feasibility conditions, S4 would leave the basis, and the value of 52 when it 
entered the basis would be 10. This is the same as saying that the right-hand side asso
ciated with the blending time constraint could decrease by 10 units before the optimal 
basis would change. Verify this by reexamining Figure 4.4 and Table 4.3. Similarly, if 52 

entered the basis and its value were decreased from its present value of zero until a ba
sic variable is driven to zero, this would be paramount to asking: "By how much could 
the right-hand side of the original constraint increase without changing the optimal 
solution?" In this example, S3 would leave the basis if S2 entered the basis at a value of 
-5. From another perspective, if the value of 52 in our augmented problem were -5. 
then the rioht-hand side of that constraint could be increased by 5 units without 
changing th~ extreme point solution that would b~ optimal. So ov~r the .range 40 to 55 
hours of blending machine time, the current solutio~ would ~em~m optimal. . . 

For slack and surplus variables that are basic at ~pt1mahty (53 and S.i m th~s 
example), the reasoning is similar, but a bit more st~a1ghtfor.ward. For s.lack vari
ables that are basic at optimality, the amount by which. the nght-hand sid~ of the 
associated constraint could be decreased without changmg the c~rre~t optimal ~o-
1 t

. · tl 1 f the slack variable while the amount by which it could be m-u ion is 1e va ue o ' . . . 
creased without a new solution being optimal would be mfm1ty. For surplus 
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variables that are basic. their value at optimality is an upper limit on the associated 
right-hand side. whi1c the lower limit is infinity. 

Objective Function Sensitivity Range. From the discussion surrounding 
Figure 4.5, it should be clear that at the limits over which a coefficient multiplying~ 
decision variable can vary without changing the optimal solution, alternate optimal 
solutions exist. To identif-y these limiting values for a particular objective function 
coefficient. all other parameters remaining unchanged, we need only solve for the 
value of this coefficient such that these two adjacent basic feasible solutions give thl' 
same value for the objective function. 

In the optimal basis representation for Example 3-1 presented earlier in tlm 
section. an adjacent extreme point solution could be identified by bringing S1 in1,: 
the basis~ doing so would force S.!> from the optimal basis, and 51 would enter the b<.
sis at a value of 4. TI1e reader should verify that the new extreme point solutit 1 ·, 

would have a basis that would include x1 = 8 and x2 = 2. TI1is new extreme pair:·. 
solution would be an alternate optimal solution for Example 3-1 if it would give ti~ , 
same value for the objective function as the original optimal basis, which include~_: 
x1 = 6 and x2 = 4: 

With c2 unchanged. 

c 1 ( 6) + 160 ( 4) = c 1 ( 8) + 160 ( 2). 

or 

Ct = 160. 

That is. c1 could increase from a value of $140 per unit production to $160 per 
unit without changing the optimal basis. Similarly, if c1 were unchanged from $140. 
then the value of c2 could likewise change between $160 and $280 without changing 
the optimal basis: 

With c2 unchanged. 

140(6) + c2(4) = 140(8) + c2(2), 

or 

C2 = 280. 

Of course the value of the objective function would change if these cost coef
ficients are changed over this range. Verify the lower limits for objective function 
sensitivity as presented in Figure 4.5 and Table 4.4 if S2 is made basic. When this 
analysis is performed for problems having more than three structural variables, an 
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additional step is required to dct "'r · th · · L · · · 
. c mmc c mcommg non11as1c vanablc that wtJJ rt:-

sult m ~he smallest change lo the value of the objective function and u~ing that to 
determme the values of structural variables for the adjacent solution. 

4.E THE TABLEAU METHOD FOR SIMPLEX PIVOTING 

A~ efficient w~y of displaying the status of the simplex algorithm through the piv
otmg process is called the tableau method. Rather than write each variahJc for 
every constraint, only the coefficients need be displayed at each iteration. Simplex 
pivoting can be achieved by manipulating this tabular display of each basic feasible 
solution. 

The augmented version of the Homewood Masonry problem will he written in 
tabular form with columns for each problem variable-structural and slack/surplus
and rows for each basic variable. For convenience of expression, the objective function 
is treated in the same manner as a basic variable. At the all-slack/surplus basis, 

Z - 140x1 - 160x2 = () 

2x1 + 4x2 + S1 = 28 

5x1 + 5x2 + S2 = 50 

X1 + S3 =5 

X2 + S4 = 5. 

Maintaining this gridlike structure with the rightmost column displaying the values of 
the basic variables (for the all-slack/surplus basis, these are just the values of the cor
responding right-hand sides), we can produce a table-or tableau-that acts as a 
bookkeeping procedure for simplex iterations. The initial simplex tableau for the 
Homewood Masonry problem is presented as Table 4.5. Note that the columns associ
ated with the basic variables have an entry of one in the row for which it is a basic vari
able, and entries of zero in the other rows of that column. This format is essentially the 
same as the basis representation used in our previous description of the simplex algo
rithm, except that the variables are not included explicitly in each equation. 

TABLE 4.5 INITIAL SIMPLEX TABLEAU FOR THE HOMEWOOD MASONRY PROBLEM 

Basis z Xt Xz S1 S2 SJ 54 Value Ratio 

z -140 -160 0 0 0 0 0 

S1 0 2 4 0 0 0 28 28/2 = 1-l 

S2 0 5 5 0 0 0 50 5015 = 10 

S3 0 0 0 0 1 0 8 811 = 8 

S4 0 0 0 0 6 ·X' 
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1l1c entries in the Z row of the tableau are the negative of the reduced costs. 
and will only be nonzero for nonbasic variables. For maximization problems. opti. 
mality is indicated when all coefficients in the Z row are nonnegative. For mini. 
mization problems. the stopping criterion is the opposite; all coefficients in the z 
row will be nonpositivc. ln this example, bringing either x1 or Xz into the basis from 
this initial solution will improve the value of the objective function at the corre. 
sponding rate of improvement. So that we can compare this process with the prcvi. 
ous simplex iterations, let's again select x 1 to enter the basis during this iteration. 
111e column of the entering variable-the pivot column-is shaded for illustrative 
purposes. 

N~xl. we determine the variable that will leave the basis as x1 enters. Recall 
from our previous discussion that in order to maintain feasibility. the leaving vari
able will be the one that first goes to zero as the value of the new basic variable is in
creased. Each basic variable having a positive element in the pivot column must he 
tested~ those having nonpositive values will not be decreased in value as the nev 
variable enters the basis. hence they will never be driven out of the basis. Divide tht 
current value of each basic variable by its corresponding element in the pivot coi 
umn. TI1is ratio is computed in the rightmost column of Table 4.5. The ratio that i· 
the smallest indicates the leaving variable. shaded as the pivot row. In this case the 
leaving variable will be 53. The intersection of the S3 row-the row corresponding tc 
the leaving variable-and the x 1 column-the column corresponding to the enter
ing variable-identifies the pivot element. 

We can now begin to construct the simplex tableau for the adjacent feasible 
extreme point to which we will pivot. 111is, and the remaining simplex tableaus for 
solving the Homewood Masonry problem are presented in Table 4.6; each tableau 
corresponds to a basic feasible solution labeled on Figure 4.1 and in Table 4.1. The 
iterative simplex pivoting procedure can be specified as a simple seven-step ac
counting procedure: 

Step 1: Form the row for the new basic variable by dividing the pivot row in the 
current tableau by the pivot element. Write this row in the new tableau. 

Step 2: Complete the columns corresponding to the basic variables in the new 
tableau by entering a 0 in all rows except for the identity row; place a 1 at 
that location. 

Step 3: Compute the remaining elements in the new tableau using the following 
formula: 

( 
element in the pivot element in the) 

new row element = old row element - x 
column of previous tableau new pivot row 

Step 4: Determine if the current tableau (basic feasible solution) is optimal by 
examining the elements in the Z row. Optimality is indicated if all such 
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TABLE 4.6 THE SIMPLEX TABLEAUS FOR THE HOMEWOOD MASONRY PROBLEM 

-

Tableau Basis x, .t2 s, S2 s, S.i Value Ratio 

BA 

B" 

BC 

BD 

z 140 160 0 0 0 0 (J 

s, 2 4 1 0 0 0 28 2812 - 14 

S2 5 5 0 I 0 0 50 5()15 , __ J() 

S3 0 0 0 1 0 8 811 8 

S4 0 1 0 0 0 I 6 -x, 

z 0 160 0 0 140 0 1120 

s, 0 4 1 0 -2 0 12 1214 = 3 

S2 0 0 1 -s 0 10 1015 = 2 

x, 1 0 0 0 1 0 8 x.. 

S4 0 1 0 0 0 l 6 611 6 

z 0 0 0 32 -20 0 lMO 

s. 0 0 1 -415 0 4 412 = 2 

Xz 0 1 0 1/5 -1 0 2 x 

x, 1 0 0 0 1 0 8 8/l = 8 

S4 0 0 0 -115 1 1 4 4/l = 4 

z 0 0 10 24 0 0 1480 Optimal 

S3 0 0 112 -215 1 0 2 

X2 0 1 112 -115 0 0 4 

x, 1 0 -1/2 215 0 0 6 

S4 0 0 -112 115 0 1 2 

elements are nonnegative for maximization problems or nonpositive for 
minimization problems. If the current tableau is optimal, go to step 7. 

Step 5: Select the variable that will enter the basis from among those having nega
tive entries in the Z row for maximization problems, or those having posi
tive entries for minimization problems. Label the corresponding column of 

the current tableau as the pivot column. 

Step 6: Determine the variable that will leave the basis by dividing the current val
ue of each basic variable by the corresponding value in the pivot column, 

I 

I 
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but only for positive pivot column entries. Label the row having the lowest 
such value as the pivot row. Label the element at the intersection of the piY
ot column and the pivot row as the pivot element. Go to step 1. If there are 
no positive pivot column entries. the problem is unbounded: the formula
tion is in error. 

Step 7: If one or more nonbasic columns have an entry of 0 in the Z row of the cur
rent tableau, alternate optima are present. 

For the first iteration (pivot) using this procedure, we begin by computing the 
new tableau row for the incoming variable, xb by dividing the old pivot row by till" 
pivot clement (step 1). This results in the x 1 row of tableau 2 having entries 1, O. 11 

0, 1. O. and 8 and is designated the new pivot row. For clarity, these entries are bok1 
ed in Table 4.6. Next (step 2), we complete the columns associated with the new h;1 

sis or the new tableau by placing a 0 in each row of those columns except for th 
identity column: a 1 is placed at that location. For example. the column in the ne·, 
tableau for the new basic variable x 1 has entries O. 0, 0. 1. 0 (including the 0 entry i 
the Z row). (TI1is step is actually not necessary as the same values would resu· 
from applying the formula in step 3 to these column entries: it is merely a conw 
nience.) Complete the rest of the new tableau by applying the formula stated abov: 
(step 3). For example, the entry in the Z row of the S3 column in the new tableau i 
computed as 

new ( Z. S ~) e le men t = 0 - ( -140 X 1 ) = 140 

The new values for the basic variables are computed in the same way, for example. 

new (S1• value) element = 28 - (2 x 8) = 12 

and so on for all remaining entries in the new tableau. You may have correctly rec
ognized this process as Gaussian elimination from your previous experience with 
matrix algebra. 

Ne;l. we determine if the new tableau represents an optimal solution (step 4) 
by examining the entries in the Z row for the nonbasic variables. The current solu
tion is not optimal because it can be improved if x2 is brought into the basis; this is 
our only option at this point, so the x2 column becomes the pivot column of the cur
rent tableau (step 5). As x 2 enters the basis and is increased in value, S2 first be
comes O and will leave the basis when x2 = 2 (step 6). S2 is therefore labeled as the 
pivot row: the pivot element is element (S2 ~ x2). We repeat the process of construct
ing a new simplex tableau by returning to step 1. This set of steps will be repeated 
until the optimality conditions are identified in step 4. 

Alternate optima are readily identified when solving linear programs using the 
tableau accounting procedure. If optimality is indicated for a given tableau, but at least 
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one nonb~sic variable has a coefficient of 0 in the Z row. then hringing that v<.1riahlc in
to the basis would not change the value of the objective function in the next tahlt.:au. 
Such a new tableau would be an alternate optimal solution. Suppose that the reduced 
cost .for. a nonbasic variable is 0 but the current solution is not optimal: there arc other 
entnes m the Z row of both positive and negative sign. This might happen. for example. 
if two potential incoming variables have the same value in the z row of a tableau. Ver
ify that bringing one such variable into the basis will result in the z row entry of the 
other in the next tableau being zero. even though that variable will remain nonba~ic. In 
a two-variable problem. this condition would result when three constraint equations 
pass through the same extreme point: one of those constraints is not hinding even 
though it is satisfied with strict equality. These solutions may or may not he optimal. 

Unbounded solutions and degenerate solutions arc also easy to identify dur
ing the processing of simplex tableaus. If. during the pivoting process for a maxi
mization problem, a nonbasic variable has a negative coefficient in the Z row 
(positive coefficient for minimization problems). but all other coefficients in that 
column are nonpositive, then the problem is unbounded; the ratio test will fail be
cause it will not be possible to drive any basic variable from the basis if that nonba
sic variable enters. If the ratio lest for determining the leaving variable results in a 
tie between two or more variables, then the variable that does not leave the basis 
will have a value of 0 in the subsequent simplex tableau. A basic variable with a ze
ro value is called degenerate. It is theoretically possible that such a condition will re
sult in a cycling of the simplex process that will never converge on an optimal 
solution. Modern computer codes for performing the simplex algorithm all contain 
safeguards that prevent this anomalous condition. 

CHAPTER SUMMARY 

The simplex algorithm can find the optimal so~ution to a l~near program by exploit
ing three special properties of the feasible regi~n:. convexit~, compactness. and ~on
tiguity. Because these properties are charactenstlc of all hnear progr~ms. opt_imal 
model solutions will be found among the set of feasible extreme pomt solutions. 

which is a finite and countable set. . . . 
A transformation of the original model constraints mto a m~themat1cally 1d~n-

tical set of equality equations allows the id~nti~ication of all feas~ble extr~me p~mt 
I · Th · l algori'thm beoins by fmdmg one such solution that is feasible. so utions. e s1mp ex o . . . 

h b t feasi.ble extreme point solutions until no further improvement t en moves e ween . . . 
can be made in the value of the objective function. At this pomt, the las_t extreme 

. t l t. bta1'ned i's optimal or at least a member of the set of optimal solu-
pom sou 10n o ' · · If f "bl -. . h h blem has alternate optimal solutions. no eas1 e ex 
hons m the case w ere t e pro bl · 'd to be infeasible and if the . . b found the pro em is sa1 . 
treme pomt solution can ~ ' . d 'thout limit the problem is said to 
value of the objective funct10n can be improve wi ' 

be unbounded. 
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Two accounting procedures were presented for implementing the simplex al. 
gorithm for small problems by hand. Both procedures begin with the augmentation 
of the original problem equations with variables that allow these equations to be 
written as equality equations. These slack or surplus variables account for the differ. 
ence between the left-hand side and the right-hand side of the original equations. 
Extreme point solutions may then be characterized as solutions in which this system 
of m equality equations can be solved to find a unique solution for exactly m vari. 
ables, called the basic variables for that solution. The basis representation methou 
allows expressions for these basic variables to be written in terms of the remainin·1 
(nonbasic) variables. At any such extreme point solution~ coefficients for the nonba~ 
sic variables indicate the amount by which the objective function would change j; 

that nonbasic variable were exchanged with a basic variable. 111is exchange woul.· 
identify an adjacent basic feasible solution. If the objective function could be im 
proved by moving to such an adjacent solution. the algorithm continues. If not, th-. 
current basic feasible solution is optimal. 

The tableau method is a streamlined version of the basis representation metho~. 
that uses a tabular representation for each basic feasible solution. The basis repre 
sentation method facilitates the explanation of why the simplex algorithm work· 
while the tableau method is somewhat less tedious to use. 

Problems of any size could be solved using these methods, but the level o-: 
computational effort required exceeds the patience of most humans. Computer pro
grams are widely available for virtually any hardware platform for solving such 
problems. 

EXERCISES 

4.1. Solve the following linear program using the simplex method. Explain each simplex 
pivot by showing a complete basis representation or simplex tableau for each ex
treme point visited. Compute the value of the objective function and decision vari
ables at optimality. and indicate which statement best describes the solution and 
why: 

Maximize z = 12x1 + 18x2 (a) this linear program has a unique optimal solution 

Subject to: 6x 1 + 5x2 :s: 60 (b) this linear program has alternate optima 

x 1 + 3 x 2 $ 15 ( c) this linear program is infeasible 

::;:9 (d) this linear program is unbounded 

4.2. Solve the following linear program using the simplex method. Explain each simplex 
pivot by showing a complete basis representation or simplex tableau for each extreme 
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point visited. Compute the value of th b' . . 
timality and ind' t I . h e o Jcct1ve function and decision variahles at op-

. ica c w llC statement hcst describes the solution anc.J why: 

Minimize Z = 4x1 - 5x
2 

Subject to: -6x1 + 3x2 s 12 

4x1 - 2x2 s 24 

3x1 + 2.r.::! s 30 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

(c) this linear program is infeasible 

(d) this linear program is unbounded 

Xz S 6 

4.3. S~lve the foll?wing linear program using the simplex method. Explain each simplex 
p1~ot b~ .showing a complete basis representation or simplex tableau for each extreme 
~omt. v1s1tcd .. co.mputc the value of the objective function anc.J decision variables at op
llmahty, and md1catc which statement best describes the solution and why: 

Maximize Z = 3x1 + 2x2 

Subject to: - x1 + 2x2 s 6 

2x1 - 5x2 s 10 

-2x1 + 2x2 s 2 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

(c) this linear program is infeasible 

(d) this linear program is unbounded 

4.4. Solve the following linear program using the simplex method. Explain each simplex 
pivot by showing a complete basis representation or simplex tableau for each extreme 
point visited. Compute the value of the objective function and decision variables at op
timality, and indicate which statement best describes the solution and why: 

4.5. 

Maximize Z = 4x1 + 6x2 (a) this linear program has a unique optimal solution 

Subject to: x1 + x2 2= -4 (b) this linear program has alternate optima 

3x 1 - 2x2 s 6 ( c) this linear program is infeasible 

x1 + x2 2= 5 (d) this linear program is unbounded 

x 1 + Xz S 10 

X1tX2 2; 0 

Solve the following linear program using the simplex method. Explain each simplex 
pivot by showing a complete basis representation or si.mplex tabl~a.u for e~ch extreme 
point visited. Compute the value of the objective. function and. dec1s1on va~ables at op
timality, and indicate which statement best descnbes the solution and wh). 

Maximize Z =xi + x2 

Subject to: x1 + x2 2= -4 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 
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3x1 - 2x2 :s 6 

X1 - X2 :S 10 

( c) this linear program is infeasible 

(d) this linear program is unbounded 

Chap. 4 

4.6. Solve the following linear program using the simplex method. Explain each simple:x 
pivot by showing a complete basis representation or simplex tableau for each extreme 
point visited. Compute the value of the objective function and decision variables at op
timality, and indicate which statement best describes the solution and why: 

Maximize Z = x 1 + x2 

Subject to: xi + 2x2 :::; 14 

2.ti + X1 ::5 16 

Xi ::5 7 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

( c) this linear program is infeasible 

(d) this linear program is unbounded 

4.7. Solve the following linear program using the simplex method. Explain each simple . 
pivot by showing a complete basis representation or simplex tableau for each extrem .
point visited. Compute the value of the objective function and decision variables at op
timality. and indicate which statement best describes the solution and why: 

Maximize Z = 9xi + 6x2 

Subject to: 3x1 + 2x2 :::; 30 

-6x1 + 3x2 :::; 12 

4x 1 - 2x2 :::; 24 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

( c) this linear program is infeasible 

( d) this linear program is unbounded 

4.8. Solve the following linear program using the simplex method. Explain each simplex 
pivot by showing a complete basis representation or simplex tableau for each extreme 
point visited. Compute the value of the objective function and decision variables at op
timality. and indicate which statement best describes the solution and why: 

Minimize Z = 2x 1 + X2 

Subject to: 4.r 1 - 12x2 s -6 

-4x1 + 6x2 :::; 12 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

( c) this linear program is infeasible 
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4.9. 

(d) this linear program is unhounllcc.I 

Xi + X2 :5 9 

S?lve the foll?wing linear progr~m using the simplex method. Explain each ~implcx 
p1~ol b~ .showmg a complete has1s representation or simplex tahlcau for each extreme 
~omt_ v1s1ted .. Co.mputc tl.1e value of the objective function and dcci~ion variahlc~ at np
t1mahty, and md1catc which statement best dcscrihes the solution and why: 

Minimize Z = ?xi - 5x2 

Subject to: 2x 1 - x2 :::: 4 

lOxi + 3x2 :s 30 

Xi + 2X2 ;::: 10 

(a) this linear progrnm has a unique optimal solution 

(b) this linear program has alternate optima 

(c) this linear program is infeasible 

(d) this linear program is unbounded 

4.10. Solve the following linear program using the simplex metholl. Explain each simplex 
pivot by showing a complete basis representation or simplex tableau for each extreme 
point visited. Compute the value of the objective function and decision variables at op
timality, and indicate which statement best describes the solution and why: 

Minimize Z = 2xi + 3x2 + x3 

Subject to: 2x1 + x2 - x3 :::: 3 

X1 + X2 + X3;::: 2 

(a) this linear program has a unique optimal solution 

(b) this linear program has alternate optima 

(c) this linear program is infeasible 

( d) this linear program is unbounded 

4.11. Solve Exercise 4.10 by enumerating all possible extreme point solutions and comparing 
them to determine the optimal solution. 

4.12. Solve the following linear program using the simplex method. Explain each simplex 
pivot by showing a complete basis represe.nta~ion or si_mplex tabl~a~ for e~ch extreme 
point visited. Compute the value of the objecllve. funct10n and. dec1s1on vanables at op
timality, and indicate which statement best descnbes the solullon and why: 

Maximize z = 2x
1 

+ 3x
2 

+ 2x3 (a) this linear program has a unique optimal solution 

Subject to: 2x
1 

+ x
2 

+ x3 :::; 4 (b) this linear program has alternate optima 

x
1 

+ 2x
2 

+ x
3 

:::; 7 (c) this linear program is infeasible 

. + 2v + r < 12 (d) this linear program is unbounded 
.\'.1 ·"2 • 3 -

Xi, X2, X3 ~ Q 
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4.13. Solve the following linear program using the simplex method. Explain each simple . 
pivot by showing a complete basis representation or simplex tableau for each cxtrcm: 
point visited. Compute the value of the objective function and decision variables at op
timality. and indicate which statement best describes the solution and why: 

Maximize Z = 2x 1 + 4x2 + x_, + x4 (a) this linear program has a 
unique optimal solution 

Subject to: x 1 + 3x2 + x4 s 2 (b) this linear program has 
alternate optima 

x 2 + 4xJ + x4 s 5 (c) this linear program is 
infeasible 

x 1• x2• x_,. x4 ~ 0 (d) this linear program is 
unbounded 

4.14. Solve Exercise 3.13 hy enumerating all possible extreme point solutions and comparin 
them lo determine the optimal solution. 

4.15. Solve the following linear program using the simplex method. Explain each simpk:-. 
pivot by showing a complete hasis representation or simplex tableau for each cxtrem 
point visited. Compute the value of the objective function and decision variables at op 
timality. and indicate which statement best describes the solution and why: 

Maximize Z = 3x1 + 2x1 - x.~ + 2x4 (a) this linear program has a unique optimal solutio1 

Subject to: 2x1 - 4x~ - x~ + x4 s 10 (b) this linear program has alternate optima 

x 1 + x1 - 2x:; - 3x4 s 12 {c) this linear program is infeasible 

.r1 - x 2 - 4x_; + x4 s 3 (d) this linear program is unbounded 

4.16. A company manufactures three different types of pipe fitting: tees, elbows, and splicers. 
Daily production of these parts arc limited by the availability of lathe time, grinder 
time. and labor availability as indicated in the table below: 

-
Products 

Availability 
Resources lOOTces 100 Elbows 100 Splicers of Resource _ 

Person hours 6 4 5 24 
-

Lathe hours 1 2 1 8 -
Grinder hours 2 1 0 12 -
Profit per 100 units $700 $550 $480 

For example. each 100 units of tees requires 6 person hours to produce, including 1 

hour of lathe time and 2 hours of grinder time. All the tees that are made can be sold 
for $700 per 100 units. A total of 24 person hours, 8 lathe hours. and 12 grinder hours 
arc available on a given day. 
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(a) Formulate a linear program that .11 . . 
d 'I fi wi suggest a production pohcv for maximizin~ a1 y pro 1t. · · · -

(b) ~ug~enthy~ur constraint set hy adding the appropriate slack and surplus variahlc\. 
ist. m ta u ar f~rm. all _extreme point solutions of the solution space for this prohlcm. 

(c) Graph the ~cas1ble region in decision space for this prohlem and lahcl the f<.:a'lihk 
extreme pomts lo correspond lo those presented in part (b ). 

(d) Solve this_ linear program using the simplex algorithm summarizing the results 
of each s1~pl~~ pi:ol as a basis representation or simplex table-au. Explain 
fully ~our JUst1f1calJon for selecting variables to enter and leave the basis for 
each iteration. 

4.17. From the optimal basis representation for Exercise 4.16. answer the following questions: 

4.18. 

4.19. 

(a) What is constraining your present production level? 

(b) Suppose that one of your clients approached you about a modification to your con
tract agreement that required you lo deliver at least 100 splicers each dav. How 
would this change your optimal production policy. and what concessions might you 
require from this customer? 

(c) Suppose a local equipment rental company is willing to rent you additional ma
chine time on an hourly basis. How much would you be willing to pay per hour for 
additional lathe and grinding machine work? 

(d) Suppose that the profit per 100 units of elbows fell to $500. How would this change 
your production policy, and what would be your new optimal daily operating profit? 

(e) Suppose the local labor union demanded an extension to mandatory rest periods 
each shift, which would reduce your available work time to 21 person hours per 
day. How would this affect your production policy and daily profit margin? 

A poultry farmer owns 100 laying hens. Each week a hen can either lay 12 eggs or 
hatch 4 eggs, but not both. At the end of the four-week period all eggs and chicks will 
be sold; an egg will bring 10 cents and a chick will bring 60 cents. Assume that an egg 
can be hatched only in the week after it is laid. Otherwise it must be saved and sold for 
10 cents. Also, assume that there are no eggs available for hatching in the first week. 

Formulate a linear program that will suggest a hen-management strategy that 
will maximize profit for this operation. 
You are the production manager for a very large construction company t.hat is ~bout to 
start a major concrete pour that is estimated to last for 10 days. Your pnmary JOb dur
ing this time is to provide the necessary forms each day: 

1 2 3 4 5 6 7 8 9 10 
Day 

50 60 80 70 50 60 90 80 50 100 
Forms needed 
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To meet these requirements you have three options: 1) you can purchase new forms for 
$200 each: 2) you can recondition used forms using a standard process that takes 4 da\'s 
and costs $25 per form: or 3) you can recondition forms using a special "fast"" procc.ss 
that takes 2 days and costs $75 each. Assume that the company supplying you with 
forms has sufficient inventory to supply all new forms if necessary. Also. you have no 
forms prior to the start of this operation. 

Formulate a linear program that will suggest a strategy for meeting the demand 
for forms at least total cost. 

4.20. Homewood Masonry is considering expanding its operation and entering into the local 
structural concrete market. Management has decided to produce and distribute one 
batch of each of two different grades of concrete. Each grade is a different mixture or 
cement. sand. and gravel as indicated by the amounts of each material needed for a giY-
cn wcck·s production as specified in the following table. ~ 

4.21. 

Grade Cement (tons) Sand (tons) Gravel (tons) 

I l 2 4 

II 1 3 6 

For example. this week ·s batch of Grade I concrete produced requires 1 ton of cement. 
2 tons of sand. and 4 tons of gravel. If this new business is to be profitable for Home
wood Masonry. these materials must be procured as cost effectively as possible. Your 
job is to develop a strategy for purchasing these materials. You have received bids from 
two regional suppliers that include the cost/ton (including transportation) shipped to 
your site: 

Supplier A Supplier B 

Material Cost/ton($) Available Cost/ton($) Available 

Cement $150.00 3 $175.00 6 

Sand $10.00 4 $7.00 5 

Gravel $17.00 4 $15.00 6 
-

For example. a ton of cement from Supplier A costs $150.00, and Supplier A has a total 
of 3 tons available for your operation. 

formulate a linear program that will suggest an optimal strategy for purchasing 
raw materials for the production of these concrete mixtures. . 

You have just received word that a wealthy relative who di.ed very recently left a ~ro:~ 
sion in her will for an endowment to support your educallon, and that of any chddr 
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you have or mav have in the future St·1rl' 
months thereafter. the estate issues·,, chc~~gf~n August I st of each year. and every two 
options for investing these funds. · ' r s25.ooo payahle to you. You have three 

1. A special 2-month Treasury note th· t , o 
2 A 4 th · ·' returns 1.8 Yi, on the invested amount 
• -mon moncv market fund th t 1 . 4 ( o . · 3 A 1 6 . a re urns . ) Yc, on the mvc~tcd amount or 
• scasona -month futures opt' . · 

able onlv on Jan 1 f . ion returning 8.1 o1c, on the invested amount avail-
' • < uary o each year. 

All funds deposited in any invest ~ t · 
the entire invest . men instrument must remain in tht.: account through 
. ti . mcnt penod, but then may he withdrawn and held. or reinvested d~·r
mg lC next penod .. An~ to ensure diversification of investment. not more tha~ 60% of 
total assets may reside many one vehicle at any time. The will further states that on Ju. 
ly 31 of each year, all .money resulting from these contributions must he withdrawn and 
spent on your educat10n. 

. ~ormulate a linear program that will suggest an investment strategv that will 
max1m1ze the amount you have available to spend on education. · 

4.22. Consider the simply supported beam shown below: 

Pi P2 

k 
i i ·a b (b 

5' ~ 14 
5' 

.14 14 
10' 

~I 

The load-carrying capacities of supports 1 and 2 are 12 and 19 kips. respectively. The 
beam itself can withstand a bending moment of 65 kip-feet, and the maximum stress 
created by any loading is assumed to occur at one of the load points (a orb). 

Formulate a linear program that will determine the maximum possible loads ( P1 and 
P2) that this system can carry. Solve your model using the simplex algorithm. and summa
rize each simplex pivot by showing the appropriate basis representation or simplex tableau. 

4.23. Referring to your optimal basis representation or tableau for Exercise 4.22, and assum
ing that each additional pound of loading is worth ten dollars. how much would you be 
willing to spend to strengthen support 1, and how much strength would you be willing 
to add for that price or less? 

4.24. Modify your formulation for Exercise 4.22 to find the maximum permissable loads (P1 

and P2) such that the force exerted at supports 1 and 2 are equal. 
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Linear Programs with 
Multiple Objectives 

5.A A RATIONALE FOR MULTIOBJECTIVE DECISION MODELS 

For many engineering management problems, particularly those in the public sector. 
more than one objective is generally important. Consider the problem of developing 
an operating strategy for a large, multipurpose water reservoir. It is not uncommon 
for such a facility to be used to meet a variety of societal needs including municipal 
water supply, agricultural water supply, flood control and streamflow management. 
hydroelectric power production, outdoor recreation, and protection of fragile envi
ronmental habitat. From a management perspective, these uses of such a facility 
conflict with one another. For example, an optimal management strategy with re
spect to ensuring a reliable supply of water from a reservoir for municipal use might 
have as its objective function: maximize storage in the reservoir at all times. Yet for 
purposes of containing an extreme flood event, the objective function could be just 
the opposite: minimize storage in the reservoir at all times. Several optimization tech
niques have been developed to capture explicitly the tradeoffs that may exist be
tween conflicting, and possibly noncommensurate. objectives. In this chapter we lay 
the foundation for multiobjective analysis that can be applied across the spect~um 
of public sector engineerino manaoement problems and demonstrate the apphca-o b . 

tion of two of the most useful multiobjective optimization methodologies. 
Multiobjective programming deals with optimiza.tion problems w~th two or 

more objective functions. The multiobjective programmmg. formulat10n ~1ffers from 
the classical (single-objective) optimization problem only m the expression of the Ir 

121 
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respective objective functions; the multiobjective formulation accommodates explicit. 
ly more than one. Yet the evaluation of management solutions is significantly differ. 
ent: instead of seeking an optimal or best overall solution, the goal of multiobjective 
analysis is to quantify the degree of conflict, or tradeoff, among objectives. From an. 
other perspective. we seek to find the set of solutions for which we can demonstrate 
that no better solutions exist. This best available set of solutions is referred to as the 
set of noninferior solutions. It is from this set that the person or persons responsible 
for decision making should choose; the role of the systems analyst is to describe as ac
curately and completely as possible the range for that choice and the tradeoffs amon~ 
objectives between members of that set of management solutions. Noninferiority ;-~ 
the metric by which we include or exclude solutions in this set. 

5.A.1 A Definition of Noninferiority 

In single-objective problems our goal is to find the single feasible solution that pr· 
vides the optimal value of the objective function. Even in cases where alternate o 
tima exist, the optimal value of the objective function is the same for each alterna 
optima (extreme point). as can be seen in Figure 3.3b. For problems (models) havin~' 
multiple objectives. the solution that optimizes any one objective will not, in gene -
al, optimize any other. In fact, for decision-making problems that are most challeng
ing from an engineering management perspective, there is usually a very large 
degree of conflict between objectives such as in the example of reservoir manage
ment. Another example might be in the area of structural design, where objectives 
might include the maximization of strength concurrent with the desire to minimize 
weight or cost. In managing environmental resources, we might seek to trade off en
vironmental quality and economic efficiency concerns, or even conflicting environ
mental quality goals: minimizing the volume of landfill disposal against discharges 
to the atmosphere by incineration of municipal refuse. Note that in these latter ex
amples. the units of measure for different objective functions may be quite different 
as well. \Ve call such objective functions noncommensurate. 

When dealing with objectives that are in conflict, the concept of optimality 
may be inappropriate; a strategy that is optimal with respect to one objective may 
likely be clearly inferior for another. Consequently, a new concept is introduced by 
which we can measure solutions against multiple, conflicting, and even noncommen
surate objectives-the concept of noninferiority: 

A solution to a problem having multiple and conflicting objectives is noninferior 
if there exists no other feasible solution with better performance with respect to any one 
objective. without having worse performance in at least one other objective. 

Noninferiority is similar to the economic concept of dominance and is even 
called nondominance by some mathematical programmers, efficiency by statisti
cians and economists. and Pareto optimality by welfare economists. A simple exten
sion to the Homewood Masonry problem presented as Example 3-1 will help the 
reader understand this often nebulous concept. 
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5.A.2 Example 5-1: Environmental Concerns for Homewood Masonry 

Problem Statement. The .management of Homewood Masonry has long 
been concerned a.bout the local environmental impacts of their production operation, 
both ~s _a r~spons1_ble me?1ber ~f the community within which their plant resides. and 
in antlc1pat1on of mcreasmgly lighter standards and governmental controls. You have 
been asked to study the operation of the plant and to identify from a technical per
spective the level of conflict that exists between these two management objectives. 

After analyzing the results of a comprehensive air-monitoring program. you 
discover that the major environmental impact of the operation results from a re
lease of contaminated dust during the blending process; the binder used in manu
facturing both HYDIT and FILIT attaches to these dust particles, and is thereby 
released to the environment during production. Laboratory tests suggest the release 
of this pollutant from the plant amounts to 500 milligrams for each ton of HYDIT 
produced and 200 milligrams for each ton of FILIT produced. A second objective 
function, one that seeks to minimize total plant emissions. can now be specified as 

Minimize Z2 = 500x1 + 200x2. 

The feasibility of solutions (the feasible region in decision space) is not affected by 
the consideration of this objective function. Note that the sense of this objective 
function is opposite that of our original production objective function (maximize to

tal weekly revenue), and the units (milligrams discharged) are different as .'~ell 
(dollars). Yet both objective functions are related through the same set of dec1s1on 
variables. 

By the same argument presented in the previo.us cha.pter, the solutio~ that op
timizes this second objective function must be a basic feasible (extreme pomt) solu
tion in the original problem. The values for the decision variables ~t each o~ these 
solutions are repeated in Table 5.1, and the values of both ~bjecttve fu?c~10ns at 
each of those solutions are included. Not surprisingly, the solution that optimizes the 
environmental objective is the "do nothing" solution: xi = 0, X2 = 0. 

ES FOR ALL FEASIBLE EXTREME POINT 
TABLE 5.1 DECISION VARIABLES AND THEIREWVA~~D MASONRY PROBLEM: EXAMPLE 5-1 
SOLUTIONS FOR THE lWO-OBJECTIVE HOM 

Alternative X1 X2 MaxZ1 MinZ:. Noninferiority 

0 0 Noninferior 
A 0 0 

Dominated by D. E 1120 4000 
B 8 0 

Dominated by D 1440 4400 c 8 2 
Noninferior 1480 3800 

D 6 4 
1240 2200 Noninferior 

E 2 6 
Noninferior 

6 960 1200 
F 0 
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Because both objective functions have been previously specified, and are thus 
assumed to reflect the overall goals of production and environmental concern (im
plicitly, we assume that there are no other management objectives), we can apply 
the concept of noninferiority as defined above to each of these solutions (produc
tion alternatives). Notice that the solutions that optimize the individual objective 
functions Z 1 and Z2-alternative A and alternative D, respectively-are indicated 
as being noninferior. In fact, for any multiobjective optimization model, the solution 
that optimizes any single objective function is always noninferior, unless there arc 
alternate optima at that solution with respect to that objective function (this qualifi
cation will be clarified later). By the definition of noninferiority, if a solution is opti. 
mal for a given objective function, it is not possible to find a clearly better feasibL 
solution regardless of how that solution might perform with respect to any (or al'. 
other objective functions. 

Consider alternative B. It is not the worst solution with respect to profit; it ~ 

clearly better than alternative F by this measure. Nor is it the worst solution em< 
ronmentally; it is better than alternative C. But given the stated objective function 
and awareness of this set of alternatives, would you ever select alternative B? Woul · 
anybody ever select alternative B? Stated another way, is there any alternative tha 
would always be preferred to alternative B by anybody having preferences repre 
sented by this specific set of objective functions? The answer, of course, is that botl 
alternatives D and E perform better with respect to both objectives than does alter
native B, so that no decision maker would ever implement alternative B if he or she 
were aware of the availability of alternatives D or E. Similarly, alternative C is clearly 
dominated by alternative D. 

Now lefs compare alternative D-an alternative that has already been shown 
to be noninferior-with alternative E. While alternative D represents a production 
strategy that maximizes profit for Homewood Masonry, it would also have a more 
adverse impact on the local environment than would E. Therefore, the choice be
tween these alternatives is not obvious, and probably depends on the specific pref
erences of the decision maker. It is easy to envision a scenario in which the board of 
directors of Homewood Masonry might themselves be divided over which strategy 
to implement, particularly if they reside in the vicinity of the plant, for instance. Can 
you see that the same logic applies to the determination that alternative F is also 
noninferior? 

The goal of such an analysis is thus to identify all solutions that are noninferi
or: the set of solutions for which there does not exist another solution that would al
ways be preferable to any of those solutions. This set of alternatives is referred to as 
the noninferior set, or sometimes the Pareto frontier. It is then the responsibility of 
the decision maker to select from among these solutions that which represents their 
best compromise solution among the stated objectives. 

The definition of noninferiority seems more difficult to state than to compre
hend. Make sure you understand the logic used to determine dominance and non
dominance with respect to the solutions presented in Table 5.1, then review carefully 
the definition of noninferiority given above. When you feel that you've mastered the 
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TABLE 5.2 DECISION VARIABLES AND THEIR 
SOLUTIONS FOR A MORE COMPLICATED THR::~UBES FOR ALL FEASIBLE EXTREME POINT 

- JECTIVE PROBLEM· EXAMPLE 5 2 

Al tern alive X1 X2 MaxZ1 Max Z: MinZ1 .Son inf criorit y 

A 2 0 6 -2 2 Non inferior 
B 4 1 10 -2 5 .Soninfcrior c 6 5 8 4 II ~oninf erior 
D 6 7 4 8 13 ~oninferior 
E 3 6 -3 9 5 ~oninferior 
F 1 5 -7 9 6 Dominated hy E 
G 0 3 -6 6 12 Dominated hy E 
H 0 1 -2 2 l Noninfcrior 

concept, examin~ the data for a three-objective, eight-solution multiobjective pro
gram presented m Table 5.2 and try to verify that the noninferior set for this prob
lem consists of points A, B, C, D, E, H. Note that objective Z2 has alternate 
optima-both solution E and solution F provide an objective function value of 9-
but for the three-objective problem, solution E dominates solution F. 

You might also try writing your own objective function that depends on those 
values of the decision variables x1 and x2, and see how the inclusion of this fourth 
objective function changes the noninferior set. You should start to realize that the 
determination of noninferiority gets increasingly complicated as the problem grows 
in size, in both number of basic feasible extreme point solutions and number of ob
jective functions. Most real engineering problems in the public sector have hundreds 
of thousands of feasible extreme points, and may have tens of objective functions. 
Before we discuss a general-purpose algorithm for identifying the noninferior set. it 
is useful to develop a graphical framework within which to study further the concept 

of noninferiority. 

5.A.3 A Graphical Interpretation of Noninferiority 

Consider the two-objective mathematical program presented below: 

Maximize [Z1(xti Xz), Z2(Xti .t2)] 

where: Z1 = 3x1 - 2x2 

z2 = -x1 + 2x2 

Subject to: 4x1 + 8x2 ~ 8 

3r - 6X? $ 6 • 1 -

4x1 - 2x2 $ 14 

I 

I 
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Xt $ 6 

-x1 + 3x2 $ 15 

-2x1 + 4x2 $ 18 

-6x1 + 3x2 $ 9 

The feasible region in decision space and the objective functions are plotted in 
Figure 5.1. with each basic feasible solution labeled A-H. 

The most astute of readers will have noticed that this two-objective problem us 
es the same feasible region specified in Table 5.2 as well as the first two objective funL'. 
tions listed in that table (we will ignore the third minimization objective for the tim 
being). The shaded cells in that table indicate the optimal solutions. The presence c 

alternate optima for Z2 is not surprising if we note that the coefficients that multipl· 
the decision variables in that objective ( -x1 + 2x2) result in an objective functio: 
having a slope that is identical to one of the binding constraints (-2x 1 + 4x2 :s 18 ·. 

Because we have limited our example problem to not more than three objeL 
tives, we can map the feasible region in decision space to a corresponding feasibl: 
region in objective space~ we simply plot the ordered (Zr, Z2) pairs as presented i:-. 
Figure 5.2. Using the common reference provided by Table 5.2, each basic feasible 
solution labeled in Figure 5.1 has a corresponding solution in objective space using 
the same letter designator. For example~ point B in Figure 5.1 corresponds to Point 
B in Figure 5.2. with the corresponding coordinates taken from Table 5.2. Signifi
cantly, adjacent feasible extreme points in decision space map to adjacent solutions 
in objective space. Whereas the shape of the feasible region in decision space de
pends on the constraint set for a particular problem, the shape of the feasible region 

Figure 5.1 The feasible region in decision 
space for the problem presented in Table 5.2 
with solutions that optimize Z 1 and Z2 shown 
passing through their respective optima
points B and F, respectively. 

C'l 
'-: 

7 

6 

5 

4 

3 

2 

Feasible region in 
decision space 

5 6 7 
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Figure 5.2 The fea~ihlc rcE!ion in 
obj~ctivc ~pace is c.Jcfincc.J h;· plottin!! all 
haste fcas1hlc solutions from c.Jeci<;ion 
space mapped through the ohjcctivt: 
functions Z1 and Z:. :"oninfcrioritv is then 
easily determined usin!"! the 11orrlw~1.H 
comer mle. 

in object~;e space ~epends on the objective functions, which serve as "mappino 
functions for a particular set of objectives. e 

. Thi_s graphi.cal re~res~ntation provides a much easier means for identifving 
n_onmfenor so~utlons. Fust, 1t should be obvious that all interior points must be i.nfe~ 
nor, because given any such point, one would always be able to find another feasible 
~olut~on th~t wo~ld i~prove both objectives simultaneously. For example, consider 
mtenor pomt P m Figure 5.2, which is inferior. Alternative D oives more z than 
does P without decreasing the amount of Z2• Similarly. D gives ~ore z) witho

1

ut de
cr~asing Z1. In fact, any alternative in the shaded wedge shape to the --~ortheast .. of 
pomt P dominates alternative P. We can generalize this notion in the form of a rule 
having this directional analog: 

A feasible solution to a two-objective optimization problem in which both ob
jective functions are to be maximized is noninferior if there does not exist a feasible 
solution in the northeast corner of a quadrant centered at that point. 

Applying this northeast corner rule to the rest of the entire feasible region in 
Figure 5.2 leads to the conclusion that any point that is not on the northeastern bound
ary of the feasible region is inferior. The noninferior solutions for the feasible region in 
Figure 5.2 are found in the thickened portion of the boundary between points Band E. 
Use the northeast corner rule to convince yourself that solution Fis indeed dominated 
(by solution E) and is thus not a member of the noninferior set even though it was 
shown to be an alternate optimum when we solved Z2 as a single-objective optinlization. 

We can, of course, generalize this result to evaluating sol~tions for problems 
with any combination of objective function sense. For example, 1~ t?e .current prob
lem if, instead of both objectives being maximized, they wer~ m1mm1zed. Can you 
see that the noninferior set would then consist of those solutions on the southwe~t 
border of the feasible region in objective spac.e ~e~we~n points A and F?, What if 

0 b
. · · · · · d ne a m1n1m1zat10n? What should ) ou con-

ne o 1ect1ve 1s a max1m1zat10n an o . . · . 
elude if the tradeoff surface (noninferior set in obiectJve space) reduces to a smgle 

point? 
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1l1c. non inferior set for the two-objective proble~ t~at we j~st solved consisted 
of the pomts labeled B. C. D, and E. Yet when cons1denng a third objective z i 
Table 5.2. points A and H arc also included in the noninferior set. An important

3
a ~ 

sumption underlying multiobjective analyses is that the decision maker(s) must h~· 
able to articulate all relevant objectives for a particular problem. Otherwise, salt~ 
lions that arc non inf crior may be excluded from consideration in the same way th<~t 
for our hypothetical example. we would not consider alternative H for implementa
tion without a consideration of objective Z3. 

Now that we are comfortable with the concept of noninferiority, let ·s examine 
two methodologies that will allow us to identify efficient solutions when it is n1 "'. 

possible to graph our solution space. We will demonstrate these techniques with ti: : 
sample problem we just studied, but the reader should appreciate that the metho. · 
ologies arc applicable to any multiobjective model. 

5.8 METHODS FOR GENERATING THE NONINFERIOR SET 

A number of methodologies have been devised to portray the noninferior s· .. 
among conflicting objectives. We will confine our treatment of this topic to a class l · 

techniques that enjoys widespread use among engineers. Generating techniques,;:. 
they are commonly called. do not require (or allow) decision makers' preferences k 

be incorporated into the solution process. The relative importance of one objective 
in comparison to another is not considered when identifying the noninferior set, but 
used later on to compare noninferior solutions and to quantify the tradeoffs be
tween them. Typically. analyst(s) will work iteratively with the decision maker(s) to 
identify a complete set of objective functions for a particular problem domain and 
to specify the appropriate set of decision variables to relate these objectives to one 
another and to problem constraint conditions. The noninferior set is then generated 
by the appropriate technique. such as those presented below, and presented to the 
decision maker for further consideration. 

The selection of a solution to be implemented from among those solutions in 
the noninferior set is the responsibility of the decision maker(s). The strength of the 
use of generating methods for multiobjective optimization is that the roles of the an
alyst(s) versus the decision maker(s) are as they should be: the analyst provides 
comprehensive information about the best available choices in a given problem do
main. and the decision maker assumes the responsibility for selecting among those 
choices. The analyst is not involved with making value judgments about the relative 
importance of one objective over another, and the decision maker need not worry 
about the technical aspects of the physical system nor fear that better solutions are 
being overlooked. . 

We will present two methods for generating the noninferior set: the weighting 
method and the constraint method. There are strengths and weaknesses of each 
method for a given application, but they both rely on the repeated solution of linear 
programs. The general single-objective optimization with n decision variables and /11 
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constrain.ts was presented in Chaple 2 (S · 
. . · bl r · ect1on 2 B) The . 1 1 . . opt1m1zat1on pro em with /1 decision . hi · · genera mu t1oh1c.:ctivc 

vana cs m const . d . . · · · ram ts. an p oh1cct1vcs is: 
Optimize z = z1 (x r ) I•. 2• ... , Xn 

Zz (.t1. X2 • ...• X
11

) 

... Zp (.t1, Xi, ... • Xn) 

Subject to: 
gl (x l • X2 • ...• Xn) ::; b1 

g2(x1.X2 ..... xn) :S h1 

(for all j). 

where Z(xi, Xz, .. ·.' x~,). is the multiobjective objective function and Z1(), Z1( ; . 

. . . , ~p() are the p m~1v1dual objective functions. Note that the individual objective 
functions a~e merel~ hsted; ~hey are n_ot added, multiplied, or combined in any way. 
For convemence of 1llustrat1on, we will assume that all objectives in the model are 
being maximized. 

5.B.1 The Weighting Method of Multiobjective Optimization 

The weighting method is acknowledged as being the oldest and probably most fre
quently used multiobjective solution technique. Once the objectives, decision vari
ables, and constraint equations have been fully specified, the weighting method can 
be accomplished as follows: 

1. Solve p linear programs, each having a different objective function. Each of 
these solutions is a noninferior solution for the p objective function problem 
provided that alternate optima do not exist at that solution. If alternate optima 
are indicated, at least one of the optimal basic feasible extreme points will be 
noninferior (it is possible that more than one will be noninferior. but likely 
that some will be dominated). 

2. Combine all objective functions into a single:objective function by multiplying 
each objective function by a weight and addmg them together such that 

Maximize Z = [Z1' Z2, ... , Zp] 

becomes 

) z + w z + ... + wPZP. Maximize Z(w1, w2, ... , Wp = W1 1 2 2 

. f d to as the grand objective. 
This objective function is often re erre 
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3. Solve a series of linear programs using the grand objective while systematicallv 
varying the weights on the individual objectives. Each of these solutions wiil 
be a noninferior solution for the multiobjective problem. The number of dif
ferent sets of weights and the number of linear programs solved depend on the 
complexity of the tradeoff surface and the time available to the analyst. 

The weighting method will be used to solve the two-objective problem that was 
solved graphically (and exhaustively) in Section 5.A.3. 

Solve p Individual Linear Programs. Solving our model Z 1 as the only ob
jective function may be viewed as moving a vertical line through objective spac•. 
similar to how we solved graphical problems for which we could plot decision spacl· 
The feasible region for objective space for the current problem is reproduced ir 
Figure 5.3. with the objective function gradient for Z 1 shown as the vertical Jin· 
passing through point B-the optimal solution for that single-objective problem.\\\ 
ref er to this gradient of the objective function as gradient 1. 

The same procedure is then used to solve the single-objective problem usin: 
Z 2• which is also plotted on Figure 5.3-the horizontal line labeled gradient 2. Re 
call from our previous experience that alternate optima exist for this solution
points E and F. Analytical procedures for determining which of these optima: 
solutions is noninferior will be presented later. 

Set Up the Grand Objective Function. The grand objective function is 
formed by multiplying each objective function by a weighting factor and adding 
these weighted objective function terms together. For our problem, the grand objec
tive function is written 

Maximize zG = W1Z1 + X2Z2 

= w1 (3x1 - 2x2) + w2(-x 1 + 2x2). 

Figure 5.3 Optimizing individual 
objective problems may be viewed 
as moving that objective function 
through objective space with a 
weight of one on that objective. 
and a weight of zero on aIJ other 
objective functions. Changing the 
weights on objectives changes the 
gradient of the grand objective 
function. 

Maximize OZ 1 + 1 Z.2 = 9 
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For minimization objectives, one can multiply th t h' . . 
change its sense to a maximization. The weight is r a . ob_IJ~Cth1vc function. hy - ] lo 

· II d · h · a vana c w osc value will changed systemat1ca y urmg t c solution process It will h I , , h · 
· f · I · I · · · c c edr as we cgm to generate nonm enor so ut1ons t lat 1t 1s the relative weights on th • . h' · f · · 

· h · . . csc o Ject1ve unctions that 1 ~ important, not t e1r spec1f1c values. 

Generating the Noninferior Set For each set of p ·t· · h d · . . _ . .' . os1 1ve we1g ts use m 
the grand. ObJ.ecttvc fu.nct1on, the resultmg solution will be a noninferior solution. 
Grand objective f~nctions for sets of weights are shown in Table 5.3. For example. 
suppose. we set weights of 0.9 for Wi and 0.1 for w2 in the grand objective function 
that we JUSt constructed. The resulting single-objective function in solving a normal 
linear program would be 

Maximize zc = 0.9(3x1 - 2x2) + 0.1(-x
1 

+ 2x
2

) 

= 2.6x1 - 1.6x2• 

This objective function is labeled as gradient 3 in Table 5.3 and as plotted on Figure 5.3. 
Gradients 1 and 2 were those that resulted from optimizing each objective function in
dividually and are also included in that table and plotted in objective space. We com
plete the table by ranging the weights w1 and w2 from 1 to 0 and 0 to 1. respectively. and 
plotting these gradients in objective space as well.1 

TABLE 5.3 THE GRAND OBJECTIVE FUNCTION AND THE CORRESPONDING WEIGHTS ON THE 
INDIVIDUAL OBJECTIVES ARE SHOWN TOGETHER WITH THE NONINFERIOR SOLUTION THAT 
WOULD RESULT FROM OPTIMIZING THIS OBJECTIVE FUNCTION. THE GRADIENT NUMBER 
REFERENCES THE CORRESPONDING OBJECTIVE FUNCTION IN FIGURES 5.3 AND 5.4 

Gradient WJ Wz Objective Function zc Solution 

1 1.0 0.0 3x1 - 2r2 B 

3 0.9 0.1 2.6x1 - l.6x2 B 

4 0.8 0.2 2.2.r, - 1.2.r:z B 

5 0.7 0.3 1.8x1 - O.Sx2 c 

6 0.6 0.4 l.4x1 - 0.4x2 c 

7 0.5 0.5 x, C,D 

8 0.4 0.6 0.6x 1 + 0.4x2 D 

9 0.3 0.7 0.2.r1 + 0.8x2 D 

-0.2x1 + l.2x2 D 
10 0.2 0.8 

-0.6x1 + l.6x2 E 
11 0.1 0.9 

-x1 + 0.2x2 F.E 
2 0.0 1.0 

. . rtant· the convention that the weights sum to · hts that 1s 1mpo • 1 It is the relative values of these we1g 
one is a convenience. 
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Figure S.4 The feasible region in decision 
space for the problem presented in Table 
5.2 with solutions that optimize Z 1 and Z 2 
shown passing through their respective 
optima-points B and E-F. respectively. and 
gradients in decision space for the grand 
objective function shown in Table 5.3. 

Chap. 5 

11 
10 

9 

Note that each time we solve a linear program using the resulting grand objective 
function, the solution is a noninferior feasible extreme point. Because it is importan~ 
to recognize the relationship between objective space and decision space as we gen
erate the noninferior set. we also reproduce the graph of the feasible region in deci
sion for this problem as Figure 5.4 and plot gradients 1 through 11. 

Care when selecting a strategy for varying these weights is essential. In solving 
this problem using the weighting method we had the advantage of knowing what the 
noninfcrior set was because we had a graphical representation of the solution space. 
The convention that the weights sum to one was not necessary, but is common prac
tice. The important thing is to develop a procedure having fine enough resolution so 
that all solutions can be found. In this case we could have incremented/decremented 
the values of the weights by 0.2 instead of 0.1 and still have found all noninferior so
lutions with half as much computational effort. For relatively flat portions of a 
tradeoff curve. a smaller increment for relative weights may be necessary. And as 
the number of objective functions increases, the number of combinations of weights 
on those objectives in the grand objective function increases as well. For larger 
problems. the analyst must always be concerned about balancing the computational 
effort required to find all noninferior solutions, which may be prohibitive, against 
the necessity of finding all noninferior solutions. In general, however, computation 
is very cheap when measured against the value of being able to hand a decision 
maker a true and complete noninferior set of management alternatives. 

5.8.2 Dealing with Alternate Optima When Using the Weighting Method 

While performing the weighting method of generating the noninferior set for a 
multiobjective optimization having p individual objectives, alternate optima may 
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~e ~ncountered ( 1) when solving one or more r . . . . . 
JCCt1ves or (2) when solving a linear p P ~hlems using the md1vidual p oh-
constructed by weighting and comb· r.ogr~7i using. th~ grand ohjective function 
case, the analyst must realize that onlvmm~ '

1
f hp ohJectivc function~. In the first 

. ' one o t c altcrnr tc t" . . 
solution as was shown by using the n~rth .... a op 1ma 1~ a nonmf L:rior 

east corner rule on F · - / I 
ond case, all alternate optima arc also . f . . igure :1.-. n the '.'iec-
dienl 7 in Table 5.3 and Figure s 3 f' · dnoni~ enc~r: not.ice. for example. that gra-

. . . . oun nomnfcnor poi t. D . d C . 
have been md1cated as alternate optima wh 

1 
.· n s an · ~·:h1~h would 

tion indicated. en so \Ing the grand oh1ect1vt: func-

. . How_can we determi~e whic~ al~c~natc optima are noninfcrior if such a condi-
tion 1s detected when solvmg the md1v1dual p 1· ·. . · ·') 

I d h 1
. . op 1m1zat1ons. Recall that whl.:n wt: 

so ve t e mear program usmg only obJ.cctive fun t" z · h · 
1 

. . . c 10n 2 m t c previous example 
a ternale ophma were md1cated-points E ·md F 1·n Fi· , c 3 d T hi -. _ . ' gurc .J. an a c :d. for gra-
d1e.nt 2. This mod~I 1s. the same as one having a weight of I on objective z~ a;d a 
w~1ght of. 0 on obJect1v~ 2 1.' What if, instead, we had chosen to solve the p;obkm 
with a weight of 1 on obJect1ve Z2 and a weight of£ on z1: 

Maximize Z2 = eZ1 + l .OZ2 

where e is an infinitesimal positive weight on Z1• This would have the effect of 
tilting gradient 2 in Figure 5.2 slightly clockwise such that the optimal solution to 
this modified problem would be the single feasible extreme point E-the extreme 
point that is noninferior for the multiple objective model when optimizing z, bv 
itself. - -

This method can be generalized for problems of any size having any number 
of objective functions as follows: 

For any multiobjective problem having p objective functions, if the solwion ob
tained when solving the ith objective function displays alternate optimal solwions, tlze 
non.inferior alternate optima will be that solwion resulting from solving a linear pro
gram having a grand objective function with a weight of 1 on tlze itlz objective. and a 

weight of e on the remaining p - 1 objectives. 
Of course one should not be surprised if the solution obtained after solving 

this second model is identical to the first solution. It is just that this time the solu
tion will be a unique optima. Another method for finding the noninferior altern~te 
optima will be discussed later and should serve to strengthen your understandmg 

of this concept. 

5.B.3 The Constraint Method of Multiobjective Optimization 

An alternate method for generating the noninferior set i~ o~j~ctive space hav~ng P 
. . . h d Aft lvino p md1v1dual models to 1den-

ob1ectives is called the constramt met 0 · . er ~o . 0 
. . 1 d (arbitraril ·) 

tify the solution that optimizes eac~, o~e obiecll~e fu_nctto; ~ ~~ ~~~e constraint s~t 
to be optimized, with the other objective functions me u e 
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with right-hand sides set so as to restrain the value of the objective function that 
was selected for optimization. By iteratively solving this modified formulation. and 
because. as with the weighting method, each solution to the modified problem is a 
noninferior solution to the original problem, an approximation of the noninferior 
set in objective space can be generated. The same hypothetical two-objective prob. 
lem presented in Section 5.A.3 will be solved below using the constraint method 

Construct the Payoff Table. Solve p individual optimization problems anu 
construct a payoff table, shown as Table 5.4. The payoff table is a p x p matrix with 
a column for each objective function. and a row for each optimal solution. For c>.
ample. solution vector x

1 
is the solution that optimizes 2 1 with a value of 10; at th:~ 

solution. the value for objective function Z2 is -2. Each solution listed in the payu ·: 
table must be noninferior. If alternate optima are detected when solving any oft> 
p individual formulations-as in this case when we solved 2 2 (see Figure 5.2)-t! ,_. 
noninferior alternate optimal solution must be determined. Consider the formu1 
tion that optimizes 2 2 for this sample problem: 

Maximize Z2 = -x1 + 2t2 

Subject to: 4x1 + 8x2 ~ 8 

3x1 - 6x2 $ 6 

4x1 - 2t2 $ 14 

- X1 + 3X2 $ 15 

- 2t1 + 4x2 $ 18 

- 6x1 + 3x2 $ 9 

• · · · d' ated which gave a solution x1 = 1, x 2 = 5, and Z = 9, with alternate optm~a m 1.c . · 
An alternate method for determining which of these alternate optima is no~mfer~
or is to modify this formulation so that Z2 is constrained to a value of 9, while Z1 15 

optimized: 

TABLE 5 4 PAYOFF TABLE FOR A HYPOTHETICAL TWO-OBJECTIVE OPTIMIZATION PROBLEM 
-

Extreme Point 
Solution Xi Xz Z 1 = 3x1 - 2x2 Z2 = -x1 + 2x2 (Figures 5.2 & 5.3) -

xi 4 1 10 -2 B -., 
6 -3 9 E .r- 3 
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Maximize Z1 == 3x
1 

_ 2 t
2 

Subject to: 4x1 + Hx
2 
~ 8 

3x1 - 6x2 :S 6 

4x1 - 2t2 :S 14 

- x I + 1t 2 :S I 5 

-2t1 + 4x2 :5 18 

-6x1 + 3x2 :s 9 

-xi + 2t2 = 9 
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The optimal solution to this subproblem will always be the noninfcrior optimal so
lution to the single-objective problem. When there are more than two objective 
functions being modeled, this subproblem can have as its objective function the to
tal of all p - 1 other objective functions. 

The significance of the payoff table is that it identifies, for each objective func
tion, the range of values each can have on the noninferior set. This range is bounded 
above by the largest value in the payoff table corresponding to that objective func
tion and below by the smallest value. In our example, there will not exist a noninfe
rior solution in Zi, Z2 space that has a larger value for Z1 than 10, nor a smaller 
value for Z1 than -3: 

L~ax = 10 

L~ax = 9 

L~in = -3 

L2 - -2 min - · 

For problems having more objectives, the size of the payoff table is larger, but the 
range for each objective is determined by these limits. 

Set Up the Constrained Problem. The con~tr~in~d problem is .specified by 
selecting one objective function (arbitrarily) for opt~~1zat1on, .and moVJn~ all oth~r 
p - 1 objectives into the constraint set with the addition of a nght-han~ si~e coeffi-
. · · · ·11 b b t L and L · for all ob1ect1ve func-c1ent for each. This coefficient w1 e e ween max nun . J • 

tions. Selecting Z1 to optimize and moving Z2 into the constramt set gives the 

constrained problem 

Maximize Z1 = 3x1 - 2r2 

Subject to: 
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3x1 - 6x2 s 6 

4x1 - 2r2 :s 14 

Xt :5 6 

-x1 + 3x2 s; 15 

-2x1 + 4x2 :s 18 

-6x1 + 3x2 s; 9 

-x1 + 2t2;::::: L~ with L~in s; L~ s; L~tax 

Generate an Approximation of the Noninferior Set. By repeated. 
solving the constrained problem, an approximation of the full and precise noninL 
rior set in objective space can be generated. As with the weighting method, the o1 
timal solution to each constrained problem is a noninferior solution to the origin 
problem. 

The precision with which one approximates the true noninferior set using th 
constant method depends on the number of times one is willing or able to solve tl: · 
constrained problem developed in step 2. Let r be the number of noninferior solL. · 
tions to be generated in such an approximation; for this example, r = 5. Then the (5~1 
values for the right-hand side of objective Z2 in the constraint set are determined us
ing the following formula: 

fort= 0, 1,2, ... , (r - 1). 

Solving this equation five times results in five different values for Lk: 

L 1 = -2 + [(~)][9 - (-2)] = -2 

L 2 = -2 + [(!)][9 - (-2)] = 0.75 

L 3 = -2 + [(!) Jr9 - (-2)] = 3.5 

L 4 = -2 + [c!J[9 - (-2)] = 6.25 

L 5 = -2 + [(:)][9 - (-2)] = 9. 
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z; '"" -·' z~ 2: U - 9 z; , ).7.~ 

2 3 4 5 6 7 
X1 

Z,, ~ Lf = --2 
Figure 5.5 The: fcas1hlc rt.:~ion in 
decision space for the cxa~pl<.: 
prohlcm shown with .z, constrain~d 
to five different values -of/.;. and the 
corresponding location of tht.: 
objective function .Z1• ·mt.: 
corresponding valuc:s of .z. and .z. 
indicate: noni~fcrior soluti~in<i. -

Solving the constrained problem five times using a different value of Lk each time 
will result in a noninferior set of five solutions evenly distributed across the z, axis 
between Zi = Lmin and Zi = Lmax' inclusive. Figure 5.5 shows the feasible regi~n in 
decision space with each of these new constraints plotted as a dashed line. and the 
optimal gradient Z1 when that particular problem is solved. The corresponding sol
id points on the graph represent the resulting noninferior solutions in decision 
space, numbered 1 through 5. These solutions are summarized in Table 5.5. Note 
that in all cases the value for Z2 at that noninferior solution is equal to the value for 
Lk, suggesting that constraint-objective Z2 in the constraint set-is binding. The 
corresponding solution space in objective space is presented as Figure 5.6. The non
inferior solutions generated by the constraint method are included as solid dots. 

TABLE 5.5 SUMMARY OF NON INFERIOR SOLUTIONS GENERATED BY THE CONSTRAINT METHOD 

Noninferior 
z~ = -xi + 2:r~ 

Solution Lk Xt x~ 
Z1 = 3.t1 - 2x~ 

4 10 2 
-2 

2 2.83 9.1 0.75 
0.75 4.9 

4.66 8.2 3.5 
3 3.5 5.82 

6.125 5.75 6.25 
4 6.25 6 

6 -3 9 
5 9 3 
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Figure S.6 The f casible region in 
objective space for the example problem 
shown with z:! constrained to five 
different values of L'"-. and the 
corresponding location of the objective 
function Z 1• The heavy hlack line 
connecting points 1 through 5 is the 
approximation of the noninferior set. 

-5 

5 10 

z; = s.2 
Z~=5.75 z;=9.1 

Z~=lO 
- --•- -__ z; = 9 

- -• - - __ Z! = 6.2~ 

--• ---- z~ = J~ 

Again. the objective functions Z 1 and Z2 are shown passing through each noninfer. 
or solution. labeled 1 through 5. The heavy solid line connecting these points is cl· 

approximation of the non inferior set. 
Notice that the approximation to the noninferior set generated by the cori· 

straint method does not .. find·· noninferior solutions C and D, which were found m 
ing the weighting method. Furthermore. the approximation is better in the regirni 
between points B and C than it is between points D and E. By increasing the num
ber of points used to approximate the noninferior solution, however, we can get as 
close an approximation as we wish. Typically, after an initial screening of solutions 
that are evenly distributed within the range Lmin and Lmax for each objective func
tion shifted to the constraint set. additional values can be used to search for nonin
f erior solutions in regions of the solution space that might be more important to the 
decision maker. 

5.8.4 Selecting a Generating Method 

Two of the more important and popular methods for generating the noninferior set 
in objective space between two or more conflicting objectives are the weighting and 
the constraint methods presented in this chapter. Other methods have been pro
posed. and the selection of the best one for a particular analysis depends, for the 
most part on the experience of the analyst. 

As the number of objectives and size of the solution space increases, the com
putational effort required to find all noninferior solutions rises dramatically. Both 
methods rely on the judgment of the analyst as to the configuration and shape of the 
noninf erior set. 

When the degree of conflict between objectives is expected to be significant, 
the weighting method is quite effective at finding noninferior solutions. But if too 
coarse a resolution of weights for the weighting method is specified, noninferior so
lutions may be missed. In fact it is possible that noninferior solutions exist that 
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would not be found with any combination of w · rht 2 If . . . ·c· d b' · . cig s. too fine a rcsolutmn 1s spcci 1c , any com mat10ns of weights may find th · f · · 
computation costs may be excessive. . c same nonm cnor solution and 

If the decision maker is able to articulate a pr ·f f · . . f c crcnce or one or more oh1cc-
t1ves m tern:is 0 a range of acceptable values. then the constraint mcthod mav he 
more effective because these obJ'cctivcs can he moved to th t · · · h . · . c cons ramt set wit 
~ight-h~nd s1~e values that ~re specifically, rather than generally. specified to hest 
~~ver a region of ~realest interest for the decision maker. For example. if the dc

cismn maker has articulated a concern that costs be minimized. he/she mav he fur
ther encouraged to specify an acceptable region for these costs: "Cost should he 
minimized, but in no case be allowed to exceed X dollars." 

For analysts working in the public sectoL virtually every decision. and there
fore every model constructed to support those decisions. has a multiobjecti\'c con
text. It is incumbent upon the analyst to explore with the decision maker the entire 
framework within which management decisions are made. Frequently. decision 
makers do not appreciate the efficiency of the analytical tools available to address 
explicitly the tradeoffs between objectives and may not even be aware of all the ob
jectives that should or could be considered related to a specific decision. The notion 
of noninferiority as it pertains to public sector decisions and the ability to generate 
the noninferior set among conflicting objectives arc among the most powerful tools 
of the analyst who works on public sector problems. 

CHAPTER SUMMARY 

More frequently than not, management decisions in the public sector must consider 
multiple and often conflicting objectives. When this is the case.' ther~ may not. b~ op
timal solutions. Rather, the solution that optimizes one objective will not o~t~mize a 
conflicting objective function. The least-cost solution may not b~ one prov1dmg th.e 
best or most reliable level of service, for example. Instead of trymg to find ~n opti
mal solution we are now interested in finding the full set of noninferior solutions-a 

l t. · ' · f · 'f there does not exist another solution that performs better so u ion is nonm enor i . 
· · · · · h t forming worse with respect to at least m terms of one objective function wit ou per . . d 
one other. The complete set of noninferior solutions is called the nomnferwr set an 

defines the tradeoffs between objectives. . f lation with a corre-
A modification to the basic. linea~ program~1~? 0:~ can define the pre

sponding modification to the way i? which the ~~c: c~n~ctin~ objectives. thereby 
cise nature of the tradeoffs that exists between 

0 ' dded to the set of solutions presented _in ~able 5.1. 
2Suppose a solution z, = 400, Z2 = 100 \\as a b. ation of weights for the two-objective func

This solution would be noninferior even though no c?m m.d convince yourself of this fact. These so.lu
tions would find it in objective space. Plot these so_lut1onms ~~on when the number of objectives bemg. 
. . I . and are quite co . . 

hons are called gap pomt so u~wns more objectives is discrete. 
considered is large, and the solution space for one or 
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generating the noninferior set in objective space. 1\vo reliable methods for solving 
such problems of multiobjective optimization arc the constraint method and the 
weighting method. Both methods begin by computing the solutions that optimize 
each individual objective being modeled. If these solutions are unique optima. thev 
arc noninfcrior. If not, exactly one of each alternate optima is noninferior for th~t 
objective. 

The constraint method proceeds by transforming the original multiobjective 
problem formulation into a single-objective optimization problem by placing all ex
cept one objective function into the constraint set, with the right-hand side of each 
set within a range of values limited above by its value when the corresponding singlc
objectivc problem was solved~ and below by the worst of its values from the other 
single-objective optimizations. By ranging the right-hand sides for all such cori. 
straints in the transformed problem and resolving each new problem, the noninfer: 
or set is generated; each new solution is a noninferior solution. 111e weightin·: 
method is similar. but the objectives are added to make up a grand objective func· 
tion, with weights assigned to each. 

EXERCISES 

5.1. Five different late-night telemarketing programs guarantee different quantities of love. 
money. health. fame. and friendship-for different monthly payments, of course-as in
dicated hy the table below: 

Program Program Program Program Program 

The promise A B c D E 

Lo\'c 2 2 5 1 2 

Money 3 4 4 2 2 

Health 3 2 4 2 2 
-

Fame 1 2 0 1 2 
-

Friendship 2 5 1 5 2 
-

Low Monthly Cost $29.95 $49.95 $19.95 $19.95 $39.95 
-

Which of these programs represents a noninferior alternative? For those that do 
not. indicate which programs are clearly superior. 

5.2. Consider the following multiple-objective linear program: 

Maximize Z1 = 4x 1 + 6x2 

Maximize Z2 = -4x1 + 2x2 
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Subject to: 
Xi - X2 2: -4 

3x, - 2r2 :s 6 

Xi + X2 2: 5 

X1 + X2 ~ l() 

x,, X2 2: 0. 
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(a) Plot the feasible reg.ion in decision space for this prohlcm. 
(b) Plot the corrcspondmg feasible re io . b' . 

extreme point indicate if it is a g. nf ·~ o Jcct1vc s~ace for this problem. For each 
· nonm cnor or a dominated solution 

(c) Usethcconstraintmethod(gra h' 11 ) · 
inferior set having 6 non inf . p icl a . y to generate an approximation of the non-

enor so ut1ons evenly spaced along the Z . 
(d) Use the constraint method (graphically) to gcncrat, . . I axis. 

· f · h · . can approx1mat1on of the non-
m enor set avmg 6 nomnferior solutions evenly spaced along the Z a . 

, XIS. 

S.3. Consider the following multiple-objective linear program: -

Minimize Z1 == 2r1 + x2 

Maximize Zi == 3x1 + 7x2 

Subject to: 4x1 - 12r2 :5 -6 

-4x, + 6x2 :5 12 

4x 1 + 2r2 ?:: 8 

X1 + Xz :5 9 

4x2 :5 16 

x.,x2 2!:0. 

(a) Plot the feasible region in decision space for this problem. 

(b) Plot the corresponding feasible region in objective space for this problem. For each 
extreme point indicate if it is a noninferior or a dominated solution. 

(c) Use the constraint method (graphically) to generate an approximation of the non
inferior set having 6 noninferior solutions evenly spaced along the Z1 axis. 

(d) Use the weighting method (graphically) to generate an approximation of the non
inferior set having 6 noninferior solutions evenly spaced along the Z2 axis. 

S.4. Consider the following multiple-objective linear program: 

Maximize Z1 = 12x1 + l8x2 

Minimize Z2 = 3x1 + Sx2 

Subject to: 6x1 + 5x2 s; 60 

x1 + 3X2 :5 15 

:S 9 

X2 :5 4 

X1. X2 2!: 0. 
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(a) Plot the feasible region in decision space for this problem. 

(b) Plot the corresponding feasible region in objective space for this problem. For each 
extreme point indicate if it is a noninferior or a dominated solution. 

(c) Use the constraint method (graphically) to generate an approximation of the non
inferior set having 6 noninfcrior solutions evenly spaced along the Z 1 axis. 

(d) Use the constraint method (graphically) to generate an approximation of the non
inf erior set having 6 noninfcrior solutions evenly spaced along the Z2 axis. 

5.5. Consider the following multiple-objective linear program: 

Maximize Z 1 = 2x1 + x2 

Minimize Z 2 = -3x1 + 2x2 

Subject to: 

3x 1 + x~ s 40 

x~ s 10 

(a) Plot the feasible region in decision space for this problem. 

(b) Plot the corresponding feasible region in objective space for this problem. For each 
extreme point indicate if it is a noninferior or a dominated solution. 

(c) Use the constraint method (graphically) to generate an approximation of the non
infcrior set having 6 noninfcrior solutions evenly spaced along the Z 1 axis. 

(d) Use the weighting method (graphically) to generate an approximation of the non
inferior set having 6 noninfcrior solutions evenly spaced along the Z2 axis. 

5.6. Consider the following multiple-objective linear program: 

Minimize Z 2 = 0.5x1 + x2 

Subject to: 

(a) Plot the feasible region in decision space for this problem. 

(b) Plot the corresponding feasible region in objective space for this problem. For each 
extreme point indicate if it is a noninferior or a dominated solution. 

(c) Use the constraint method (graphically) to generate an approximation of the non· 
inferior set having 6 noninferior solutions evenly spaced along the Z 1 axis. 

(d) Use the weighting method (graphically) to generate an approximation of the non· 
inferior set having 6 noninferior solutions evenly spaced along the Z2 axis. 
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5.7. Consider the following multiplc-ohJ·cctivc 11·nc ·ar progrtim: 

Maximize Z1 = 4x1 + 6x
2 

Minimize Z2 = 5x
1 

+ 2x., 

Subject to: x1 - x
2 

:::: -4 

3x1 - 2x2 :::; 6 

Xi. Xz 2: 0. 

(a) Plot the feasible region in decision space for this problem. 
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(b) Plot the corresponding feasible region in objective space for this problem. For each 
extreme point indicate if it is a noninfcrior or a dominated solution. 

(c) Use the constraint method (graphically) to generate an approximation of the non
infcrior set having 6 noninferior solutions evenly spaced along the Z1 axis. 

(d) Use the weighting method (graphically) to generate an approximation of the non
inferior set having 6 noninferior solutions evenly spaced along the Z2 axis. 

5.8. Consider the following multiple-objective linear program: 

Minimize Z1 = 4x1 + 6x2 

Maximize Z2 = Sx1 + 2x2 

Subject to: 

x1 + X2 ~ 5 

x 1 + Xz $ 10 

X2 $ 6 

Xi, Xz ~ 0. 

(a) Plot the feasible region in decision space for this problem. . bl F h 
. . . b'ective space for this pro em. or eac 

(b) Plot the corresponding feasible region m 0 J . d 1 · ·r. . . ferior or a donunate so ution. 
extreme point indicate i it ts a nomn ximation of the non-

( c) Use the constraint method (graphiclal~y) to gennle)~~tpea;::~l~~og the Z1 axis. 
. . h . 6 ninferior so utions eve 
mfenor set avmg no . to enerate an approximation of the non-

( d) Use the weight~ng meth~d (g~aphi~~~~~ns e~enly spaced along the Z2 axis. 
inferior set havmg 6 nomnfenor so 

5.9. Consider the following multiple-objective linear program: 

Maximize Z1 = 9x1 + 6X2 

· · · z - 3r1 - 2.r, Minimize 2 - • -
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Subject to: 3x1 + 2x2 s 30 

-6x1 + 3x2 :s 12 

4x1 - 2x2 s 24 

X2 :S 6 

Xi. X2;:;::: 0. 

(a) Plot the feasible region in decision space for this problem. 

Chap. 5 

(h) Plot the corresponding feasible region in objective space for this problem. For each 
extreme point indicate if it is a noninfcrior or a dominated solution. 

(c) Use the constraint method (graphically) to generate an approximation of the non. 
inferior set having 6 noninferior solutions evenly spaced along the Z 1 axis. 

(d) Use the weighting method (graphically) to generate an approximation of the no11-
inferior set having 6 noninferior solutions evenly spaced along the Z2 axis. 

S.10. Consider the following multiple-objective linear program: 

Maximize Z 1 = 4x 1 - 5x2 

Minimize Z 2 = 4x 1 - 2x2 

Subject to: -6x1 + 3x2 :s 12 

4x1 + 2x2 :s 24 

3x1 + 2x2 :s 30 

X2 :S 6 

X1.X2 ~ 0. 

(a) Plot the feasible region in decision space for this problem. 

(b) Plot the corresponding feasible region in objective space for this problem. For each 
extreme point indicate if it is a noninferior or a dominated solution. 

(c) Use the constraint method (graphically) to generate an approximation of the non
inferior set having 6 noninferior solutions evenly spaced along the Z 1 axis. 

(d) Use the weighting method (graphically) to generate an approximation of the non
inferior set having 6 noninferior solutions evenly spaced along the Z 2 axis. 

S.11. Recall the problem of formulating a linear program to find the optimal schedule for a 
set of construction activities that would result in the shortest possible construction time 
for a small commercial establishment (Exercise 3.17). A subsequent exercise (Exercise 
3.18) presented this problem from the perspective of a manager concerned about min
imizing total cost of production. Explain how you would generate the tradeoff surface 
between these two objectives. 

S.12. For a particular multiple-objective problem, the vertices of the feasible region in ob
jective space are presented in the table below. Complete the table by indicating 
which points are noninferior, and for those that are not, by which points they are 
dominated. 
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Vertex MaxZ1 MinZ2 MinZ, Min z~ N'oninfcrior or Oomin;1tclP 
A 10 4 5 12 

B 12 3 6 JO 

c 6 2 6 13 

D 5 4 4 4 

E 8 1 3 7 

5.13. The roHing mill in a large steel plant generates two types of water wastes: pickling 
waste and process water. If these wastes are discharged directly into the local city sew
er without treatment, they are subject to an effluent tax. Alternatively. the plant oper
ates a treatment facility capable of removing 90% of the pollutants from the waste 
streams. In this case the pickling wastes require pre-treatment (neutralization) before 
being processed through the plant's treatment facility. 

The local municipality controls the effluent tax on untreated wastes entering city 
sewers; the higher the effluent tax, the more wastes the steel mill will treat on site. How
ever, this could cause a decrease in the plant's productivity that could directly affect the 
economy of the community. The lower the effluent tax, the less waste the plant will 
treat and production will be higher. But this in tum means that the community v.ill be 
subsidizing the mill's waste treatment at the city sewage treatment plant. 

Let: x 1 = tons of steel to be manufactured per day 

x2 = volume of pickle waste (gallons) treated per day 

x3 = volume of process water (gallons) treated per day 

Income from the production of steel = $25/ton 

Pickle waste generated = 100 gallons/ton of steel 

Process water generated = 1000 gallons/ton of steel 

Pre-treatment cost = $.02/thousand gallons treated 

Treatment cost = $.10/thousand gallons treated 

Pre-treatment capacity = 2,000,000 gallons/day 

Treatment capacity = 50,000,000 gallons/day 

Treatment efficiency = 90% (both wastes) 

t ted Pl.ckle waste = $0.15/thousand gallons 
Tax on un rea 

t d Process water = $0.05/thousand gallons 
Tax on untrea e d 

. - 500 000 gallons/ ay 
Limit on pickle waste discharge to city sewer - . 

. to cit sewer = 10.000.000 gallons/day. 
Limit on process water discharge y 

I 
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(a) Fomrnlatc an optimization model from the standpoint of the plant manager who is 
only interested in maximizing net profits (income less treatment-related costs) for 
the company. 

(b) Formulate the problem as a multiobjcctive program from the standpoint of the cit\' 
council. which must set effluent discharge taxes in such a way as to prevent O\'c~
subsidizing the plant's operation. but which also wants the plant lo remain fiscal!\' 
healthy. · 
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6.A INTRODUCTION 

One of th~ earliest and most powerful set of applications of linear programming 
(LP) was m the area of optimizing network flows. These applications include the 
famous transportation problem as well as other settings related to it (See Chapter 2. 
Example 2-3). Although these problem settings were examined earlv in the historv 
of linear programming, the formulations for these applications had ~any hundred-s 
or even thousand of variables and constraints. Thus, at the time that the applications 
occurred (the 1950s and 1960s), computers applying the simplex method of linear 
programming often were not adequate to solve these problems. Dantzig. Chames. 
Fulkerson, Bellman, and others devised brilliant algorithms to solve these large but 
very specialized problems exactly. (By exactly, we mean that the optimal solution was 
guaranteed to be found.) Many Operations Research texts still describe in detail these 
elegant algorithms that were once of great importance. As well. the algorithms are 
interesting to students who will study linear programming theory in depth. especially 

in a graduate program in Operations Research. 
Today, however, computing resources, that is. software cod~s and computers. 

have so advanced in speed and sophistication that very lar~e mstan~es of these 
network problems are capable of easy solution by convenuonal vanants of the 
· · · d 1 · h f the 1950s and 60s are no lon°er 

simplex procedure. The specialize a gont ms o . . e. 

necessary to solve most of these problems. This backgroun~ I~ discussed to e·:i·la1~ 
why our treatment of network flows generally omits descnptmn of the speci ue 
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a.lgorithms. Instead. we utilize this chapter generally to describe only the formula. 
t1ons for these famous network flow problems-the shortest-path problem. th 
transportation problem, the transshipment problem, the maximum flow probie e 
and the traveling salesman problem. ni. 

Our focus will be on creating the linear programming formulations of these 
problems, on the strong interrelationships between the problems, and the remarkable 
prop~rties of the linear p~ogramming solu.tions. Fo.r most of these problems, integer 
solut10ns arc an automatic result of applymg the simplex procedure-an incredible 
and important result. 

We will describe in this chapter the shortest-path problem, the transportatir,i1 

problem. and the transshipment problem, examining the strong relations bet\vel :1 

these settings. As well. in the context of these problems, we will discuss the proper!\· 
that gives rise to all-integer solutions.1l1en we will discuss the maximum flow proble:·; 
and conclude the chapter with the traveling salesman problem. Our guided tour of nc'. 
work problems will emphasize fommlations rather than algorithms, but the interesh .. : 
reader will be given ample references to find the algorithms that were created for the~ 
settings. 

Network-based problems constitute one of the widest classes of problems t ·, 

which linear programming and linear integer programming have been applied. Tow 
that such problems are numerous is an understatement; they are virtually ubiquitou~. 
Later in the chapter. we discuss a number of application areas in civil and environmental 
engineering, where network concepts find important use. In addition, the ideas of net
work modeling that we develop here are significant in many other settings as well. 

6.B THE SHORTEST-PATH PROBLEM 

The first network flow problem we discuss is the shortest-path problem. This prob
lem. which considers a set of nodes and a network of arcs connecting those nodes, 
seeks the shortest path between a designated pair of points. Your initial reaction 
might be. '"Why is a problem that seeks the network shortest path considered to be 
a problem of network flowT The problem is one of network flow because we can 
conceive of a single unit of flow being sent into the system at the origin node and 
being transmitted through the network-as though the network were a set of inter
connected pipelines. To traverse the shortest path~ the unit of flow must move 
through the most efficient route and exit the system at the destination node. The 
most efficient path is considered to be the path of least length. 

To discuss the formulation of the shortest path, we cast the setting as one of 
deciding the route for a highway between two key cities in a developing country. 

We consider that the road system in a developing country is to be upgraded.to 
allow a flow of trade between its two major cities, which are roughly at opposite 
ends of the country. A highway between these two cities will pass through a number 
of smaller cities (not yet specified) to provide logistical support to shipment~ en 
route. The path of the highway may cross rivers and chasms and could potentially 
tunnel through mountains. 
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~gure 6.1 Ch<><J<img a r<iulc for a 
hi~hway h<:twccn c1t1c" A and Bf lhc 
shortc<;t-path prnhlcmJ The douhk: 
arc'\ hctwccn numhcred node" and hc
twccn the tv.o lctrcrcd cit1c'\ indic.1rcc; 
the position of rhc low-<luality roads in 
the preo;cnt transportation •w-;tcm. Be
cause of muuntainnuc; tt.;rrai,n. rhc path\ 
hetwcen node-; 8 and l(J and het..,.ecn 
nodec; 5 and 6 arc winding and e<.pcc1al
ly expcmi\'e to construct. :"io matrcr 
how the highway goes from A to B. ir 
will have to crosc; the river char cutc; the 
country in two. Bridges i.lrc n:quircd. 
hut the bridge on the arc (8. HJ) is c.:'\pc
cially expensive because of the width of 
the river and depth of the canyon at 
that point in the river's course. 

The nation's transportation agency wishes to recommend which road links 
should be built and which smaller cities along the way should be included on the high
way to connect the two major cities at the least-total cost. Currently, a rather elderly set 
of roads exists between a number of the pairs of cities, but the roads do not qualify as 
modern highways. The decisions are which highway links to build, that is. which current 
roads to upgrade to highway status. A yes-no decision is needed on each potential link 
in the system (Figure 6.1) {the yes-no decision indicates upgrade or not upgrade). The 
problem can be formulated as a linear zero-one programming problem using decision 
variables to indicate whether or not a particular arc is built/upgraded. 

We let x;j = 1, O; it is one if the highway is constructed between 
city nodes i and j (directly connects cities i and j). 

and zero otherwise. 

Experienced highway engineers have estimated t~e costs to up~rade ~ach 
potential link in the system to highway status. Where a bndge or tunnel .1s r~qmred. 
the cost of the link includes the cost of the bridge or tunnel. We use c;i to mdicate the 
cost of building the link between nodes i and j. 

The problem objective is 

Minimize z = CAI XAl + CA2 XA2 + CA3 XAJ + C17 X17 + C12 X12 

+ C21 X21 + C23 X23 + C25 X25 + C2s Xzs 

+ C3z X32 + C34 X34 + C35 X35 

+ + C r B + c~., X~z + C53 X53 + C56 X56 
C46 X46 48 • 4 • - -

+ C64 X64 + C65 X65 + C6,10 X6,10 

+ r + Cg7 Xs1 + Csz X82 + Cs.10 Xs.10 + c7g X7g C79 · 79 
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+ C9, JO X9, JO + C9n X9n 

+ cw. 8 Xw. 8 + cw. 9 X10. 9 + cm. 6 Xto. 6 + Cton XtaB· 

Note that x 64 has a different meaning from x 46• (A similar argument can be used for 
x78 and x87 and other variable pairs.) If x64 is one. the interpretation is that the flow 
along the highway proceeds from node 6 to node 4 but that it enters node 6 from some 
node k other than node 4, say, node 5. This node k was connected back to the origin 
node A through one or more links. If x46 is one, on the other hand, the interpretation 
is that the flow enters node 6 from node 4, which itself is connected through several 
links back to the origin. The flow then proceeds out of node 6 to some later node in 
the sequence. with the sequence proceeding eventually to destination node B. 

1l1e problem formulation assumes that a single unit of flow enters node A from 
outside the system and that thereafter, the unit is sent through a set of links in sequenct 
in order to work its way through the network to node R where it again leaves the sy~ 
tern. The cost of the route chosen must be a minimum. Certain sequences will never b: 
chosen as they could not possibly lead to least-cost sequences. For instance, the sc-
quence { x AZ = 1. x28 = 1. x 87 = 1. x71 = 1, x 12 = 1 } would never be chosen be
cause a loop has been created and the unit has still only reached node 2. The loop coulL 
be pruned off with a savings in cost, and the route could proceed from node 2 withom 
the added cost of the loop. For this reason, we do not need to define x 71 (although it 
would not be wrong to define it). since it would, in almost every case, lead to the for
mation of a loop. Several other variables are left undefined for this same reason. 

1l1e constraints for this problem are input-output equations. For each node, 
flows enter. and for each node, flows exit. The entry-exit equations are written for all 
12 nodes that are shown in Figure 6.1 with node A having one unit enter and node B 
having one unit exit. For ease of understanding, the constraints are not written in 
standard form. but the reader should know how to convert these equations to stan
dard form for computer-based solution, simply placing all unknowns on the left and 
all constant terms that do not multiply variables on the right. 

node A: xA 1 + xA2 + xA3 = 1 

node 1: 

node 2: 

node 3: 

node 4: 

node 5: 

XAt + X21 = 

XA2 + X12 + 

XA3 + Xz3 + 

X34 + X64 = 

Xz5 + X35 + 

X17 + X12 

X32 + X5z = X21 + x23 + Xzs + Xzs 

X53 = X32 + X34 + X35 

X46 + X4n 

x65 = X52 + X53 + X56 

node 6: X46 + Xs6 + x10,6 = x64 + x65 + x6,IO 

node 7: x 17 + x87 = x7s + x19 

node 8: Xzs + X7s + xw.s = Xs2 + Xs1 + xs.10 

node 9: X79 + x10,9 = x9,10 + X9n 
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node 10: x6.10 + xR.IO + x9.IO = X1r1.1, + X11i.~ + XifJ.'J + X11,11 

node B: X9n + x10u + x.rn == 1 
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If we were willing to include possible flow directions that would lead to loops. the 
problem co~ld be. con~cnscd to a form that would not be wrong but that would 
include possible duect1ons that would never occur. We next off er this condensed 
version because it is the form most often seen in formulations of the shortest-path 
problem in the literature. It is simply easy to write, but the form docs imply some 
redundant variables, variables that would never be positive in an optimal solution or 
flows that would never occur. 

We will need the following additional notation to complete the condensed 
version of the problem. 

Let 

NA = {the set of nodes j with direct connections to node A}: 
for this case, NA = { 1, 2, 3}; 

N8 = {the set of nodes j with direct connections to node 8}; 
for this case, N8 = { 4, 9, 10}; and 

N; = {the set of nodes j with direct connections to node i}. 

In addition, the symbol e means "contained in.'' Hence the notation 

L Xji 
jeN1 

can be read as the sum of flows into i from all the nodes j that are co~tain~d ~ the 
set N;, that is, from all the nodes j that are directly connected to node t. Nmi,, \\e can 
write the condensed version of the problem as 

10 

Minimize Z = ""CAf'Aj + L l:c;jxij + .L cjaXjB 
.£.JN i= 1 jeN JEN11 JE A I 

L XAj = 1 
jeN,, 

L Xj; = ~ X;j i = 1, 2, ... n 
jeN, JEN; 

L XjB = 1, 
jeNn 

XAj 2= 0, 

XjB 2= 0, 

v .. 2= 0, .... ,, 

jeNA, 

jeNa, 

i = 1, 2 .... '10 

je N;. 
. . n sent from A to one of 

h e unit of flow 15 be• g · f fl w must be The first constraint says t at oln t onstraint says that a umt o o 
. . ts The as c the nodes to which it connec · 
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received at node B from one of the nodes to which it is connected. The intermedi
ate constraints say that the flow into each node will equal the now out of that node. 

This proh/em. when put in standard form. can be solved using any one of the 
variants of the simplex linear programming algorithm. Such algorithms are wide/v 
available as software packages. A typical answer, depending on costs, might be · 

XA3 = X34 = X4() = x6.IO = X10n = 1. 

Titat is. the unit of flow will be moving in sequence from A to 3 to 4 to 6 to 10 to B. 
You are probably tempted to ask. "Why not send a half unit from A to 1 to 7 to 9 to 
B and another half unit the first way?" First. the answer would be: "Unless the costs 
of the two routes are precisely equal. the algorithm would always choose to send the 
entire unit over the least cost route." 

111erc is. however. another dimension to the answer. Even if the two routes had 
the same cost. the algorithm \vould still choose to send the entire unit on one route. 
111c unit of flow would never be split-as a result of application of the algorithm
evcn if there were two or even three or more equal and minimum cost routes. This is 
because the constraint set has a very special mathematical structure that guarantees 
that unit flows will always occur. so long as a unit is put in and a unit is taken out. The 
special structure is discussed briefly later in this chapter. It is called unimodularity. 

Although the special structure occurs with several network problems discussed 
in this chapter. for general linear programming problems, it is very uncommon. 
Nonetheless. when the special structure can be created by a special formulation of a 
non-network problem. that formulation should definitely be exploited, because integer 
solutions arc guaranteed when that structure is used. For instance, if a problem in 
some other context. for example. project scheduling. can be reformulated as a short
est-path problem. that form ought to be utilized to guarantee integer solutions. 

ll1e shortest-path problem can be solved in other ways besides the application of 
linear programming. In fact. if many shortest problems are to be solved on the same 
network. application of one of these other methods is probably advised because the al
gorithms are so efficient. We mention here just one such method. The remarkably com
pact algorithm due to Dijkstra (1959) is presented here-without proof that it achieves 
the optimal because the proof is very difficult. For a network of nodes and a set of links 
between those nodes (such as in Figure 6.1), the algorithm finds all the shortest paths 
between all of the pairs of nodes. If there are n nodes in the network, there are 11

2
-11 

shortest paths to be found (the distance between a node and itself is taken to be zero). 
The algorithm takes as starting data the distances between all pairs of nodes that 

are directlv connected-that is. connected by a single link or arc. These are called di
rect distan~es. and are defined as: d?i = dire~t distance on the arc joining node i and j. 

The distances between all other pairs of nodes are listed as M, some arbi
trarily laroe number. reflecting the fact that they are not directly connected. Thus, 

~ b . 

if i and j are directly connected, as nodes 5 and 6 are in Figure 6.1, the distance is 
listed as d~6 • IL on the other hand, i and j are not connected by a single link, as 6 
and 1 O in. Figure 6.1 are not connected by a single link, the distance d~.10 is 

replaced by M. 
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smg t 1s set of data for a net k . 
1 I t t th h 

· wor ·an 1tcrativ ... f . 
t te s 1or es pa s, t at 1s the shortc ·t h c ormula I\ utilized 10 . 1 1 · 

1 
' s pat s hctw... II . , ca cu ate all 

nodes m t 1e network. the formula css 1. II ccn a pairs of nodes. If th . • . . . I . . , . en ia y create . . t:rL: drL: n 
matnces. eac 1 consist mg of w - /1 sho t s. usmg n steps. exact Iv /1 su _ · 

I 
r est path ent · .. Th .., .. . cce~1vc 

because t 1e shortest path between a n d . d . n~s. ere arc 1{ - ,, shortc'\t p· th. 

I 
. o c an itself is () E· h . a s 

t 1e way incorporates one additional nod . · · . ac matnx generated alon , 
I t t th 

'f f . c, not prcv1ouslv I g 
s 1or es pa. s-1 . or a given shortest p th h . .. ncorporatcd. in the set of all 
h I I I 

a · t at node caus · d · t e current y ca cu ated shortest path Th fi . . ·cs a ccrcase m the length of 

d
. b ' . c ust matnx insert. o<l I . .... 
1stances et ween all node pairs if the 1· . . · s n e m the set of currt;nt 

Th
. nscrt1on of nod .. I · . • . . 

tances. 1s creates a new tentative short _1 d.. e imprml:s any of those di~-
. b d . es istancc that ma . 1, ut oes not mclude nodes 2 3 

11 
LI . h . Y or may not include node 

, , · · · · smg t c d1sta f 
ond matrix inserts node 2 in the set of d' t . nccs ram the first step. the sec-

. . is anccs 1f node / · 
lances m the first matrix. The process co t' . .... improves any of those dis-
. · · · n mues until all nodes hav · b ff 
msertlon m numencal order. Ille formula f th ( k . · ·e ecn o t!red for 
tion, creating the ( k + 1 )st matrix, offers ~~e { k + ~ .1_lst step of the_ processor inscr
current shortest distances (from the kth st ) . . . )st nod.e to ~e inserted m those 

ep m case 1t results man improvement: 

dk+t M' . { " " ii = m1mum dif· di:Hi + df+1.,). 

The formula is applied iteratively fork = 1 up to k = n - 1 
where 

dZ· = the d~rect distance between i and j or equal to AJ if the nodes i and j are 
not directly connected. and 

dt = the distance between i and j on the kth step of calculation. that is. with 
nodes 1, 2, ... k offered for possible insertion. 

~is ~s a powerful algorithm; it is exceedingly fast and can be coded in only a few 
Imes m Fortran or other computing languages. 

6.C NETWORK FORMULATIONS AND INTEGER SOLUTIONS 

The shortest path, transportation, and transshipment formulations that are discussed 
in this chapter are very special in that the application of linear programming to these 
problems always produces all-integer solutions-a remarkable circumstance that is 
the result of the special mathematical properties of these formulations. This implies 
that there is a class of integer programming problems that can be solved by linear 
programming algorithms efficiently and exactly; that is. the true optimal will be 
found with certainty and the variables will be all integer. It is a happy circumstance if 
your integer programming formulation falls in this category. It is o_nly a m~tter of 
coding the problem for computer solution using the linear programmmg algonth~ of 
your choice. Integer solutions automatically result. ~e s?ortest path. transpo~tation. 
and transshipment problems in this chapter all fall m this category .. The special co~
straint form has the mathematical name unimodular because solut~~n of the a~soc1-
ated LP always yields integer solutions. Unimod11/arity. the condition of havmg a 
unimodular constraint form, is discussed further in the next chapter. 
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6.0 THE TRANSPORTATION PROBLEM 

One famous problem of this sort is the transportation problem. 111e name isn't the 
best of names; the problem ought to be called the distribution problem. However 
the name was applied early in the history of linear programming, and there's 11~ 
hope of changing it. In the transportation problem, each of a number of sources has 
a limited amount of goods available each month, and each of a number of destina
tions has a monthly requirement for those goods. An array of costs exists; these arc 
the costs to ship one unit of the single type of good from each of the possibly manv 
sources or origins to each of the potentially many sinks or destinations. The somw.s 
might be warehouses: the sinks might be retail stores. Both sources and sinks ar.: 

scattered across the map.1l1e objective is to accomplish the monthly distribution 1. · 

goods from origins to destinations at the least total cost. 
The problem requires the following notation: 

i~ m = the index and total number of sources; 

j~ n = the index and total number of destinations~ 

ai = the monthly availability of the good at source i; 

bj = the monthly amount required at sink j; and 

cij = the cost to ship one unit from origin i to destination j. 

For a problem with three sources and six destinations, the problem looks like this: 

and 

Minimize Z = cu x11 + c12 x12 + 

+ C21 X21 + Czz X22 + 

+ C31 X31 + C32 X3z + 

+ C16 X16 

+ C26 X26 

+ C36 X36 

Subject to: x 11 + x12 + 

X21 + X22 + 

X31 + X32 + 

+ X16 :::; al 

+ X26 :::; az 

+ X36 :::; a3 

X11 + Xzt + X31 ~ b1 

X12 + Xzz + X32 ~ b2 

X 13 + Xz3 + X33 ~ b3 

X 14 + Xz4 + X34 ~ b4 

Xis + X25 + X35 ~ bs 

X 16 + X26 + X36 ~ b6 

i = 1, 2, ... , m, 

j=l,2, ... ,n. 
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The first three constraints say that the a h' mount s ipped t f 
not exceed the amount available at each of th ou 0 each of the sources will 

. ese sources Th I t · . 
that the amount shipped from all three sou · e as six constramts ensure 

. . . rces to each of the s·x . k ·11 b 
quant1t1es reqmred by each of the destinaf 1 

1 sm s w1 e at least the 

Subject to 

ions. n condensed notation. the problem is 

111 II 

Minimize z == " "c- t. 4 ~ IJ'IJ 
1=1 i=l 

n 

L X;j ::::; a; 
j=l 

111 

L Xij ~ bj 
i=l 

i == 1, 2, ... ~ m 

j == 1, 2, ... ' /1 

i==l,2, .... m. 

Close inspection of the constraint matrix reveals a pattern in which each col
umn of the constraint matrix has exactly two ones and the rest of its elements are O. 
The ones descend in a staircase-like pattern in successive columns. This particular 
form, whenever identified, is an immediate indicator of unimodularity or integer ter
mination on solution by linear programming. If a problem in another context can be 
put in the form of a transportation problem, you should use this form to ensure inte
ger termination of the variables. Another form of the constraint matrix that provides 
all-integer solutions to linear programming problems has exactly one one and one 
negative one in each column. The constraint set of the shortest-path problem that 
you saw earlier in this chapter is an example of a problem that has this special form. 

The shortest-path problem and the transportation problem are, in fact, closely 
related. The parameter c;j was described as the cost to ship one unit from source i to 
destination j. How was it determined? Most likely it is the product of the cost to ship 
one unit just one mile multiplied by the number of miles between i and j. And what 
should be used for the number of miles between i and j? The distance utilized should 
be the shortest distance between i and j, and this number would come from the so
lution of a shortest-path problem. Hence, the prior solution of shortest-path prob-
lems is needed to solve transportation problems. 

6.E THE TRANSSHIPMENT PROBLEM 

. · d f the chapter· the transshipment 
We will treat three problems m the remam er 0 

. · bl Th 
1 d the travehng salesman pro em. e 

problem, the maximum flow prob em, an . . t s balance/input-output 
transshipment problem is discussed because it illu_stra esflmasproblem demonstrates 

. . bl The maximum ow 
relations common m so many pro ems. . . n 1·ts li'nks can be optimized. 
h . h r ·red capac1t1es 0 

ow flow through a network wit imi 'd fi"rst demonstration of logical 
F. · d' ed to prov1 e a mally, the traveling salesman is 1scuss 
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constraints, in this case. mutual exclusivity constraints in the context of a network 
problem. These three additional problems really are only the "tip of the iceberg" of 
a class of problems that attract the attention of many researchers and practitioners 
from industry, the academic world, the military, and the public sector. 

6.E.1 Formulating the Transshipment Problem 

The network shown in Figure 6.2 illustrates a system, perhaps a highway system. 
where the least-cost distribution of a good is the goal. The nodes at which the gooc.I~ 
are available have an entering heavy arrow. Perhaps these are the sites of manufac
turing plants. where goods are manufactured up to a certain quantity per month. 
The nodes at which goods are demanded have an exiting dark arrow. TI1ese site· .. 
may be warehouses that supply the goods to local customers, the retail stores, ir 
known quantities per month. 

Other nodes have roads (arcs) entering or exiting with no goods being mad( 
available and none demanded and, even further, with no requirement that the good. 
even pass through these nodes. These may be thought of as merely the junctions o·: 
the road network-they may or may not be population centers. The costs-per-unit ol 

flow moving on each arc or road would be indicated in the half circle on each arc. 
Only names of the costs are indicated in this example rather than the cost itself. The 
costs are assumed to be symmetric; that is, cij = cj;, but they need not be. The ques
tion is how to supply the demand nodes from the source nodes at the least total dis
tribution cost. 

The formulation makes use of the following variables and definitions. 

xii = flow from node i to node j; 

a; = the amount available to enter the system at node i; 

Figure 6.2 The network of a 
transshipment problem. 5 

4 



Sec. 6.E The Transshipment Problem 

157 

bj = the amount demanded to leave th 
e system at node j: and 

~ = {the set of nodes directly connected to node j) 
For this version of the problem, we assume th t h · 
available, that is, entering the system through m a ; e mo?thly total of amounts 
total of amounts demanded that is th anu ~cture, is equal to the monthly 

h ' ' e amount required to exit the nodes to stock ware ouses. · · 
The following relation must hold at every J·unct· t h' h . 10n a w 1c goods enter the system from outside, for example, node 3: 

The sun: of the flow 0! goods into the node from all other nodes plus the 
amount entering the system at ~he node must be equal to the sum of the flow of goods 
out of the node. For node 3, this constraint is 

X13 + X23 + X43 + X63 + Xg3 + 7 = X31 + X32 + X34 + X36 + X3g. 

For node i, this constraint is 

Of course, these constraints would be put in standard form in any final linear pro
gramming problem statement. 

At every junction at which goods must exit the system, the total flow of goods in
to the node must be equal to the required flow out of the system plus the total of flow 
to other nodes. For node 6, this constraint is 

For node j, this constraint is 

· Id b t · t dard form in any final linear Of course these constramts wou e pu ms an . . . 
'. h d · with no ava1lab1hty and no programmmg problem statement. For t ose no es J . . 

. . . 1 . · t als output which m standard requuement, the equations are s1mp y. mpu equ , 
form, is 

~ X;j - 4 Xji = Q. 
ie~ IE/~ 

t lus or minus requirement or avail
Thus an equation of input equals outpdud. ~ variables must be nonnegative. 

b·1· 'f . . f h node In a it10n, .. a i Ity, 1 any is wntten or eac · . d d form plus the nonnegat1v1ty 
Th ' · 11 put m stan ar ' ese three types of flow equations, a 
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constraints. constitute the constraint set of the transshipment problem. TI1e objectiv 
of course, is to minimize costs of distribution; that is, e. 

13 

Minimize Z = L Lc;jxii. 
ieN,j=1 

If you were to look closely at the constraint matrix to this problem, you woulcJ 
see that each flow variable X;j appears in exactly two equations, once as an input to 

node j and once as an output from node i. Thus, the column for variable X;j has on1.: 
1 and one -1: all the remaining elements are zeros. TI1is condition indicates a uni· 
modular constraint set, and along with integer right-hand sides, is sufficient to guar
antee all integer-valued decision variables in the solution to a linear program. 

6.E.2 Applying Transshipment Concepts 

The transshipment problem is more than an interesting network flow probler: 
whose solution variables terminate integer on LP solution. The input-outpu· 
equations written at each node illustrate a type of relationship among variable~: 
that occurs in many settings in civil and environmental engineering. 

In water-distribution design problems, water input to a pipe junction equal~ 
water output from the junction. In structures, the forces incident on the stable 
junction of members equate to zero. In highway transportation networks, the 
hourly vehicle input to an intersection equals the hourly vehicle output. 

In the multipurpose operation of reservoirs, the natural inflow to the reser
voiL plus the preceding period's storage, less intentional releases, less evapora
tion and seepage, is equal to the storage at the beginning of the next period. In a 
factory that manufactures modular homes or building structures, such as trusses, 
the inventory of units at the end of the current month is the inventory at the end 
of the preceding month, plus the number of units manufactured, less the number 
of units shipped during the month. 

In a sewer system, wastewater flowing into a junction equals wastewater 
flowing out of the junction. In a segment of a river in which the concentration of 
organic pollution is stable (unchanging), the flow of pollutant into the segment 
minus the removal of the pollutant by natural biodegradation and settling equals 
the flow of the pollutant out of the segment-yielding the stable concentration 
condition. 

In a solid waste management system, transfer stations may be utilized. At 
these stations, small trucks offload into larger trucks, which then make the trip to the 
regional landfill. The daily tonnage into these nodes in small trucks .must equal th~ 
daily tonnage out of these nodes in larger trucks. As you c~n see, the mput-ou.tput 01 

mass balance relationships illustrated by the nodal equations of the transsh1pm~nt 
problem are very frequently encountered, and they are very important in modelmg 

engineering systems. 
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6.E.3 Relation of the Transshipment Transp rt . 
Problems ' 0 ation, and Shortest-Path 

A significant relation exists among the three problems that . 
in the chapter. The formulations are, in a sense clo I . we hav~ discussed so far 
II bl ' se re at1ves and. m another sense a one pro em. · · 

The transshipment problem, when you Jook at ·1 1 I · · . · 
k f . 1 c ose y, consists. m add1t1on to 

the networ o arc connect10ns, of three sorts of nodes 1) Th d . 
2) . e no es at which flow 

enters the system. The nodes through which flow can pass b t · t · d . u 1s no require to 
pass. 3) The nodes where flow must exit the system. 

If the pr~blem coul~ be reduced to the nodes where flow enters and the nodes 
where flow exits, the settmg would be that of the transportation proble th t 

d l. · h" m a was discusse ear 1er m t is chapter. 

In fact, the proble~ can be red~ced to this setting. Consider any pair of input 
and output nodes, one with flow entermg, the other with flow exiting the system. Tue 
input is specified, and the output is given. Flow need not move from this input node 
to this output node, but it could. If it did, what would be the cost? The cost-per-unit 
flow would consist of the cost-per-unit flow on each of the arcs that are chosen for 
the route the flow follows from the input node to output node. Which route will that 
be? It will be the shortest route, the least costly route, between the input node and 
the output node. The route and its cost can be determined by the shortest-path for
mulation given earlier in this chapter. 

We can do this for every input-output pair of nodes-now we can say-for 
every origin-destination pair of nodes. When this is done, we have the c;j of the 
transportation problem, the cost to ship one unit from each origin node to each des
tination node. With the a;, the flow available at each origin node, and the bj, the flow 
required at each destination node, we have all the information necessary to formu
late and solve a transportation problem. The solution to the trans.portation pr~blem 
will specify the optimal movement of goods between the nodes with goods avail~ble 
and the nodes with a requirement for goods. That movement between any pair of 
origin-destination nodes will always take place on the shortest (least-cost) path 

between those nodes. 
Thus, preprocessing the costs on the arcs of the network using ~he shortest-

path formulation converts the transshipment problem to a transp~rtatlon problem. 
We said, also, that these problems, in addition to being close relatives, could also be 

considered just one problem, and they can. . blem can be converted to 
We have already shown that the transshipment pro . f h t _ 

. f how the eqmvalence o t e rans 
the transportation problem. It remams or us to s h h t t path problem has a 

. bl R 11 that t e s or es -
shipment and shortest-path pro em_. . eca . 't"no at the single destina-

. . h · 1 10m node a umt eXI I ei 
umt of flow entenng at t e smg e or o . ' 11 'ntermediate nodes. Flow 
· · · t ut relat10ns at a i tlon node, and a senes of mput-ou P . not but none of the inter-

. d' te nodes or it may ' 
may pass through these mterme ia f utside the svstem or present 

· ·1 ble to enter rom 0 J mediate nodes have any flow ava1 a f the system. All that would be 
any demand or flow requirement for removal rom 
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I f mulation of the shortest-path problem to that of the necessary to convert t 1e or 
transshipment problem is 

l. Allow flow availability in any specified quantity. including zero. at the origin. 

or al any intermediate node: . . . . 
2. Allow flow demand in any specified quantity. mcludmg zero. at any of the Jn. 

termediate nodes or the destination. 

With these small changes, the shortest-path problem becomes the transshipment 
problem. which we already know is the transportation problem. 

6.F THE MAXIMUM FLOW PROBLEM 

Some Operations Research texts would choose to present the ~rnximum flow prob 
Jcm using an algorithm. We choose not to do so. because there 1s no apparent neces
sity to develop the algorithm. In fact, we did not present algorithms for th, 
transportation problem or for the transshipment problem, even though elegant al· 
gorithms exist for these problems. In contrast. we choose to present the maximurc 
flow problem as an linear programming formulation, because such a presentatior 
naturally builds on the formulations and notation that we developed for the 
shortest~path and transshipment problems. Further, using a formulation helps to 
emphasize the parallels of the maximum flow problem to the shortest-path and 
transshipment concepts. 

Imagine a modified version of Figure 6.2 in which there is flow entering the 
system only at node 2 and flow exiting the system at node 13. The amount of flow 
entering and leaving is not known in advance. The c;/s on each of the arcs had been 
meant to indicate costs or distances in the transshipment problem, which is where 
this network picture was presented. Now we will give the c;·'s a new and entirely dif-
f . . \l J 
ercnt mterpretat1on. r/e will think of the ci/s as capacities of the arcs, with each C;j 

representing the maximum flow-per-unit time that can occur through that arc. One 
possible real world example of a flow limit is the maximum number of cars-per
minute that can traverse a link in a street network. Perhaps the network represents 
all the possible routes through a particular section of a city. Cars are entering at 
node 2 and are le.aving through node 13. We are interested in determining the maxi
~u~1 flow of vehicles through the system from node 2 to node 13, given the capacity 
hm1ts on each arc in the network. 

For this problem. there is no unitary flow through the system that remains 
?undled together-as we saw in the shortest-path problem. Instead, we would antic
~pate that whatever flow enters the system at node 2 will split at a number of points 
mto a set of c~m~onent flows in order to take maximum advantage of every incre
ment of capacity m the system. 

We will use the sa~e notation for flows on an arc as we used in the transship
ment problem~ namely X;j, and we would use the same set notation. We will let the 
unknown maximum flow through the system be Q. 
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At node 2, the flow equation is 

X21 + Xn + X2H + X2c) - Q = 0. 

At node 13, the flow equation is 

X12, 13 + X7, D + X6, D + X:;_ IJ - Q == 0. 

For any node in between, the input equals the outp t · h 
Id b 

. ' u . a constraint t at the reader 
shou now e able to wnte. And on every arc in the y t s s em 

xii < ciJ for all arcs in the system. 

The objective is simply: Maximize Q. 
The maximum flow problem has become a simple variant of the flow problems 

we have discussed thus far. 

6.G THE TRAVELING SALESMAN PROBLEM 

This problem is so famous and difficult to solve that a book has been written about 
it.1 Smaller versions of the problem have been solved by the technique we will de
scribe, but you will see that this procedure is too tedious to implement for large 
problems. Nonetheless, the procedure to be described is of special interest because it 
illustrates a network problem with mutual exclusivity constraints. 

The problem assumes that a salesman is to visit each of n cities where his prod
uct is to be sold. The salesman is to begin and end at the same city. which is pre
sumably his base of operations. The actual starting and ending point doesn't 
matter, however, since this is a tour-a complete traversal of all the nodes, starting 
and ending at the same node. As a consequence, any of the cities could be the start
ing/ending city. The tour is to be achieved with the least total distance. While the 
formulation we present is an early approach to the problem, it remains educational 

nonetheless. 
Let· X·. = 1 o· it is 1 if the tour proceeds from city i to city j, and 0 otherwise. 

• I) ' ' 

and 
cij = cost (distance) for the salesman to travel from city i to city j. 

We begin by noting that the tour must fulfill three elementary but required 

conditions. · 
First a step of the tour must enter each city exactly once. Tha.t 1s: a tour must 

' · · ( 1) 't' that are not 1· and enter c1tv r leave some city 1 among the n - c1 ies -
n 

~ X;j = 1. 
i=l.i'#j 

I . I . A G "ded Tour of Combinatorial Optimization. E. Lawler. J. Lenstra. 
The Travelmg Sa esman. w . d S 1985 

A. Rinnooy Kan, and D. Shmoys, eds. New York: Wiley an ons. · 
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Second. a step of the tour must leave each city exactly once. That is, the tour 
must leave city i and go to one among the remaining ( n - 1) cities: 

n 

:L X,j = 1. 
j= 1. j-:ti 

So far. the problem looks almost exactly like a version of the transportation prob
lem with unit right-hand sides. 

Third. the tour must visit all cities in a continuous sweep. That is, the tour can
not visit a subset of cities in one loop and another subset in a second loop. This is the 
most difficult condition to enforce and the essential challenge of the traveling sales
man problem. The challenge. however. only occurs if the solution to the above prob
lem (with a minimum distance objective) violates the continuous tour requirement. 
The problem to be solved first is 

" " 
Minimize Z = ,L ::2:C;ixii 

i=l r= I 
II 

L X;j = 1 i = 1 ~2, ... ll 
j= 1. j:t:i 

" ,L x;1 = 1 j = 1,2, ... n 
i= I. i>'= j 

X;j = 0, 1 i = 1 ~2~ ... ll 

j = 1,2, ... ll 

If this problem is solved as a relaxed linear program, that is, with the variables only 
constrained to be nonnegative. it will yield all variables equal to zero or one, since 
the problem has precisely the form of the transportation problem, which is known 
always to yiel~ integ~r valued variables. That much is fine, but Figure 6.3 illustrates 
that the solullon. wlule all zero-and-one, might not achieve the continuous tour re
quirement. but could contain subtours. 

Figure 6.3 Subtours in a traveling 
salesman problem. 

4 

-~ ~-5 



Chap.6 Chapter Summary 

163 

To break subtours, constraints 'trc , dd d . 
< ct c which m· k . h 

One of the subtours. according to the figure. is ct c t c suhtour" inft.:a"iihk. 

X45 =: I, X54 == J. 

TI1is subtour can be forced out by resolving th. · · . 
additional constraint: c ongmal problem with the follmving 

X54 + X45 :5 ] . 

llrnl is, the tour cannot proceed from node 5 to n d ~ 4 d 1 
d 5 P b b 

0 e an a so go back from nod<.: 
4 to no e . ro a ly, all such subtours that occur h Id h f d · h l'k 1· . . s ou e orce out at once to 
increase t e 1 e 1hood of achieving a continuous tour th 1 · 

I
. on e next so ut1on of the 
mear program. 

To eliminate the three-city tour requires two constraints: 

and 

X13 + X32 + Xz1 :5 2. 

As you can see, larger problems may require many such constraints and a 
number of repeated solutions of successively larger linear programs. Additionally. 
the special structure of the transportation problem will be lost and solutions with 
fractions cannot be ruled out. 

The traveling salesman problem could apply to a building inspector who must 
visit a number of construction sites on a given day. The ideas of the traveling sales
man have been applied to the routing of a hydrographer who must read stream 
gauging station data at a number of sites. Similarly, a school bus routing might 
benefit from the ideas of the traveling salesman. Finally, a progressive party that 
proceeds from appetizer at one house to second course at a second house. and so 
on, until it reaches liqueurs and mints at the last house, might be planned with the 
traveling salesman problem in mind. 

CHAPTER SUMMARY 

In this chapter we have explored a special and important class 0~ linea~ progra~ns 
· ' . h' b · f e we have mvest1gated five 

with unusual properties. Although m t is ne spac ' . . . 
d

. . 1 t' many more applications remam 
ifferent problem settings and their formu a ions, · h 1-. d t ·n need to enoage m t e 1ter-

for the student to uncover and de~cnbe .. The stu en. wi of roble~s that spin off 
ature of Operations Research to mvest1gate the wide set P 

from this comet of applications. · to network flow is the . · f l' ear proorammmg 
The first and poster apphcat1on °. 10 k the least-length or least-time or 

shortest-path problem, a problem which see s 
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least-cost path between two specified n.odes of th~ ~etwork. 'f.he linear progr~rn
ming formulation sends a unit of no~ mto t?e. 0~1gm or startm.g node and with
draws a unit of now from the destination or fm1shmg node, seekmg as output that 
path that encounters the least total of arc costs en route. I.nput-output equations 
define the constraints on flow through every node but the first and last nodes. On
ly unit nows will occur on any arc in any solution of this linear program. ll1c 
s.llOrtcst-path problem also admits of other solution methods besides linear pro~ 
gramming. and a specialized algorithm which finds ~//the short.est paths between 
all nodes in a network is presented as a representative of the wide set of method• 

for this problem. 
ll1c next problem we presented in sequence was the transportation problem. 

one of the earliest linear programming problems to be studied. TI1e transportatior 
problem distributes goods from a set of origins with limited availabilities per-unit 
time to a set of destinations with specified quantities of demand per-unit-time. Be· 
tween any origin and any destination. the cost of moving a single unit is presumec 
to be known. TI1c goal is least-cost distribution of the goods between origins arn 
destinations. 

We turned then to the transshipment problem, a setting in which multiple 
sources arc available to provide good to multiple sites of demand through a net
work of arcs and nodes. We set up the linear program and discovered that the 
problem bore a strong resemblance to the shortest-path problem with mass bal
ance or input-output equations at each node. We observed that, if there was on
ly one origin and one destination and the input and output flows were both 
unitary. the problem was exactly the shortest-path problem. We further noted 
that. if the least cost path was determined between each pair of origins and des
tinations. the transshipment problem could be reduced to the transportation 
problem. We noted that the shortest-path problem~ the transportation problem, 
and the transshipment problem all possessed a very special constraint structure, 
which led to all-integer solutions resulting on solution of their linear program
ming formulations. 

Our fourth net work problem was the linear programming version of the 
maximum flow problem. Here. in the context of a network with capacitated arcs 
(limited flow capacity on the arc). we showed how to determine the maximum 
flow that could be sent from a given origin to a given destination. 

We concluded our survey of network problems with a description of a linear 
programmin~ formulation for .the traveling salesman problem, a setting in which a 
salesperson 1s to be routed with least total distance through a set of cities with a 
return to. the city of origin. TI1is problem formulation offered the opportunity to dis
cuss the idea of mutual exclusivity constraints. This kind of constraint enforces the 
logic required to exclude infeasible or illogical alternatives from further considera
ti~n. We noted. ~s. well, that the initial formulation of the traveling salesman problem, 
without th~ add1t10n of the mutual exclusivity constraints, very much resembled the 
transportat10n problem. 



Chap.6 Exercises 

165 
EXERCISES 

6.1. A personnel selection problem. 
(a) A contractor is assembling a crew w'th . . . 

I f 1 six pos1t1ons Tu-. . t . pcop c rom among a dozen of ti . fi . . . . c con ractor will select the six 
f h d le irm s cmplovces wh ·1i· o l c ozen people who arc clig'hl. f h : · 0 arc w1 mg to travel. Each 

ff . I c or t c assignment h . h 
to c ect1vcness in each of the six .

1 
t Th · · · . as ccn ranked according 

· s 0 s. c selcct10n pr hi · h crew members from the 12 eligible 1 • ·. . 0 cm is to c oosc the .;,ix 
fcctivencss is maximized You ·ire ~mp oyhecs 1 ~ such a way that the crew's total cf-

. · · ' given t c eftcctivcn , r h · · · 
ployec m the jth position on the crew. in all n , . ~ss t,, o t _c_ 1th ch~1hlc cm-

parnmctcrs. The dec1s1on variables arc 

X;i = l. 0: it is 1 if eligible employee i is chosen for the jth 

job on the crew, and 0 otherwise. 

Formulate this problem a~ a zero-one programming problem. Suppose this rob
le~ was sol:ed as a conlmuous or relaxed linear programming problem ·t:at is 
with the variables only co?slraincd to be greater than .. or equal ~to zero. \\~at evi~ 
de~ce do you have that this problem, solved as a continuous LP. will solve with all 
variables equal lo zero or one? 

(b) As an added feature of this problem, the particular set of employees are well 
known to one another, and not all of them get along. In particular. cmplovec five 
~nd ~mployee nine, though individually valued by the company. have a Jo~gstand
mg d1shke fo~ one ~nother, a dislike that makes them ineffective when working to
gether and d1srupllve of the work of others. You still want to assemble the most 
effective crew but now you need to create a crew that docs not have both emplov-
ees five and nine. · 

6.2. Shifting equipment between operations. A coal mining corporation owns three large 
draglines, with each dragline currently operating at a different site but becoming avail
able in the near future. Draglines are huge shovels that remove coal and overburden 
from surface (open-pit) coal mines: the bucket of a dragline is lifted vertically and 
dragged horizontally by a complex pulley system, hence the name dragline. Draglines 
can be so large that their cabs may hold several personnel and come equipped with a 
shower. Several people could easily stand erect in the bucket of a large dragline and not 
come close to filling it. The point is that shifting a dragline from one mining area to an
other is a very expensive, time-consuming operation. Each dragline may be different, 
having a different bucket capacity that results in a different rate of coal production and. 
hence, a different cost per ton of coal removed. The dra~line capac~ty. as wel~ as the 
thickness of the overburden and coal seam at a particular site, determme the daily cost. 
as well as the production rate at each mine, with the larger dragline providing a higher 

daily profit. . 
The coal company is opening three new ~ines next month. E~ch of the m1~es 

will require a dragline as the central piece of eqm~m~nt. The current sites of o~erat1on 
will be phased out in favor of the new mines. topsml will be replaced at the old sites. and 

the land will be revegetated. . . . 

W d 1 I t the total profit of using a particular draglme at a specific 
e nee to ca cu a e . h T d agline that was at old 

site. To do this, we multiply the daily profit when t e speci ic r ... 
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site ; is shifted from that site and used at new mining site j by the number of days to 
exhaust the coal scam al site j. This gives the total profit. Pii• of assigning the dragline 
from old mine; to new mine j, but this profit value does not include the significant cost 
of moving that draglinc to site j. The costs of shifting the draglines, numbered 1.2.3 and 
indexed hy ;, between the old mining sites and the new mine sites, numbered 1.2,3, and 

indexed hy j. arc denoted by c,r 
Structure, that is. write without summation notation, a model to determine which 

dragline will he shifted to which new mine site. in order to achieve the maximum total 

profit. 

6.3. Students planning classes. Second year students who are planning their junior year 
program in civil and environmental engineering are choosing from among 10 electi\'t: 
courses in those fields. Professors have set upper limits for enrollment in the courses 
that we number as I lo 10. These upper limits arc b1• b2 • ...• bw. Sixty-four students 
arc each seeking to get their three best choices of classes for their junior year pro
gram. Accordingly. they each make out cards that rate their preferences. The associate 
chairperson. who does the actual assignments. has consulted a faculty member in the 
civil systems program. and she has come up with a plan that definitely will improve on 
the technique of shuffling cards-that the students liken to throwing the cards down a 
set of stairs-to obtain rankings and assignments. She plans to optimize the course as
signments in which each student will be assigned lo three of the ten courses. 

Each student i is asked to rank each of the courses with a number from 1 to 10, 
with 10 denoting the first choice or greatest preference, 9 the second greatest prefer
ence, and so on.1l1e student can give only one course a 10, only one course a 9, and so 
on. \Ve will assume that each student follows this rule. because the chairperson has an
nounced that those students who violate the ranking method will be assigned last-after 
all others have been assigned-to classes that still have room. Thus, in general, student i 
gives course j a prcf ercncc of Pi,· 

111l: optimization process will attempt to maximize the total preference score 
achievement of all students. 

(a) Structure the student-class assignment model that the associate chairperson needs 
to solve. Use summation notation. 

(b) Explain conceptually how you could modify the model so that no student is as
signed to any course below their fifth choice-if that is feasible to achieve. 

6.4. Transportation problem with production costs (not the usual transportation problem). 
Two factories are manufacturing and supplying a single type of good to four warehous
es in different parts of the country. The factories can produce a1 and a2 units of the 
good each month. and the warehouses need b1, b2, b3, and b~ units each month. The 
monthly total of goods available from the two factories exceeds the total of the month
ly demands at the four warehouses. The costs of supplying one unit of the good from 
factory i to warehouse j is cii· So far the problem posed is the problem you have seen in 
this chapter. The twist in this problem is that the two factories have different factors of 
production. Their energy and labor costs are very different, with one of the factories 
having much higher electricity rates and employee wages. The costs of production of 
one unit of the good al factories 1 and 2 are d 1 and d2• Structure the objective function 
and constraints for this problem in expanded form (without the summation signs). 
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6.5. A supply chain-a problem in transshipment. 

6.6. 

Note: It would be good idea to have solved h . 
fore trying this problem. · t c previous prohlcm correctly hc-

A corporation is engaged in producing . nd k .. 
h f . a mar ctmg a consumer good The 

company as two actones that produce the good . d I ~·f · . . 
h. . an a so our mtermcd1atc ware-

houses from w 1ch the good 1s delivered to the final 11·nk · h h · · 
. . m t c c am. retail stores. of 

which there are many. Factones only ship to warehouses and t d. I ·
1 h . . . . no 1rcct y to reta1 

stores. The ware ousc mtervenes m the supply chain so that ra ·d ( · h . . . p1 response nvcrmg t 
truck dehvery) can deliver the good to stores The warehouses arc of . . · . . . course. more geo-
graphically disperse~ than the plants are. This dispersed supply network eliminates the 
need for the more distant, and hence slower. shipment that would occur if the stores or
dered r~plenishment stoc~ from the factory. The manufacturing plants arc in place and 
producmg goods; the maximum monthly production rates from factories I and 2 arc a

1 
and a2. Warehouses arc positioned in key locations and are currently in operation. The 
maximum monthly throughputs at the four warehouses are b

1
• b:. h1• and h~. The 

monthly demands at the 40 retail stores arc d1, d2, d) . .... d~0• The cost of a unit 
shipped from plant i lo warehouse j is cii• and the cost of a unit shipped from warehouse 
j to store k is k;j· Each unit manufactured at plants 1 and 2 costs e1 and e:. respectively. 
to manufacture. Processing and stocking costs at the warehouses all cost g per unit that 
moves through the warehouse each month. All goods that enter the warehouse in any 
month must exit it in that same month as there is not enough storage capacity to oper
ate with carryover goods. Structure a linear programming optimization model. using 
summation notation where it is convenient to do so, that seeks to manufacture and dis
tribute the goods in the supply chain at the least total cost. The decision variables will 
tell you which warehouses serve which plants and retail st~r~s. Other than t~e set of.as
signments and minimum total cost, can you think of add1t1onal valuable 10format10n 
that would come from solution of this problem? 
A maximum Dow problem. The diagram Figure 6.4 below s~ows a portion of a city 
where morning traffic is flowing into the area across two bndges at nodes 1 and 2. 

3 

6 

Figure 6.4 A highway network in a city. 
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Virtually all the traffic exits at node 9 to a manufa.cturing p_1a~t. On the .link between 
any pair of nodes ; and j (intersections) is a capacity c;1. Tius 1s the maximum Oow in 
cars per hour on that link in the direction from i to j. An unknown amount of flow A 

1 

enters node I. and an unknown amount of flow Ai enters node 2. The sum of the 
flows. A + A,, exits to the factory at node 9. The flows arc unknown because we are 
seeking ~he m~ximum flow through the system. and motorists_ will divide themselvc~ 
by experimentation into cars entering node 1 and cars cnt~nng node 2. In. gen~ral. 
motorists will not backtrack to gain advantage. and men wall not ask for d1rectmns. 

In the evening~ flows reverse and leave the factory to cross the area and exit viii 

one of the two bridges.1l1e flow capacities on each link arc different now. because traf
fic is generally facing downhill into the evening sun. Set up a math program or pm 
grams that will find the maximum flow through the system. 

6.7. A school boundaries problem. A school district has been undergoing rapid populci 
tion changes. Some of its areas are depopulating of school age children in the elemen
tary Jcvcls. Other areas arc gaining elementary-school-age children quite rapidly. As ;; 
consequence. some schools arc overcrowded and others have too many desks anl; 
rooms. lllC district office has established one new school in an area that had been rural 
hut has grown quickly with new houses and young families. 

ll1c district has been divided into small areas or neighborhoods.1l1e distance via 
the street network between each neighborhood and each elementary school is known. 
School buses arc in use to transport the children who do not walk or who have other 
transport. Nonetheless. to prevent excessive time on the bus, the planning office has set 
an upper limit of 2.5 miles for school assignments. That is, no pupil is to be assigned to a 
school more than 2.5 miles from the centroid of their neighborhood. In addition, pupils 
whose neighborhood is within 0.25 miles are expected to walk to school or obtain their 
own transportation. (When we were young. let me tell you ... ). 

Each of the elementary schools. indexed by j, has a capacity of bj. Each neigh
borhood. indexed by i. is anticipated to have an average through time of a; pupils. The 
distance between neighborhood i and school j is dii· The goal of the planning office is to 
assign pupils to schools to minimize the transport burden as measured in pupils multi
plied by miles traveled on the bus from neighborhood to school. The circuitous route of 
the school bus is not counted here. only the most direct distance from neighborhood to 
school. 

Although the goal is )east-pupil-transport burden, it is also required that each 
school be at least at 60% of its capacity. Your challenge is to capture these several 
restrictions. in addition to the usual requirements of a transportation problem. 

To review, children within 0.25 miles of their school will not be transported. No 
one can be assigned to a school more than 2.5 miles away, and schools must be at 60% 
of capacity. You will want to modify the matrix of distances to accomplish the first two 
of these additional restrictions. How would you examine the impact of the new school 
that has been built relative to these requirements? 

6.8. Assigning snow removal personnel. In Indiana in summer, highway personnel are as
signed to intensive construction and inspection duties throughout the stale. However, 
as winter approaches, the personnel must be reassigned to snow removal and ice con
trol duties on the state and Federal interstate highways. Workers must travel, in swift 
fashion. to new jobsites during snow emergencies, and these sites may be distant from 
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their homes. About 30.000 lane miles mav be . · d . . 
on an emergency basis reflecting the m· · . ~~quire m the entire st<ttc to he cleared 

. agmtuue of the pro hi em f· d h h h. 
department.' A fle~l of snow removal vehicles must he . . ·.~cc . ~~ t ~. ighway 
force of tramcd drivers. This problem co . mohilizcd. in addition to a 

. b . . ncerns the assignment of drivers from their 
homes to JO sates from which snowplows fan out 1 th · · 

· d f b · I · . 0 cir routes. The prohlcm is con-ceive o as emg so ved for one of the highw·iv .• ,. ·t · t · h 
• • • '1 u s nc sin t e state. 

Ass1gnmg dnvcrs to sites near their homes is · , I f h . .· . · b . . · · a goa o t e assignment procc'is. 
Assignment to near y JObs1tes means that the time to 1·n·1t·at . . I · h 

• • • • 1 c snow rcmova 1s s ort. In 
add1t1on, such. a~s1gn~ents mcrease the likelihood that workers will actuallv he ahlc to 
report to t.hear JOb s~te. ~urthermore. the rule of the highway departmc~t is that a 
worker assigned t~ a JOb site m~rc than 15 miles from his home station will he as'iigncd 
? state-?wned vc.h1cl~ for the \~mtc.r s.eason-with the proviso that the assigned johsitc 
1s not has closest JObs1te. There 1s a 1Jm1t. L. on the total number of vehicles that the stutc 
has available to assign lo its snow removal workers. This factor forces nearhv assil!:nment 
as well. · ~ 

The firm of Wright On! has received a contract to assist the state in developing a 
plan for worker reassignment. The firm described the following parameters. decision vari
ables, and constraints for the model it proposed to build for the highway department. 

The parameter d;i is the distance from a worker i's home to jobsite j. The variable 
x;i is to be 1 if worker i is assigned lo jobsitc j and 0 otherwise. No worker can be 
assigned more than once. At site j, exactly Tj workers are needed. Finally. the maximum 
number of state owned vehicles that can be assigned isl. To ascertain if a particular as

signment requires a vehicle, the model uses the coefficient a,i. which is 1 if the assignment 
of worker i to site j requires a vehicle. An upper limit on the distance a worker can be 
assigned is D. Hence variables X;j for distances d;j greater than Dare simply excluded 
from the problem. 

Structure the model that the firm should solve to minimize the average worker 
distance, given the other elements of the problem. 
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I , Integer Programming 
and Its Applications 

7 .A INTRODUCTION 

l11e field of civil and environmental engineering systems is largely an applied field 
as opposed to a theoretical field-despite the impressions you may have had from 
am of the earlier chapters of this book.1l1eory is taught in this book only because it 
is ~ecdcd to understand how we can solve some problems and why we can solve 
those problems and not others. Conveying theory is not an end in itself for this 
book. but it is a means to an end. The end is the art of building engineering models, 
not the science of solution. 

Having told the reader of the applied orientation of this text, we offer a chap
ter whose title seems to imply "theory .. to those in the fields of operations researc~ 
and mathematical programming. You may rest assured, however. Our clear intent is 
to give greatest emphasis to the practical aspects of integer programming, namely, 
formulation or problem statement. This is not to say that all theoretical concepts will 
be absent from this chapter. only that theory will not be allowed to become the prin
cipal focus. 

We begin this chapter with a discussion of the characteristics of integer program
ming (IP) problems. the features that set them apart from other optimization problems. 
In the process of laying out the characteristics of integer programming problems, we 
quite naturally describe some of the important situations to which integer program
ming applies. After discussing the nature of integer programming problems, we next 
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take up the methodologies that become ncce , h . 
alone fails ~o resolve the formulation in intcg~~:~fJ w en linear programming (LP) 

111e first and most important mcthodoJ · 
· ogy IS hranch and hound a procedure 

that, when run to completion, can guarantee the 
0 

t. 
1 

· • 
· f b h . P 1ma integer answer. The prc-

senlat1011 o ranc and bound 1s the only topic of thi·s ch t h . h b · I · ap er t at m1g t c regard-
ed as theoret1ca -although the process of branching ~·nd b d. · _._, h · 

• u oun mg 1s not t c result 
of a deep mathematical concept. We also discuss the meri.ts oft t 1 · h . . . · . o a enumeratwn. t c 
Process of evaluating all possible mtegcr answers We consi.der 1·n add·t· I · · 

• • • 1 JOn. ieun.Htc 
f!rocedures, methods to ap~roach optimal solutions for problems beyond the capac-
ity of br~nc~ an.d b?und, with effort short of total enumeration. And we bricflv take 
up mull1-obJect1ve integer programming. ~ 

In the ~revious chapt~r \~e examined a set of problems that. when properly 
structu~ed, will always provide integer-valued decisions when solved by linear pro
gramming alone. These were problems that optimized flows in networks or opti
mized structures on networks. By networks, we mean nodes connected by arcs like 
those that occur in highway systems. The relationship between network problems 
and integer programming is a strong one both from a theoretical and a practical 
point of view, as we noted in the last chapter. Our emphasis was on the practical con
nection: a number of network flow problems are natural integer programs. That is. 
the optimal values of the decision variables from the linear programming solution of 
a certain class of network problems are automatically integer valued. 

Constructing problems that have this special form is therefore an important 
goal since no further effort needs to be expended to achieve integers. Unfortunate
ly, many problems do not have the special network structure of the previous chap
ter, and yet they must be solved with integer-valued variables. Thus, this chapter. in 
contrast to the previous one, focuses on problems that generally cannot be formu
lated in ways that guarantee integer solutions. 

In the material that follows, by integers we mean the numbers 0, l, 2. 3, · · ·: 
that is, we mean zero and the positive integers. 

7.8 ONLY INTEGERS ARE ADMISSIBLE ANSWERS 

7 .B.1 Discrete Items of Manufacture: The General Integer Programming 

Problem 

. . . . . ro ramming problems is the need for 
The smgle most s1gmf1cant feature of mteger P . g f the practical nature of in-
d . . . l d That need denves rom ec1s1ons that are mteger va ue · . alue of a decision variable 

. bl If were theorists, any v teger programming pro ems. we . . however we insist that solu-
would suffice for problem solution. As practitioners, ,, ' 
. . h t "make sense. 

hons have physical meamng, that .t. ~y mus which linear programming models apply 
What are some discrete act1V1ties to . . that make sense? One of the 

where integer-valued decisions are the on.ly .d~cis~on~iture factory. is a good case to 
first examples in the book, the profit-maxmuzmg ur 
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examine. The number of chairs. desks. tables. and so on that should be made are the 
decision variables. Manufacturing 35.4 chairs. 79.8 desks. and 203.5 tables makes no 
sense. Four-tenths of a chair is an absurd concept. In a problem such as this one. the 
natural tendency is .. to round.•' Because the problem is resource-constrained. 
"'rounding down·· is probably the appropriate reaction. or else resource limits could 
be violated. Further, it should be clear that the profit lost by not making 0.4 chair. 
0.8 desk. and 0.5 table out of about 300 items of furniture will be .. in the noise.'' 
Conceivably, though. if the chair and table numbers were rounded down, the desk 
number might be rounded up. 

111e determination of whether such rounding steps are useful and do not vio
late resource constraints is. of course. specific to the problem at hand. It is an easy 
matter to check if rounding has produced an infeasible solution. Run the problem 
once again with all its constraints and with the decision variables set equal as addi
tional constraints to the rounded values. If the linear programming terminates feasi
ble. the rounding has not violated resource constraints. 

Most problems in which the decision variables are discrete items of manufac
ture are considered to be integer programming problems, because the answers need 
to be integers. Under certain circumstances. the solutions to these problems may be 
amenable to rounding to nearby integers. Under other circumstances, specialized 
procedures to achieve integers may be necessary. because rounding may not do well. 
An example of a general integer programming problem is the problem of cutting 
plywood sheets into various patterns, presented as Example 3-7 in Chapter 3. In 
contrast to settings such as that of the plywood cutting problem, the category of 
blending problems. like the paint mixing problem or the gravel mixing problem that 
you saw earlier. may generally escape the need for integer-valued activities. For 
these problems. ordinary linear programming will do very nicely. 

We illustrate the concept of the general integer programming problem with an 
overly simple furniture factory in which the workers can make only one kind of 
chair. only one kind of table. and no other items. Three resources constrain the fac
tory's profits: the amount of pine available, the amount of maple available, and 
worker time. A profit value is given for each chair and table. 

Let: x 1 = the number of chairs to be made, and 

x2 = the number of tables to be made. 

The three resource constraints are labeled in Figure 7.1. Recall that the optimal so
lution to a linear programming problem occurs at an extreme point of the convex 
s~t carve~ out by the linear constraints. None of the four extreme points with posi
llve profit, A. B. C. and D, however. are all integer. Hence, the solution must lie 
insi~e the conv~x region. Only the origin among all the extreme points, with zero 
~rof1t and zero items of manufacture, provides an all-integer solution, and the origin 
is clearly not the optimal solution . 

. In this si~ple, two-dimensional problem, we can enumerate all of the possible 
solutions. Tirnt 1s, we can calculate profit at each and every integer lattice point and 
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Figure 7.1 A ft:a..,ihle ri.:21Cin l)f intc..:1:!1..:r 
ch:cisions. Although ;icon~ i.:x f1..:;i~1hlt:
region ir.; c;irv1..:J out hy the thrl'.e 
resource constrainh. the real fr:a..,ihk 
region consists univ of the integer 
lattice points in th~ shaded ri..:gion. 

hence locate the optimal all-integer solution. In the general problem with manv dif
ferent activities and many resources, however, enumeration is not likely to be prac
tical at all. Shortly, we describe a solution procedure for integer programming 
problems that is applicable to problems with many activities. The methodology has 
the potential to shortcut the enumeration process, yet at the same time it is capable 
of determining the optimal all-integer answer. This is the procedure called branch 

and bound. 

7 .B.2 Yes-or-No Decisions: The Zero-One Programming Problem 

Arguably, the most important application of integer programming is to d.ecision
making processes in which the choices are of a yes-or-no nature. Such s~t~mgs are 
numerous in real-world decision making. In a general sense. the de~isions are 
whether or not to build; whether or not to purchase; whether or not to bid: whether 
or not to deploy· whether or not to mine; whether or not to cut; whether or not 10 re-

' · t 11· whether or not to allocate: move; whether or not to replace, renovate, or ms a · 
whether or not to ship· whether or not to monitor; and so on. d b . fl d 

' . f d · sion problem are sketche ne v. an 
Two verbal examples of this type 0 eci ff d 1 ter in the ch~pter. 

mathematical formulations of both of the problems are 0 ere a 

'Stem of a laroe city has grown hap-
1. An Ambulance System. The ambulance S)ed a eared~with no shifting of the 

hazardly. New units were placed a~ the ne, h p~t manaoer-hoping to shave 
positions of previously placed umts. ~0'~ t e ci: cover:oe of population can 
the municipal budget-wishes to see if tb el sa~ units The manager hopes to 
be provided with a lesser number of am u anc · 
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deploy ambulances in at least some different positio.ns in t.he wider metropoli
tan region. A number of possible sites arc available. mcludmg the current posi
tions of the ambulance units. as well as several city-owned hospitals. and those 
city fire stations that have space for an ambulance vehicle. 

Specifically. the manager would like to find the leas~ number of units 
needed. as well as their positions. so that all sectors of the city can be reached 
by an ambulance within 10 minutes or less. The decisions are which sites 
should be occupied by ambulances~ that is, a yes-or-no decision is needed on 
ambulance placement for each possible deployment site. TI1is problem is for
mulated later in the chapter. 

2. A Shipping Network. A long-distance shipper is interested in entering a new 
market area and plans to open terminals to serve the cities in the region. 
Each terminal site has an opening cost that will be incurred if the site is de
veloped. For each possible pair of open terminals. market studies have pro
vided the shipper with an estimate of the net revenue that could be earned 
if both of the two terminals arc open. Tirnt is. the shipper has a forecast of 
the volume of trade bet ween the terminal pair and knows as well the cost of 
transport and the price for shipment on the route. 1l1e difference between 
the total charge for shipment and the cost for shipment is the net revenue 
per-unit-time earned for the particular city pair. The shipper would like to 
determine which terminals to open in order to maximize the net profit that 
can be earned in this new market area. Net profit in the area is the differ
ence between the total net revenue from serving open terminal pairs and 
the cost of establishing the terminals. This problem is also formulated later 
in the chapter. 

7 .B.3 The Mixed Integer Programming Problem 

Some important optimization problems require only some of the variables to be in
teger valued. Typically. these integer-valued variables must be zero or one. The rea
soning behind such models is that before subsequent activities can be undertaken, 
some function or operation must be begun or a structure must be built or machine 
installed or manufacturing plant sited. 

For instance. for winter snow removal, before any roads that branch from a 
rural highway can be plowed. the rural highway itself must be cleared of snow. Plow
ing that rural highway is a yes-or-no decision, and decisions about plowing the spurs 
off that highway wait on that yes-or-no choice. 

Similarly. in a manufacturing operation, products of a particular type may re
quire a specialized machine for fabrication or finishing. The choice of whether or 
not to purchase the machine is a yes-or-no decision, and decisions about how many 
units of product to make cannot be made until it is known that the machine will be 
purchased. If the machine is not purchased, no units of the product can be made. If 
t?e. machine is purchased, the number of the products that can be made per day is 
hm1ted by the capacity of the machine and any other resources that go into the 
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product. 1l1e machine purchase decision is ye. . 

Production is the quantity of the particular. itcms-ct)r-nc~. zcfro-or-one: tht.: decision on 
. . . o manu acture 

Dec1s1ons on the opening/siting of landfill h'h· .· .' . . 
. f l I b ·1 . s ex I It s1mlletr propert1t.:\ fh .. choice o w 1et 1cr to UJ d a landf11I operation on a p t. 

1 
· c 

· · b . . . ' ar 1cu ar parcel of land is '1 yc'i-or-no dec1s1on ascd on both politics and economics If 
1
. · , 

11 · I d d · · · · po 1t1ca y unacccptahlc chmces are exc u e , the dec1s1on becomes one strict!'' f . · 
1
h . 

. . · _., o economics. e ne1ehhor-
hoods or commumttcs that should use a particular Jandf'ill foll . f h h ... · · 

. . ( ow rom t (; c OICC ot 
whether or not to bmld at the site. If the choice at a site i·s neo··ti···c I · 

11 
h. 

• . · · 0 u " • og1ca y nos 1p-
ments of solid wastes can be made to the site. However. if the decision is a "v .... 
then neighborhoods or communities can transport their solid wastes to the la~~~·ll 
up to the daily limit of the landfill or the daily limit of their own ocncration of solid 
wastes. The landfill decision is yes-or-no, zero-or-one: the neighborhood decisions 
are the quantities to transport to the landfill-if it is open. ~ 

A final example is a problem in emergency services. much like the one de
scribed earlier, but with interesting twists. In this problem. more than one ambu
lance can be housed at a particular site, and indeed may be needed at a particular 
site because of high call rates in a dangerous sector of the city. The choice of 
whether or not to build an ambulance-dispatching station at the particular site is 
yes-or-no, zero-or-one. Once a station has been built, there is a further choice-the 
number of ambulances to deploy at that station. Interestingly. this number must 
also be an integer. It need not be confined to zero or one as the station decision is, 
but may be 0, 1, 2, 3, and so on. In a certain sense, this problem statement belongs 
elsewhere as all its decisions must be integer. In another sense, it rightly belongs 
here because of the presence of the zero-one siting variable, which dictates the ex
tent of subsequent activity. 

7.C SOLVING INTEGER PROGRAMMING PROBLEMS THAT DO NOT 
HAVE SPECIAL STRUCTURE 

h h t Ucture give us little or no edge or The problems we focus on here are t ose w ose s r . . 
· . h t · I' near proorammmo solutions advantage when applying linear programmmg, t a is, i . b b 

5 1 
. 

. · t ·th non-mteoer values. o vmg to these problems are as hkely as not to termma e wi b h . th 
. bl 1 eoccupies the researc er m ma -

the general integer programming pro em tru Y pr 
1 

blem that is the 
. . . · 1 t · of the oenera pro · · 

ematical programmmg. Yet, efficient so u mn bt' uch as the shortest path 
problem without the special structure of network! p~o temdasys as it was in the 1950s. 

. lmost as e us1ve o or transportation problems, seems a 
1 

d the technique of branch and 
Nonetheless, a relatively good procedure has evodveth' J·ob of returnino integer-val-
b d t always 0 e e -- . ound. The procedure, however, oes no h 

1 
computino resources. In this . r f on ex aus s b ued answers-often because its app ica 1

• ' dures to obtain good. as op-
case, analysts turn to h~uristic or appr~x1malte ~r~~eblem is small en~u.gh so that 
posed to optimal solutions. Also, occasional y AP d even more speciahzed meth-

. ' . b undertaken. n 
enumeration of alternatives may e mmi'ng problems. 

. . . t ger proora ods are needed for multi-objective m e b 
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7.C.1 Branch-and-Bound Background 

The discussion in the previous chapter focused on a set of flow problems whose lin
ear programming solutions will always be integer. We need, however, to call on 
branch and bound when solution demands an optimal integer answer and the linear 
programming algorithm delivers a fractional answer. Branch and bound can be im
plemented by hand in smaller problems and in some few instances of larger prob
lems, but the procedure can easily become so time consuming for the analyst that its 
efficient application requires a specialized code which is added relatively seamlessly 
to a linear programming software package. Unfortunately, even the computer
based use of branch and bound to produce an optimal solution can sometimes be
come a very time-consuming procedurc--evcn for only moderately sized problems. 

The fact that branch and bound docs not always work efficiently does not 
lessen our enthusiasm for this procedure. Even though branch and bound is not 
pcrf cct. it docs solve problems that we could solve in no other way. In that sense. 
branch and bound is quite marvelous because efficient solution of the general in
teger or general zero-one programming problem is an extraordinarily difficult 
mathematical problem-a problem that still challenges mathematicians and math
ematical programmers. 

Mathematicians have. in fact. been unable to develop a general procedure that 
will in all situations resolve these problems. Branch and bound is the closest anyone 
has come: it dates back in the literature to at least 1960 (Land and Doig). 

7 .C.2 Branch and Bound Applied to the Zero-One Programming Problem 

To understand the power and the cleverness of this algorithm, as well as its limita
tions. we need to examine it in detail. We first provide a description of the procedure 
as it applies to zero-one programming problems and then sketch how the algorithm 
is extended to the general integer programming problem. 

Our discussion of branch and bound presumes a knowledge of linear pro
gramming on the part of the reader. Our application is to a minimizing problem 
where all variables are zero or one. 

The variables arc the x1, and their values are restricted by a set of structural 
constraints which define feasibility, and they are defined to be equal to zero or one. 
In a linear integer program, the constraints could be of the form 

II 

2:a;1xj = b; i = 1,2, ... , m 
j=l 

x 1 = 0, 1 j = 1,2, ... , n 

where a;i and b; are known parameters. Note that the constraints of all linear pro
gra?1s can be br~ught to this form by adding slack variables or subtracting surplus 
variables dependmg on the sense of the constraint. An objective function in a linear 



Sec. 7.C Solving Integer Programming Problems 
177 

integer program would have the form 

During the steps in a branch-and-bound algorithm for a zcr 
1
. . . . - o-one mcar program. a 

solution bemg exammed must always be feasible with respect to the 
1 1 1 . . . . . s rue ura con-

straints sho.wn above. This feas1?1hty is ensured by solution of a linear program at 
each st~ge m the pro~ess. The lmear program enforces feasibility of the structural 
constramts. 111e solut10~ may, h?wev~r. at ?ne of the intermediate steps in the 
branch-and-bound algonthm, be mfeas1ble with respect to achieving all variables at 
O or at 1. Branching is accomplished in a two-step process by setting some currently 
fractional variable first to zero in one step and then to one in the second step. pro
ducing an inverted "v" of two dangling solutions. Each of these two branchings pro
duces a different node. 

Each node consists of the problem being solved at this stage with (1) all of the 
original structural constraints still enforced, (2) with a previously fractional variable 
(in the parent node) newly set equal to one or to zero, (3) with a number of other 
variables already set to zero or to one on earlier steps. and ( 4) other variables not 
yet set to any value and free to assume whatever value returns the best value of the 
objective. Also associated with the node is the value of the objective function that is 
achieved by optimization subject to the structural constraints and subject to the 
variables that are set equal to zero and the variables that are set equal to one. Th.e 
nodes pile up, one after another, in a cascading or pine tree-type structure that is 
called a branch-and-bound tree (see Figure 7.2). 

Node 1 
All solutions 

No x1 =(0,1) Restrictions 
y

1 
=Minimize Objective . 

Subject to: structural constraints 

X;=J 

Node2 

V2 =Minimize Objective . 
Subject to: structural constraints 
and X; =O 

Node5 
Node4 

v. =Minimize Objective . 
' Subject to: structural constraints 

andx;= 1 

V =Minimize Objective . 
s Subject to: structural constraints 

and Ji= l 
.tk=l 

xk=O 

Etc. Etc. 

Figure 7.2 A branch-and-bound tree. 
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As the zero-or-one requirements are successively added to a minimizing prob
lem, the value of the objective will be expected to incrcase-a.lthou~h in some un
usual situations it could remain at the same level. At a certain pomt, a sufficient 
quantity of zero-or-one requirements wi11 have been i.mp~sed that all decision vari
ables wi11 become zero or one. The hope and expectat10n 1s that the number of vari
ables on which the zero-one requirements will have been imposed at optimality will 
be far less than the total number of zero-one variables in the problem. llrnt is, we ex
pect that adding the zero-one requirements to just some of the variables that need 
to be zero or one will push the rest to zero and one. 

When all variables arc zero or one at some node. the solution is then feasible 
with respect to the integer requirements. Only a feasible, that is, all zero-one, solu
tion at a particular node has the potential to be optimal. If not all variables are pre
cisely zero or one at a particular node. it cannot be optimal as it is not feasible. 
Suppose we have such an all zero-one node. We define a dangling node as a node 
that has not been branched on. llrnt all zero-one node is, in fact, optimal if no other 
solution dangling from the branch-and-bound tree exists with an associated objec
tive value less than or equal to the objective value at that node. Put another way, if 
the objective value of all other dangling nodes exceeds the objective value at that 
feasible node. further branching from those nodes cannot possibly produce a node 
with an objective value less than that of the feasible node. 

l11e procedure begins with the space of all solutions that are feasible with re
spect to the structural constraints. That is, the top node of the branch-and-bound 
tree is the solution to the original linear programming problem without any zero
one requirements being imposed. 111c problem solved at this top node is the mini
mization of the objective subject only to the structural constraints. The feasible 
space of this node. as defined by the structural constraints, includes all the zero-one 
solutions and all the continuous solutions that honor those structural constraints. 

An objective value is associated with this top node; it is the minimal value of 
the objective given that all structural constraints are met and that no zero-one re
quirements are imposed. The value of the minimum cost solution to this problem 
will be less than or equal to the value of the minimum cost solution subject to both 
the structural constraints and the zero-one requirements. With great likelihood, of 
course. the objective value is strictly less at the top node, because addition of the in
teger requirements should force the objective value to increase. If the solution with 
this minimal value at the apex or top node, as shown in the diagram, happens to 
have all zero-one variables, even though no zero-one requirements have yet been 
imposed by branching and bounding. it is optimal. No additional steps are needed. If 
the solution is not all zero-one. the zero-one requirements are added successively; 
that is. the branch-and-bound process begins. 

A branching takes place from the apex node on some currently fractional vari
able. say X;. The variable is fixed in the left branch to zero and in the right branch to 
one. TI1en the problems at the tip of each branch are re-solved using linear pro
gramming, thereby producing two dangling nodes. Since the two values of x;, name
ly zero and one, are the only possible values that x; may take on, the two nodes 
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produced include within them all of the .11 . 
I . po.ur J e solwwm t th . hi , 

zero-one so ut10ns have conceptually been 1 d · 0 c pro cm. Ihat is. no 
cxc u ed· all ·11 · 

At each of these two nodes a soluti'o .. d · . arc st1 poss1hlc. 
. ·' n is ctcrmmcd h. h · · · 

jective given that X; is zero (at the left nod ) 
1 

. w 1.c m1mm1zcs the oh-
. e or a tcrnat1vcly g1v th' · ( 

the nght node) and that the structural constra· 
1 

en at x, is one at 
. ' m s arc met. 

There are four possible outcomes to the b . h. 
has produced these two new nodes. ranc mg from the apex node that 

Jn the first outcome, the solutions at both nod . Id b 11 . _ . . . · cs cou c a zero-one. In this 
case the bt anch which produced the node with the lo\v t b'. · 

1 
· . · . . es o Jcct1ve va uc 1s opt1m I 

No add1t1onal steps are needed. · a · 

A second outcome is that for each node the associ'ated I t. h f · I . ~ . so u ion as ract1ona 
val.ues for at least ~ne vanable; .that is, neither solution meets the all zero-one re-
qmre~~n~. ~ranchmg m~st continue from at least one of these two nodes. The rule 
for mm1m1zmg problems ts that branching takes place from the node with lowest as
sociated objective value. We will explain why in a moment. 

A third outcome is that one solution is all zero-one while the other is not. and 
that the objective value associated with the all zero-one solution is greater than the 
value associated with the fractional solution. In this case, branching (setting some xk 

equal to zero and then also lo one) takes place from the node with one or more frac
tional variables, that is, from the node with the lower value of the objective. 

The fourth possibility is that one solution is all zero-one and the other is not and 
that the objective value of the all zero-one solution is the lowest value of the two nodes. 
This all zero-one solution must be declared optimal since further branching from the 
fractional solution cannot decrease its value to the level of the zero-one solution. 

These objective values associated with the nodes are better termed lower 
bounds on the true value of the optimal objective. They are lower bounds because 
all we really know is that the optimal solutions at the far ends of these paths must 
have values greater than or equal to these. If further branching is requ~red from. a 
node (see Figure 7.2), two new nodes will be produced by that branch~ng from It. 

The space of all possible solutions continues to be r~presented b~ the umon or com
bination of these two solutions at the new nodes with the solution at the node not 
yet branched on. That is, still, no zero-one possibility has been excluded-all such 
solutions continue to be contained in the dangling nodes. . . . 

Branching and determining solutions with the minimal associated. objective 
· d th union of whose solutions make values continues to produce new danghng no es, e 

1
. d 

. R member that a dang mg no e. as 
up the entire feasible zero-one solution space. e . 

1 
d 11 d 

. . h de that IS a rea y a zero an 
opposed to a node interior to the tree, 1s eit er a no 
one or a node which has not yet been branched on.h II 

0 
or one variables and 

. b cited that as a zer - -
When a dang/mg node has een rea 

1 1 eqiial to the values associ-
h h . . . . d b . t. e value ess t wn or 
t at as Its m1mmal assocwte o 1ec iv . h t de is designated as optimal. 
ated with all other dangling nodes, the so/utt~n. at tda 

11l~ng nodes must be in one of 
· · · the remamm0 ang i · This node 1s optimal because . 0 d the danglino node with the . . danglino no es, eo • l 

two conditions. Among the remammg The r· t possibility is that a fractiona . .t. 1 step e us . 
second lowest value is located as an IIll ia · 
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1 · · ·ated .. u 1·th the minimal obJ. ectivc value of this dangling node. In that SO Ut1on IS aSSOCl n • • 

case, the further branching required to produce a zero-one feasible ~olut1on from 
this node cannot possibly reduce the objective valu~ to that of. the designated node. 
The second possibility is that the dangling node, which has a higher ~alue ~f the ob
jective function than the designated node. is already all zero and one m which case it 
is already worse than the designated node. . . . 

If. on the other hand. the node with the smallest ob1ecttve value is not zero-one 
feasible-not all zcro-one-f urther branching from the node with the lowest bound 

is still required. . . 
Several f urthcr notes may heighten appreciation of the branch-and-bound 

rules. First. even though branching from the node with the lowest lower bound or 
objective value is a heuristic rule. that is. a rule that seems to work well, it has soml 
justification. It may be justified by noting that it will be impossible to terminate or 
that step of branching if it is done from a node that does not have the lowest lowc; 
bound. TI1is is because a lower-valued node would always remain to be branche.J 
from. (In a maximizing problem. branching takes place from the highest-valued ter
minal node: sec if you can explain why.) 

Second. nodes temporarily abandoned, because they do not presently hav:. 
the lowest objective value among the dangling nodes. may be revisited later in th1 
procedure. 111e process would return to such a temporarily abandoned node if and 
when its associated objective value becomes lowest among the dangling nodes. This 
leads us to a procedure to prune or pare the branch-and-bound tree so that only 
relevant branches arc retained-that is. branches that can lead eventually to the 
optimal solution. In this regard. a node may be discarded from further considera
tion for branching if a feasible zero-one solution is known or found whose objec
tive is lower than this node's bound. 1l1e presence of such a zero-one solution 
means that branching from the node in question cannot possibly lead to the opti
mal solution. The procedure of discarding is called pruning or paring of the branch
and-bound tree. 

Branch and bound may be implemented by hand, but modern computer codes 
usually include a branch-and-bound option that can be pre-selected by the user to 
resolve the problem in zero-one variables. 

How large a ~rob~em can be handled by a branch-and-bound procedure? The 
answer would be given m terms of the number of zero-one variables that the proce
dure could resolve in a reasonable length of time. That number is difficult to esti
mate because so many different computers and computer codes are now in use. 
Further. some problems may have a special structure that favors as opposed to 
guarantees. zero-one variables on completion of the linear program~ing algorithm. 
Other problems may have structures that favor outcomes with many fractional vari
ables. If a problem d?es not fall in the category of being integer friendly {favoring 
zero-one outcomes), it probably would be wise to steer clear of problems with more 
thhan 100 zero-one va~iables. The amount of branching and bounding for problems 
t at are larger than this-and th t . . · 

d a are not mteger fnendly-appears to consume time 
an storage to such an extent that codes may terminate far short of the optimum, often 
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without any answer at all. For a particular prob) . h . . 
known, the advice is to try successively l'tr _ cmhwl ose integer propert1c~ arc not vet 

. · ' gcr pro cm~ to d ·t · · . h · ". relative to zero-one answers. · e ermine t cir properties 

7 .C.3 Branch and Bound and Mixed Integer p · rogrammmg 
We note at the outset that a mixed integer prognm ·. hi. h· ._ . 

f · bl · ' is a pro cm t LJt 1s compo"\cd ot 
two types o vana es--contmuous variables that can 1• k -. . 1 · · -h . .· . a eon any va uc and d1scrL:tc 
vanables t at me rest11cted to the integers Almost . , ·. d · . . . ·.· e\cry m1xc integer proi!ram 
that you will encounter has its discrete variables 11·m1·ted t th . · ~hi . . · o c zero-one vana cs. 

To illustrate the concept of a mixed integer program \" 1 h hi • _ . • • vC Crea C ere a pro em 
that falls m the category of lackmg special structure We us•"' th,, co 1 f · · . . ... c nccp o act1v1tv 
analysis from Chapter 2 of the book as the base for our formulation. w-. will a . ·. . . . e ~sumc 

that the act1v1lles are making different items of wooden furniture. and that the fur-
niture factory is just opening. It has not produced anv items as vet. 

Recall that the fundamental variable of the activity analy~is problem is x . the 
extent of the jth activity, in this case, the number of units of furniture type j ~o be 
produced. For purposes of discussion, because the number of units of each type of 
furniture could be very large and could be rounded, we assume that x

1 
can be con

sidered to be continuous variables. The fundamental constraints of the activitv 
analysis problem are that each of the resources that the activities consume to var~~
ing degrees is limited in extent. We further assume that these limits cannot be ex
ceeded. The objective is maximum profit, given the resource constraints. 

Now we add to the problem a new restriction or relation. Our rationale for 
the new restriction is that the factory is just opening for the first time. The restric
tion or relation we impose is a logical one. We require that each activity j cannot be 
undertaken unless some preceding step has been implemented. Perhaps activity j is 
the making of rocking chairs. The predecessor activity might be trainin~ the work
ers to build rockers. That training step has a one-time cost, a cost that will not need 
to be repeated for every rocker built. Nonetheless, the t~a~ning _will have to take 
place before the first rocker can be built. The cost of trammg will have to be de
ducted from the profit objective if any rockers are built: but .it will be deducted on
ly once. And it will be deducted even if just one rocker is built. We can a_ss_ume t~at 
each activity j has a predecessor training activity. and that each such trammg activ-

ity has its own cost. 

~et~ 1 O· it is 1 if we engage in building any of item j or, put another way. 1_ if 
J ~e, undertake the worker training needed to produce one or more um ts 

of item j, and it is 0 otherwise; . . 
. d b building one unit of item 1: 

a·· = the amount of resource L consume Y 
I] 

11. ne unit of item j; p· = net revenue from se mg 0 

J • r furniture type j: and 
f- = the cost of worker training for item 0 

. . 
J • e we would consider producing. 

M = the largest number of any furmture typ 
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For each activity j that is undertaken to any extent, that is, for each furniture type 
produced in any quantity from one up to M, the term f;Y; must be deducted from the 
maximum profit objective. 

Thus the new objective of the activity analysis problem is 

" n 

Maximize Z = LP;Xf - Lf;Y;· 
j=l j=l 

How do we ensure that f;Y; is deducted only if x; is strictly greater tha~ zero? To the 
set of resource constraints that have heretofore been the only constramts that haw: 
characterized the acti,~ty analysis problem. we append the following set of con
straints. one for each activity or f urniturc type j; 

X; :s Myi j = 1.2, ... ' 11. 

Reading this expression in the forward direction, this constraint says that no units c 
furniture type j can be produced unless Y; is one. and that the upper limit on pre 
duct ion off urniturc type j is M. The constraint can be manipulated to read 

and this may be interpreted as saying that as soon as the first item of type j is pro
duced. the variable Y; must be positive. Since the variable is constrained to be either 
zero or one (presumably by branching and bounding), and it is positive, it must be 
one. Hence the full cost of training. f;Y;· will be deducted from the profit objective 
for each of the /1 activities that are undertaken to any extent. Of course the resource 
constraints. non-negativity constraints, and zero-one constraints are appended to 
these constraints. namely 

II 

:La;(l"; :s b; 
_i=l 

i = 1,2, ... , m 

Xj ~ 0 j = 1,2, ... , n 

Y; = 0, 1 j = 1,2, ... , n. 

\Vi th these ~rguments we have now created a different type of problem. This is 
not a problem w~th only continuous variables-as is the blending problem. This is 
not a probl.em with onl~, zero-one variables as is the shortest path problem. It is a 
problem with some variables that can be considered or allowed to be continuous 
and_othe.rs that must be zero or one. This problem type occurs very often; it is called 
a rmxed mteger programming problem. 

How can the mixed integer programming problem with its mixture of continu· 
ous and zero-one v~riabl~s be solved? It is most often attacked by an application of 
branch a~~ bound m which only the zero-one variables are declared as branching 
opportunities. All remaining variables are allowed to fall where they may (assume 
any necessary value) at each of the nodes in the branch-and-bound tree. The width 
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of the tree and its potential depth are determined h th . 
ables, not the total number of variahles. Y c number of zero-one van-

It is true, however, that the linear programm1· I · 
. . ng so ut1on at each node of the 

tree must consider the enttre problem-with aJI the co t' . · hi · 
. . . . n muous vana cs. with some 

of the trammg or openmg variables y· declared zero or de I d d · h 
. 1 c arc one. an wit some 

not yet declared m status. When a node is found ,v1·111 lilt 1 · · · · 
. . rammg or openmg van-

ables at zero or ~ne, whose ObJecti:e val~e is Jess than the value at all other dangling 
nodes, the solution. at that n~dc ts optimal. That is how branch and bound oper
ates-o~ly on the mt~ger variables-of the mixed integer programming prohlem. 

With the. op~ratlon of branch and bound on a mixed integer programming 
problem kept m mmd, we can return again to the issue of how large a problem can 
be solved or should be attempted. Referring now to the problem we have called the 
mixed integer programming problem, the most important measure of size bv far is 
the number of variables required to be zero or one. The suggested limit on p;oblem 
size, if there is no special structure favoring integer outcomes. is still perhaps 100 
zero-one variables. Nevertheless, you are well advised not to try such a problem 
size immediately. Significant differences exist among LP codes and across ma
chines. You should attempt to solve smaller (fewer zero-one variables) problems 
first to get a feel for what is and is not possible. 

We conclude that mixed integer programming-which uses branch and bound as 
its fundamental operation to achieve zero-one variables-is indeed a powerful tool. 
but it is limited, limited in general to problems of only mode~ate size. The theoretic~] 
challenge remains to find a solution method for problems WI~h many zero-one van
ables, especially those problems without special structure favonng zero-one outcomes. 

7 .C.4 Branch and Bound Applied to the General Integer Programming 
Problem 

The algorithm we described for branch and bound is specifically f~r a zero-one pro
gramming problem. However, it can be extended to the .ge.neral mteger pro~ra~-

. h eptual dif ftculty The extens10n IS ming problem as well-without too muc cone · · bl F 
. th than the zero-one vana es. or 

based on a branching that uses the integers ra er h . . . t'on subject only to 
instance suppose the top node has been solved-t e m~lffilla I 

' . . d negativity constramts. 
structural equahty constraints an non- . for meaningful solution of 

. · bl ed to be mte0 ers 
We will say that the vana es ne Th 1° 6 l?5 is not admissible for X7. 

. t d t 6 125 e va ue . -
the problem, but x1 has termma e a · · th r equal to 7 both are. Branch-
but integers less than or equal to 6 and greate~ bal n ~ One branch sets x

7 
$ 6 and 

. h d on the vana e ·"7· 
mg may be done from t e top no e . t to this constraint; the other branch sets 
solves the original LP problem subJeC . h th' constraint in place. Absolutely no 

. . 1 blem wit is 11 . 
X1 ~ 7 and solves the ongma pro h' b anching· the space of a mteger 
. . 1 ded by t IS r ' mteger possibilities have been exc u 
solutions remains intact. h from (2) when to tenninate. an~ (3) 

The rules for (1) which node to branc . th' e branch-and-bound algonthm 
· 1 the same as m how to pare the tree are precise Y 
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bl I a minimizing problem, branch from the fractional node 
for the zero-one pro em. n . · I f · 

. 1 1 r the obiiectivc (Agam branching takes p ace rom the h1ghcst-w1th the owcst va ue o J • • • 

. 1 d · maxi'mi'zing problem.) Ternunatc when the lowest-valued valued tcrmma no c m a . . . 
dangling node is all integer-it is the ?ptimal..Wh.en an all-~nteger danglmg node (a 
feasible solution) exists and its associated objective value ts less than tha.t at some 
other dangling node. the branch represented by the second of the danglm~ nodes 
may be cul off-since the integer optimum could not be found by followmg that 

branch. . 
The same cautions on problem size exist for the all-mteger problem as for the 

zero-one problem. More than 100 integer variables without special structu~e in th: 
constraints (such as exists in the transportation probl~m) means that solull~n m;1\· 

not be achievable. TI1e reader interested in the algonthm for the general mtcg:·: 
programming problem is referred to the early expository article by Dakin (196:-' .. 

7 .D ENUMERATION 

For moderately sized integer programming problems, branch and bound is most Oi·· 

ten the method of choice. For larger problems. heuristic methods (see Section 7.E 1 

may be called upon to find good solutions. For smaller problems, in contrast, enu .. 
mcration may do perfectly well. By enumeration, we mean the creation and evalua
tion of every feasible solution to the problem. A final ranking, naturally using the 
objective function as the measure of goodness~ yields the best of these solutions. 

Enumeration is not theoretically elegant. but just as we would not use a back
hoe to plant a petunia. we are well advised not to use branch and bound when the 
problem can be easily enumerated by hand. To make the advice more plain, we pre
sent a problem that appears at first glance to require branch and bound, but that on 
closer inspection really cries out for analysis by hand. 

Our illustrative problem involves a builder/developer who builds tracts of 
homes. ll1e builder has a choice of five large parcels of land that are for sale in dif
ferent parts of the county. The parcels are of different sizes, topography, cost, and de
sirability lo potential home buyers. In addition, the costs to bring in water, gas, and 
sewerage are different. Minimum lot sizes differ among the tracts as well, influenc
ing the price of homes that can be sold. 

Because of equipment limitations~ the builder doesn't feel capable of building 
on more than two tracts at once. Furthermore, since crews will be shuttling back and 
forth bet ween the sites. the builder wants the two tracts chosen to be within 4.5 
miles of on~ ~nother (see Table 7.1). The builder can handle total up-front costs of 
only $7.5 m1lhon. These up-front costs are the sum of tract purchase costs, utility and 
road costs, and the costs of building the homes. The limited amount the builder can 
front reflec.ts the line of credit the builder has at the bank. 

The first s~ep is lo calculate for each tract the net revenue after all homes in 
the tract are built and sold. The net revenue is the sixth column in Table 7.2. Up
front costs, the total of home cost, tract cost, and road/utility costs, are in column 7. 
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TABLE 7.1 DISTANCES BETWEEN TRACTS UNDER CONSIDERATION 

Distance to Parcel j 

Parccli j 1 2 3 .t 5 
; 1 0 6 5.25 8.25 () 

2 6 0 4.5 6.75 .t.5 
3 5.25 4.5 0 
4 8.25 

2.25 3.75 
6.75 2.25 0 2.25 

5 9 4.5 3.75 2.25 n 

TABLE 7.2 CHARACTERISTICS OF THE TRACTS (MILLIONS OF DOLLARS) 

Index Number Av. Av. Tract 
1 

No.of of Home Home Road and Purchase Set Cp-front 
the Tract Homes Cost Price Utilities Cost Cost Revenue Co-;ts 

1 7 0.18 0.30 0.03 0.6 0.220 1.890 
2 10 0.08 0.20 0.045 0.9 0.255 1.7.tS 
3 15 0.12 0.25 0.10 1.5 0.350 HOO 
4 12 0.20 0.35 0.07 1.4 0.330 3.870 

5 22 0.10 0.22 0.105 2.1 0.435 .t.405 

The problem the builder wants to solve is which two tracts to purchase and de
velop to maximize net return given a limited ability to absorb up-front costs. Fur
thermore, the builder wants the two tracts within 4.5 miles of one another. Variables 
for the problem are 

Yj = 0, 1; it is 1 if tract j is purchased and developed, and it is 0 otherwise. 

The objective is 

Maximize Z = 0.22y1 + 0.255.Yi + 0.350)'3 + 0.330y4 + 0.435y5. 

The limited ability to absorb up-front costs is expressed by 

l.890y1 + 1.745.vi + 3.400y3 + 3.870y4 + 4.405y5 $ 7.5. 

The restriction that no more than two sites can be developed is given by 

y1 + Y2 + y3 + Y4 + Ys $ 
2· 

. .1 f e another This requires excluding 
Lastly, tracts must be withm 4.5 nu es o on 4 - ·1 · s. Usina Table 7.1. Dis-

those pairs of tracts which are farther apart than ·' ~1 
e e 

tances Between Tracts Under Consideration, we can wnte: 

Y1 + Y2 ~ l 

Y1 + Y3 ~ l 

I 
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Y1 + Y4 s 1 

Yi + Ys ~ 1 

Yi + )'4 $ 1. 

Chap. 7 

These constraints ensure that all infeasible pairs of tracts are excluded. In addition. 

all variables must be zero or one. . 
lsn•t this clearly a case for branch and bound? ~o. I~ 1s. a case for careful enu-

meration off casiblc alternatives.1l1e 4.5 mile constramt lmuls the number of feasi
ble pairs drastically-to just five in number. From looking at the distance matri~: w:~ 
can sec that those feasible pairs arc (2. 3). (2, 5). (3, 4), (3. 5), and ( 4, 5). In addition. 
the individual tracts can be developed alone, but these won •t deliver as much w·
enue as pairs of parcels. ll1c up-front costs of the five feasible pairs follow. 

Pairs of Parcels Up-front Costs 

(2.3) 5.145 

(2.5) 6.15 

(3.4) 7.27 

(3.5) 7.805 

(4.5) 8.275 

Since the total of up-front costs the builder can afford is 7 .5 million, only alter
natives (2. 3). (2. 5). and (3. 4) remain feasible. These three pairs of parcels can now 
be compared on the basis of net revenue. 

Net Revenue 
Pairs of Parcels (millions of$) 

(2. 3) 0.255 + 0.350 = 0.605 

(2.5) 0.255 + 0.435 = 0.690 

(3.4) 0.350 + 0.330 = 0.680 

It looks as though the optimal pair of parcels is (2, 5) since this pair gives 
the greatest net revenue. but enumeration has provided an insight that straight 
integer optimization would not have. The pair (3,4) is nearly as good and, given 
the uncertainty in the cost and sales price estimates, may be just as good as (2, 5). 
Furth~rmore. parcels (~, 4) are only 2.25 miles apart, whereas parcels (2, 5) are 
4.5 miles apart. The bmlder could opt for the second best of the alternatives be
c.ause it provides other qualities. Can you think of a way (not including enumera
t10n) to solve zero-one programs in general and then find the second best and 
third best alternative? 

Our conclusion from this exercise is that not all problems need the power of 
branch and bound, that sometimes common sense can do just as well in finding inte
ger or zero-one answers. 
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?.E HEURISTICS 

TI1e branch-and-bound algorithm described b . ,. . , 
sometimes computationally intensive. meth d al O\e is a. rathc~ elegant. although 
problems in integers. For large problems wit~o~to~y, 1~ resolve linear programming 
the reach of branch and bound, methods that find s~~~~·~~t~uc~urc. hov.-~ver. hcyond 
be tailor-made for the problem at hand Of h g P11 ':11~1 solution.., need to 

I 
. 

1 
. . · ten. owevcr. no efficient method can he 

created w uc 1 will fmd the guaranteed optimal solution. 
To approach a relatively fast solution of such bl , · · ·I b · . pro ems. approx1matt: aloo-

nt lms may e specially designed. By "approximate" 1·s h h 
1 

. b . · . meant t at t c so ut1on.., 
found are probably good, that is not far from the real opt' I b. · I . . . ' ( 1ma 0 JCCllVC va UC. 
However, m contrast to hnear programming where the opti'm I·. d h . a 1s guarantee . t ere 
ma~ be no way,. short of e.num.erat1on-thc evaluation of all possible feasible alter
natives-to venfy the opt1mahty of the chosen solution. 

The approximate algorithms are called heuristics or heuristic methods. a name 
that desc~ibe~ a seque?ce of log~c~l steps that lead. in aggregate. to improved values 
of the objective function. Heunst1cs are generally custom designed for each prob
lem by a r~searcher in the field of optimization, but it is not beyond you to create 
such algonthms. 

When you encounter a heuristic, you should be aware that problem solution 
may be fast, but the solution chosen may not be the true optimal answer. And when 
the solution is not known to be the exact correct answer. the examination of the im
pact of changing a key parameter may lead to spurious conclusions. When a para
meter is changed, the new solution, with its potentially changed objective value and 
potentially new set of positive activities, may not, in fact. be a result of the change 
in the parameter. It may result due to a change in the way the heuristic settles on its 
best solution. If you had a way to find the true optimal solution and noted the ob
jective and solution both before and after the parameter change~ the change in pa
rameter value may have caused quite a different impact on the solu~ion. 

To illustrate what we mean by a heuristic procedure. we describe the famous 
knapsack problem, a zero-one programming problem that has inspired num~rous 
specialized algorithms. Although the knapsack problem is often a good candidate 
for branch and bound we want to explore an approximate and often very good 
method to "solve" the 'problem. Our approximate method falls ~n the cat~gory of 

h · · · · t d to find the optlIDal solution. The eunstic procedure because it is not guaran ee 
knapsack problem is stated in the following way. d d d . . d f period of ays an must e-

A hiker is planning a trip mto the wil erness or a d ff d . no more than 10 poun s o oo . 
cide which items to take along. The hiker can carry . Th:s 30 pounds is the 
l . . f 1 k of regular exercise. i 

c othmg, and eqmpment because o a ac . If h"ch of course must be car-
a~ount o~er and above the weight ~f the pa~~~~:bl~v t~ a~sociate a ,:alue for each 
ned as a given of the problem. The hiker has . 
item under consideration for the pack and~ 'd~efight. mple one cup. one miniature 

. ld be carne or exa , 
Only one of each item wou h,b h. one flashlioht one emergency 

h 1f toot rus . e ' 
stove, one extra pair of shoes, one a 
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blanket. one candle lantern. one pair of sunglasses, one towel~ and so on. Assume 
that the volume and shape of each item do not need to be considered. 

Let: 

11 = number of items being considered for the pack; 

xi = 1. o: it is one if the j th item is chosen for the pack, and 0 otherwise: 

v
1 

= value associated with item j; and 

ll'i = weight of item j (in pounds). 

The problem may be stated as 
,, 

Maximize Z = L V;X; 
j= 1 

,, 
Subject to: L wixi ~ 30 

j=l 

Xj = 0.1. j = 1,2, ... ,11. 

This problem is one of the simplest imaginable constrained optimizatio: 
problems-except for the requirement that decisions are yes or no, take along or 
leave behind. It has only an objective and one constraint. Nevertheless, the yes-or
no decisions make it difficult to solve optimally, especially if the number of items 
under consideration is large. 

First. let us explore what would happen if we solved this zero-one problem as 
an LP problem with only the zero-one requirements replaced by an upper bound of 
one and a lower bound of zero, that is, 

Xj ~ 1. Xj ~ 0 j = 1,2, ... , n. 

The result of applying LP to this problem would generally have the following fonn. A 
number of x; would be precisely equal to one, indicating that those items j are desir
able for inclusion in the knapsack. Just one x; would be fractional, indicating that al
though the item is desirable. it weighs too much to be fully included-given the other 
items in the pack. TI1e remaining x; would be zero, indicating those items were not in
cluded. Occasionally, for reasons you will see in a moment, the solution is all zero
one. but this is an unusual situation. It looks as though the zero-one portion of the LP 
solution might be a very attractive solution, very near the optimal objective valu~. 
And it could well be, but LP is not even needed to derive that solution. The heuristic 
we describe next will find that answer en route to its own proposed solution. 

The heuristic methodology proceeds as follows. Each item j has two parameters 
associated with it a value and a weight. The value relative to the weight for each item 
can be calculated. It is the ratio ( v/wj). This value-to-weight ratio is calculated for all 
items, and the items are ranked from the item with greatest ratio to the item with th.e 
lowest ratio. One at a time these items are loaded in order of the ratio into the pack (tf 
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there is a tie in the ratio. arbitrarily load th . 
. . . e one with the lo . t . d r· 

latest item added either JUst fills the pack(' t w~s m. ex 1rst). When the 
. . m erms of the weight I · · weight hm1t, stop. · 1m1t) or exceeds the 

Now, the odds on being able to load in 0 d f h . . 
up to the precise weight limit arc small b. ut thr er.

1
° t . e value-to-weight ratio. right 

· e st uat1on could If h · · 
tion does occur, the zero-one solution that is obt . d . occur._ t is s1tua-

Lp · . . · ame \'fould be optimal· take it 
(The , it turns out, will naturally follow the same I 1 , d. · . · · 

I · h · . ru es. oa mg items m order of 
the va ue-to-we1g t ratio, so if the items load precisely up 1 th · h ·

1
. · 

· ·11 b h . o c we1g t 1m1t. the LP 
solut10n w1 e t e zero-one optimal solution as well). 1-1 . 1-. . h . h r . . . O\'-tever, more 1kely than 
hittmg t e weig t imit exactly 1s that the last item will only partl fit in the kna _ 
sack. What should be done next? y P 

Remember that this is a heuristic solution procedure that \V d. · e are 1scussmg. 
We a~e not, for purpo~es of this discussion, seeking an optimal solution. only a good 
solution. W~ began. with ~n excellent rule-load items in the pack in order of the 
value-to-weight ratio. This rule leads, in fact, to the exact same solution that LP 
would give; so the ~olution is already probably quite good even if we simply decide 
to take only those items recommended by the rule-without the last and fractional 
item. That's correct; we could stop with the items brought in fully according to their 
value-to-weight ratios. That solution is probably quite near the optimal value. We 
have a heuristic solution; we will call it solution A. 

We could do more, however. We could probably get an even better value of the 
objective by looking at the weight capacity that remains after the last complete item 
is loaded in. Now it may be that there is only~ pound left to fill and that the next 
item in order of the ratio is the ~-pound 36-function Swiss army knife with a minia
ture telescope, magnifying lens, chronograph, sextant, GPS unit. and cell phone that 
you got for Christmas. It violates your weight limit by i pound. Maybe the knife is 
worth the extra~ pound. For a ~-pound violation in the weight limit. you w~ll be able 
to achieve the optimal solution-albeit to a slightly different problem. Thmk about 
it. It may not be so bad, if your weight limit isn't really tight. . 

Alternatively, the weight limit may be precise-suppose the knaps_ack is a 
satellite and the items are experiments that would be placed on board. Still: there 
may be something you can do to improve the solution over and abo~e so~ullon ~· 

· · · · · · I t'on A Does anv item m the list Agam, look at the weight capacity remammg m sou 1 · . . J • ? 

of items that have not been loaded have a weight at that remai~mg capacity or less· 
. h . (' this group) with the largest value. 

Create a group of these items. Fmd t e ite1!1 m . . h weioht limit. It still 
Load it in and the solution is improved without vwlatmg t. e 0 

. 

, b bl h a solution worth implementmg. 
may not be optimal, but you pro a Y ave h k ack heuristic we have de-

There is a larger lesson to be lear~e~ from .t ~ n::~he problem at hand. The 
~cribed. The heuristic looks as though it is p~rti~u :tr ratio does not, at first glance. 
idea of loading items in order of the value-torw~igthouoht however reveals a very 
seem to be generalizable to other settings. A itthe u 0p i~ heuristic~ for a number 

. . a theme that s ows f h 
generahzable mode of operation, . d with the phrase ""biggest bang or t e 
of other problems. It can be summanze 
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buck .. or "most cost-effective first:· 111e biggest-bang-for-the-buck rule is probably 
one you have followed in other aspects of your life. As a college stude.nt. you ar~ 
likely to be careful with your money. You probably try ~o buy your gasolme at a sta
tion that offers generally lower prices than its competitors, and your groceries at a 
store with the best overall prices-you use this heuristic often. And now you have 
seen it in an algorithm. It applies in other problem settings as well. 

Later in this chapter. we will describe a useful mathematical program for the 
plant location problem. The problem is one of deciding where an unknown number 
of manufacturing plants should be sited to minimize the cost of opening the plants. of 
manufacturing the goods. and of distributing the goods to demand areas. Although 
we later do provide an easy-to-solve formulation. this problem was first approached 
by a heuristic algorithm. In general. the idea of an algorithm for this problem would 
be that an increase in the number of plants causes a decrease in the distribution costs, 
but that the costs of opening the plants, a cost that docs not depend on how much is 
produced. eventually will drive the total costs up-as the number of plants increase. 
Here is an algorithm that has actually been applied to the problem. 

Site just one plant. Put it in the place that minimizes the cost of distribution 
and manufacture. If there are p places the plant could be positioned, try all p posi
tions. Choose the best of those positions. Now increase the number of plants by one. 
TI1e opening costs will go up. of course. To site two plants, leave the first plant in the 
position you chose on the first step. and choose the best position for the second 
plant from the p - 1 remaining positions. Now add a third plant, again increasing 
the opening cost as a matter of course. Leave the first two plants in their chosen po
sitions. and site the third plant at the place. among the p - 2 remaining positions, 
that provides the least system cost of distribution and manufacture. Continue in this 
mode. at the same time constructing a graph of the total cost versus the number of 
plants that have been sited. At the low point of the graph, where the graph of cost 
has ceased to decrease and will increase on the next step, is a good answer to the 
problem of plant location. You have followed the rule of always taking the best al
ternative from those alternatives that remain to be taken, just as was done in the 
knapsack heuristic. Your solution is probably pretty good. 

The knapsack heuristic is a good example of an easy-to-implement procedure 
with attractive rules of thumb. And the procedure produces quite good solutions. 
For each zero-one problem that standard algorithms do not solve or do not solve in 
reasonable time. the challenge is to find those characteristics that can be exploited 
in logical sequence to provide a good answer. Heuristics are very much particular to 
t?e problem at han.d .. but the rule of choosing the best (most cost-effective) alterna
tive from the remammg alternatives is a very powerful tool. 

7.F MULTIPLE-OBJECTIVE INTEGER PROGRAMMING 

A fasci~ating conn.ection exists between multiobjective programming, which was dis
cussed m a precedmg chapter. and integer programming, the subject of this chapter. 
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You remember from Chapter 5 the argument th . 
to dis~lay t?~ tradeoff .curve between objcctivca~:~~e:omct~i~~ like·: It is import~nt 
them m arnvmg at an informed choice and . . · 1.0 decision makers. It a<;~1sts 

m entering into the an' I . . If .. Th. argument led us to the development of meth d . a ys1s 1tsc . 1s 
d f d l · h 0 s to derive the tradeoff curve One metho or eve opmg t e tradeoff curve was the · h · · . . . · wc1g ting method. 

In a two-objective problem, the weighting meth d b' . . 
l · · f · h 0 com. med the two obJcct1vcs 

by app ymg a patr o wc1g ts that summed to one On r th . · h . · 
b. . . . . · e o c \\c1g ts wa~ applied to 

each o JCCt1ve, creating thereby a smglc obj. ective for opt· · 1· F 
. · 1 . 1m1za 10n. or purposes of 

d1scuss1on, et us assume that we arc deal mg with a mi·n1·m1·z1·n bl"' h · 
b. · b · · · . ~ g pro t.:m-t at 1s. 

both o JCCltves are to e min1m1zed. With two obJ'ectives z and z th b' d 
. . . . · • '-'A B· e com me 

objective ts given by 

Minimize Zc = AZA + ( 1 - A)Zn. 0 :5 A :5 1. 

For a sequence of values of A within its prescribed limits. the objective Zc is opti
mized subject to the problem's constraints. For each value of ,\. a value of Zc re
sults as well as component values of ZA and ZB. New values of Z.:... and Zn do not 
necessarily occur for every increment of A, but in general as A increases, ZA de
creases (because it is weighted more heavily) and Z13 increases (because it is 
weighted less heavily). The tradeoff curve between ZA and Z8 is generated as A 
moves from large to small or small to large. The weighting method is both relatively 
easy to implement and not hard to understand-and it is often ideal for solving 
multiple-objective zero-one programming problems. 

In what way is it ideal? Suppose we have a problem that has an integer-friendly 
structure except that a second objective is being parametrically varied in the con
straint set. That is, we have a constraint of the form 

ZB $ B 

where Zn is written out as the linear sum of the component variables times their co-
efficients and the value of Bis being varied. . . 

The addition of that second objective to the constraint se~ is very hkely to de-
. h f d the return of integers. In contrast, stroy any constraint set properties t at avore . 

the weighting method by shifting that second objective out of the ~onstrainft set a?d 
. ' . . t dency of the constraint set to avor in
mto the objective function, mamtams an~ en . 

1 
h t f the constraint 

tegers. We can say that it maintains the mteger-fnend _Y c _arac e~~lem is either in-
p . h f d tal set of constraints in a pr 

set. ut another way, if t e un amen . d 1 constraint matrix such as 
t f · · ) roduces a ummo u ar 
. eger- nendly (favors mtegers or P . . oal laced in the constraint set is like-
in t.he transportation problem, an additwnal g 

1 
p h cter That same goal placed 

l . . . f . di r unimodu ar c ara . . . Y to ehmmate that mteger- nen Y 0 . 1 lready in the objective func-
. h . h l side another goa a . m t e objective with a weig t a ong . . t-still inteoer-friendly or um-
. f h stramt set mtac e . . I 

hon leaves the structure o t e con b' d bjective subject to the ongma 
modular. Optimization of the weighted com me.

11
° one to zero-one solutions and 

constraints leaves the integer-friendly problem stI pr 
the unimodular problem still unimodular. 
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Probably this lucky characteristic of the weighting method is best illustrated 
by a problem. We will use the shortest path problem ~rom Chapter 6 to s~ggest how 
the weighting method of multi-objective programmmg funct~o~s. effectively in an 
otherwise unimodular problem. The shortest path problem mm1m1zed the cost of a 
path between two cities A and B. A unit of flow was sent into the system at A and 
withdrawn from the system at B. At every node in between, mass balance or input
output equations defined the flow into the node equal to the flow out of the node. In 

mathematics, the problem is to 

" 
Minimize Z = ~:CAjXAj + L Lcijxij + L cjBxjB 

jel\'.,, i=l jeN; jeNn 

l:xj; = l:x;j i = 1,2, ... , /1 

jeN; je~ 

XAj;;:::: 0 j ENA 

xjB;;:::: 0 j E N8 

X;j ~ 0 i = 1,2, ... ' ll, j EN; 

where c;j is the cost to ship one unit from node i to node j, and X;j = 1 if a unit of 
flow moves from i to j, and 0 otherwise. This formulation, you remember, guarantees 
all 0, 1 solutions because of its special unimodular structure. Let us suppose that this 
minimum-cost problem is the problem that a trucking company originally wished to 
solve for a shipment that needs to move from A to B. 

Now the trucking company finds it is actually interested in more than just the 
cost of the shipment. The trucking company would also like to see its shipment ar
rive in the shortest possible time. The least-time route is probably the route that has 
tolls on expressways, rather than the route that takes lesser roads, including sec
ondary roads, without tolls. Hence, the least-time route is probably more costly than 
the least-cost route. The trucking company would do well to find the tradeoff be
tween these two objectives and perhaps choose a route that achieves some compro
mise between the least cost and the least time. 

We can define t;j = the time that the truck would need to travel if it went from 
node i to node j. The objective corresponding to the least-time problem has precise
ly the same form as that used for the least-cost problem, except that tij replaces C;j· 

We will call the objective for least cost ZA (the objective using c;-) and the objective 
for least time Z 8 (the objective using tij). 

1 

To derive the tradeoff curve between the least-cost and the least-time path be
tween A and B, we can use either the weighting method or the constraint method. 
Suppose the constraint method is used and the least-time objective is placed in the 
constraint set. The problem is now the least-cost path formulation (that is, minimize 
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cost that is equal to the expression for z ) . 
added constraint says that total time on th A ~Ith one additional constraint. This 
upper limit right-hand-side value, call it L ~~:t\s ~u:~ be less_ than or equal to some 
than or equal to L). The original least-cost ath, fo xpre.ssion for Z~3 must be less 
hence solved with all zeros and ones. p rmulation was ummodular and 

This formulation, if one attempts to solve it b 1 . 
some value of L, will not even be integer-friendly r(ef axed. linear progr~mming for 
· 1 · bl b Y avor integer solutions) Frac-t1ona vana es are to e expected and branch and b d ·11 · 

l h f h . ' oun w1 generally be needed 
to ~eso ve eac o t e runs of this problem as the right-hand side valu · · 
vaned from small to large. e of time L is 

If, on the other hand, the weighting method 1·s used \ ·th l f 
• • ~1 some va ue o A 

p.laced. on the cost ObJec~1ve and (1-A) placed on the time objective. the new coeffi-
cients m front of the x;i m the objective function will be 

where A is varied from small (emphasis on least time) to up to one (emphasis on 
minimum cost). 

This two-objective formulation will not only be integer-friendly; zero-one solu
tions are guaranteed when relaxed LP is used to solve the problem. This is because 
the weighting method preserves the unimodularity of the constraint matrix. some
thing the constraint method fails to do. Thus, considering other problem types, when 
a two-objective problem is to be solved and the original constraint matrix is either in
teger-friendly or unimodular, the weighting method should be used if at all possible 
to derive the tradeoff curve. It should be utilized because it maintains the character 
of the constraint set and thereby allows efficient generation of the tradeoff curve. 

7.G INTERESTING INTEGER PROGRAMS AND THEIR SOLUTIONS 

For problems that can be written as linear programs whose variables can take on 
any value, the simplex procedure or a variant is~ very adequate metho.d of solu
tion. On the other hand, if your linear program is a zero-one .f~r.~ulatwn. 0~ an 

· · · · f I ti.on the poss1b1hties and options all-mteger formulation or a IDIXed mteger ormu a , 
' d d th size of your problem. Some become more complex and may even epen on e d 

. 'th good or even °uarantee 
problems can in fact still be solved as hnear programs wi b0 

. . 
' ' bl s it may turn out to e 1mposs1-

success at achieving integers. And for some P.ro em ' . 1 olution in a reasonable 
bly hard to find a method that finds the exact mtegelr ofptima s d but perhaps not op-

. have to sett e or a goo · 
amount of time. In such cases, you may . . h' h t ol to reach for when the . h . gmzmg w ic o 
hmal, solution. The challenge ere is reco f bl ms the tool is fairly obvious. 
problem is at hand. Fortunately, for a number 0 pro. e \~hen applied to a certain 

. 6 h t 1 · ear programming, . We noted m Chapter t a m blems with guaranteed integer 
I · 11 Ive those pro c ass of network flow problems, w1 so 

1 
d · the structure of such a net-

. be formu ate m . 
solutions-always. If a problem can I a linear programming algorithm to 
work flow problem, it is only necessary to app Y 
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solve it in integers. The special class of network flow proble~s~the shortest path, 
transportation. and transshipment problems-have characte~1shc constraint forms 
that are relatively easy to recognize. However, not all ~onstramt forms that guaran
tee integers are easy to spot. It is true that on all occasions, however, the right-hand 
side values of the constraints are integer (including zero ).111e constraint form that 
guarantees integer solutions is referred to as unimodulm~ and is recognized by the 
values of the determinants of the submatrices of the problem being 1, -1, or 0. This 
property is. in fact~ the proof of unimodularity, but as you can surmise, the proof is 
difficult to achieve in most cases. Unimodularity, the condition of having a unimocJ
ular constraint form, is discussed in Nemhauser and Wolsey (1988). 

Unimodularity is. however. a mathematician's construct. It is not necessary k 

show that a problem has a unimodular constraint matrix to attempt its solution-or tt. 
solve it. Our approach is one of sufficiency. If the LP works, if it achieves an all-integc · 
answer. it is sufficient. While it might be nice to prove that we can in all cases achie\. 
all-integer answers. if we find such answers in all cases that we need to solve, the ir. 
ability to prove that a constraint set is unimodular doesn't really matter. 

We next offer some interesting zero-one linear programming problems that illu~ 
trate our advice on solution procedures. The problems represent the range of possibili 
ties from a problem that is unimodular to several problems that are integer-friendly tl) 

several that are integer-unfriendly. in the sense of having guaranteed fractional solu
tions to the linear programming formulation. 

7 .G.1 A Linear Programming Problem That Yields Integers Always: The 
Terminal Selection Problem 

The terminal selection problem. alluded to earlier, is an especially interesting prob
lem from the point of view of constraint structure. In its simplest setting, the problem 
begins with a network or even just a line on which there are cities. A pair of cities will 
trade with one another if there is a transportation terminal at each of the cities. That 
is. trade will occur between city pair (i, j) if terminals are at both i and j. The volume 
of trade between each pair of cities is known in advance, and since the path between 
i and j already exists, the costs of moving goods from i to j and from j to i is only the 
cost of transportation, which is known. Profit margins are also assumed to be known, 
so the profit of transporting demand between i and j can be calculated. However, the 
?1ont~y profit from trade between any city pair is received by the carrier if and only 
if termmals are open at both i and j. Each terminal has a fixed monthly cost to remain 
open: this cost does not vary with the volume of shipment through the terminal. Tue 
network can be shown as a simple line without loss of generality: 

2 ... i ... 11-l n 
• • • • • • • • • 

We need to define the following indices, parameters, and decision variables: 

i = index of nodes (1, 2, ... , n ); 
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Pij = potential monthly profit from th 
the sum of profits from ship . e trade. between nodes i and j; profit is 

- pmg goods l to j and j to i; 
f; - monthly cost of a terminal at i· 

' 
X; = 0, 1; it is 1 if a terminal is open at n d . 0 er, and 0 otherwise· and 
Yij = 0, 1; it is 1 if terminals are established t b h . . ' 
h bl 

a ot 1 and J, and 0 otherwise 
Nowt e pro em can be stated in two way o · 
ways when solved by LP The oth d s. ne way produces fractions almost al-

. er pro uces all 0, 1 variables wh I d b 
always. We state the integer-unfriendly versio f th bl .en so ve y LP-
f 1 t

. h · n ° e pro em first We add to the 
ormu a ion t e reqmrement that all variables m t b o 1 · · . . 

bl h 
. h us e or m order to md1cate the 

pro em t at we wzs to solve as opposed to stating a th d f 1 · me o o so ut1on. 

II II II 

Maximize Z = ~ ~PijYij _ 22f;x; 
1>11=1 i=l 

Subject to: Yij :5 (1/2)(x; + xj), for all (i. j) pairs, 

X;, Yij = 0, 1 i = 1, 2, ... , n: j = 1. 2, .... n. 

The ~bjective sums the. profi~ ~ver all city pairs. By only summing over i greater 
than J, we count each city pair JUSt once. The single constraint type is designed to 
prevent profit from being counted for a city pair (i, j) unless both of the cities have 
open terminals. 

Suppose that this problem is solved with relaxed linear programming: that is, 
with simple non-negativity constraints replacing the zero-one requirements on all of 
the variables. Solutions to this problem with relaxed LP would be expected to yield 
fractional y;

1 
with great frequency. And it would yield fractions frequently even if all 

the X; are 0,1. This is because, even if only one member of an (i, j) pair is one, the cor
responding y;

1 
will be one-half in order to gain half of the possible profit. Some ap

plication of branch-and-bound integer programming, perhaps extensive use, would 
be required to solve this problem in all zeros and ones. This problem formulation is 

definitely integer-unfriendly. . 
In contrast, by simply doubling the number of constram.ts, the probl~m can be 

formulated as a linear program in a fashion that is integer-fn~ndly. In th1_s case, we 
can even guarantee all variables will be zero or on~ on. solution of t~e hnear pro
gram. The new formulation has precisely the same objective as the prev1~us formula~ 
ti on, but each one of the old constraints on Yij is replaced by two cons tram ts, namely· 

Yij ~ X;, 

Yij ~ Xj, 

for all (i, j) pairs, 

for all ( i, j) pairs, 

X;,Y;j 2:: o for all i and j. 
. b . counted unless terminals are open 

The new constraints again preve~t pro~t from em~h n the previous set of constraints. 
at both city i and city j, but do soma different way a 
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Rhys (1970). who originally formulated this problem, shows that the matrix of 
this second formulation is, in fact, unimodular. As a consequence, each and every ex
treme point of the linear programming formulati.on is (0, I). ~~nee, the LP solution 
is guaranteed to be all O, l. In addition, changes 1~ the ~oeffic1ents of the objective 
function will not alter this property. The formulation wtth the expanded set of con
straints is not simply integer-friendly: it is guaranteed to achieve zero-one variables 
on all occasions. 

7 .G.2 Linear Programming Problems That Produce All Zero-One Solutions 
Very Frequently: Location Set Covering and Plant Location 

Certain problems can be formulated in a way that favors zero-one outcomes whcr 
the problem is solved by linear programming. The style of formulation does no: 
guarantee all zero-one solutions on all occasions but does increase the frequency o' 
such solutions. sometimes in a dramatic fashion. Not only do such formulations in 
crease the frequency of all zero-one LP outcomes, they also may make the proces·, 
of branching and bounding more efficient. That is~ it becomes faster to obtain zero 
one solutions from solutions with fractional variables. We call such formulatior 
styles integer-friendly. 

Earlier in the chapter. we discussed at some length the add-on procedure to 
linear programming called branch and bound. This is the procedure used most com
monly to resolve fractional solutions into zero-one form. The extent of the need for 
branching and bounding often decreases substantially if the original linear pro
gramming formulation is constructed in an integer-friendly fashion. The first inte
ger-friendly formulation we present is the location set covering problem, a problem 
that has its origin in the field of emergency services planning. We then present two 
versions of the plant location problem~ one version whose LP will almost always 
yield fractional variables~ the other yielding all zeros and ones very frequently. 

The Location Set Covering Problem. The ambulance deployment prob
lem (or location set covering problem) described verbally earlier can be formulated 
here in an integer-friendly way. Recall that a number of sites are available for the 
placement of ambulances. Furthermore, the areas or the neighborhoods of the met
ropolitan area that require coverage may be represented as nodes or points. In fact, 
the nodes may be centroids of the neighborhoods, and covering the centroid point 
effectively ensures coverage of the neighborhood because the area of the neighbor
hood is so small. Formally, each node to be covered requires one or more ambu
lances (that is~ at least one) initially stationed within a specified time standard of the 
node. In other words, an ambulance must be able to reach the demand node from its 
deployment site within the specified time standard. The time standard has been cho
sen as one system-wide number for all sections of the metropolitan area. 

To formulate this problem, we make use of the symbol e , which means "con
tained in." We also define the set N; as the collection of sites eligible to cover de
mand node i. We define 
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tji = the shortest time from a pot . I 
site j to demand node i; ent1a ambulance station at deployment 

S = a time standard say 10 . I , , minutes· each dcm d d 
~ast one ambulance stationed so .th . an no c should have at 

time standard; at it can reach the node within this 

N; = {set of ambulance sites j eligible b ,· . 
node i} = { ·1 .. < } - . y 'irtue of time to cover demand 

l 111 - S - {those J such th t h · 
than or equal to s}; and · a t e time from j to i is less 

xi = 0, 1; it is 1 if an ambulance is sited at,. and 0 th . o erw1se. 
The objective of the problem is to site the 1 the job" The "job". f east number of ambulances that will '"do 

. is coverage o each and every demand node within the time stan-
dard. The problem can be stated as a linear integer program as foliows. 

n 

Minimize Z = LXj 
j=l 

~ Xj ~ 1 i = 1, 2, ... , m 
jeN; 

X; = 0, 1 j = 1, 2, ... , 11. 

The objective, as desired, is merely a counter of the number of ambulances that have 
been sited. A coverage constraint is written for each demand node i that says that 
the sum of the number of ambulances that are stationed within the time standard S 
(that is, within N;) is at least one. Finally, ambulances are represented as zero-one 
variables; of course, portions of an ambulance make no sense to consider. 

This formulation, based as it is on the geography of a region~ is integer-friendly 
to a very high degree. That is, when the zero-one constraints are replaced by the sim
ple non-negativity constraints of linear programming, and the problem is solved as a 
linear program, the solution is very often all zero-one. 

Experience by Toregas et al. (1971) suggests that on the order of 95% of the 
linear programming solutions to this problem are all zero-one-without resorting 
to any add-on procedure such as branch and bound. Of the remaining 5°~o or so of 
fractional terminations, nearly all are resolvable to all zero-one solutions ?Y a 
very simple procedure. The remainder, a very few problems, are usually contrived 
situations and hence of less interest, although they could be resolved by branch 

and bound 
Th : 

1 
dd d that resolves most of the fractional solutions that 

e s1mp e a -on proce ure . I t. from linear pro-
occur is particular to each situation. Almost every fractional so u iobn f bul . integer num er o am ances 
gramming involves an objective value that is some 
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plus a fraction.1 Suppose the fractional solution. sug~ested the need for 8 ! ambu
lances stationed variously across the network, with pieces of ambulances here and 
there. 'No amount of conjuring could possibly reduce the required total number of 
ambulances to 8. In fact, since partial ambulances make no sense, the total number of 
ambulances needed in the system must be at least 9. A constraint that states this re
quirement is added to the original problem, and the augmented problem is solved 
again by linear programming. That is. we add to the problem the constraint 

and resolve the original problem. 

II 

Lxj ~ 9 
j=l 

With the addition of this type of constraint. most solutions to noncontrivc•. 
problems which originally had presented fractional answers will now provide all zc 
ros and ones. Cases of non zero-one solutions are rare. 

The Plant Location Problem. A problem in the location of manufacturin~ 
plants can also be formulated in an integer-friendly way. The plant location problen 
described here is a version of the transportation problem in which the location o: 
demands are known, but the origins that will supply the demands are not as yet cho
sen. In addition. an opening cost is levied when a plant opens at some point. The 
opening cost. or fixed charge, is to be counted just once no matter the number o1 
destinations or the amount that the plant supplies. 

We discuss the plant location problem in two versions. The first is a condensed 
version that nearly always gives fractional solutions on application of linear pro
gramming. The second is in a constraint-expanded version that is integer-friendly to 
a very high degree. 

We define 

i. I = index and set of eligible plant sites; 

j ~ J = index and set of demand areas; 

11 = number of plant sites; 

m = number of demand areas; 

fi = cost to open plant i, independent of the volume or number of demands 
served; 

di = demand for product at area j; 

c;1 = cost to transport all of j's demand from plant i; 

ei = cost to manufacture each additional unit at plant i; 

. . 
1
This is. i_n fac~, the most likely f~~ctional_ outcome, although it is possible and can occur that the 

Objective v~lue is an mteger and some s1tmg variables are fractions. To date, most such occurrences seem 
to be contrived examples. 
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e;dj = cost to manufacture 1··s dem d . an at plant r; 

X;j = 1, O; it is one if j's demand is f 11 . 
wise; and u Y supplied by plant i and zero other-

Y; = 1, O; it is one if plant i opens and zero oth . 
~ erw1sc 

The condensed problem statement is · 

11 n m 

Minimize Z = L f;y; + "" "" ( 
i= l ~ £,,; C;j + e,dj).t;1 1=1 ;=1 

m 

LX;j :5 my; i = 1.2 ..... n 
j=l 

II 

""' x,·1· = 1 1· 1 2 £.J = ,, .... m 
i=l 

xi j = 0, 1; Yi = 0, 1 i E I' j E 1. 

The objecti:e minimizes the sum of opening costs, manufacturing at the plant. and 
transportation of the goods. The first constraint type, known as ·•condensed con
straints," ensures that no shipment to any node j will occur from a plant at i unless 
the plant is open. The second constraint type says that each demand node j must get 
its full requirement from the source nodes. 

Solution via linear programming, without any zero-one requirement and with 
only non-negativity constraints, of this version of the plant location problem will al
most always result in fractional values of variables. Depending on the software cho
sen and computer utilized, a problem with 100 eligible plant sites could well require 
an exhaustive and prohibitive post-LP branching and bounding to resolve this prob
lem formulation with zero-one variables. Caution would be advised in the applica
tion of linear programming plus branch and bound. A good strategy for approaching 
this problem might be to solve a small problem first and then try to solve succes-

sively larger problems. 
However, an efficient constraint expanded version can also be formulated. :nie 

objective remains the same as in the condensed version, as does the set of constramts: 

n 

~X;j == 1 j == 1,2, ... , m. 
i=l 

The other set of constraints above in the first formulation (the condensed con

straints) can replaced by m sets of "tight" constraints 

. 1 2 ll j == 1, 2 .... 'm 
X;j ::; J;, l == , ' ... ' , . 

. nded by a factor of m. Summation 
so that the original n plant constr~mts are ex~a . Id the condensed constraints in 
over j of each of the sets of eq~auons X;j ~ :'tr:~t csonstraints in the constraint ex
the earlier version of plant location above. Th do d 1· oets its full supply from a 

ny deman no e o 
panded version say that as soon as a 
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plant i, the plant will open. In generaL the constraints say that no demand can be 
supplied from site i unless a plant is open at i. 

Morris (1978) showed for 600 randomly generated problems that this version 
of the plant location problem produced all zero-one solutions 96% of the time. 
ReVellc and Swain (1970). in experience with a closely related problem, observed 
that when branch and bound was required lo resolve fractional variables produced 
by linear programming. the extent of branching and bounding needed was very 
small. always fewer than 6 nodes of a branch-and-bound tree.1l1e use of constraint 
expansion thus makes zero-one solutions much more likely. And it appears to make 
the need for branch-and-bound use in a particular problem far less frequent. 

CHAPTER SUMMARY 

In this chapter. we discussed the characteristics of integer programming problems 
emphasizing three situations. In the first situation. only integers were admissible an
swers for the decisions: the production of 17.3 chairs made no sense. 

In the second setting, yes-or-no. zero-one decision variables were needed ex
clusively to indicate whether or not a set of actions would be taken. Two specific ver
bal examples were described of problems in which yes-or-no decisions were needed. 
These were ( 1) a problem of deploying ambulance units in a city, and (2) a problem 
in which shipping terminals are to be established. The first required variables which 
indicated where to site ambulance units, and the second called for variables which 
designated some cities, but not others, as shipping terminals. 

In the third situation of possible variable values, some but not all of the vari
ables needed to be zero-one: these problems were termed mixed integer program
ming problems. These problems originated when some of the variables could be 
continuous. such as the quantity of solid wastes to be shipped from an origin node to 
a transfer station. and other variables needed to be zero-one, such as whether or not 
to establish a transfer station at a particular site on the network. The shipment of 
solid wastes to the transfer station site obviously could not take place unless the 
transfer station was established. This type of problem illustrates the concept that 
some key activity or operation or machine must often precede other activities for 
subsequent operations to occur. 

We next presented the branch-and-bound algorithm as it applies to a problem 
with all zero-one variables. We explained as well how the algorithm can be utilized 
for the mixed integer programming problem, and we formulated an example of a 
mixed integer programming problem. In that example, we (1) showed how some ac
tivities will be prevented unless a prior action (such as installing a machine) is taken 
and (2) explained how branch and bound is applied to such a problem. 

We then discussed the merits of enumeration for smaller problems, illustrating 
our discussion with an example in which a developer was choosing which tracts of 
land to select for building several projects. 

We noted that some zero-one programming problems may simply be beyond 
the capacity of modern codes and machines and described the idea of a heuristic 
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Procedure. A heuristic is a methodology that delivers '"g d" 
1 

. b . 
. · oo so utions. ut solutions which nevertheless, cannot be shown to be optimal w- ·

11 
. d h 

. ' . . . " . · e i ustrate t e powerful 
heunstic idea of selectmg the m?st cost-effective alternative firsr' with the example 
of the knapsack p~oblem. Our discussion turned next to the topic of multiobjective 
integer programmmg, ~nd we showed how application of the weighting method as 
opposed to the constramt method made it possible to derive the tradeoff curve for a 
certain class oft wo objective zero-one programming problems without much or even 
any branching and bounding. We noted that the weighting method was able to retain 
the special constraint structure of these problems that favors zero-one outcomes. 

The chapter concluded with a trio of interesting zero-one programming prob
lems. The terminal selection problem is a problem with two different linear pro
gramming formulations, one that almost always yields fractions. the other-a 
constraint expanded version of the first-that always, without fail, yields zeros and 
ones. The ambulance siting problem was formulated as the location set covering 
problem, a formulation that almost .always yields all zero-one solutions. F!nally, the 
plant location problem was offered m two forms, one that almost always y1el~s fr~c
tions, the other-again, a constraint expanded version-very frequently dehvermg 
all zero-one solutions. We observed that the occasional fractional solutions obtained 
from this latter formulation required very little branching and bounding to provide 
all zero-one solutions, a property that, in conjunction with frequent zero-one out
comes, we describe as integer-friendly. 

EXERCISES 

. . minino o eration has identified an area where the ore is rich 
7 .1. A mmmg problem. A b . p eeds in distinct blocks from the surface down-

enough t~ e~cavate. T?e excavat10n pr?c ·n the world where you start at the top.) The 
ward. (D1ggmg a hole is one of the fe\~ JOb~; "th numbered blocks in the following 
problem is sketched in its two-dimens1onablorm w1 ld be solved but the problem is pre-

. h d' · onal pro em wou ' figure. In practice, at re~- imensi d' . nal problem version is sufficient for 
sented to illustrate a pomt, and the two- imensio 
this purpose. 

2 3 

5 6 

10 

. unless both blocks 1 and 2 
· l k 5 cannot be mmed nt Bv the 

Because of the an.gle of s!dr br ~~e rest of the blocks in the a~ra~g~eeach o.f the 
are mined. Similar relations ho 0 

, has estimated the ore con en 
· · compan) use of bore holes, the mmmg 
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blocks. From this information. a profit or loss can be associated with each block. The 
profit or loss is the value of the refined ore less the cost of removal of that block and 
the cost of refining it (beneficiation). 

We let pj = profit or loss associated with block j; and 

xi = 1, 0; it is 1 if block j is removed and 0 othern1ise. 

This is a case where there are two formulations of the problem. One formulation 
is integer-friendly; the other is integer-unfriendly. The second formulation, the integcr
unfriendly one, is obtained by summing pairs of the constraints from the first formula
tion. The first formulation. it turns out. is more than integer-friendly. The matrix of the 
constraint set is unimodular. but there is no need for you to prove this. Formulate this 
zero-one programming problem both ways and explain by a simple example why the 
integer-unfriendly version is integer-unfriendly. You may leave your formulation in 
non-standard form to explain integer friendliness/unfriendliness. 

7.2. The maAimum harmonious party. A successful businessperson wishes to give a par
ty for the local clients of the firm she manages. The firm has many clients (11 of them). 
and the executive wishes to have the largest party possible subject to just one kind of 
constraint. compatibility. All the invitees need to get along, or be compatible, and in 
this case. a number of pairs of clients do not get along, indeed might even get into 
noisy arguments if they drink too heavily. The executive knows which pairs of clients 
do not get along, but still wishes to have the largest possible party that can be 
arranged. Formulate a zero-one programming problem which, if it could be solved. 
would select which clients to invite. You are given all the (j, k) pairs that are incom
patible. that is. the pairs of clients who cannot get along. 

7.3. An ambulance siting problem. The nine communities on the road network shown 
below arc all part of the same rural county. Travel times between pairs of communi
ties are shown on the arcs of the network. They have banded together to form a sin
gle ambulance service to serve all of the nine towns with the eligible sites for 
ambulances restricted to any of the nine communities. The county council desires to 
site the least number of ambulances such that all of the towns can be reached within 
15 minutes. Set up the linear integer program that achieves the county's objective. Do 
not solve unless you are instructed to do so. 

2 9 

15 
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Siting road maintenance depots. This model w 
1
. ·d . . . . 

· b G R D B . as app Jc m V1ctona Province. Aus-tralia, ~ . . ose, . ennett, and D. Chipperficld. 
H1stoncally, the system of road maintenance d t · y· · 

. epo s m 1ctona was expanded a 
depot at a time as needs for pavement repair drainage w k k 

1
· 

11 
· 

. ' or sup cep. Jtter co ect1on. 
and so on mcreased on rural roads. Road maintenance patrol t t' d h d . s, s a 10ne at t e epots. 
traveled. to ass1gne~ roa~ ~egments for s.uch management activities. 

-y1c Ro~ds, V1ctona s road authonty, wanted to see if the depot system could he 
consohdated mto fewer depots more strategically located without a Joss of service effi
ciency. The authority hired BTA Consulting, which built a model to examine possibili
ties for consolidation. 

First, the road system in about one-fifth of the state was divided into segments 
that were indexed by i. Levels of maintenance activity or need for service trips based 
on traffic volume were calculated for each segment. Eligible depot locations were then 
identified; these included 19 existing depots and 15 towns with sufficient population 
and community structure to support a depot. A 60-minute service time standard was 
utilized. An integer programming model was constructed to maximize the segments 
weighted by their needed trips for service that could be covered by various reduced 
numbers of depots. It was found that crews from 12 well-placed depots could cover all 
segments within the time standard and that as few as 9 depots achieved 94% coverage. 

The model that Rose et al. applied resembled the location set covering problems 
discussed in the chapter. Its definitions, variables, and parameters include 

j, n = index and total number of potential depot sites; 

i m = index and total number of demand segments; 
' 

t .. = the shortest time from the potential depot site at j to segment i; 
JI 

s = a time standard, 60 minutes; each segment should have a depot from 
which a crew can reach the segment within this time; 

N = {set of depot sites eligible by virtue of time to cover seg~~nt i} 
' = {j It ji ~ S} = {those j such that the time from j to 1 is less than or 

equal to S}; and 

X . = 0 t · it is 1 if a depot is placed at j and 0 otherwise. 
J ' ' 

In addition, you will need three new definitions: 

m· = maintenance need of road segment i (known); 
' . h . 1 ·r road segment i is covered and 0 other-

v. = 1 Q· a decision variable t at IS 1 
JI ' ' 

wise; and 
f d ots to be sited. . . 

D = maximum number o ep bl that maximizes the actlVlty 
. bl t ucture a pro em I d'd With these definitions and vana es, s r. . t by D depots, as Rose et a · 1 · 

b vered m 60 mmu es . . . 
weighted segments that can e co d trict state law is forcmg most cities 
A problem in solid waste management: ~· ~e'~a: f:cilities from dumps to lined land
and towns in the state to upgra~.e. the•; ~~~y meet the standards. A group 0~ fo~n~:~ 
fills-unless, of course, their fac1ht1es ~ r investigating cooperative app.roacl e;rtnership 
in one of the counties. of the state ~:ve agreed to share costs in a reg~~~~st alternative: 
formed a compact in which the towns t must undertake the eas 

. t the agreemen , 
Their partnership, accordmg 0 
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That doesn't necessarily mean that one grand solid waste facility will be built. Several 
mav be built and operated, but the total cost will be divided among the towns in propor
tio~ to their population. The compact calls in your consulting firm to do the analyses to 
see what arrangements or groupings produce the least-cost alternative. 1l1e consulting 
firm studies all possible physical arrangements of groupings of towns that make sens~. 
Each grouping of two or more towns implies that a landfill site has been identified for 
that grouping and the arrangement has been .. costed out·· so that the annual costs of the 
facility and of hauling arc known. Single-town alternatives are also costed out.1l1e map 
of the. towns and the listing of groupings with their costs arc provided below. 

COST OF VARIOUS GROUPINGS 
Annual Cost 

Grouping (millions) 

1. A.B 2.3 

2. A.C 3.0 

3. B.C 3.3 

4. B.D 2.6 

5. C.D 3.2 

6. A.B.C 4.2 

7. A.B,D 3.5 

8. A.CD 4.0 

9. B.C.D 4.3 

10. A.B.C.D 5.4 

11. A 1.1 

12. B 1.5 

13. c 2.2 

14. D 1.3 

B 

D 

A 

c 
Your job as consultant to the compact is to advise on the arrangements that cost 

the towns. in total. the least money. Perhaps that is (A, B) and (C, D) or perhaps some 
other arrangement. There are two ways to deal with the problem. One way is to enu· 
merate all alternatives. This will work in this case because the problem is small, but it 
will be very difficult in larger problems. Hence, enumeration is not the methodology 
you are asked to discuss. What is desired here is a zero-one programming approach. 
Your programming approach should seek the least-cost arrangement of towns subject 
to the constraint that each town is included in exactly one coalition, even if that coali
tion is just itself. Here are some variables and definitions to start you off. 

j = index of coalitions of which there are 14; 

xj = 1. 0; it is 1 if grouping j (say, A, B) is included in the least-cost solution, 
and 0 otherwise; and 
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N; = the set of coalitions to which 1 . 

own / could h··I ,. one. though). 1.= ong It can only hclong to 

More explicitly, 

NA = { 1. 2, 6, 7. 8, 10, 11} 

Nu = { 1, 3. 4, 6, 7, 9, 10. 12} 

Ne= {2,3,5,6,8,9, 10, 13} 

Nn = {4, 5, 7, 8, 9, 10, 14} 

where the numbers in brackets are the numbers ic.Jentifving c 1·t· . W · . oa 1 tons. 
. nte a zero-one programmin.g problem that minimizes cost suhjcct to the con-

~tramt th~t each tow? belongs to prec1se~y. on.e coalition (which could be a grouping of ju-,t 
1tself). TI11s problei:n is c~lled t.he set ~arllt10nmg problem (because of the set~ or partitions 
NA, Nn, etc.), and It typically 1s very integer-friendly when solved by linear programming. 

7.6. EPA's construction grant program. Currently the U.S. Environmental Protection 
Agency funds community water quality improvement projects via a priority-ranking 
scheme using what has been termed "The Funding Linc Approach." In this approach. 
each project is assigned a dimensionless priority number based on the water quality im
provement it achieves. Projects with higher priority numbers are considered better 
than lower-priority-number projects. A cost to fund is associated with each project. and 
a total amount of money is available for all the projects chosen in a particular funding 
cycle. The procedure of funding is to take the first-, second-. third-. and so on. priority 
projects in order, adding their costs as they are placed on the list. until the sum of costs 
of the projects chosen exceeds the amount of the budget. Then the last project added is 
removed from the list, and the remaining projects from the top of the priority list down 
to the funding line are those chosen for funding in that cycle. 

This procedure may not yield the most cost-effective collection of projects. Prob
ably you could increase the total priority points achiev~d within. the b~dget limit by 
taking the individual project cost into account in the chmce of w?•c.h proJ~Ct ~o cho~se 
next for the list. Construct a method that does this. that max1m11es pnonty pomts 
achieved subject to a budget limit. You will need the following parameters: 

7.7. 

cj = cost of the jth project; 

Pj = priority points associated with the jth project; 

B = budget available for this funding cycle; and 

n = number of projects. 

mming formulation and second 
Your method should consist first of~ zero-:s~~~:~~:a procedure briefly. 
of a procedure to solve that formulation. D . . f ter supplv planning 

. . a simplification o a wa J 

Water supply alternatives. Th1.s .problem.~~ and Tianjin. China. These cities are expe-
problem faced by the adjacent c1t1es of Be11mg d d overdrafts of their groundwater 

f th · n water deman an f ltema riencing a combination o grow 1 li Three fundamental types 0 a -
h. t for new supp es. 

supplies and so are reac mg ou 
tives are available: 
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( 1) new reservoirs on rivers yet untapped. 
(2) a diversion canal from the Yellow River. and 
(3) water conservation/demand reduction. 

Demand reduction has a number of dimensions. but in the case of these cities. tht: 
largest reduction can come about by changing local crop irrig~tion t~ a trickle irrigil
tion svstcm. 111is problem has all three of these elements. but 1s obv1~usly reduced in 
scope. from the planning problem that th~ tw.o cit_ies fac.e. ~ach allernat1ve has a cost a,. 
sociatcd with it. and each has a volumetnc yield m cubic kilometers per year. Even thr·, 
svstem is made complicated. however. by the interaction of the components. as will h: 
c.xplaincd. The three components arc shown below. 

Di\'crsion 
Canal 

tf ~ Rcscn-oir C 

Beijing-Tianjin 

Demand 
Reduction 

In the accompanying table. the water supply alternatives are numbered, and their 
cost and yield arc listed. Interacting groups of the alternatives are also numbered, and 
their costs and yields are listed as well. Note that alternatives 6, 7, 8, and 9, the interact
ing groups. consist of combinations of reservoirs. The costs of these combinations are 
nothing but the sum of the costs of the components, but the yields are not the sum of 
yields. By methods of water resources systems analysis, an engineer can calculate the 
firm yield of a pair or triplet of reservoirs, and this yield is typically larger than the sum 
of the individual yields. often by a good margin. Hence, the yield q7, for instance. is 
greater than q1 + q:,. the sum of the yields of the component alternatives. 

You are given a budget B that can be expended on all projects. What is the largest 
firm yield that can be obtained under this budget limitation? Structure a zero-one pro
gramming problem to show how to solve this problem. There may be several different 
ways to formulate the problem. 

Note that if reservoirs A and Bare both built, it is equivalent to building allerna· 
tive 6. and you must not count the individual yields, only the joint yield. Similarly, if A, 
B. and Care all built, the project/alternative 9 has been undertaken and the joint yield 
of 9 has been achieved, not the sum of individual yields. That is, you cannot undertake 
alternative 9 and any of alternatives 1, 2, or 3 at the same time if you wish to count costs 
and yields correctly. You are given a zero-one variable, x ·, to represent whether alter-
native j is undertaken or not undertaken. 

1 
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Number 

l 

2 

3 

4 

5 

6 

7 

8 

9 

Alternative 

Reservoir A 

Reservoir B 

Reservoir C 

Diversion canal 

Conservation/demand reduction 
Reservoirs A and B 

Reservoirs A and C 

Reservoirs B and C 

Reservoirs A, B, and C 

Cmt 

C1, = Ct ..... C2 

C7 = CJ • Ci 

C:, = C: ..._ C1 

C11 = C1 + C2 + C~ 

207 

Yield 

q~ 

q. 
q., 

7.8. Upgrading a highway system in a developing country. The highwa\' s-.,·stem in many 
developing countries may be a tree-shaped structure only. By tr~e w~ ~ean a network 
with no loops, or one in which only one route exists between anv two cities of the net
work. We begin by assuming that such a tree network connects the major cities in such 
a country. The highways are currently in very poor condition, but a modest deposit of 
oil has been discovered offshore and a highway upgrading is desired. 

The Transport Ministry has been allotted B units of money for highway improve
ment and wishes to spend it in a way that connects the maximum population with the 
improved highway system, which radiates out from the coastal city at point P. The pop
ulation is assumed to be concentrated al the junction points of the tree network. Each 
link j that is improved connects a new increment of population ai to the system. Fur
ther, no link can be constructed unless the link that immediately precedes it en route to 
the coastal city at P is also built. 

Structure this problem as a zero-one programming problem with the objective of 
achieving the largest possible population on the continuous improved network subje~t 
to a budget constraint. By continuous network, we mean that n_o gaps are allm:ed m 
which an improved highway exists on one link and unimproved highwa~ on an adJac~nt 
link and then improved highway on the other side of the unimproved lmk. Use the dia-
gram to guide your constraints. 

Let ci = costs of link j, and 

a. = the population connected when link j is built 
1 

(the population at the tip of linkj). 

Coast 

13 

~ii platform 

14 
Numbers are arc numbers 

15 
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7.9. The leanest effective expedition team. An expedition is planned across the wilder
ness of Nepal to ascend Mount Everest via the treacherous rear ascent route. The ex
pedition leader has identified a large number of compatible climbers. set J. all with the 
endurance to survive the trip and conquer the mountain but has not yet selected those 
that would be asked. 111is is because the leader has also listed a set of skills, I. which 
must be present for the expedition to be successful. For purposes of logistics, the expe
dition must be kept as lean as possible: hence the selection must lead to the smallest 
number of climbers. Structure a zero-one program to pinpoint climbers for selection in 
such a way that all skills arc included somewhere in the expedition team and the team 
itself has the fewest total members. 

Let: N, = {j that possess skill i}. and 

x; = 1. 0: it is 1 if climber j is selected for the expedition and 0 otherwise. 

7.10. A dclh·er~· problem. The local distributor of Blahs Beer has set up a warehouse in nn 
industrial park on the south side of Sudsville. The distributor is interested in increasing 
the effectiveness of the delivery process and has had the office staff identify all the de
mand points for Blahs. all the bars. restaurants. and liquor stores that are willing to dis
tribute a product of such dubious quality. In addition, the staff has been instructed to 
create on paper many feasible routes for the delivery trucks. Each route begins and ends 
at the warehouse and will fit a four-hour period. That is~ the trucker can load, drive, and 
distribute the entire contents of the truck and return to the warehouse in the time be
tween check-in and lunch or between the end of lunch and quitting time. Each route in
volves a truck whose total volume of delivery does not exceed its carrying capacity. 
Also. when the delivery truck stops at one of the drop-off points, it fills the entire de
mand at that drop-off point. Each delivery route is assumed to have approximately the 
same cost as any other. The distributor calls the local university to see if he can get a 
systems engineering class to select the least number of delivery routes that will serve all 
the firm ·s customers. This is your task-structure the appropriate 0, 1 program for the 
distributor's problem. 

Let: i. I = the index and set of demand points; 

j. J = index and set of delivery routes; and 

Ni = {the set of delivery routes j that include delivery drop-off point i}. 

Suppose the optimal solution produced by the method you suggested included two 
routes which both had delivery to the same point. How would you tell the distributor to 
treat this result'? 

7.lL Matrix characteristics of integer-guaranteed and integer-friendly formulations. You 
have read about linear programming formulations that guarantee integer or all zero
one solutions, and you have read about formulations that "favor" integer or zero-one 
solutions. The latter are the formulations we called integer-friendly. Look back at the 
formulations in these two categories and see if you can find features in common in 
them. Specifically, look al the coefficients (elements) of the constraint matrix and ob
serve their values. Look as well at right-hand sides of the constraints and observe their 
values. (You are unlikely lo find commonality in the number of elements in the 
columns.) What do the two kinds of problems have in common? 
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I Scheduling Models: 
Critical Path Method 

8.A INTRODUCTION 

Construction and design projects involve a wide variety of individual activities, each 
making use of particular labor and equipment categories. The activities must be 
identified. sequenced in time. and coordinated with respect to resource require
ments so that the project proceeds without any unnecessary delay. 

The critical path method (CPM) is a family of analysis techniques aimed at 
scheduling activities on a project. Large construction projects are typically ana
lyzed using the critical path method both before and after contracts are award
ed. and CPM is required on most public projects. Unlike the techniques 
described in previous chapters, CPM is not usually structured as a mathematical 
programming problem~ although it can be. Rather, a project is depicted in a se
ries of visual displays that help the engineer to coordinate the design and/or 
construction activities. 

Project activities are sequenced and displayed in either an arrow diagram or 
precedence diagram. while the economics of each project activity is summarized in 
its cost-duration curve. Using this information, a time table, or activity schedule, 
can be derived. From the activity schedule~ another graphic, a bar chart, or Gantt 
chart, is developed (usually with alternative forms of presentation), which can be 
used to conduct resource leveling, and/or project compression. The bar chart can 
also be used to derive progress curves for the project, which are useful in financial 
analysis and project-control. Figure 8.1 is a flow chart of the major topics included 

210 
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Arrow diagram 
or 

precedence diagram 

l 

Common 
bar chart 

Arrow Diagram 

l 
Activity schedule 

j 
Modified bar chart 

j 

Activity 
cost-duration 

curve~ 

J 

1 
Time-scaled 

arrow diagram 

211 

Progress 
curves 

R
1 
esource ~----....... ~ Project 
eve ling compression Figure 8.1 Common stal!e<i in the criti-

cal path method. --

in the critical path method. Each is discussed in thi's ch pt, Add. · I . . a er. 1t1ona treatment 
can be found m Antill and Woodhead (1990), Halpin and Woodhead (1980) H ·. 
(1978), and O'Brien (1971). · ams 

8.B ARROW DIAGRAM 

8.B.1 History 

In late 1956, the E. I. du Pont de Nemours & Co. initiated a study with the Reming
ton Rand UNIVAC division of Sperry Rand Corporation to determine whether re
cently developed computers could help in managing engineering projects. By 
mid-1957, the essential theory of the critical path method had been developed. and 
by March 1959, the method had been successfully applied to three construction pro
jects, including a new chemical plant facility and the shutdown. maintenance. and 
overhaul of chemical processing units (Kelley and Walker. 1959). In the latter case. a 
reduction in the average shutdown time of over 25% was enough to_ repay the. ~e
velopment cost of CPM many times over. The method received national pubhc1ty 
and was rapidly introduced in the construction industry (Davis. 1974). 

8.B.2 Arrow Format 

An arrow diagram can be drawn to represent the flow of activiti~s on a.d~sign or con-
t . . . ts a specific acllv1tv. and each s ruction project. Each arrow m the diagram represen . ·. . h. h 

d . . . Fi 8 ? ·ndicates a single activ1tv. w ic 
no e represents an event or pomt m tlfl1e. igure ·-a 1 ""' h · · 

' , .. ty 1 ? ,. Node 1 represents t e event. or 
can be denoted either "activity A" or ' activi --· · · t" 

. . . . d d ? represents the event. or pomt m ime. 
P0 mt m time, when activity A begms, an no e - h . of activities which is inter-
when activity A is completed. Figure 8.2b represe~ts. a cB am d activity B must precede 
preted to mean that "activity A must precede activity ·an · 
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(a)~ 

(b) G) 
A ~@ 

B 
~0 

c 
~) 

A c 
4 (c) 3 

B 

2 

A c 
(d) 

B D 

A 
(c) 

B D 

Incorrect B 

A D 
5 ( f) 

Correct 
c 

Fi1:11rc 8.2 Examples of segments of 
an arrm\· diagram. 

(g) G)~-A-~ .. ~2 B .. 0 ,,___D_..(D 

/ 
c / 

/ 
/ 

~ 

activity c:· Figure 8.2c, on the other hand, represents the statement that "both activities 
A and B must precede activity C:' This means that both activities A and B must be 
finished before activity C can begin. Node 3 represents the event, or point in time, when 
activities A and B are both complete, and activity C can begin. 

Use of Dummy Activities. There are occasions when a dotted arrow, or 
·"dununy activity;~ is required in an arrow diagram. For example, consider the statements 

activity A precedes activity C; 

activity B precedes activity C; and 

activity B precedes activity D. 
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~crify. tl~at ~igure s.7,d d~~s not capture the full mea . , . _ 
smc.e i.t 1mpl.ies that ~C~l\'lly A precedes activit 

0 
.~mg. of ~he a hove sta~~ments. 

avmd 1mposmg a condition that does not ex· .
1 
F~ · whic~ is not a cond1t1on. To 

. . .· . . . is . igure 8 2e is re . d 'fh d 
activity ties act1v1ty B mto activity c ("activit 8 ... rec · · . q.uire .. · e um my 
saying that activity A precedes activity D. y P cdes activity C '). hut avoids 

Use of dummy activities is also requi·red 1·n d . or er to avo d - h' · · · 
noting activities. Consider the statements 1 am 1gu1t1cs m de-

activity A precedes activity B. and B precedes D. and 

activity A precedes activity C, and C precedes o. 

Figure 8.2f is an incorrect representation of the above stat ·m t - I dd. · . . " ,, . . . e en s. n a 1t1on to 
cau~mg ?onlmear arr~\~s, .an amb1gu1ty anses when speaking of "activitv 2-4 ... To 
av?1d this, a dummy act1~1t.y is added, as in Figure 8.2g. Each activity now h~s its own 
umque name, and the ongmal sequence of dependencies is maintained. 

One Starting Point, One Ending Point. Convention requires that an 
arrow diagram have one starting point (node) and one ending point (node). In addi
tion to adding clarity to the diagram, computation of the activity schedule (to be dis
cussed later) assumes this format. Figure 8.3 shows the conversion of an unfinished 
arrow diagram to one with one starting point and one ending point. 

Diagram Sparsity and Flow. An arrow diagram should not have any un
necessary arrows, nodes, or dummy activities. Also, arrows should flow to the right 
as much as possible. The conversion in Figure 8.3 shows these characteristics. 

Node Numbering. Convention also requires that the nodes be numbered 
so that in the (i, j) node notation for activities, the j-index is always l~rger t~an the i
index. Figure 8.3 illustrates this format. A convenient method to achieve this for any 
arrow diagram is the following (Fulkerson, 1962): 

1. Number the origin node 1, and erase all arrows eminating from this no~e .. 
2. Find all nodes that have only outward-pointing arrows (no arrows commg mto 

the node). · 
3. Number all such nodes consecutively (in any order) then erase all arrows em1-

nating from these nodes. b d 
. . 1 d ( nd of project) is num ere . 

4. Repeat steps 2 and 3 until the fma no e e 

. . . 8 3 Only one alternative number-
Verify this procedure for the diagram m Figureb · : f nodes 2 and 3 can be re-
. h d' (the num enng o mg scheme is possible in t e 1agram d t label the arrows themselves 

) 
ach can be use o . versed . Essentially the same appro tivities This is also shown m 

so that lower-letter activities flow into higher-letter ac . 

Figure 8.3. 
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Figure 8.3 Conversion of an 
unfinished arrow diagram (a) 
to final form (b). (b) 

Example 8-1. 

Arrow Diagram for Foundation Construction. As part of a larger arrow diagram, a con
tractor wants to include the following activities related to construction of a foundation 
for a light commercial building: 

place steel sidefom1s: 

pour foundation: 

excavate for foundation~ 

order. wait. and receive steel sideforms; 

order. wait, and receive steel rebars; and 

place steel rebars. 

It is assumed that a sufficient number of employees are available to simultane
ously order sideforms, order rebars, and excavate for the foundation. Sufficient labor is 
also available to simultaneously place sideforms and rebars. Pouring of the foundation 
is not to be done in stages. Figure 8.4 illustrates the cross-sectional view of the founda
tion and the corresponding arrow diagram. Note the use of dummy activities to clarify 
physical dependencies. 1l1e activities should now be lettered as shown in the diagram. 
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Figure 8.4 Cross-sectional view of foundation 
(a) and corresponding arrow diagram (b). 

To minimize the cost of completing a design or construction project, each activity 
must be done as economically as possible. Through experience, project managers 
come to know what type and combination of labor skills and equipment results in 
the least cost to complete an activity. The time needed to complete the activity at 
least cost is the normal time for the activity, expressed in workdays, workweeks. etc. 
However, considering the project as a whole, it is sometimes necessary to complete 
an activity in a time shorter than its normal time. Figure 8.5 shows the cosHluration 
curve for an activity. The cost is a minimum at the normal time, and increases as the 
activity is shortened, or compressed in time. Compression can be achieved in various 
ways: (1) with the same crew size by using overtime, (2) increasing the crew size by 
outside hiring, (3) buying or renting more productive equipment, (4) increasing the 

I crash lnormal 

Activity duration (workdays) 
. 8 ~ Activitv cost-duration curve. 

Figure - · 
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quality and/or level of supervision. or (5) other project-specific means. All these ap. 
proaches directly increase cost, since it is assumed that the least-cost way of complet
ing the activity has already been determined. The cost of compression is also 
increased through more frequent accidents, inefficiencies caused by crowding in the 
work space. more frequent errors that must be corrected. and decreased quality of 
the design or constructed product. which may influence future marketing success. 
Figure 8.5 shows that a point is reached eventually where further time compression 
becomes impossible, either physically or economically. This shortest completit'n 
time is called the crash time for the activity. 

It is common to assume a convex cost-duration curve and to approximate th·~ 
smooth curve with a series of straight-line segments. as shown. Cost also increases 1 .. 1 

the right of the normal time. due to higher direct labor and equipment costs whn 
employed for a longer period of time. lost interest due to delayed payments fr · 
work completed. lost bonus payments for early project completion, and any pen:J . 
ties for late project completion. 

Each activity in an arrow diagram can be labeled with its normal completic·:t 
time. These times. along with the logic of the arrow diagram, determine the total dt. 
ration of the project. 

8.8.4 Critical Path 

Figure 8.6 shows an arrow diagram using node numbering to designate activities. In 
the middle of each arrow is listed the normal time for the activity (ignore all other 
numbers for now). How long does the total project take to complete? The project is 
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Figure 8.6 Arrow diagram showing forward pass/backward pass calculations. 
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not complete .until all a~tivities arc complete. and an activity cannot hcgin until all 
activities leading up lo ti arc completed. Simple inspection and enumcr~tion of the 
seven possible paths from ~h~ starting node to the ending node results in finding the 
longest path from s I a rt lo ~tntsh: 1-3. 3-4. 4-6. 6-9. 9- IO. Its Jc n gt h is 25 work-da Y'· ·rh c 
longest path (sequence of Jobs) from start to finish in an arrow diagram i~ called the 
critical 1mth and is denoted by cross-hatched lines on the critical path activities. The 
length of the critical path is the project duration. also called the critical time. rLr· 

In large arrow diagrams, the critical path is not always ohvious from simple in
spection. In addition, a project manager is interested in many other scheduling ques
tions that can only be answered by analyzing the arrow diagram more ~ystematically. 

S.C ACTIVITY SCHEDULE 

8.C.1 Basic Definitions 

To carry out detailed project planning and control. the following definitions of time! 
are needed: 

Clearly, 

d .. = duration of activity i-j (normal time); I) 

EST. = earliest time at which activity i-j can start: I) 

EFT. = earliest time at which activity i-j can finish; 
IJ • 

LST. = latest time at which activity i-j ca~ start without causing an 11 
increase in the total project duration, and: 

LF~j = latest time at which activity i-j ca~ finish without causing an 
increase in the total project duration. 

EFT;j = EST;i + d;i 

LFT;i = LST;i + d;i· 

(8.1) 

(8.2) 

8.C.2 Forward Pass/Backward Pass . (S 1) and 
. . known equations · · of each activity were · roach If the earliest and latest start times. d latest finish times. A common ~pp 

(8.2) could be used to find the earhest an d ss and the latest start tm_ie on a 
· a f onvar pa ' t t10ns is to find the earliest start time 0~ ' p· ure g 6 shows these compu a . : . 

h w diagram. ig · .. ·· to all actlVlttes backward pass through t e arr~ . o nearliest start time of zero,, d of dav ze-
The method begins by ass1gn~neihaould be interpreted to m~an ent. 't.t\' is .then 

. t de nus s h b 'nmno ac l\ ~ emanatmg from the star no ',, The duration of eac . e.g• . ~which becomes 
ro" (or "beginning of day one ). t give the earliest fmish tim ~ care must be 

. . t · e of zero o . th However. added to its earhest start im 11.,,.1ty in a smgle pa · ti.\'t'ties converge 
· · f the next ac r more ac the earhest start time or 

8 
and 10; when two 0 

taken at junction nodes such as 6, 7, ' 
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on a node. the maximum of their earliest finish times becomes the earliest start time 
for all activities leaving the node. This is the case since all activities converging on 
the node must be completed before any of the succeeding activities can begin. The 
longest path. therefore. controls the earliest start time for succeeding activities. ll1c 
earliest finish time for each activity is recorded at the tip of its arrow, and the largest 
of these. the controlling earliest start time for succeeding activities, is recorded in 
the forward-pointing box beside each node. Note that computations cannot proceed 
until all paths into a node have been evaluated. 

Proceeding through the diagram. the final node is reached. The maximum ear
liest finish time of activities converging on the terminal node is "end of day 25.'' 111e 
project takes 25 work-days to complete (tcr = 25) and the critical path can hi: 
traced. 111e backward pass can now begin. 

The project length of 25 days can be used to calculate the latest start time of ac
tivities leading into the terminal node. as LST;j = 25 - dij. 111e LST of precedirn~ 
activities can be found in the same way by recognizing that they must not delay th~, 
LST of succeeding activities. If activity i-j precedes activity j-k, then 

(8.3) 

The LST of each activity is recorded at the base of its arrow. In tracing backward in 
the diagram. care must be taken at juncture nodes such as 6, 4, 3, and 1; when two or 
more arrows originate al a node. the controlling LST that must be used lo calculate 
the LST of preceding activities is the minimum of the latest start times recorded at 
the base of the arrows originating at the node. This is the case since, at the latest, pre
ceding activities must start in time lo be finished at the same time as the smallest of 
the latest start times of succeeding activities. or the total project will be delayed. This 
.. controlling. latest start time·~ is recorded in the backward-pointing box beside each 
node. It is important to note. however. that this controlling latest start time is not the 
LST of all activities leading out of the node; the actual LST of each activity is 
recorded at the base of its arrow. This is in contrast to the controlling EST values 
found on the forward pass: in that case. the controlling EST applied to all activities 
emanating from the node. As a check on the calculations, when the initial node is 
reached. the controlling LST should be zero. 

The EST and LSTvalues so calculated for each activity can be transferred to a 
tabular listing. the actMty schedule. 

8.C.3 Activity Schedule Format 

Table 8.1 shows the activity schedule for the arrow diagram of Figure 8.6. A com
mon formal is to list each activity by its i-j order, first on the i-index and then, with
in that order, on the j-index. Basic to the schedule are the EST and LST values of 
each activity. which are transferred from the arrow diagram calculations. The EFT of 
each activity is also available from the arrow diagram, or can be calculated simply 
by adding the activity duration to the EST. Similarly, adding activity duration to the 
LST produces the LFT. 
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W DIAGRAM OF FIGURE 8.6 

Act. Crit? d;j EST EFT LST LFT TF JF FF JndF SF 
1-2 9 0 9 5 14 5 1-3 yes 4 0 4 0 

() (J 

1-8 21 
4 (J () (J 0 21 2 

() () 
23 2 2 2-7 6 9 15 (J I) 

14 20 5 5 3-4 yes 6 4 10 
() () () 

4 10 0 () 
3-6 5 4 

(J () () 9 5 10 
4-5 6 10 

1 () I 
16 12 18 2 2 

4-6 yes 0 10 0 () , 
10 10 10 -

5-10 7 
() 0 () () (j 

16 23 18 25 
6-7 

2 0 2 0 () 
10 11 19 20 9 5 ~ ~ 9 6-9 yes 7 10 17 10 17 0 

7-8 3 
0 0 () () 

15 18 20 23 5 2 3 u () 
8-10 2 21 23 23 25 2 0 2 0 () 
9-10 yes 8 17 25 17 25 0 0 () 0 () 

EST Earliest Start Time LFT Latest Finish Time FF = Free Float 
EIT = Earliest Finish Time TF = Total Float IndF = Independent Float 
LST = Latest Start Time IF = Interfering Float SF = Safety Float 

8.C.4 Categories of Float lime 

Float time represents a safety factor relative to completing a project on time. Float 
permits flexibility in scheduling activities, thereby controlling the timing and use of 
labor and equipment, and serves as a buffer against such unforeseen circumstances 
as inclement weather, labor difficulties, equipment breakdowns, and inaccuracies in 
activity work quantities or production rates, all of which may lengthen the time to 
finish an activity. In scheduling activities, project managers have found it useful to 
define various categories of float time. 

Total Float. The most common measure of float time is total float, defined as 

T F;j = total float of activity i-j; the maximum amount that ~ctivity i-j.can be 
delayed without causing an increase in the total project durat10~. as
suming that predecessor activities have started as early as possible. 

Total float can be calculated directly in the activity schedule as 
(8.4) 

(8.5) 
T F;j = LST;j - EST;j 

= LFT;j - EFT;j· 
E · 1 I t · ons on the arrow diagram find 

quation (8.4) is recommended, since pnmary ca c~ ~ 1

1 
t' 't'es have total float. 

the EST and LST. Table 8.1 indicates that all noncntica ac IVI 
1 

.. 

fl t is an important measure of act1v1-
Free Float, Interfering Float. T~tal oa .. t may consume the float time 

ty scheduling flexibility. However, delaymg an activi Y 
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of succeeding activities. If so. the float of the activity "interferes·· with the float of 
succeeding activities. The amount of interference is called the interfering Ooat. Con. 
versely. in some cases an activity can be delayed without interfering with the float of 
succeeding activities. l11e degree to which this can be done is called the free Ooat of 
the activity. defined as 

F F,
1 

= free float of activity i-j: the maximum amount that the activity c-in 
be delayed without delaying the earliest start time of any succectJ. 
ing activity. assuming that predecessor activities have been startL'J 
as early as possible. 

Free float is best calculated using the arrow diagram and the relationship 

FF·= EST, - EFT:· If }r\ If (8.C '. 

where activity i-j is assumed to immediately precede activity j-k.1l1e last activity i.1 

a chain of activities with total float will have free float equal to its total float if it cor. 
verges into the critical path (activities 3-6. 5-10. and 8-10 in Figure 8.6). Also, frc, 
float exists for activities having higher total float values than the activities int:; 
which they converge (activities 6-7 and 7-8 in Figure 8.6). The amount of free float in 
both these cases can be found using the EST of succeeding activities and the EFT of 
the converging activity. These values have been recorded on the arrow diagram. 

Conceptually. free float is the first to be consumed when an activity is delayed; 
any further delay is interfering float (e.g .. activity 7-8 can consume 3 days of free 
float before using 2 days of interfering float from its total float of 5 days). The free 
float of each activity is recorded in the activity schedule. Interfering float is the dif
ference between total float and free float 

IF·= TF· - FF· I} IJ I} 
(8.7) 

and is recorded next to total float in Table 8.1. 
Finally. it must be emphasized that for free float and total float to exist to their 

fullest. previous activities must not have consumed more than their free float, since 
any use of interfering float consumes an equivalent amount of the free float and total 
float of succeeding activities (e.g .. in Figure 8.6, activity 7-8 cannot be delayed more 
than 3 days. or it begins to consume the free float and total float of activity 8-10). 

To summarize. a free-float activity tends to be the last activity in a chain of ac
tivities that converges either into the critical path or into a noncritical path that has 
less total float at the juncture than does the activity itself. The calculation of free 
float can be done directly on the arrow diagram. Interfering float is the difference 
between total float and free float. 

. Independent Float. To determine the effect of delays in predecessor activi-
ties on the float of a successor activity, independent float has been defined: 

Ind F;j = independent float of activity i-j; the maximum amount that activi
ty i-j can be delayed without delaying the earliest start time of 
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successor activities assum· h ·· ·· mg t at d 
been completed as late as possihle. pre eccf.isor activitici, have 

Assuming the sequence of activities lz-i i-j , nd · k . 
lated as (Harris. 1978) ' 'a J- ·independent float can he calcu-

Ind F;i = ESTk - ( LFT . + I . 
I , /11 { 1 f) ( X. X) 

where zero is recorded if l nd F; · is Jess than zero Th LFT ., 1 . , . . . 
1 I ·i ·h 1 · c \a ucs are m the act1v1tv 

schedu e, w 11 e t e rest of the data for the calcuhtio h· b · 
d

. ' ' n ave ccn recorded on the ar-
row iagram. 

For example, the calculation for activity 6-7 is 

lndF<i-7 = 15 - (10 + 1) = 4 

and for activity 7-8 is 

lndF7.8 = 21 - (20 + 3) = -2~0. 

Note that independent float is always less than or equal to free float. so that if free 
float is zero, the calculation for independent float need not be made. 

Independent float activities tend to be associated with activities emanating 
from the critical path (including the origin), and the amount indicates the degree to 
which the activity is "independent" of late starts by preceding activities. 

Safety Float. A measure of float that is a bit less stringent than independent 
float is safety float, defined as 

SF. = safety float of activity i-j; the maximum amount that activity i-j can 
11 

be delayed without causing an increase in the total project duration. 
assuming that predecessor activities have been completed as late as 

possible (Thomas, 1969). 

Assuming the sequence of activities h-i, i-j, safety float can be calculated as 

S F;i = LST;i - LFT,,i. (8.9) 

Values for both LST and LFf must be found from the activity schedule. For exam

ple, for activity 6-7, 

and for activity 7-8, 

S F6-7 = 19 - 10 = 9 

SF - ?0 - 20 = 0. 
7-8 - -

h that emanate from the critical path 
Activities with safety float tend to bet ose 

(including the origin). 
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TABLE 8.2 CLASSIFICATION OF FOUR FLOAT TIMES 

Successors completed 

Early Late 

Predecessors completed Early Free Float Total Float 

Late Independent Float Safety Float 

Sourcc:Thomas (1969). 

Relationship Between Float limes. It is useful to keep in mind the gener:;; 
relationship between the relative number of activities that have float time in differer· 
categories. Activities with total float are, by far, the most numerous (nine activities i.· 
Figure 8.6), usually followed by those with interfering float (six activities). Those wit'.· 
free float and safety float are usually the next most common (five each). Activities wit:. 
independent float being a subset of the activities with free float, are rather rare ( onl~ 
two). The relationships vary somewhat, of course, depending upon the nature of the 
arrow diagram. 

Table 8.2 summarizes definitions of the four basic float times based on prede
cessor and successor start times. 

8.D BAR CHART 

8.D.1 Common Bar Chart 

The activity schedule contains all the essential information concerning timing of ac
tivities. If used alone, however, it would be rather difficult to picture the flow of ac
tivities through time, since the table format is rather difficult to read. As a visual aid, 
the common bar chart, also called the Gantt chart, excels. Figure 8.7 shows the com
mon bar chart for the arrow diagram of Figure 8.6, using information from the ac
tivity schedule of Table 8.1. Activities are listed in the same node-notation order as 
in the activity schedule, and each activity is assumed to start at its EST and to finish 
at its EFT. A bar drawn between these two times represents when each activity is 
planned to take place. For example, on work-day 16, activities 1-8, 4-5, 6-9, and 7-8 
are expected to be active. It is common to denote critical path activities with a shad
ed bar, to draw attention to keeping these activities on schedule. 

Figure 8.8 shows the same bar chart, but with activities listed first in order of 
their EST, then within this order, in order of their EFT. The resulting bar chart is 
even easier to read than that of Figure 8.7, in terms of the flow of activities through 
time. Either format, and others, may be used. 

The shortcoming of the common bar chart is that it does not provide enough 
information on which to modify the scheduling of activities by utilizing float times. 
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Activity Duration ----5--
20 25 

1-2 9 

1-3 4 

1-8 21 

2-7 6 

3-4 6 

3-6 5 

4-5 6 

5-10 7 

6-7 CJ 

6-9 7 

7-8 3 

8-10 2 

9-10 8 

5 '10 15 '25 

Figure 8. 7 Common bar chart: node-notation ordering. 

~e common bar chart has been extended to make it more useful in project plan
ning and control. 

8.D.2 Modified Bar Chart 

~gure 8. 9 displays the modified bar chart corresponding to the arrow diagram of 
~igure 8.6 and activity schedule in Table 8.1. Node-notation ordering of the activities 
is recommended. Just as with the common bar chart, it is assumed that activities will 
s.tart at their EST and finish at their EFT. This is shown by the short line in the pair of 
Imes opposite each activity. However, the fact that the activity could be delayed. 
s_tarted, and completed anywhere between its EST and LFI is indicated by the long 
hne in the pair of lines. Tue distance between the end of the short line and the end of 

the long line is the total float for the activity. . . 
Vertical lines are drawn to show activity precedence relat10nsh1ps. Most 

vertical lines indicate that the EST of activities lower in the diagra'.11.~epend on 
th~ _EFT of an activity above and to the left (preceding the~). Activitie~ 0~ the 
en heal pa th are joined in this manner. as are 1-2, 2-7 • and 7-8. l -3 and 

3
-
6
· l -S and 

8-10; 3-4 and 
4

_
5

; 
3

_
4 

and 
6
_
7

: and 4-5 and 5-10. All activities will have a verllcal 
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Workday 

Activity Duration 5 ,101 15 
I I 1201 

I I 125 I I I J 
I I I I I I -

1-3 4 

1-2 9 

1-8 21 

3-6 5 

3-4 6 

2-7 6 

6-7 1 c=i 

4-5 6 

6-9 7 

7-8 3 c=:=:::::i 

5-10 7 

9-10 8 

8-10 2 
c=:::::::::J 

I I I I I I I I I I I I I 

5 10 15 20 25 

Figure 8.8 Common bar chart: EST-EFT ordering. 

line determining their EST. As long as the node-notation ordering system is used 
to list activities, these vertical lines will give the modified bar chart a "stepped
down ~' appearance. 

Occasionally, a vertical line will appear at the end of the long line in the pair of 
lines for an activity instead of at the end of the short line. In this case the LFT of the 
activity is controlled by the LST (and EST) of a successor critical activity. Activities 
3-6, 5-10, and 8-10 fall in this category. In a sense, the dependency is "upward" in the 
diagram, from the critical activity to the activity in question. 

Finally, some activities will be joined to others by only one vertical line, not 
two. Activities 6-7 and 7-8 are typical. Neither activity's EFT value determines the 
EST of the succeeding activity, and neither intersects the critical path, so the LFT 
value is not set by the LST (EST) of a critical activity. Rather, the LFT is deter
mined by the LST of the immediately succeeding noncritical activity. The LST of 
such an activity does not appear on the bar chart, however, so no vertical line can be 
drawn. The apparent "decoupling" of dependent activities in such cases is a short
coming of the modified bar chart that must be kept in mind when making schedule 
changes. 



Sec. 8.E Resource Leveling 

225 

Activity Duration Workday 

I 
I I 5 

I IO I I 15 I I 20 r I .25. -
1-2 9 --, 

1-3 4 
,_ 

-
1-8 21 

- -
2-7 6 -- -
3-4 6 ~ 

-

3-6 5 

4-5 6 -

I 
-

5-10 7 

6-7 1 .....__ 

6-9 7 

7-8 3 -~ 

8-10 2 ,_____ 

9-10 8 

I I I 5 
I l I I I ,I 

10 
I l I I .I 

15 
I I I I 

20 
; I 

25 

Figure 8.9 Modified bar chart. 

The modified bar chart is an excellent visual display of much of the information 
found in the arrow diagram and activity schedule. In particular, total float and most 
activity dependencies are clearly indicated, allowing activities to be rescheduled 
should the need arise. Also, drawing vertical lines for dependencies serves as a check 
on the calculations made to obtain the activity schedule. The activities shown in the 
bar chart should flow together vertically just as indicated in the arrow diagram. 

S.E RESOURCE LEVELING 

8.E.1 General Problem 

R 
· · · d 'gn or construction pro-

esources are required to complete every act1v1ty m a esi . · . 
1 

1 The pro•ect manaoer must be 
Ject, and multiple activities take place s1mu taneous Y· . J 1° d · .

1 
bl t 11 times Personne an eqmp-

concerned that sufficient resources are avai a e a a · b ·d d 
h 

rces must also e cons1 ere . 
ment are usually of greatest concern, but ot er resou 
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Resource 
Workday 

Activity Duration Units 5 JO I I .15, I .20 I ,25 
I I I I I I I I I I I I 

1-2 9 1 

1-3 4 10 

1-8 21 2 
MIVW\ 

2-7 6 6 

3-4 6 9 
Mi 

3-6 5 1 
Mf\ 

4-5 6 3 
I_ Mf\ 

5-10 7 7 

6-7 1 7 ~ 

6-9 7 3 

MIVW\ 
7-8 3 2 

8-10 2 4 ~ 

9-10 8 3 
I I I 

13131313~ 
I l I I I I 

Required Resources 1313131313 ~1414 1414 1014141212 121414 3 3 
Line 1: Shift 2-7 11~ 00 
Line 2: Shift 7-8 14@ 1414 
Line 3: Shift 5-10 11 10 
Line 4: Shift 4-5 12 14 
Line 5: Shift 3-6 12 12 

figure 8.10 Scheduling adjustments for resource leveling. 

Storage space can become a limiting factor if material arrival is not staged properly, 
and large expenditures during short periods of time may cause a significant cash 
flow problem for the contractor. Additionally, supervisory personnel may be in 
short supply~ making it desirable to avoid a large number of employees at one time. 
The activity schedule and bar chart derived from the arrow diagram ignore possible 
resource limitations, and sometimes result in large fluctuations in required re
sources. Every project must be examined to see whether resource leveling is needed 
to comply with resource limitations. 

Figure 8.10 derives the resources needed on each work-day to complete the 
project portrayed in the arrow diagram of Figure 8.6. The number of personnel re
quired to complete each activity is listed beside the activity. Assuming that each ac
tivity starts at its EST and finishes at its EFT, the total resources needed on a given 
day are obtained by summing the resources associated with each activity under way 
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on that day. The totals are listed at th b 

h h . . e ottom of the d"f· seen t at t ere 1s a high demand for mo 1 1cd bar chart. It can be 
personnel on da 10 the contractor had a labor force of onl 14 ys and 11 of the proiect If 

. Y people the · J • 
as scheduled. A revised schedule must b f ' project would not be feasible 
quired people on any day to 14 or fewer. e ound that reduces the number of re-

A common additional goal is to reduc th d 
labor, that is, to "level" the resource requ· e e ay-to-day fluctuation in required 

. 1rements on the · F 
day 16, 1t would be beneficial to raise the . project. or example. on 

. resource requirem t f 10 somethmg much closer to 14 the available lab f en rom people to 
' or orce As a me f fl · 

the sum of squared deviations from a desired le 1. f. asure o uctuat1on, 
. . . ve 1s o ten used A sin I I d · 

at1on 1s therefore penalized much more than ar 1 1 
· . ? e. arge evi-

. · · . e severa sma I dev1at1ons If the de 
sired level m Figure 8.10 1s taken to be 14 the deviaf d 16 · · -
(14 _ 10)2 = 42 = 16. ' ion on ay mcurs a penalty of 

Tuer~ are p~actical reasons why leveling of personnel is desirable. There are 
costs associated with a fluctuating labor force· (1) new arri·v I th · . . . . · a son e project are not 
a.s fam1har with s1~e layout and procedures, and therefore are not initially as produc-
tive as .those continuously employed; (2) temporary labor may be quite a bit more 
expensive than permanent employees; and (3) the permanent labor force under
standably prefers steady employment rather than frequent layoffs. 

8.E.2 Heuristic Procedure 

In rescheduling activities to avoid the resource violation and to level resources. 
many rules-of-thumb have been developed to guide the process toward acceptable 
final results (Harris, 1990). There is no one best procedure, since the degree of suc
cess of any heuristic approach will depend on the characteristics of the individual 
project. What works well in one case may not be as successful in another. Most of 
the heuristic approaches are very detailed. Nevertheless. to illustrate some common 
considerations in resource leveling, the following generalized rules are given: 

1. Derive the modified bar chart for the project, sum resources for each work
day, identify resource violations, and sum the squares of res~u~ce deviations 
for each resource category. Rank the resources in order of pnonty. 

2. For the most severe resource violation period for the currently highest-priority 
. . . . . . th esource that have free float. Rank these resource identify activ1ties usmg e r . 

. ' . . . h t' 't'es with the oreatest free float 
activities oivino highest pnonty to t ose ac 1v1 1 0 

and next highe~t priority to those with the greatest total float. . 
· ·t' to the right (beyond their 

3. Shift the fewest possible high-priority act1v1 ies ·olation and to not 
. d t move the resource v1 ' 

EST) only as far as req~ire . 0 re . the resource requirements accord-
cause another resource v1olat10n. Revise . lation and return to step 2. If 
. 1 . . ti reatest resource v10 , 
mg y, identify the curren Y g . . source with a resource violation and 
none, select the next-highest-pr.wnt~ re have been removed for all resources. 
return to step 2. If all resource vwlatwns 
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repeat steps 2 and 3 for squared resource deviations for the highest-priority 
resource until no further improvement is possible. Consider the next highcst
priority resource by returning to step 2. If none, stop. At any point, if resource 
violations cannot be removed or if further improvement in minimizing 
squared resource deviations is desired. consider activity interruption in step 4. 

4. For the greatest constraint violation period (or greatest squared deviation), 
rank the interruptible activities in terms of float (as in step 2) and resource 
use. and interrupt the fewest possible high-priority activities that will remove 
the resource violation (or reduce the squared deviation), shifting a portion of 
each activity to the right only as far as necessary. Repeat with the next greatest 
resource violation (or squared deviation) until all are removed (or resources 
are leveled as much as possible). Consider the next-highest-priority resource 
by returning to step 2. If none. stop. If violations remain, or further improve
ment in minimizing squared resource deviations is desired, consider activity 
compression in step 5. 

5. For the greatest constraint violation period (or squared deviation), determine 
the least-cost means of compressing and possibly interrupting those activities 
that utilize the resource so as to remove the resource violation (or minimize 
the squared deviation). Consider the next-highest-priority resource by return
ing to step 2. If none, stop. 

In summary, the strategy is to first shift resources within their free float, and 
then shift within their interfering float. If this does not solve the problem, activities 
can be interrupted and, as a last resort, compressed in time. The procedure is carried 
out for the highest-priority resource and then repeated for subsequent resources. It 
is emphasized, however. that the method is only a guide-modifications can be 
made to take advantage of problem circumstances in manual computations. 

The procedure is applied in Figure 8.10, where wavy lines indicate schedule 
modifications. The worst resource violation is on day 11, and the next worst is on day 
10; consider handling these together. The only activity under way on both days that 
can be shifted is 2-7, and it uses 6 units of the resource: shift two days and revise the 
resource requirements as shown (line 1). Shifting 2-7 causes activity 7-8 to shift also, 
as indicated by the resource changes of line 2. Day 17 now has the greatest resource 
violation (18 units, as circled). The only activity on that day that can be shifted is 5-
10, so it is moved one day to the right (line 3). The largest resource violation is now 
on day 11 (15 units). Activity 4-5 or 6-7 can be shifted, but while 6-7 has the greatest 
free float, its shift would cause too great a change in resource requirements. Shifting 
4-5 not only solves the problem on day 11, but also serves to level the resources 
needed on day 17, as shown (line 4). All resource violations are now removed, and 
leveling of resources can be taken as the primary objective. The greatest deviation of 
resources (except for the last two days of the project) occurs on day 10 (11 units). By 
shifting activity 3-6 within its free float of one day, the sum of squared deviations can 
be reduced. At this point, inspection indicates that no further resource leveling is 
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Possible, if allowance is made for a phase-out of resources on th f" 
1 

t d , f 
( · I · · · e ma wo a)s o 

the project ~lte~nallve .Y. act1VI1Ies 1-8 and 8-10 could be shifted two days to achieve 
greater leveling m t~e .fmal two days). 

Note the heuristic nature of the above moves. In particular. in the first step it 
was decided to handle both days 10 and 11 simultaneously. If the rules had been ad
hered to exactly, only day 11 would have been considered and activity 6-7. with a 
large amount of free float, would have been shifted (to day 16). However. since ac
tivity 6-7 carries a large amount of the resource (7 units), this would have led (in just 
two steps) to an unsolvable resource violation on day 16 (for practice, verify this). 

On an actual project, many other considerations also would be taken into ac
count when rescheduling. The above procedure illustrates many of the activity inter
actions, however. 

s.E.3 Effect on Float 

Figure 8.11 shows the resulting resource-constrained, modifi~d. ~ar chart. Whe·n· the 
labor constraint of 14 people is considered, three more act1v1t1es become cnt1cal. 
They cannot be delayed or the resource constraint would be violated. Also, the total 

Workday Resource L _______ .:..:...::..:.:..:..:.:::.:.__ __ ----:::----, -:,;--;-5--
Activity Duration Units 5 0 5 '0, 

1-2 9 

1-3 4 10 

1-8 21 2 

2-7 6 6 

3-4 6 9 

3-6 5 

4-5 6 3 

5-10 7 7 

6-7 7 -
6-9 7 3 

7-8 3 2 

8-10 2 4 

9-10 8 3 . 1-t 1.t 1-t 1-t 1-t 12 1-t 1.t 10 3 L _ _J ___ L--t--t--:t:-:t:~~ 313 131212141.t W.t 
Revised Resources: 13131313 12131 

Figure 8.11 . 10dified bar chart. Resource-constrained n 
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float is generally reduced for other activities, as shown in t~e figure. Additionally, it 
is important to note that the activity chains are no longer mdependent in terms of 
using float. For example, activities 1-8 and 8-10 could be delayed two days without 
causing a resource violation. However, it would then be questionable whether activ
ities 4-5 and 5-10 could be shifted one day to the right as is indicated in the bar chart. 
In this case. it is still possible to shift 4-5 and 5-10 by one day without causing a re
source violation on the last day of the project. In another situation, it may not. Such 
dependencies therefore need to be considered separately in working with the bar 
chart. The resource-constrained modified bar chart can be looked upon as repre
senting one-at-a-time activity chain shifts that are possible. When any change is ac
tually made. the bar chart must be updated to reflect the current distribution nf 
resources. 

8.F PROJECT COMPRESSION 

Once again consider the arrow diagram of Figure 8.6, for which the project dur;1-
tion is 25 work-days. If the owner wanted the project finished in 24 days, attention 
would have to focus on the cost-duration curves for the critical path activities ch 

shown in Figure 8.12. Which activity should be shortened by one day? Key to an
swering this question is to first note that the cost curves represent total cost and 
that the current cost incurred for each activity is given at the low point of each 
curve. since the activity is scheduled to be done in its normal time. If an activity is 
shortened by one day, the total cost would increase by the incremental height 
change in moving from the normal time, t"' to (1 11 - 1 ). The minimum increase in 
cost is desired. which is equivalent to finding the activity cost-duration curve that 
has the least slope to the left of the current cost. Activity 6-9 satisfies this condition, 
and would be shortened by 1 day to give a project length of 24 days. The critical 
path activities remain the same. 

Figure 8.12 Activity cost-durntion curves for Figure 8.6. 

\ ~3-4 

"---------1-3 
~6-9 

~9-10 

2 3 4 5 6 7 8 9 10 11 

Activity duration (workdays) 
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For a desired project length of 23 da th 
· · d ys, e cost curves f th · . are agam examme , and activity 3-4 is found t h or e cntJcal activities 

current cost position (note that the cost cu of ave .t~e least slope to the left of the 
. . rve or act1v1ty 6-9 b 

after It IS shortened by 1 day) Activity 3 4 . h ecomes much steeper 
· - is s ortened to 5 d d . 

length becomes 23 days. Now however there / . . ays, an the project 
. ' ' are t iree critical p th · h 1 23 days. If the project were to be shortened by a th d a s wit ~ ength of 

for activities on all three paths would h b no .er ay, t?e cost-duration curves 
ave to e considered Sm th 

pletely independent paths (path 1-8 8-10 and a · f che ere arc two ~~m-
h ) I · · 1 . . . ' ' ny one o t e other two cnt1cal 

pat s , at east two cntica act1V1ties would have to be sho t d · 
1 . . r ene s1mu taneously (one 

on each mdependent path) to achieve a proiect length of 22 d It· b · h · 
• J ays. IS 0 VIOUS t at If 

the process were contI~ued, eventually all paths and activities would become critical. 
. Note that the ~roJect compression example was analyzed ignoring resource con

stramts and the desue to level resources. Inclusion of all three factors causes a la 
· · bl 1 · · rge mcrease m pro em comp ex1ty and 1s beyond the scope of the present treatment. 

8.G TIME-SCALED ARROW DIAGRAM 

Knowing the format of the modified bar chart allows it to be read almost as an ar
row diagram. Some have suggested that the arrow diagram itself be modified to re
semble a bar chart, resulting in the time-scaled arrow diagram. Various formats have 
evolved; a simple form is shown in Figure 8.13 for the arrow diagram of Figure 8.6, 
using data derived in the activity schedule of Table 8.1. The selected format pre
serves the basic arrangement of the original arrow diagram, but for greater clarity. 
the activities could be grouped by project site location (foundation, first floor, sec
ond floor, etc.), type of work (structural frame, ductwork, electrical, etc.), subcon
tractor, or any other classification that would enhance clarity and the planning and 

5-10 ,..., 

h-__~1------i.----+----:~---~-d Time-scaled arrow diagram for · 5 201 ~5 Figure 8.13 
figure 8.6. 
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control function. For time-scale accuracy, nodes have been omitted and activities lll
bclcd by their i-j index. If the time scale were coarser (e.g .. weeks or months)~ nodes 
could be used. lne time-scaled arrow diagram displays dependencies more clearlv 
than the modified bar chart. but is not as convenient to use when making schedulin~ 
changes for resource leveling. ' 

8.H PROGRESS CURVE 

8.H.1 Alternative Formats 

ll1c activity schedule and modified bar chart depict when activities on a project arl~ 
to be carried out. Associated with each activity are the estimated cost to the con-
tractor and the estimated value that the contractor is to receive from the owner fu;· 

completing the activity. Using the activity schedule or modified bar chart, it is :i 

simple matter to determine the cumulative cost and value of a project over its du
ration by summing the cost and value of activities and portions of activities com
pleted to date. Figures 8.14a and c show typical progress curves, or S-curves for 

Figure 8.14 Alternative formats for 
progress curves. 
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1 
• . . ilC 1v1t1cs. and to thc pr.... . . f 

. Tl , . a uc activities duri . . cscncc o 
JCCt. lC .t-y axes for the progress . . ng thc middle part r>f . curve m th f . . d pro-
respectiveJy. 15 ormat represc.;nt time and dollars. 

AJternativeJy, the progress curv l 
d 

. e can Je shown n d' . . 
8. l 4b an d. Both axes m this format on 1mens1onallv as m Figure .. . represent . - ..,, ,, 
length. TlllS allows typica] S-curves to be d · .. percent. ~nd each axis is the same 
even though the individua] proj·ccts ma b crfi~~d .f~>r projects of a particular class. 

f E 
· Y e 0 s1gnif1cantlv d'ff. · 

o ngmeers, U.S. Army has found tl1at th f II . - I t:rent size. The Corps 
. ' c o owing cqu· t' .. predictor (Perry, 1970): cl ton IS a good generalized 

where 

Y = Sin2 (90x) 

Y = decimal fraction of project value completed. and 

x = decimal fraction of project time completed. 

8.H.2 Control Function 

(8.10) 

One goal in estimating progress curves for a project is to help in project control. If 
actual progress curves differ significantJy from those planned. the reason should be 
determined immediately. In judging whether a deviation is significant or not. it is 
helpful to have not just one estimated progress curve but two-one based on an ear
ly start (ES) of each activity and one based on a late start (LS). The LS curve will lie 
to the right of the ES curve, and the actual progress curve should fall between. typi
cally at the average of the two, unless something unusual occurs. 

If the actual progress curve for project value falls below the estimated curve 
based on an activity late start, it would indicate that. if the problem is not corrected. 
the project will not be completed in its planned duration. Conversely. if t?e. actual 
progress curve for project value falls above that estimated based on an act1V1ty ear
ly start, it would indicate that the project will be finished ahead of schedule. due to 
higher productivity than estimated or to some other reason. . . 

D . · · h f d from a companson of the esll-irect conclus10ns are not as stra1g t orwar . 
d 

· t t for example if actual cost falls 
mate and actual prooress curves for proJeC cos · · · . 
below the LS c~rve i~ may be due to increased productivity or lower ~mt ~osts. 
but it may also be due to scheduling delays that wil~ lengthen thbe fproJect hu_ra-
t
. . t I e is necessary e ore reac mg 
ion. Referral to the progress curve for proJeC va u .... 

a conclusion. 
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Figure 8.15 Cash flow forecast. 

8.H.3 Cash Flow Forecast 
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Another important use of the progress curve is in forecasting cash flow. Figure 8.15 
shows the progress curves for cost and value as estimated for an eight-week pro
ject. It is assumed that disbursements are made weekly to cover costs incurred dur
ing the week. The staircase function next to the cost progress curve shows 
cumulative outlays. By agreement. billings to the owner for value added are made 
every two weeks and are paid two weeks later (two-week lag in receipt). The cu
mulative value of receipts is represented by the rightmost staircase function. This 
payment-receipt pattern results in a continuous cash deficit over the period of the 
project and for two weeks thereafter. At the end of week 10, the final receipt cre
ates a positive net cash flow (profit) of about $9000, or 9.1 % of project value. The 
maximum difference between cumulative disbursements and receipts is almost 
$49.000 and represents the amount of cash that the contractor must have available 
to draw on to meet payroll and other expenses. 

If the contractor has sufficient finances, the cash flow projection allows the 
greatest possible interest to be earned on assets. Of the $49,000, only $4500 is need
ed at the end of week 1. $7000 more is needed at the end of week 2, and so on. Long
term investments that earn a higher interest rate than short-term accounts can be 
timed to mature when needed on the project. If the contractor must borrow money 
to meet expenses. the cash flow calculation can be used to determine the smallest 
loan amount that would be adequate. 

8.H.4 Activity Progress Curve 

In estimating project progress curves, it is usually assumed that cost and value are 
produced uniformly throughout the duration of an activity. This need not be the 
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Percent time for completion of formwork 
Figure 8.16 Prof!re'is curve<; fnr formwork 
activity on nine proj1:ch ICarr t.:t al.. !97~J. 

case, however. Activities may have start-up and shut-down periods similar to pro
jects, and other characteristics may cause nonlinear progression of cost and value. 
Actual project data are shown in Figure 8.16 for the activity of placing concrete 
formwork during the construction of nine reinforced concrete structures (Carr et al.. 
1974). The duration required to place the formwork ranged from 6 months to 29 
months, and the quantity varied from 103,000 ft2 to 942,000 ft2

. The plot illustrates 
that activity progress, expressed in percent activity value, followed an S-curve on 
each project, and that there is a high degree of consistency between the curves. The 
example also demonstrates that, for specific activities, progress can be measured in 
physical units. 

Nonlinear prooress on an activity can be accounted for in a bar chart by writ-
ing the anticipated ;ercentage progress at various points directly above the b~r for 
the activity. The day-by-day running sum of cost or value can then be found m the 

usual way for the project. 

8.1 MATHEMATICAL PROGRAMMING MODELS 

b d I ed for resource leveling. project 
Mathematical programming models can e eve op 1 ·h 

. H there are severa reasons '" Y a 
compression, and resource scheduhng. owever, 

1 
·ects wi'th hundreds or 

I . h · t' me For arge proJ 
ess formal approach is adequate at t is 1 · .... · model becomes verv 

· · · h tical programnung · 
even thousands of actlVlties, a mat ema h d li'ng problems are inherently 
I M important, sc e u arge and rather cumbersome. ore . 1989). Project engineers must sat-
~ultiobjective in nat.ure (f~~ndreu and Co.r~~·~~~· roject schedule: re~oving a re-
1sfy a range of cons1derat1ons when revism~ f p d resource deviat10ns from an 

. . . . f the sum o square 
source constraint and m1mm1zmg o 
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established value are only two such concerns. Other, less tangible factors are often 
difficult to incorporate into an optimization model.1l1ird, some activities can be in
terrupted. that is. stopped and then restarted again, sometimes multiple times. Per
mitting this option increases the size of the optimization modeL and leads to the 
incorporation of heuristic rules to speed computations (Andreu and Corominas, 
1989: Burgess and Killebrew. 1962). 

8.J IMPORTANCE AND USE OF CPM 

Results of a 1993 survey of 11.200 general contractors, specialty contractors, and ar
chitectural/engineering design fim1s point out the importance of CPM-related topics 
(Deloittc & Toucl1c. 1993). The survey confirmed the widely held view that the con
struction industry is highly competitive and that profit margins are small. Only 20% 
of survey respondents had pretax net income as a percentage of revenue (profitabili
ty) of more than 5%. while 30% of general and specialty contractors and 24% of ar
chitects/engineers had pretax losses of 1 % or more. The survey found that highly 
profitable firms focused more on project management (budgeting/control and sched
uling) than high-loss firms and concluded that greater emphasis on project manage
ment may increase profits. Further. all three categories of respondents ranked project 
management either first or second among key drivers of their business success. 

The same survey reported that 67 % of general contractors, 35 % of specialty 
contractors. and 81 % of architectural/engineering firms were using project schedul
ing information systems. Previously. a 1974 survey of the largest 400 construction 
firms in the United States found that about 80% of such firms were using CPM 
methods (Davis. 1974 ). Considering that large firms tend to use the technique more 
than small firms. the percentages in the two surveys compare quite well. An impor
tant finding of the 1974 survey. however. was that only about one-half of CPM users 
employed the technique for project control, whereas almost all used it for detailed 
planning of construction activities prior to start of construction. This was probably 
due to the inconvenience of having to constantly update activity schedules on main
frame computers as changes occurred on the project. Today, the availability of desk
top computers makes this task much easier, but it is safe to say that CPM is still used 
more for project planning than for project control. The 1974 survey also reported 
that 76% of the construction firms stated that they were either moderately or very 
successful in achieving the advantages attributed to use of CPM. Further, it is im
portant to note that the successful use of CPM was strongly linked to good top man
agement support for use of the technique. 

CHAPTER SUMMARY 

CP~ ~s c?mmonly .used in design and construction projects. In many cases, bid 
spec1f1cat10ns reqmre construction contractors to submit an arrow diagram or 
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bar chart with their bids, and the successful bidder must work with the owner 
and engineer to prepare a network that is mutually acceptable (Gleason and 
Ranieri, 1964) · Depending on project conditions. C PM takes di ff c rent forms: 
simple activity planning and scheduling, resource leveling. project compression, 
estimation of cash flow, project control, and others. The increased availability of 
inexpensive, fast microcomputers and convenient commercial software should 
enhance implementation. 

EXERCISES 

8.1. Arrow diagrams. Draw the arrow diagram that represents each set of the following 
conditions. Note that the symbol "<''means "precedes.'' but not necessarily ·'immedi
ately precedes." (Hint: Only one solution is possible for each arrow diagram: activity 
letters are not in standard form.) 

8.2. 

a. A< E 
D<C 
B < A,D 

d. A< D 
D<B 
F<C 
C<E 
G<F 
H <I 
l<B 

b. G < B,E,D 
A< B,E,D 
C < G,A 
F < G,A 

e. C < B, E 
A< F,E 
B<D 
F<E 

c. A< B 
C<B 
D<C 
G<A 
E<D,G,F 

F < I • rt Usin the forward pass/backward pa~s tech-
Activity schedule and modified bar cha d. d'~ed bar chart for the arrow diagram 
ni ue derive the activity schedule an mo .1 ? 

sh~w~. What is the critical path? Project duration. 

2 
7 5 

' ' 
9 

11 ' ' 12 ' ' ' ' ' ' ' ' 4 
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7 7 3 / 
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8.3. Resource leveling. The activities in Exercise 8.2 require the resources shown in the 
table. 

a. Show the modified bar chart for Exercise 8.2 and list the number of resources of 
each type required on each work-day. 

b. Resources A and B are such that the maximum number of each resource needed 
on anv day must be paid throughout the project (whether needed or not). Shift the 
activities ~nd interrupt activities where necessary to minimize the number of re
source units of A and B constantly employed. Give first priority to resource A. As
sume that all activities can he interrupted. How many units of each resource will 
be constantly employed? (Note: Do not attempt to minimize the sum of squared 
deviations). 

Rc.rnurcc Resource 

Activity A B Activity A B 

1-2 0 2 6-8 3 3 
1-3 2 1 7-8 0 0 
1-4 3 0 7-9 1 1 
2-5 1 1 8-10 2 1 
3-6 2 2 8-11 0 0 
4-7 0 3 9-11 2 0 

5-10 2 0 10-11 1 3 

8.4. Progress cunc. Figure 8.10 shows the resource requirements (unleveled) for the arrow 
diagram of Figure 8.6. assuming that each activity will start at its EST. 

a. Draw the modified bar chart assuming that each activity will start at its LST, and 
show the (unleveled) resource requirements corresponding to this formal. 

b. Assume that resource units active on a day are linearly proportional to project 
value added on that day. Plot the S-curve for the project under the assumption of 
an early start for each activity. and, on the same diagram, the S-curve under the 
assumption of a late start for each activity. Let the x-y axes of the plot be ex
pressed in percent project time completed and percent project value completed, 
respectively. 

c. Actual progress on the project has been calculated at the end of days 5, 10, and 13. 
The percent of total project value in place at these times is 10, 20, and 40. 

(1) Plot the S-curve for actual progress on the diagram of part (b ). At the end of 
day 13. what would be a fair estimate of the time to complete the project? 

(2) What is your subjective assessment of the chances that the project will be 
completed on time? 
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8.S. Progress curves: financi"al p . 239 • rov1ded · 
curves of cost and value a ·h m the table arc d 
table. A positive sign on s s own in Figure 8.15 Fill . arha ta~cn from lhc prol!rcss 
· · d' · net cash fJo · · int c final · 1 ~· · · 

sign m icates a net expe d' w indicates a net r . \IX co umns of the n llurc for th . ecc1pt of m · . , . 
necessary and use that f' c time period 0 . . omcs. a negative 1gure for the · . . · ctermmc the I 
count. Assume that the 

1 
. 1mt1al balance in th · nan amount d . oan is to be r . d . c contractor\ . .· 

cvisc a plan lo do that Th f' epa1 mcrcmcntall . . savings ac-
it from the project . e mal balance in the savings a y as soon as po"ihk. and . . ccount represents net prof-

r 

I 
Disburse-

Net Cum. I -

End of Cum. Cum. mcnt 
Cash Cash 

Week Value Cost (-) 
Receipt Flow Flow Payment 

sa .. ings 

(+) ( +/ ) ( +/ ) 
Account 

on Loan Balance 

0 0 0 

1 4500 

2 14,000 11,500 

3 21,500 

4 48,000 39,500 

5 63,000 

6 85,000 78,000 

7 86,000 
' 

8 99,000 90,000 
' 

9 90,000 
~ 

10 99,000 90,000 
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9.A RISK AND UNCERTAINTY 

Most decisions made on large civil and environmental engineering projects invol\'e 
e_lements of risk and/or uncertainty. Risk is defined as the situation wherein objec
tive data exist upon which to estimate the probability of an event. Preferablv. the 
probabilities would be based upon the results of experimental tests and hist~rical 
data applicable to the case in question, but, lacking such "hard" data. rnbjecrive 
probabilities may be assigned through the subjective judgment of the decision mak
er or experts who have had experience in similar situations. Examples of project 
conditions involving risk are (1) the soil strength for a foundation design is not 
known exactly due to soil spatial heterogeneity and sampling errors of tests. (2) the 
yield of a full-scale water supply well or well field must be estimated using small
scale and spatially limited pump tests, and (3) the probabili.ty of a design or con
struction bid being awarded to a firm depends on many out:1de factor:·_In all these 
cases, reasonable probability estimates can be made about hkdy cond111ons or out
comes based on experimental data or past experie~ce on s1m1lar proiects. Bayem'.11 
decision theory is that branch of decision theory which makes use oUhese probab1l
.t · l · h 11av as to help m the dec1s1on-
1 Y estimates, and structures the prob em m sue a '"" ~ 
making process. Sections 9.B and 9.C are devoted to this .case: . b' . en defined as the s1tuat1on wherein no o 3ec-
. Uncertmnty, by contrast, has be . robabilitv of an event: that is. 

hve data exist upon which to base an estimate of the p b · · d The descriptor 
b bT f es can e ass1gne . ~ 

complete ignorance exists, and no pro a 1 1 1 
... 
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.. complete'' uncertainty might be more appropriate. however. since some authors 
have used the tem1 uncertainty to include "risky'~ situations. Fortunately, complete 
uncertainty is rare in engineering situations. but when it does occur it raises signifi
cant questions as to how to proceed. Decision making in the absence of probabilities 
is discussed in Section 9.D. 

9.B SIMPLE DECISION TREE ANALYSIS 

9.B.1 Example 9-1: Construction Bidding 

Perhaps the best way to introduce the basic approach of Bayesian decision theory is 
by considering an example-similar to that discussed by Adrian (1973)-in which a 
contractor is faced with the decision of whether or not to bid on one of two heavv 
construction projects. a dam or a highway. l11e contractor is limited to choosing, ~t 
most. only one of the projects for bidding due to limited manpower and equipment 
available to him. He may also choose not to bid on either of the projects, in which 
case it is assumed that he would neither gain nor lose anything. 

The contractor has collected data and performed some preliminary analyses 
on the two projects as summarized in Table 9.1. For either the dam or highway pro
ject. he has the option of bidding either high or low. From past records of bids made 
on similar types of projects, he is able to obtain estimates of the probability of being 

TABLE 9.1 DATA FOR EXAMPLE 9-1. CONSTRUCTION BIDDING 

Historical Profit Probability of 
Project Type of Bid ($) Profit 

High 800.000 0.2 

High 400.000 0.5 

High -200.000 0.3 

Dam 

Low 500.000 0.3 

Low 100,000 0.5 

Low -400.000 0.2 

High 2,000,000 0.3 

High 1.000,000 0.6 

High -400,000 0.1 

Highway 

Low 800.000 0.2 
Low 400,000 0.6 
Low -400,000 0.2 
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awarded the contract. For dam projects similar to th . . . 
l b.d . e one m question. he determines that when a ow 1 was submitted, he received the c 

1 4 
f . 

· 0 h on ract out o 1 (J times and 
lost 1t 6of10. n t e other hand, when he submitted '"hath .·d d h h. h 

• • n e cons1 ere to ca 1g 
bid, he received the contract award only 2 out of 10 times, nd I .

1 
·
1 8 

f 
1 

fJ F. · h. 
l . . . Cl OS I . 0 . or JO s 

similar to the ughway project, he finds that when low bids were submitted. he was 
awarded the contract 2 out of 10 times and Jost it 8 of IO. Convcrsclv. for high hids. 
the same figures were 1 of 10 awarded and 9 of JO Jost. ~ 

Also, profits or losses from the projects under consideration incur risk due to 
the unpredictable nature of weather. equipment breakdowns. labor strikes. and 
unknown project conditions such as the amount of rock encountered in excava
tions, subsoil strength, and so on. Moreover. estimated quantities of work items 
and estimated unit prices often do not match those found when the project is ac
tually built. Again, using records of past experience on similar types of projects. 
the contractor is able to make estimates of his profit under high and low bid con
ditions if awarded the contract as shown in Table 9.1 (figures include cost of draw
ing up the bid). Note how profits vary for a given level of bid. Costs incurred in 
drawing up bids on the projects are $50,000 and $100,000 for the dam and highway 
projects, respectively. . 

The problem can be summarized graphically in a decisi~n. tree as shown m 
Figure 9.1. A decision tree depicts the choices open to ~ de~1s10~ maker at ~ny 
point in time, the chance events that might res~lt later m time if these. ~ho1ces 
were actually made, and the final payoff from havmg traveled along a spec1f1c path. 

ls20,oool ls3oo.oooj 
0.10 $800.000 

win 0.20 0.50 400.000 
·~ Iosco o.10 I s20,ooo I ""'., ·80 

-$50.000 -200.000 

1s120.ooo] 
o.3o 500.000 

lo,,... 
win 0.40 0.50 100.000 

~lb-~ Iosco 0.20 I $26,oool I s1s.000J ·60 -$50.000 -400.000 

No bid $0 
~1.160.00~ 

2.000.000 
[$26.000] 

0.60 win 0.10 1.000.000 

Highway ·~ 
"' 

0.10 
-$100.000 -400.000 

800.000 
lo,,_, 

400.000 

-$100.000 -400.000 

Figure 9.1 
9-1 ·construction bidding. 

Decision tree for Example · 
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A decision tree has been described as depicting the moves in a game of chance 
wherein the two players arc the decision maker and "ch.a~ce." In drawing the tree: 
circles indicate chance nodes and squares represent dec1S1on nodes. 

For example. at time zero. the contractor could choose to bid on either the 
dam project. the highway project or neither. If a project is chosen, the contractor 
then must choose whether it is best to bid high or low. If a high or low bid is actual
ly made. then chance will determine whether the contractor wins or loses the bid. If 
the bid is lost, the game is over. and the contractor has lost the cost of drawing up 
the bid. On the other hand. if the bid is won. the game can continue, with chance 
then deciding the level of profit obtained from actually completing the project. The 
payoff from taking a specific path is shown at the "top'' of the tree. 

Having constructed the tree from the bottom (time zero) to the top, the analy
sis can then proceed in the opposite direction-from the top of the tree to the bot
tom. ll1c expected value of profit can be computed at the series of chance nodes at 
the top of the tree. These nodes represent the point in time when the contractor has 
won the bid, but has not yet started the actual construction process. The decision 
maker can evaluate his or her financial position assuming that the game could be 
played a lar~c 1111mbcr of times. If this were the case. the expected value would repre
sent the long-run average profit to be expected from being at this point in time. The 
numbers recorded in the boxes next to the chance nodes represent expected values. 

111e decision maker is now ready to step down one level in the tree. This lower 
level is also a series of chance nodes. wherein the bid is either won or lost with the 
corresponding probabilities. Again. the expected value of being at this point in time 
can be found and recorded in the box next to the node (the calculation amounts to 
finding the expected value of expected values). 

111e next lower level in the tree corresponds to the decision maker's choice. A 
high or low bid can be made on either project. Naturally the contractor would 
choose the path that would result in the highest expected profit. This highest value is 
therefore recorded in the box at this level. Only one lower level remains (time zero), 
and it also corresponds to the decision maker's choice. Again, the choice is clear; 
choose the path yielding the highest expected profit, and record that profit at time 
zero. An expected profit of $26.000 results from choosing to bid high on the highway 
project. This is the contractor·s optimal decision and is indicated in the decision tree 
with double bars on the optimal action branches. 

Note that in any one "plat' of the game in Example 9-1, the contractor will not 
receive the expected profit amount. In fact, the payoffs actually received vary quite 
widely. Use of the expected value criterion weights the actual payoffs by their rela
tive frequency of occurrence, producing a decision that is best in the long-run, aver
age sense. In the next section, the payoffs are considered from a short-run viewpoint. 

9.8.2 Utility Considerations 

In the construction bidding problem, profits were expressed in dollar terms at the 
top of the tree~ and expected values were calculated. The assumption in taking an 
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expected value in this way is that a linear rclati h. . 

th Th ons 1P exists hctwecn profit and true value, or wor . ere are cases where this assum f · . 
mple, if the contractor were on the b · k f b P ion 15 not valid, however. For cx-

a rm 0 ankruptcy. and a payment of $5<.IO 000 
had to be made to a bank to avoid foreclosure anv pr f"t 

1 
h h. · · · 

I. I . · · 1 o 1 ess t an t 1s amount would have very 1tt e value. A lmcar relationship would t b · 
l · t' no e representative of the rea situa ton. 

. . There .are many other cases where it would be more appropriate to derive a 
uhhty funcho~ ~o repre~ent the true value of .the payoffs in one particular play of 
the ga~e. A ullhty function .t~ansforms dollars Into units more representative of psy
chol~g1cal value. to the dec1s1on maker. Figure 9.2a illustrates the shape of a utility 
function that might represent someone who is sensitive to a debt. D. Figure 9.2b 
might represent someone intent on becoming rich; small payoffs are not seen as be
ing very valuable, while large payoffs are viewed much more highly. On the other 
hand, Figure 9.2c represents a situation of declining marginal utility of money to the 
decision maker as more and more needs are met. 

Procedures to develop utility functions are beyond the scope of this text. but 
are available elsewhere (de Neufville, 1990; Schlaifer, 1969; Von Neumann and Mor
genstern, 1944). It wiJI be assumed in this chapter that either dollar or utility units 
are used at the top of the tree to represent payoffs. The expected value criterion can 
then be used to derive a decision appropriate in either the long run or short run. 

9.B.3 Summary 

A decision tree serves as a convenient way to organize the analysis of st~ged. p~ob
abilistic engineering problems. The tree is bui_lt from the bottom up. startm~ at t1~~ 
zero and proceeding sequentially through time, as would the actual engmeenne 
problem. Payoffs, either in dollar or utility terms, are shown at the top of the tree 

Utility 

(a) 

(b) 

Utility 

(c) 

D 
Dollars 

Dollars 

Dollars Alternative utility functions for indiFigure 9.2 
vi duals. 
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and represent all financial transactions occurring along the specifi~ path to the top. 
most branch. Analysis of the tree proceeds from the top down, takmg expected vaf. 
ucs at chance nodes and optimal decisions at decision nodes. When the origin is 
reached, the optimal decision is known. 

In many situations, the engineer has the option of refining estimates of the 
probability of certain outcomes by conducting experi.mental tests. TI1is option ex
pands the decision tree and complicates the calculat1on of relevant probabilities. 
Both these aspects are discussed in the next section. 

9.C GENERAL DECISION TREE ANALYSIS: EXPERIMENTATION 

9.C.1 Problem Setting 

For most civil and environmental engineering problems. it is possible to perform 
some type of experimental test to find out more about the actual "state of nature." 
For example. in addition to known geologic conditions. more information about the 
soil strength for a building foundation can be found by taking core samples and 
testing these in a laboratory. However. it must also be recognized that any test has 
some degree of error associated with it: samples cannot be taken everywhere, the 
number of tests run in the laboratory is usually small, and the tests themselves are 
imperf ect.1lrns. even after the test is run~ the state of nature is not known with cer
tainty. Nevertheless. the test results do serve to change and improve the estimates 
of the probabilities of finding the true soil strength (state of nature) within certain 
ranges. Is the experimental test worth the extra cost involved, or should the design 
be based on the probability of finding different states of nature as estimated with
out the experiments? A decision tree can be constructed to answer this question. 

9.C.2 General Structure Decision Tree 

Define: 

ei = experiment type i; 

Zj = experimental result j; 

ai = action i; 

8i = state of nature i; and 

u(ei, Zj, ai, Oi) = utility, or payoff. 

~he sequence o~ events in the general engineering decision problem is (1) selec~ 
tlon of an. expenment, ei, to perform; (2) observation of an experimental result, Zj, 

(3) sel~ct1on of a cer.tain action, ai; ( 4) observation of a particular true state of na
ture, Oi, and (5) receipt of a payoff or utility u( e· z. a. fJ.) depending on the path 
followed. ' '' '' '' / ' 
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Z1 o, 
()2 

.;::_, ll1 a2 

' ' 

Choices C· I Zj a, (}, 

Probability P.Jt-
law 

... , i f>i,, . 
l'J Fi~urc 9.J Gcnl:ral r..lructur~ of a 

decision tr~c: expi..:riment;itinn. 

Figure 9.3 illustrates the general structure dccisi'on tree Th d · · k 
h l 

. . e cc1s1on ma ·er 
c ooses t 1e type of expenment to perform chance dct JI • h · . . , ermines t e experimental 
outcome, the dec1s1~n maker selects an action, and chance determines the state of 
n.ature. Together, this sequence results in the final payoff. Probabilities must be as
signed to the chance nodes. 

Define: 

P;)e; = marginal (prior) probability of an experimental outcome z· given that 
• J ..... 

expenment e; has been selected; and 

P8,lzj = conditional (posterior) probability of having a state of nature fJi 

given that an experimental result Zj has been observed. 

Use of the term prior implies that a probability estimate is made before any ex
perimentation takes place. A posterior probability, on the other hand. is one cal
culated after having seen an experimental result. The location of these 
probabilities in the general structure decision tree is indicated in Figure 9.3. and 
their calculation will be described in Section 9.C.4. Assuming for now that they 
are known, the solution process for the general structure decision tree can be 

specified. 

9.C.3 Solution Process 

The general structure tree can be treated as a game of chance that is played a large 

number of times. The solution procedure is 

Step 1: At the top of the tree, calculate the value of being at ea~h. cha;c(e nod~ b).; 
taking the expected value of the payoff using the condhltlohna posdte~wr 

h 1 branch from eac c ance no e. 
probabilities of the states of nature t a 

. h d cision nodes. and record for each de-
Step 2: Drop down one level m the tree to t e fef It' 0 from selection of the best 

. . d h . 1 xpected payo resu me c1s1on no et e optIIDa e . b h from each decision node: 
action possible from all the actions that ranc 
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Step 3: 

Step 4: 

Step 5: 
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Drop down one level in the tree to the chance nodes representing the ex
perimental results. and calculate the value of being at each chance node hv 
taking the expected value of the payoff using the marginal (prior) probabii
ities of the experimental results that branch from each chance node; 

Drop down one level to the decision node at the origin of the tree, and 
record the optimal expected payoff resulting from selection of the best ac
tion possible from all the actions that branch from the decision node. This is 
the overall optimal expected payoff. and the associated action is the overall 
optimal course of action. Then: 

(Implementation) Conduct the optimal experiment, observe the actual 

experimental outcome. and based on this outcome~ implement the opti
mal design action from the possible design actions at the corresponding 
decision node, observe the true state of nature. and receive the associat

ed payoff. 

Just as with the simple decision tree. the general structure decision tree is 
constructed from the bottom up. analyzed from the lop down, and finally imple
mented from the bottom up. Note that the general structure decision tree can be 
combined with a simple decision tree at the origin to represent the options of ex
perimentation or direct action. Another important point is that the branches of the 
decision tree proceed forward in time exactly as would steps in the real decision 
process. Keeping this time sequence in mind helps greatly when drawing the tree 
for actual problems. 

1l1e solution process is one of backward induction~ sometimes referred to as 
m·eraging ollt (at chance junctures) and folding back (at decision junctures) 
(Raiffa. 1968. p. 23). As such. it resembles the backward induction approach of 
dynamic programming (see Chapter 13). wherein once the optimal policy cost is 
known. the calculation steps must be retraced lo find the actual decisions yielding 
that cost. 

9.C.4 Probability Calculations 

Joint Probabilities. Consider the situation wherein, historically, experimental 
tests have been conducted and engineering designs have been implemented (facilities 
constructed). For example. a core sample has been tested for soil strength, a founda
tion design has been selected~ and the structure has been built. The result is a paired 
observation of actual soil strength, (}i· as demonstrated by performance of the struc
ture. and predicted soil strength. z1. as indicated by the experimental result. If a large 
number of projects are available in which the joint occurrence of 6; and z. have been 
observed. the relative frequency, or probability, of each pair can be calcul~ted as: 

(9.1) 
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where 

P0 - le = joint probability of o ·ind .. . 
, ... 1 ' , c • · occurnn · I 

experiment type i has been., f g simu taneou\ly. given that 
· per ormed: 

11;; = number of times that 8, has been oh . ·d _. 
'ti . d -serve s1multaneomlv WI 1 Z;, an . .; 

N = total number of observations. given hy 

N == L Lil;/' 
i i 

Table 9.2 provides example data and probability calculations for the soil strcnoth of 
a foundation. The total number of historical observations is v - !()() F 

0 

1 • • • 1 - • or cxamp c. 
on 24 occas1o~s ~he actual soil strength was found to be low. e

1
• when the experi

mental result md1cated a low strength, z1• 

However, there were also five occasions when the experiment predicted a 
medium soil strength, Z2, but the actual strength was found to be low. fl . On one oc
casion, the experiment indicated a high soil strength when the actual w~s low. Bv ex
amining Table 9.2, it can be seen that the experimental results are highly correiated 
with actual strength, but some error still remains. The experimental test also seems 
to be biased toward low strength predictions. Triaxial soil tests exhibit this tendency 
due to disturbance of the soil in obtaining the sample. 

Prior probabilities. Along with the joint probabilities. two other types of 
probabilities can be calculated directly in Table 9.2. By adding across a row. the rel
ative frequency of seeing a particular state of nature can be found. Historically, a 
low soil strenoth has been observed 30 times out of 100. For the current project. and 

b 

prior to any experimentation, the probability of having a low soil strength can be es-
timated as 0.30. This is the prior (marginal) probability of seeing a stat~ ?f nature_01. 

Similarly, before an experiment is run, an estimate ?f th~ probab1hty of seemg 
a particular experimental result can be made using the h1ston~~l data. For exa~pl~. 
by summing down the z

1 
column, the prior (marginal) probab1hty of Z1occumng 15 

TABLE 9.2 CALCULATION OF JOINT AND MARGINAL PROBABILITIES FOR FOUNDATION 

SOIL STRENGTH (N = 100) 

Experimental Results 
Marginal 

Probability of 

=~(high) 
the State of 

State of Nature z, (low) z2 (medium) Nature 

S/100 - 0.05 11100 0.01 30/100 0.30 

e, (low) 24/100 = 0.24 ~0/100 = OAO 
201100 = 0.20 5/100 = 0.05 

82 (medium) 15/100 = 0.15 30/100 = 0.30 
15/100 = 0.15 101100 = 0.10 

OJ (high) 51100 = 0.05 

Marginal probability 40/100 = OAO 
16/100 = 0.16 100/100 = 1.U 

of the experimental 44/100 = 0.44 

result 
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44 times out of 100, or 0.44. Prior probabilities can thus be found as the sum of the 
joint probabilities along a row or column. 

Posterior probabilities. After an experimental result has been observed, a 
revised and improved estimate can be made of the probability of seeing a particu
lar state of naturc.111is conditional probability can be found using basic probability 
relationships. 

Let x and y be events with probabilities P{x} and P{y}. 1l1e conditional 
probabilities associated with these events are P{xly} and P{ylx}. It is well known 
that the probability that both events occur is given by 

Rearranging. 

P{x, y} = P{xly} P{y}. 

P{x.y} 
P{xly} = P{y} . 

Interpreting (x, y) as (8. z). the desired result is obtained: 

Po, .. :)c, P8,. ::, 
Po,I::. = y- = y· 

.. ,k, ... , 

(9.2) 

(9.3) 

(9.4) 

Equation 9.4 is a simplified statement of Bayes· theorem, which is fundamental to 
bayesian decision theory and can be used to calculate the posterior probability of 
the state of nature. O;. given the experimental result, Zj· 

Based on the joint and marginal probabilities in Table 9.2, posterior probabili
ties can be calculated as shown in Table 9.3. As a check on the calculations, note that 
for a given experimental outcome~ zi. the posterior probabilities of the different 
states of nature must sum to one. Also, as a memory aid, note that the conditional 
probability for a row ( O;) based on a column ( Zj) is given by the joint probability for 
the row-column intersection divided by the column ( Zj) marginal probability. The 
data in Tables 9.2 and 9.3 are utilized in Example 9.2: foundation design. 

TABLE 9.3 CALCULATION OF POSTERIOR PROBABILITIES FOR FOUNDATION SOIL 
STRENGTH (BASED ON DATA IN TABLE 9.2) 

P. = 0.05 = 
1111:: 0.40 0.125 

P. I = 0.20 = 
tJ:.:: 0.40 0.500 

0.05 
Po:· = - = 0.114 •-: 0.44 

0.15 
I'u,I:: = 0.40 = 0.375 

Sum: 1.0 1.0 

0.01 
P I· = - = 0.063 01 ~-' 0.16 

0.05 
Pol· = - = 0.313 

:-i 0.16 

0.10 5 
P.1JJ· = - = 0.62 

•I 0.16 

1.0 
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9.C.5 Example 9-2: Foundation Design 

An engineer must decide between spread f · . 
support each column of a building The s .1 ootmgs 0~ pile~ for the foundation to 

. o1 strength is not k f . 
could be low (Oi), medium (e2), or high (O ) S . nown or certain. hut 
a tot~I cost of $150:000, while piles cost $2~o:oo~~~~ foi~~~ngs .for th.c ~u~ld.i_ng ~~vc 
that 1f the actual sml strength turns out to be low d·p - arc. considered saft.: m 
· d f · ·no amagc will result to the build-
ing. The sprea ootmgs are less expensive but would . I · . . ·r h ·1 . h · rcsu t m some building dam-
age 1 · t e s01 strcngt ts low or medium and thcv wo Id h h · 

· ( d d'ff" I · . ' 1 u ave to c replaced with 
ptles un er 1 1cu t construction conditions) if the so·1 t h · 

1 
. 

'd d . r-r bl 9 4 - I s rengt is O'-". Data are prov1 e m 1 a e . . 

For $10,000, field studies and a triaxial strength test can be condu t d A · . h · · · d c e . ssume 
that t e JOmt, pnor, an posterior probabilities given in Tables 9.2 and 9.3 appl . 1 
this site. Determine the optimal strategy and cost. ) 

0 

Solution. The decision tree for this analysis is shown in Figure 9.4, along with 
all payoffs, probabilities, and expected values. The optimal action at time zero is to use 
pile foundations at an expected cost of $250,000. Experimentation is not economicallv 
justified in this case. If experimentation were conducted, the expected overall co;t 
would be $257,618. Note that this cost is less than the simple sum of the optimal cost 
without experimentation of $250,000 for pile foundations and $10.000 for the test. Per
forming the test allows more accurate future decisions based on posterior probabilities. 
For example, if the test were conducted and resulted in a high strength experimental re
sult, z3, the engineer would select the spread footing at an expected cost of $245.110. 
which is less than the cost of choosing pile foundations without experimentation. How
ever, because the probability of such an experimental outcome (0.16) is low. the exper
imental test is not economically justified, as shown by its $257.618 overall expected 
cost. Conclusion: Use pile foundations at an expected cost of $250JJOO. 

9.C.6 Expected Monetary Value of Information 

As seen in Example 9-2, information gained from an experiment~l .test. in the form 
. . . . f t Hows better dec1S1ons to be made of revised probabilities of the states o na ure, a . 

. . 1 le the experimental test recaptures 
subsequently. However, in this parttcu ar examp ' . The $2.382 is 
only $2,382 [ = ( $250,000 + $10,000) - $257,618] of its $10,000 cost. 

TABLE 9 4 COST DATA FOR EXAMPLE 9-2· FOUNDATION DESIGN 

Piles 
Spread footings 

Replacement 
Replacement Foundation Damage 

State of Foundation Damage Cost Cost Cost 

Nature Cost Cost Cost 
-

$1.000.000 $250,000 
81 $150,000 $100,000 

$250.000 - -
$50,000 -02 $150,000 $250.000 - -

03 $150,000 -
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Fi~ure 9.4 Decision tree for example: foundation design. 

o, \)_;~c; l.260,()()() 

t--:::-=---.....;;:o...:.=.3:...:..41 210.000 
O.J /4 

160.000 

\).Si\'; 2 60,000 

260.000 

o.h1 
260.000 

j 322.5001 0, o.\is 1.260.000 

~--'0-'-·5.......;00 210.000 

0.375 
160.000 

\).\is 260,000 o, 
~-~0-·5-00 260,000 

0.375 
260,000 

\)~63 1,260,000 I 245,1101 

~__,,_~o_.3_13 210,000 

o.625 
160,000 

e, \)~63 260,000 

82 0.313 260,000 
~1 

0.625 260,000 

the expected monetary value of information (EMVI) derived from the experimen~, 
or its expected monetary benefit. The benefit-cost ratio for the experiment 15 

$2,382/$10.000 = 0.2382. or 0.24, showing it not to be worthwhile. In many other 
situations, the EMVI will more than cover the cost of the experiment, making ex
perimentation advisable. 

9.C. 7 Expected Monetary Value of Perfect Information 

Assume that there existed an experiment or source of information that would pre
dict with certainty what the true state of nature will be. How much would a decision 
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maker be willing to pay to obtain this perfect information? In Example 9-2. this 
amoun~ can ?e calculated. from the decision tree shown in Figure 9.5. If perfect in
formation said that a particular state existed, then the foundation option that mini
mizes cost for that state would be chosen as shown in the decision tree. However. 
the decision maker has formed a judgment (prior probabilities) as to the relative 
frequency with which the various states will occur when using the perfect informa
tion experiment. The prior probabilities are applied to yield an expected value of 
cost under perfect information of $200,000, which is $50,000 less than that associat
ed with the optimal action without any experimentation. The expected monetary val
ue of perfect information (EMVPI) is therefore $50,000. Note that the decision 
maker surely will not pay more than the EMVPI for any real experiment because it 
would yield less than perfect information. Any experiment that costs more than this 
amount therefore could be immediately eliminated from consideration. From this 
perspec~ive, it was' worthwhile considering the $10,000 experiment in Example 9-2. 
even though it was ultimately rejected. 

9.C.8 Summary 

Th . . . b h dl db expandino the concept of the sim-e option of expenmentation can e an e Y b . . . .. 
. . h 1 l t' of cond1t1onal probab1ht1es 

pie decision tree and by mtroducmg t e ca cu a ton . d d 
.1. · R lts from analysis of the expan e 

based upon J. oint and marginal probab11ttes. esu f · f t. 
t d monetary value o m orma 10n 

decision tree can be used to compute the expec e 
gained from experimentation. 

S.D DECISION MAKING IN THE ABSENCE OF PROBABILITIES 

9.D.1 Introduction 
. . be so unfamiliar with the problem.set-

In certain situations, the dec1s1on maker ~a~ to assign probabilities to the vanous 
ting that he or she is either unable or unwilhng "" 
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possible true states of nature. An example might be an engineer for a large interna
tional consulting firm who has just been put in charge of a project in a country in 
which he has had no prior experience. The engineer has just learned that an impor
tant construction permit must be obtained from the country's ministry of public 
works. l11e engineer may be entirely unable or unwilling to assign probabilities to 
the possible outcomes of a permit application (approved in one month, two months, 
etc .. disapproved in one month. two months. etc). However, other project decisions 
must be made by the engineer despite the complete uncertainty surrounding the 
outcome of the permit application. Useful decision criteria have been proposed to 
aid in making decisions in the absence of probabilities, but it must be said that all of 
the proposals have serious theoretical shortcomings, as illustrated by Luce and Raiffa 
(1957) and Milnor (1951 ). 

9.D.2 Dominance 

Consider the payoff or utility matrix in Table 9.5. The numbers represent either the 
savings or utility to be gained by the decision maker under different actions and 
states of nature. The matrix should first be inspected to see if any action is dominat
ed by another. If so. the dominated action can be eliminated from further consider
ation. An action is subject to dominance if another action can be found that is 
preferable under some states of nature and at least equal under all others. Making 
pairwise comparisons. it can be seen that action a4 is dominated by action a2. Action 
a4 can therefore be eliminated from the matrix. Note that actions a 1 and a3 do not 
dominate a4 since if state 04 occurred. action a4 would be preferable. The reduced 
matrix in Table 9.5 is now considered further. 

9.D.3 Laplace Criterion 

The Laplace criterion is based on the ''principle of insufficient reason," first set forth 
by Jacob Bernoulli (1654-1705). The criterion states that if one is truly completely 
ignorant of the relative likelihood of the different states of nature, then they should 
all be treated as equally likely, being assigned the probability l/n, where n is the 

TABLE 9.5 PAYOFF OR UTILITY MATRIX REDUCED BY DOMINANCE 

81 82 8_, 84 01 8'2 81 84 

a1 6 3 5 2 ll1 6 3 5 2 

a:_ 3 9 0 5 a2 3 9 0 5 

a1 4 7 8 a1 4 7 8 

ll4 3 2 0 3 

Initial Reduced 
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number of states. Doing so transform th 

· · b s e problem to f · value cntenon can e used as before A 1. d one o nsk, and the expected 
criterion ranks the actions as · PP ie to the reduced matrix of Table 9.5, the 

a 3 ( 5. 00) > a 2 ( 4 .25) > a I ( 4. 00) 

where " > " can be read as "is pref erred to " d . 
expected payoffs. Action a3 would be taken. ' an numbers m parentheses are the 

9.0.4 Maximin Criterion 

The decision maker could take the pessimistic view · t th ·f · . . 
h . pom at, 1 a particular action 1s 

chosen, t e worst possible state of nature will occur u d th' · · . . . . n er is assumptJon. 1t would 
be best to choose that action which maximizes the mini.mu ff 

11 
· . . . . . . . m payo among a possi-

ble actions. Tius 1s the max1mm cntenon and results 1·n the f II · k' f h . o owmg ran mg or t e 
actions: 

where numbers in parentheses represent the minimum payoff for each action. Ac
tion a 1 would be taken. 

9.0.5 Maximax Criterion 

Alternatively, the decision maker could take the optimistic viewpoint that. if a par
ticular action is chosen, the best possible state of nature would occur. Under this as
sumption, it would be best to choose that action which maximizes the maximum 
payoff among all possible actions. This is the maximax criterion, and results in the 
following ranking: 

where numbers in parentheses represent the maxim~m pay~ff ~or each a~tion. Ac
tion a2 would be taken. Both the maximin and max1max cntena are attributed to 

von Neumann (1944). 

9.D.6 Hurwicz Criterion 

. . l te pessimist or optimist. The Hur-
It is unlikely that the decision maker is a comp e . . k t lie anvwhere be-
wicz criterion (Hurwicz 195la, b) allows the decision ma e~ 0 

t' • 
tween these two extrem~s by computing an a-index for each a terna ive as 

a-index of a; = aM; + ( 1 - a )m; 

. . . payoff or utility for action ai over 
where M; is the maximum and m; is the romimu~n the maximum pavoff is 6. and 
all possible states of nature. For example, for action ai. ' . 
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the minimum is 2. The equation for the a-index becomes 

a-index of a 1 = a(6) + (1 - a)(2) = 2 + 4a. 

Figure 9.6 is a plot of the a-index for each action as a is varied from zero (com
plete pessimism) to one (complete optimism). As ~n~icated in the figure, the ranking 
of the actions varies with a, the degree of optimism chosen. However, the plot 
should help the decision maker by indicating the sensitivity of the rankings to a. For 
example, any degree of optimism above a = 0.50 would result in the ranking 
a2 > a3 > a 1. For a = 0.0, the Hurwicz c1iterion is the same as the maximin criterion, 
and for a = 1.0 it is the maximax criterion. 

9.D.7 Minimax Regret Criterion 

Often, decision makers have taken a certain action only to regret it later when the 
true state of nature is known; the payoff was not as great as it could have been if a 
different action had been taken. The difference between what could have been ob
tained and what was actually obtained has been defined as the "regret." For exam
ple, in Table 9.5 if action a3 had been taken only to find out that 81 was the true state 
of nature. a payoff of 4 would have been received. The decision maker might regret 
that he had not chosen ai, where he would have received the maximum payoff in 
the 01 column of 6. The degree of his "regret" for taking a3 is the difference, or 2. De
cision makers may well decide to take that action which will minimize the maximum 
regret that they may later experience. This is the minimax regret criterion, attributed 
to Savage (1951). 

The first step in the method is to transform the payoff or utility matrix to a "re
gret matrix:~ This is accomplished by subtracting all of the elements in a column of 
the payoff matrix from the maximum payoff in that column. This is done for each 
column. Table 9.6 is the regret matrix associated with the reduced payoff matrix of 

10 
9 

8 
;.: 7 
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e 4 
3 
2 

Figure 9.6 Hurwicz criterion. 
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TABLE 9.6 

REGRET MATRIX FOR TABLE 9.5 

81 82 OJ o~ Maximum Rcgrc-t -
a1 0 6 3 3 6 
a2 3 0 8 0 8 
a3 2 2 0 4 4 

Table 9.5. The maximum regret possible fro t k' . . 
column. The minimax regret criterion seek~ t: ~~;i e~ch action is .shown in the last 
would rank the actions as mize the maximum regret and 

a3(4) > a1(6) > a2(8) 

where the numbers in parentheses represent the ma · · 
ing the action. Action a3 would be taken. x1mum regret possible from tak-

9.0.8 Summary 

y~riou.s cri~e~ia ha:e been proposed for decision making in the absence of probabil-
1~1es. Smee It IS unlikely that they will result in the same recommendation. the deci
sion maker must study the results of all the approaches and decide on the action 
with which he or she will be most comfortable in a given situation. 

CHAPTER SUMMARY 

One of the primary advantages of decision theory is the structure that it provides 
in the form of a decision tree. Decisions, experimental outcomes. states of nature. 
and payoffs are organized for analysis. Often, construction of the tree itself is 
enough to improve the decision process, even if a complete probability analysis is 
not carried out. Assignment of probabilities can be done through subj~:tive (.ex
pert) judgment or analysis of historical experimental results. Als~: ~eclSlon cnte
ria have been developed to aid in the rare event that probab1ht1es cannot be 

assigned. 

EXERCISES 

9.1. 
. . . head for her retirement. She has saved 

Personal finance. A young engineer is planmng a er· 1 a corporate bond with a 10-
$10,000 and has three investment choices ope~ tohh 

1
· h(e)has been following.and (3) a 

. k · corporation t a s ' . year matunty, (2) common stoc ma d nual rates of return and their as-
stock mutual fund. Her estimates .of the comp~u; a~ each case she has decided that 
sociated probabilities are shown m the table e ow. 

0 

the investment will not be touched for 10 years. 
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Investment Rate of Return (%) Probability 

Corporate bond 7 1.0 

Corporate stock 15 0.4 

5 0.3 

-5 0.2 

-15 0.1 

Mutual fund 10 0.3 

5 0.4 

-5 0.3 

(a) Determine the best investment strategy. Draw the complete decision tree, showing 
all probabilities. payoffs. expected values. and so on. What is the expected return on 
the optimal investment? 

(b) The engineer learns that management is about to change in her closely watched in
dividual corporation. The new management is known to favor larger dividend pay
outs to holders of common stock. If this occurs, it will not only increase the annual 
rate of return on the stock, but will also make the stock more attractive to in
vestors, driving up the price in the long run, further increasing the compound rate 
of return. The engineer revises her probability estimates for the corporate stock in
vestment as shown in the table below. Draw the complete decision tree for this new 
situation and determine the optimal strategy and associated expected annual rate 
of return. 

Dividend 
Probability of Achieving the Rate of Return Shown 

Action Probability 15% 5% -5% -15% 

Raise 0.7 0.50 0.35 0.10 0.05 

Same 0.2 0.40 0.30 0.20 0.10 

Lower 0.1 0.30 0.20 0.30 0.20 

9.2. Car purchase. A student just entering college needs a used car so that he can earn part 
of his college expenses. He has narrowed it down to two choices-a "cheap" used car or 
a "good'~ used car-and he estimates the performance probabilities for both as shown 
in the table. If he buys the cheap car and it is "totaled" through excessive repair costs, 
he will not buy another cheap car. Rather, he will move up to a good used car like the 
one he is currently considering. Similarly, if he buys a good used car and it is totaled 
through excessive repair costs, he will not buy another "good" car, but will move doW?, 
to a "cheap" car like the one currently under consideration. "Repairs above normal 
are $300 per year, while ''major repairs" are $600 per year for each of the student's four 
years of college. Note that normal repair costs represent a zero baseline. 

Assume a salvage value of $500 for each car if totaled and no more than one 
such "total disaster" occurring. Further assume that the replacement cost is simply the 
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Normal 
Repairs 

Car Cost($) Repairs 
Above Major 
Normal Repairs .. Totaled" 

Cheap 4000 0.20 
Good 

0.30 0.30 
6000 0.50 

0.20 
0.30 0.10 0.10 

purchase cost of the next used . h . car, t at 1s negl f 
placement car. ' ect uture expected costs for the rc-

Which car should be purchased? Wh t . h 
the student expects to be in colle . f ar· is t e opt~mal, four-year expected cost? If 
h d? Wh · ge or 1ve vears mstead f f · c ange . at IS the new expected cost? . o our. is the decision 

9.3. Construction bidding with utilit~ Use II th d 
in Example 9-1, but substitute uti.lity fo: th e ata for the construction bidding problem 
utility function for the contractor i·s pr "de dm?nehtar~ payoffs at the top of the tree. The 

ov1 e m t e f 1gure. 

-3.0 -2.0 -1.0 2.0 J.O 

-·.i Profit (S million) 

-6 

Draw the decision tree and show all computations necessary to determine the 
optimal bidding strategy. What is the best strategy and associated expected utilitv? Is 
this different from the strategy found in Example 9-1? If so, why? · 

9.4. Rain delays in pouring concrete. A contractor is planning to pour concrete on Monday 
morning, but he has heard a weather forecast that rain is expected. The probabilities of 
rain are 0.8 on Monday, 0.6 on Tuesday, 0.3 on Wednesday, and 0.1 on Thursday and 
each succeeding day for five days. If it rains on the day that concrete is poured. there 
will be an immediate $10,000 damage cost and a delay of five days in the construction 
schedule. For every day of delay, $4000 is lost. The delay cost applies even if it is the 
contractor who decides to delay the pour. . . 

Determine on which day the concrete should be poured. What 1s the associated 

expected cost? 
9·5• Wastewater treatment plant expansion. A suburb with a p~pul.ation .0 f 20.00? is begin

ning to undergo rapid housing development, and is expenencmg failur_e of its cu~rent 
. . . . 1 t The suburb has decided to bmld a 
md1v1dual household septic tank d1sposa sys em. f h 1• t d 
sewage treatment plant to meet its needs for the next 20 years. Thie ~ost 0 1 de~~ ·u~-

. . d' ti lated to the popu at1on serve . s -
pends on the hydraulic flow, which is irec Y re . 

fr 'f.I as shown below. 
urb estimates its population 20 years om no\ 
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Population Probability 

20,000 ::s population ::s 25.000 0.30 

25,000 ::s population ::s 30.000 0.30 

30.000 ::s population ::s 35,000 0.40 

Estimates are obtained on the cost of a wastewater treatment plant built today to 
meet the needs of three possible population levels as shown below: 

Plant Capacity Cost 
(persons) ($) 

25,000 1.200.000 

30.000 1.400.000 

35.000 1.550,000 

It has been suggested. however. that money might be saved by building to a small 
capacity now and expanding the plant after ten years if population begins to exceed ca
pacity at that time. Cost estimates, expressed in present value terms, are obtained for 
upgrading the size of the plant ten years from now. These are provided in a third table: 

Capacity 
(persons) 

25.000 

25.000 

30.000 

Upgraded 
Capacity 
(persons) 

30.000 

35,000 

35,000 

Present 
Worth Cost Probability 

($) 

190,000 0.20 

230,000 0.50 

270.000 0.30 

320,000 0.25 
390,000 0.55 
410,000 0.20 

130,000 0.30 
190,000 0.50 
210,000 0.20 

Determine the size plant that the suburb should build today. Draw and label the 
decision tree and state the optimal expected cost. 

9.6. Temporary bridge. A water resources engineer has been called in to help with the de
sign of a temporary bridge for a construction project. The bridge will be used for o~e 
year during construction and then removed. The two available options are shown in 
the figure below. One is an earth fill with a pipe culvert of undetermined diameter. the 
other is a wooden truss bridge. The cost for the wooden truss structure (including d~
molition) is $65.000. The cost of the earth-fill bridge (including demolition) is given ~n 
the table as a function of culvert diameter. There are additional costs for the earth-fill 
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bridge associated with overtopping by fl d oo water unable t b 
culvert. They are (1) reconstruction cost of . d . . ~ e passed through the pipe 
by overtopping and (2) damage costs do pipte an ~ill if this type of bridge is dcstroved 

wns ream 1f the th fll b · · · 
Both types of costs are shown in the following table: ear - 1 ndge 1s destroyed. 

Diameter of Cost of Earth-fill Reconstruction Cost if 
Pipe Culvert Bridge Pipe and Fill Destroyed 

Damage Downstream if 

(feet) ($) 
Pipe and Fill Destroyed 

($) (SJ 

4 20,000 10.000 40.000 
6 25,000 15.000 40,000 
8 30,000 20.000 40.000 

10 40,000 25,000 50.000 
12 60,000 30,000 50.000 

It is assumed that the earth-fill bridge will not be overtopped more than once in 
the year and that the wooden bridge will not be damaged regardless of the flood flow 
level for the one year period. 

If the earth-fill bridge is overtopped, it will not always be destroyed. There is a 
0.20 probability that it will survive and a 0.8 probability that it will be destroyed. The 
project engineer has developed flood flow and probability relationships shown in the 
following table for annual peak flows. 

Pipe Diameter Allowable Flow. Q Probability That 

(ft) (cfs x 1000) Qp.:ak < Q 

4 1.0 0.06 

6 1.8 0.20 

8 2.8 0.53 

10 4.l 0.82 

12 7.0 0.98 

. h the flow and probabilitv relationships. deter
Using these cost data alo~g wit . . the earth-filled bridge. state the optimal 

mine the best bridge type to bmld. If this ~s . ·
1
n feet e g 4 6 8). Draw the 

d ameter pipe. · · ·· · · 
pipe diameter to use (tot.he closest .eve\ 

1 
roblem noting on it all probabilities. termi-

decision tree associated with the engmeer t~e 
0 

timal strategy and associated expected 
nal payoffs, and expected values, and state p 
cost. . 1 s that it is virtually certain that 

I 9 2 the engmeer earn · · ·11 d bl 
Foundation redesign. In Examp e - · . . iles at the building site. This wi 0~ e 
gravel lenses will be encountered when dnvmg pk Example 9-2 under this assumpt10n. 

. $SOO 000 Rewor · · 
the cost of pile foundations to · · 
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Note that if the spread footings need to be replaced with piles. the replacement cost will 
increase by $250.000. 

(a) Draw the complete decision tree. 

(b) Detem1ine the optimal strategy and cost. 

(c) Calculate the EMVI and the benefit-cost ratio for the experiment. 

(d) Calculate the EMVPI. 

9.8. Cit~· water supply. The following problem is motivated by an oil well exploration prob
lem presented by Raiffa (1968). A water resources engineer is considering the econom
ic feasibility of a centralized well field source for supplying a small community in an 
arid region. Surface water supplies are available, but at such a distance that they would 
be expensive to secure.1l1e engineer must decide whether to construct (act a1) or not 
to construct (act a~) the well field. It is uncertain as to whether the well field will pro
vide (1) only an insignificant amount of groundwater (state 81 ), (2) an amount suffi
cient to supply part of the city's needs (state 82), or (3) an amount sufficient to 
completely supply the community needs (state 83). 

If a well water supply is found. part or all of the cost of the surface water source can 
be avoided. but the cost of the well field must be considered. The net returns (savings) un
der the different states of nature are calculated in the first table below. The cost for in
stalling the well field is $700.000. and the cost of the remote reservoir source is $2,700,000. 

Act 

State a1 a2 

01 $-700,000 0 

02 500,000 0 

0::. 2,000,000 0 

In addition, at a cost of $100,000, the engineer could drill a series of small test 
wells to determine whether they produced a low yield, a medium yield, or a high yield. 
Based upon historical records and experience, the engineer estimates the joint probabil
ities for the states of nature and the results of the test wells as shown in a second table: 

Test Well Yield 
Marginal 

Low Medium High Probability 
State Z1 Z2 Z3 of State 

Low yield. 0 1 0.30 0.15 0.05 0.50 

Medium yield, 02 0.09 0.12 0.09 0.30 

High yeld. e:. 0.02 0.08 0.10 0.20 
Marginal probability 

of test yeld 0.41 0.35 0.24 1.00 
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The engineer wants to know (1) h . 

wells) is not conducted, (2) the optimal str~t: o~timal ac~ion if experimentation (test 
best overall strategy, ( 4) the expected gy or experimentation and action. ( 3) the 
h b f. . monetary value of · f . 

t e ene it-cost ratio for the experime t d ( m ormat1on in this case, (5) 
n •an 6) the EMVPI 

Land purchase and 'limited site work' i · 
many federal, state, and local permits befor power pla~t. Private utilities must obtain 
. 1 ore constructing a co I f d 1 . 
mg pant. In most cases, the key permit is f h a - ire e ectnc generat-
ing the environmental impact statement fro~ t el federal agency responsible for writ
the probability of the permit being denied or 

0 2
e P adnt. As~ume that a utility estimates 

A f 
. . as . an of bemg approved 0 8 

s part o the dec1s1on-making process th tT . · · 
worthwhile purchasing land for the plant and 'if e u hi ity dmusht deter~1~e wh.ether it is 

II b f 
. ' pure ase · w ether lmwed sue work is 

to occur, a e ore the permit decision is made bv th f d I · 
h d · · II - e e era agency. If the land 1s pur-

e ase , it is usua y done anonymously through a real e t t · . . . s a e representative before anv 
permits are applied for, m order to avoid possibly having to buy at a premium from seli-
ers who may be reluctant to sell their land for a power plant and t ·d · d . . , o av01 emment o-
ma1_n. proceedmgs that mig?t be necessary later. If the land is purchased, a further 
dec1s1on must be made durmg the permitting process as to whether limited site work 

(clearing, grubbing, road work, etc.) is to be carried out, all at the utilitv's risk. The in
centive to begin site work is to advance any subsequent construction process. therebv 
saving interest costs and avoiding inflated future construction costs. The danger in bu\~
ing the land and doing site work is that if the permit is later denied. the land would ha~·e 
to be sold, usually at a loss to the utility. 

For a particular case, assume that the utility can immediately buy the necessary 
1000 acres of land for $1000 per acre, or that it could invest this money and have 
$1,200,000 accumulated at the time of the agency's decision on the permit (the latter 
amount is thus the opportunity cost of the land purchase to the utility). If the land were 
purchased, the utility could also clear the site for an additional $100.000. again ex
pressed as the opportunity cost at the time of the agency's permit decision. If the 
agency's decision were to deny the permit, the utility could sell the uncleared land for 
$1000 per acre (zero appreciation in real terms)! or the cleared land for $500 per acre. 
By clearing the land, the utility could advance its construction schedule and save 
$300 000 in interest and differential inflation costs if the permit were approved. 

' Alternatively, the utility could wait and purchase the land only if and when the 
agency approved the key permit. In this ca~e the la~d would cost $1400 per acr~. ~so. 
since the utility would have to negotiate directly with the landowners (or possibl) go 
through eminent domain proceedings), the construction schedule ~vould be d~l~yed. 
causing a loss of $300 000 in interest and inflation costs. In any case, if the permbit is .d~-

' h' l t cure the necessarv power. ut it is 
nied, the utility would have to do som~t .mg e se. 0 se · 
assumed that there is no cost or benefit m so domg. , . . 

. . . . h 1 d or not. and if purchased. should limited 
(a) Should the utlhty 1mmed1ately buy t e anh 1 te decision tree and determine 

site work' be carried out or not? Draw t e co~p e 
the optimal action and associated expected savmgs.( 0 3 0 4 tc ) and determine 

f "t denial by tenths to . . . . e . 
(b) Increase the probability o permi fi b me best not to clear the land. and 

the probability levels at which i~ wo~ld irst eco 
best not to buy the land immediatel). . . 

. t carry out a rain-sens1uve component 
Weather forecasts in construction •. A ~omp~~y is s~bcontractor (sub) to do the work at 3 

of a construction project. One option is to ire a 
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fixed cost. c. regardless of weather conditions. Another option is for the company to re t 
equipment and do the job itself. If it does the job itself and it does not rain during the co~. 
struction period. a savings of 25% will result. However. if it does rain. the company is not 
prepared for all the modifications that would be necessary. and the final cost would be 
twice that of hiring the work done. Since this situation comes up frequently, the company 
has analyzed weather data for the construction period as shown in the table below. It is 
now 30 days from the beginning of the construction period, and the company has four op
tions: (I) hire the subcontractor immediately. (2) rent (reserve) the equipment immedi
ately in order to do the work itself, (3) wait until the the seven-day weather report to 
decide. or ( 4) wait until the one-day weather report to decide. No equipment rental 
penalties arc incurred for waiting, but if the company waits until one day before the con
struction period. the cost of hiring a subcontractor will be 25 % higher. 

Joint Probabilities 

Seven-Day Forecast One-Day Forecast 

Actual Outcome Rain No rain Rain No rain 

Rain 0.08 0.12 0.12 0.08 

No rain 0.17 0.63 0.18 0.62 

(a) Are there biases in the weather forecast? If so, what are they? 

(b) Draw the complete decision tree for the contractor and determine the optimal ac
tion and associated cost (carry probability calculations out to the third decimal 
place when necessary). What is the expected percentage cost savings? 

(c) Assuming that the two forecasts are independent. if the seven-day forecast is for 
rain. should the contractor wait for the one-day forecast before deciding what to 
do. or should he take immediate action? 

(d) What is the EMVI gained from knowing only the marginal probabilities of rain and 
no rain for the construction period? What is the EMYI gained from knowing the 
joint probabilities for the seven-day and one-day weather forecasts? 

(c) What is the EMVPI for this problem, assuming that the company knows the mar
ginal probabilities for rain and no rain? 

9.11. PaJoff matrix. Reduce the payoff matrix given in the table, eliminating any action that 
is dominated by another. 

01 02 0:. o~ 05 

a1 8 7 9 4 10 

a2 12 9 6 3 8 

a:. 6 2 8 1 8 

{/~ 4 8 7 6 5 
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Then determine the best action using each of th f 
11 

. . . 
e o owmg cntcna: 

(a) Laplace (d) Hurwicz (show graph) 
(b) maximin (c) minimax regret 
(c) maximax 

Do any actions seem preferable overall? 

9.12. Office mortgage. A young engineer's consulting firm has done well. and the owner 
wants to purchase new office space for the firm and as a real estate investment. Shop
ping around, the engineer has found three financing options for the mortgage.A variablc
rate mortgage is available that uses a market-sensitive "S''-index. The index closelv 
follows current market interest rates. If interest rates go up. the engineer would have t~ 
pay higher interest on the mortgage, based on the S-index. Of course. if interest rates go 
down, the engineer would pay less interest, again based on the S-index. 

9.13. 

Another variable-rate mortgage is available that uses a Jagged .. L"-index. Since 
this index includes a multiperiod lag, it is not as sensitive to current market interest 
rates, and changes more slowly. 

Finally, a fixed-rate mortgage is available which sets the interest rate at the cur
rent market fixed rate. Fixed rates are usually initially higher than variable rates. The 
engineer estimates the payoff matrix shown in the table below. where numbers repre
sent annual interest rate savings. 

Future Interest Rates 

Up Down Same 

S-index -3 3 1 

L-index -2 2 1 

Fixed 0 0 0 

. d determine the best action to take using the following Check for donunance an 
criteria: 

(a) Laplace 

(b) maximin 

(d) Hurwicz (show graph) 

(e) minimax regret 

(c) maximax . t ,·th a time horizon of from 
. . 1 · g an mvestmen \\l . 

Investment strategy. An eng1~eer_is ptnn~fferent investments. as shown m the foll?~~-
six to seven years. He is cons1de_nng ivel rcentage rate of return under four p~ss1 e 
ing table and has estimated their annua pe dertake only one of the invest~ents. h 
future st;tes of the economy. He wants t~~~he ranking of the remaining actions on t e 

Check for dominance, and determ 
basis of the following criteria: ) 

(d) Hurwicz (show graph 
(a) Laplace . . . regret 

(c) mimmax (b) maximin 

(c) maximax If hoose. and why? 
. h would you yourse c . 

Discuss your results: Whic 
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Growth: High High Low Low 
Inflation: High Low Low High 

a1: TWo 3-year CD's -2 1 1 -2 

a~: Mutual fund 4 7 0 -3 

a 3: Growth stock 9 12 -3 -6 

a~: 7-year bond -1 2 2 -1 

a 5: 30-ycar bond w/resale -2 3 3 -2 

9.14. * Project engineer. A project engineer has assumed responsibility for a construction pro
ject in a country unfamiliar to her. She has just learned that an important permit must 
be obtained from one of the country's federal agencies before the project can proceed. 
She has no idea whether this permit will be approved or not, but she is assured that the 
decision will be made in three months or less. She is also aware that the sponsor will 
pay a $5 million bonus if the project is finished one month early, $7 million if two 
months early. and $8 million if three months early. The normal start date is three 
months away. and the first activity is to order materials and equipment which will take 
one month to arrive. at the earliest. 

The engineer decides to investigate whether it would be worthwhile ordering the 
materials and equipment before the permit is obtained, so that the project could be fin
ished early. Her buyers inform her that if the materials arrive at the project site, she will 
have to pay for them at that time, and if the materials are not used right away, interest 
charges of $1 million per month will be lost. Further, if the order must be canceled after 
arrival there will be a penalty of $5 million. If an order is canceled one month before ar
rival. the penalty is $2 million, and if two months before arrival, the penalty is $1 mil
lion. To speed up a previous order, an additional cost of $1 million is incurred. 

Permit Approval at the Permit Disapproved at 
End of Month the End of Month 

Order Material to Arrive 
at the End of Month: 1 2 3 1 2 3 

1 8 6 3 -5 -6 -7 

2 7 7 4 -2 -5 -6 

3 6 5 5 -1 -2 -5 
Wait to order 7 5 0 0 0 0 

--

Verify the payoff matrix, check for dominance, and determine the best ranking of 
actions using the following criteria: 

(a) Laplace 

(b) maximin 

(c) maximax 

(d) Hurwicz (show graph) 

(c) minimax regret 

Based on your results, what do you suggest that the engineer do? 
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Lessons in Context: 
Simulation 
and the Statistics 
of Prediction 

10.A INTRODUCTION 

In this chapteL we explore the ideas of regression and simulation. These two con
cepts are investigated in the context of a practical situation in the area of water re
sources management. That is, we will first describe a water resources planning 
problem and indicate two specific problem questions that need to be addressed. We 
will then address the questions individually, introducing the statistics of prediction to 
answer the first question and the methodology of simulation to answer the second. 

A town is considering building reservoirs for water supply on two parallel and 
unconnected streams. The water supplies drawn from these two reservoirs are to be 
combined to form the water supply for the town. 

A number of issues make the problem nontrivial. First, since the town is on~y 
thinking about acquiring the watersheds and building the dams, the volumetnc 
capacities of the two reservoirs have yet to be determined. Furthermore, a long 
record of stream flows (60 years) exists on only one of the streams. The other strea~ 
has had its flows measured and recorded for only the last 20 years. Finally, even if 
both of the reservoirs were built, it is not clear how they would be operated together 
to yield the maximum supply. 

Obviously, these issues of capacity, sufficient record, and joint operation are .aII 
related. and all need resolution in some manner. The two techniques we will util~e 
in this chapter to deal with these issues are statistics and simulation. Statistics wiII 
allow us to fill in the record of stream flow for the stream with the shorter record. 
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f 
o est various 0 . 

good strategy or operations. Once a good peratmg policies to determine a 
· . strategy f · · . 

can test the impact of varymg the capa 't· f or JOmt operations is found we 
• • < Cl Ies O the · · 

At this pomt, probably half of the d reservoirs. 
rea ers who we · h 

have fallen away because of the mention f t . . re Wit us on the last paragraph 
. I d h . o s at1st1cs. Now with f ttves revea e -t e teaching of statistics-man r ' . .one. o our true objcc-

again, devious textbook authors have lured . Y caders mstmct1vely recoil. Once 
. . mnocent student · · 

been known to mduce immediate sleep in . 
1 

. s mto a subject that has 
still with us? Good! There is hope We wantptrev1ous y lucid and alert people. Are you 

. . . o assure you that we ·u b b . f 
long as 1t takes m our discussion of statistics. wi e ne -for as 

This is our complete problem. We want to d t . h . 
1. · f h · e ermine t e sizes and operating 

po 1c1es or t e two reservoirs. To do this we ne d I . ' e a ong record for each · · 
not JUSt one long record for one of them. resef\ oir. 

To obtain long records. for bot.h streams. we will need to utilize the statistical 
procedure known as regression which we now descri'be 1·n d t ·1 · h 

t t d bl 
' e a1 m t e context of 

our s a e pro em. 

10.B THE METHOD OF REGRESSION 

The subject of statistics has many facets. Most often, statistical procedures are used to 
characterize and summarize sets of data. You have undoubtedly already been ex
posed to the ideas of a mean value and standard deviation as well as to other related 
descriptors of the characteristics of a data set. Mean value and standard deviation are 
typically applied to data that are unchanging in time but whose realized values are 
often different. The number of hours required to complete a routine and standard 
task, such as welding a particular type of joint, is an example. 

Statistical procedures are also used for purposes of prediction. Sometimes, 
the values of one set of numbers "run with" the values of another set of numbers. 
For instance, higher per capita amounts of electricity usa~e in su~~er are associ
ated with higher summertime temperatures because air cond~t10ners are r~n 
longer during periods of elevated temperatures. Retail sales m a comn:wmty 
shopping mall are associated with the percen.tage ?f '~orke~s employed m the 
nearby area as well as with mean incomes (setting aside mflationary effects). O~r 
interest here is in the use of statistics for prediction of the ~tream flow values m 
the stream with the shorter record when the one stream with the longer record 

was monitored and the other was not. 1 , for the town run through 
The two streams that are to form the water ~pp) t heds that feed the two 

regions of similar soils and topograp~Y: althoug~/ t:e '::r;:~s lies to one side of a 
streams are of different areas. In add1t10n, one 'd 
'd · h site side of then ge. 

n ge of hills, and the other is on t e oppo the two watersheds. but because 
. . · · the same across The average wmd d1recuon is . . falls on one basin than on the 

of the line of hills slightly more ram per umt .area the upwind side of the hills 
' f th · r m01sture on 

other. That is, the clouds drop more o ei 
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than on the downwind side. Stream .1, with the lon~er record of flows, is on the 
upwind (wetter) side of the ridge of hills. Stream~' with the shorter record of flows, 
is on the downwind (drier) side of the ridge of hills. Stream 1 has been gauged for 
the last 60 years; stream 2 has been gauged for only the last 20 years. 

The records of flows from stream 1 is to be used to extend the record of flows 
on stream 2 backward in time so that we have 60 years of flow record for both 
streams. Our assumption is that in any particular month of the year, the two flows, 
though different in value, will "run together.'' 111at is, higher values of flow in stream 2 
will be associated with higher values of flow in stream 1. 

To extend the record of stream 2 backward in time, we build a simple linear 
model of stream flow prediction.1 Our linear model associates the flow in stream 2 
with the flow in stream 1 for each month in the following way: 

where 

Y = aX + b 

Y = flow in the particular month (e.g., February) being studied in 
stream 2 in billion gallons; 

X = flow in stream 1 in the same month (February) being studied in 
billion gallons: and 

a. b = constants, to be determined, used to predict the flow in stream 2 giv
en the flow in stream 1. 

A model just like this one is built for each month, associating the flow in stream 2 
with the flow in stream 1 in that same month. It will be used for prediction of the 
stream 2 flow value when only the record of flow for stream 1 is available. 

The task is to find the values of a and b in this simple predictive model. We 
know, however. that the values of Y for various values of X are only predictions of 
flows in stream 2. The relationship is not a perfect one. 

Consider the hypothetical graph (Figure 10.1) of the flow in stream 2 versus 
the flow in stream 1 in February. The points on the graph consist of pairs of values 
(xi, yJ A particular ( X;, yJ pair constitute measurements or observations of the 
flow in stream 2 (yi) and the simultaneous (same month) flow in stream 1 (x;) in 
year i. Note that the points do not fall on a straight line nor on any simple smooth 
curve. The points do cluster into a band and suggest a relationship between the 
flows, but the relationship is not precise. For instance, point A associates a relatively 
low flow in stream 2 with a high flow in stream 1. In general, we would have expect
ed a higher flow in stream 2, based on the recognition that, in general, flow in strea~ 
2 increases with the flow in stream 1. As you can see from the graph, however, this 15 

a general, not a specific conclusion that we have drawn. Likewise, at point B, we 
have a relatively high flow in stream 2, associated with a not-so-high flow in stream 1. 

1 By simple. we mean that we are going to ignore the correlation that exists between nows from 
one month to the next. 
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Figure 10.1 Observations of flows 
in the parallel streams. 

Ag~in.' this illu~tr~tes that our relation may be good but is not perfect. The fact that 
statistical predictions are not perfect should not make us doubt their validity. but 
only makes us cautious in their use. 

We next investigate how to determine values for a and b in the linear predic
tive model suggested above. We observe that the equation Y = aX + b is a line 
with slope a and y-axis intercept of b. As these values are being ''tuned'' to their best 
values, the line they represent shifts in position. Larger values of b shift the curve 
upward. Larger values of a increase the angle the line makes with the x axis. One 
intuitive measure of goodness of the predictive line is the vertical distance of the 
line from the observation at a particular value of flow in stream 1. 

Consider the graph in Figure 10.2. Only four data points (1. 2, 3. 4) are 
shown. 

The data points, indicated by the dots, give the clear impression t?at t~e flow 
in stream 2 increases with the flow in stream 1. We show three possible Imes as 
candidates for the best-fitting line. The reader can verify that the sum of the verti
cal distances from each of the four observations to line A is the same as the sum of 

Observations 
of flow in 
stream 2 

Y; Linc IJ 1 ' */: 
f 

Linc A · 
X; 

Observations of flow 
in stream 1 

Fi lo ,, Three possible lines 1gure ... . ,., 
that predict the flow m stream .... 
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distances for line B and is the same as the sum for line C. That is, all three lines see 
to do equally well at reducing the sum of the distances from observations to the linrn 
At the same time. line C seems to be most appealing, suggesting that some other fact~; 
is at work in our judgment of what is and is not ugood." 

Apparently, when the sum of the vertical distances is used as the measure of 
goodness of the fit of the line to the data~ the resulting line need not be located 
centrally with respect to the observations. TI1e goal is to select a measure of good
ness that will indicate that line C is a better candidate than lines A and B for fit
ting the data. A widely used and easily implemented measure that fills this need is 
the so-called least squares measure of goodness. By least squares is meant that the 
sum of the squares of the vertical distances from the data points to the predictive 
line is to be a minimum. 111is measure, because it focuses on the squares of the dis
tances. brings down the value of the largest distance of any observation to the line, 
and thus makes the line more central with respect to the data points. In fact, this 
measure performs beautifully al centering the line with respect to a scattered set of 
data and reducing the distance between "outliers'' and the predictive line. 

111c equation for the predictive line for the particular month under study is 

y =ax+ b 

where Y is the flow predicted in stream 2 and Xis the flow recorded in stream 1. The 
coefficients a and b are constants to be determined. The data points, or observations, 
are pairs of stream flow values (x;. )';)~where the subscript i is the indicator of the 
year in which the pair of flows was recorded. The value Y; is the flow recorded in 
stream 2 in year i. TI1e value X; is the flow recorded in stream 1 in year i. 

The objective to be minimized is the sum over all observations of the squared 
vertical distance from point to line. The squared vertical distance from the ith point 
to the line is 

[y; - (ax; + b)]2 

where ( axi + b) is the predicted value of the flow in stream 2 given the flow in 
stream 1, and Yi is the value of flow in stream 2 that is actually observed. More pre
cisely. we seek to minimize the sum of squared deviation (SSD): 

II 

Minimize Z = L [y; - (ax; + b )]2 
i=l 

where n is the number of years during which flow measurements were taken in both 
of the streams. Remember that we are using those years in which measuremen.ts 
were made of flows in both streams in order to establish a relationship that we wi~l 
use to predict the flow in stream 2 in those years when only the flow in stream t is 
available. 

To determine the values of a and b, which minimize the above unconstrained 
objective function, we simply take two partial derivatives, one with respect to the 
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unknown a, where b is assumed a con t 

b I . s ant, and the oth . h 
known , w 1ere a is assumed a constant Th . er wit respect to the un-
sum of the partial derivatives of the 1·nd· .'d e) se partial derivatives are simplv the 

. . . 1v1 ua terms Th · " 
to zero to fmd the mm1mum individual terms: · e summations are ~et equal 

n 

8a ~ 2[y; - (ax; + b)](-x1) = 0 

and 

8z II 

8b - :L2[y; - (ax;+ b)J(-1) = 0. 
t=I 

Manipulation of these two equations gives 

and 

n 

~ (y;x; - axf - bx;) = 0 
i=l 

n 

~ (y; - ax; - b) = 0. 
i=l 

Applying the summation to individual terms results in two equations that are linear 
in a and b: 

11 n n 

~y;x; - a~:Xr - b4x; = 0 
i=l i=l 1=1 

and 

which can be set up for solution as 

n n 

a ~Xf + b ~X; = ~Y;X; 
i=l i=l 1=1 

and 

II 
II ~ 

a ~x; + bn = f'Y;· 
i=l 1-l 
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Solution by ordinary methods yields 

2, :'= 1 x; Y; - ( 1 / n) ( 2, :'= 1 x;) ( L ~'= 1 Y;) 
a= ~" .2 ( I ) ( ~ n . )2 "-'i=tX; - 1 ll "°'i=1·\'.; 

and 

(1)" (1)" b = - :LY; - a - ~.t;. 
11 i=l 11 1=1 

l11ese are the two unknown constants which are needed in the predictive equation 
Y = a X + b. If these constants are determined for each month, the missing data 
for stream 2 can be ufilled in:· resulting in two ucompleted" long records for the 
parallel streams. 

10.C COMPUTER SIMULATION 

Now we have two long records. The flows are 

11, = recorded flow in stream 1 in month t. in billion gallons, and 

h.r = flow in stream 2 in month t, either recorded or "filled in," in billion 
gallons. 

1l1ese flow values are available for all months t (t = 1, 2, ... , n ). The flows 
will be utilized in a computer simulation of the operation of two reservoirs. One of 
the reservoirs is on stream 1 and the other on stream 2. We need to establish capac
ities for each of the reservoirs~ and we need to find rules for the operation of the two 
reservoirs given the capacities that are assigned. 

What is computer simulation? Is it a new technique or an old idea? It turns out 
that simulation is an old idea dressed up in new clothing. The old idea can now be 
implemented on a scale not thought possible just 50 years ago; modern computing 
resources have made the difference. 

The old idea is organized trial. We can illustrate organized trial by an example. 
Suppose that you have a reasonably complex equation in x that is equal to zero. Sup
pose further that you don't know what value of x solves this equation (makes it equal 
to zero) and that you can't find a technique to provide the value of x in a single step. 
Under the circumstances, you might try in succession values of x starting with an ini
tial value of x0. Each value would be tested in the equation to see if it makes it equal 
to zero. The value x0 would be followed by x0 + a, x0 + 2a, x0 + 3a, and so on, 
where a is some relatively small constant. Each value would be tried in the equation 
in turn to see if it "'solves~' the equation (i.e., makes the equation equal to zero). 

It may be that two successive values of x that are tried cause the numerical val· 
ue of the equation to change from positive to negative. In general, this suggests th~t 
the appropriate value of x, the one that makes the numerical value equal to zero, 15 

somewhere between the two values of x that caused the sign to change. Exploring 
this region between these two values of x in an even more precise search with smaller 
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f I Th
. computer program c· d h o t 1e steps. 1s "organized trial'' to find . 

1 
. . an spec t e completion 

program is used, very much like simulati~r isS~ o~ h~e s~mulation and, if a computer 
multiple measures of goodness and many n. .'mbul ation is really organized trial with 

vana es and perhap · I 
evaluate and compare the outputs. s no c car-cut way to 

We describe a computer simulation in the conte ·.. r • 

together the reservoir placed on stream 1 and th xt o~ SIZlng and operating 
T b . I bl e reservoir placed on stream 2 
io egm t 1e pro em, we need temporarily to e t bl. h h . . . . · w ·11 · s a 15 l e capac1t1es of the two 
reservL01rs. e w1 do this symbolically, not numericall)'. 

et: 

Ci = tentative capacity of reservoir 1, in billion gallons. a numerical value. 
and 

C2 = tentative capacity of reservoir 2, in billion gallons. a numerical value . 

. It will ~e assumed throughout the remaining discussion that the water supply 
reqmrement 1s constant month-to-month and is equal to D, where D is the amount of 
water needed for municipal and industrial use. This simplifying assumption is made on
ly to make our discussion easier. In a real situation, water demands do vary by month. 
and in fact, simulation handles such situations easily. In this case, however. to make the 
introduction to simulation easier to understand, we avoid this modest complication. 

Our next step is to create operating rules for each of the two reservoirs. The first 
question that arises is how to divide the water supply contribution between the two 
reservoirs. We will propose three rules for the division between these reservoirs. All 
three should be evaluated and critiqued. A number of other rules are also reasonable 
to suggest. You should suggest other rules to test your understanding and intuition of 
what constitutes "goodness" in water supply reservoir operating rules. . 

Rule /: The contribution of a particular reservoir toward the water re~mre-
ment D should be in the same proportion as the ratio of the average ann~al mflow 
of that reservoir to the total of the average annual inflows to both reservmrs. 

Let: 
Qi = the average of the annual inflow to reservoir 1: 

Q2 = the average of the annual inflow to reservoir 2: . 

f 
. l t 1"but1·on of reservoir 1 toward the water reqmrement: 

a = ractlona con r 
and 

f3 = fractional contribution of reservoir 2: 

where 
Qi d a - Q2 . 

a= an ,., - Q + Q1 
Q1 + Qz I 
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Thus, in any month. reservoir 1 contributes aD and reservoir 2 contributes /3D. 1 
some months~ however, it may not be possible to deliver these quantities because 0~ 
insufficient inflow and storage, and in some months, so much water may be accumu. 
lated that water may be wasted to the stream rather than to water supply. lllcse 
rules may be further developed and refined using the following notation: 

Sir = storage in reservoir 1 at the end of month t; 

S21 = storage in reservoir 2 at the end of month t; 

W1 ,~ W21 = the amounts spilled or wasted from reservoirs 1 and 2 in 
month t~ 

X 1,, X 21 = the amounts actually contributed toward water supply D bv 
reservoir 1 and by 2 in month t; and -

11,. 121 = the inflows to reservoir 1 and to reservoir 2 in month t. 

We can describe three basic storage and flow conditions for the reservoirs, depend
ing on their relative fullness and the extent of their inflows. These conditions will 
dictate actual releases and spills. l11e first condition is an insufficiency of flow and 
storage to meet release needs. The second is a sufficiency of flow and storage to 
meet release needs. The third is an overabundance of flow and storage leading to the 
wasting of water to the stream. These three conditions lead to different release and 
spill strategies. which are described in the following equations. The releases from the 
two resen1oirs are described first. 

X = {5t.r-1 + 111 
lr aD 

X., = {52.r-l + hr 
~r {3D 

51.t-t + 11r < aD, 

51.r-1 + 11r ~ aD. 

52.1- 1 + 121 < {3D, 

52.1-1 + hr ~ {3D. 

l11ese equations say that each reservoir behaves relative to water supply releases in 
the following way: 

First. if the sum of the previous end-of-period storage and this month's inflow 
are less than the designated contribution of the particular reservoir, the reservoir 
will release all the water that it has available toward its water supply target. 
Nonetheless. a shortfall from its target contribution will occur. 

Second, if the sum of the previous end-of-period storage and this month's inflo~ 
equals or exceeds the designated water supply contribution of the reservoir, the reservoir 
will release its full target contribution. Using similar conditional equations, we can define 
when spill or waste occurs. By spill, we do not mean water flowing in the spillway. Such a 
flow is a last resort in flood situations, and it could actually damage the spillway. Instead, 
we mean controlled releases to the stream via ordinary outlet works which releases are 
over and above planned releases. These releases are made to prevent the need for ever 
having to use the spillway. 
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Equations are also needed to . 

I d ·11 ensure that each . 
control e sp1 to the stream in the foll . reservoir hchavc~ in terms of owing way. · 

w.,= {
o 
S1.1-1 + 111 - a.D - C1 

W21 = {
o 
S2.1-1 + Ji, - {3D - c2 

S11-1 + 11 - u/J ::::: c· t ·I· 

S11-1 + l1r - a/J;,., C
1
• 

S2.1--1 + 121 - {3D -::: Ci. 

52.t--1 + 121 - {JD '_;,, C~. 
If the sum of the previous end-of-month stora r I · 

· ' d · d _ . ge, P us current inflow. less the rc::ser-
vou s es1gnate water supply contribution ex d h . . · · . 1 . . . . · cce s t c storage capacitv ot the 
reservon, t 1e 1 cservoir will spill that excess vol um 1 th , · . . e o e stream. Next we des·cr1bp 
reserv01r storages through time: · - "" 

S1r = St.r-1 + I1r - X1r - W1r 

S2, = S2.t-1 + 121 - X 21 - W21 

where X1,, X2,, W11, and W21 are given by previous equations. These last equations 
update the contents of the reservoirs to their values at the end of the current month 
t. The equations utilize the values of the releases and the spills as they were calculated 
in the equations that immediately preceded them. 

Beginning with full initial storages for the two reservoirs. the above six simula
tion equations are implemented again and again, each time with the new inflow for 
the month at hand. The releases from each reservoir are noted for each period as 
well as any spills. Special note is taken of the months in which a shortage occurs. that 
is, when, according to the rules, the full value of the water requirement D cannot be 
delivered. This occurs whenever either reservoir is unable, according to the alloca
tion rule, to release its suggested contribution. The reservoir storages are traced 
through time with notations for the months in which a reservoir is empty at the end 
of the month and the months when each of the reservoirs is full. 

Statistics are then tabulated on the following events or conditions: 

1. The number of months when the full requirement D was not delivered: 
2. The number of months when the full requirement D was not delivered an~ 

sufficient water to deliver D was actually available when the contents an 

inflows of both reservoirs were summed; 
3. The number of months when one or both reservoirs were empty: 

4. The number of months when one reservoir was full; and 
5. The number of months when both reservoirs were full. 

. . observe the behavior of the system 
The analyst looks across the statistics to t f numbers or rules might make 

and in the process notes that three controlla~le sThe s 
0 

three items are (1) the water 
d · · t m's behavior ese · a 1fference in the reserv01r sys .e. tion. of the reservoirs. and (3) the capaci-

requirement D (2) the rules for JOtnt opera e that the water requirement 
ties chosen for ~he reservoirs. For simplicity, let us assum 
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is a firm figure that must be used for ~Janning. Water ~onserv~tion ef~orts or higher 
prices might. in fact. alter it, but for this problem we will take it as a given. 

The second point at which a change might be made is in the rules that gover 
the relative contribution of each reservoir to the jointly furnished supply. The rul~ 
we began with-that the relative contribution of each reservoir is based on its frac
tion of the average annual flow of both reservoirs together-had some appeal. llle 
rule, however, did not look very closely at individual months and so may have been 
unduly restrictive. In a moment. we will examine the system performance under a 
second, less restrictive rule. For now. however, we note that a third control knob is 
the capacities of the individual reservoirs. We did not say how the initial capacities 
were chosen; we might have some freedom to increase one of the capacities and de
crease another without much change in cost. Once we have settled on a rule of op
eration. it would make sense to come back and modify one or more capacities 
incrementally to see what might be accomplished and at what cost. At this moment 
in time. though. we return to the task of selecting reservoir release allocation rules. 

Rule I I: Tile contribution of a particular reservoir toward the water require
ment D for each month i of the 12 months of the year should be in the same proportion 
as the ratio of that reservoir's average inflow in months i - 1 and i (the sum of these 
flows) to the total of the average inflows to both reservoirs in months i - 1 and 
i (i = 1.2 ..... 12). 

Let: 

where 

q1; = average total inflow to reservoir 1 in months i - 1 and i; 

q2i = average total inflow to reservoir 2 in months i - 1 and i; 

a:; = fractional contribution of reservoir 1 toward the water supply 
requirement D in month i; and 

/3; = fractional contribution of reservoir 2 toward the water supply 
requirement D in month i; 

(q1; + q2i) 

/3- = q2i 
I (qli + qz;) • 

Thus. in any month t (say, month t = 38, which is month i = 2), the contribu
tion of reservoir 1 toward the requirement Dis a2D and the contribution of reservoir 2 
toward the requirement Dis {3 2D. In some months, however, it may not be possible to 
deliver these quantities because of insufficient inflow to and storage in one or both 
of the reservoirs. 

Using the same notation as for Rule I, the releases, spills, and storages can 
now be described using a new set of equations. Before writing the equations, we 
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need one piece of new notation to deal with th .. 
month year corresponds to each month f he issue of what month i of the I J_ 

· t o t c hi t · J -month 1 of the 12-month year from a h s onca record. To derive the 
. mont t of the d equat10n, recor · we use the following 

i = I - 12 [I ~] l 
where [ v] = the integer part of the largest integer inside f 

rr h h' 0 V. 
10 see ow t 1s works, try t = 53: 

i = 53 - 12 [ ~~ l = 53 - 12( 4) = 5. 

Now we can write the release, spill, and storage equations: 

S1,1-1 + 111 < a;D, l = t - 12 --. [I - 1 l 
12 ' 

[
/ - 1 l i = t - 12 --12 . 

S2,t-1 + 121 < {3;D, i = I - 12 [1 ;2 1]. 

Su-1 + f.z, ~ {3;D, i = t - 12 [ t ;2 1]. 

S1J-I + 111 - a;D :,,;; C1, i =I - 12 [I ;2 1 J 
S1.1-1 + 111 - a;D > cl> ; = r - 12 [ r ;2 I]. 

S2J-1 + 121 - {3;D :,,;; Cz, i = t - 12 [ t ;2 1 ]. 

a D > C i = t - 12 [t 
1
-
2

1 
]. 

S2,1-1 + fz, - ,_,; 2' 

S1, = S1,1-1 + fir - X11 - W1,, 

S + I - X21 - W21. 
S21 = 2.1-1 21 

. m lex than the first set, are execut-
These six simulation equations, shghtly m~re co . ;.cs on reservoir performance are 
ed for each month of the record. Once agam, statls 

1 



280 Lessons in Context: Simulation and the Statistics of Prediction Chap. 10 

tabulated. In these new equations, account is taken of the historical average reser. 
voir inflows at each time of the year so that releases are keyed to inflow properties 
that arc closer in time than in the previous model. Hopefully, shortages will occu 
less frequently with this new and more realistic model. but simulation gives us th~ 
power to test the hypothesis that these new rules are indeed better. Nonetheless. our 
exploration of reservoir operating rules can proceed still further. We propose yet an. 
other operating rule. 

Rule III: l11e contribution of a particular reservoir toward a water require. 
ment D for each month i should be in proportion to the storage in that reservoir at 
the end of the previous month over the sum of the storage in both reservoirs at the 
end of the previous month. llrns. 

St.r-1 
a = 1 

St.r-1 + S2.r-1 

and 

S21-1 
f3 = . 

1 
Sl.r-t + S2.r-1 

Once again. the six simulation equations can be written and then executed for each 
month in the record. Once again. statistics on system performance can be tabulated. 
These new equations. which make relative contributions dependent on current 
reservoir conditions. should do even better at reliably meeting the requirement D; 
that is. even fewer shortages should occur. 

Other rules can be suggested. One such rule is asked for in the exercise that 
follows the text of this chapter. Our focus now shifts, however, to the issue of capac
ities. It is generally. but not always. true that reservoirs are proposed to be built at 
the maximum feasible size for a given site. This is because it is usually cheaper to 
build just once than to add on in stages. Still, when the maximum feasible sizes 
deliver far more water than is projected to be needed by the end of the planning 
horizon. smaller reservoirs are likely to be proposed. 

Suppose reservoir 1 is nearer to the city being supplied and hence is proposed 
at its maximum feasible size. Reservoir 2, being more distant and requiring pumping 
to obtain its product, is proposed at less than its maximum feasible size. Tue 
requirement D may be the amount of water projected to be needed by the city 30 
years hence. Analysis of the occurrence of shortages with the best of the three rules, 
probably Rule III, suggests that. with the current proposed capacities, the periods 
of shortage are too frequent. If the rule for allocation of the relative contribution 
is the best we can think of. it is time now to experiment with the capacity of reser
voir 2 to see how large an increment of capacity is needed to bring the frequency 
of shortage to an acceptable level. The analysis is straightforward and will not be 
described further here. 
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111is chapter has focused on tw .d 
. - - . . . . . o w1 cly used tech . . . 

engmec1 mg. regression and simulat' 1 . niques m environmental . , 
"l l ,, ion. n the first . ~}stems 

eas squares as a means to predict flows tha . section, we taught the method of 
flows tha l had been recorded in a p II 

1 
1 had not been observed from th -. 

d 
. ara e stream Wi . . - o t:r 

the recor of the partially observ- d .. · e used the cst1maks to ··fill< 1 .. c stream givm >u 
records formed the input to a com t . · . g us two long records. These Ion . pu er s1mulat1on · g 

A con~puter simulation was suggested for t.h . 
would provide the city's water sup 1 Th e _operation of reservoirs that 
each stream, and would contribute p ~· I e reservoirs would be placed, one on 

· _ Joint Y toward the t 
of the city. Three different rules were e 1 d . wa er supply requirement 

l · . . xp ore via comput . · 1 · re at1ve contnbut1ons of the reservo· s· 
1 

. . er simu ation for the 
Irs. 1mu at1on is r II · . 

very large scale made possible by use f th d' . ea Y organized tnal on a 
cation utilized steps of one month in \~hie: h1g1tal com_µu.ter. ~e. present appli
ed by the rules of operation Th t e reservoirs condition was updat-
. . · e consequences of us· h 1 mvestlgated by the creation of statistics on th f mg eac ru c was 
system characteristics. e requency of shortages and other 

EXERCISE 

10.1. The op~rating rules that we described allocated the contribution of each of the two 
reservmrs to current needs according to historical flow records. Still other wavs exist to 
allocate the proportional contribution of the two reservoirs toward the wate~ require
ment of the city. 

One way (Rule III) is to allocate the relative contribution of each reservoir in 
proportion to the fraction of total system storage that exists in each reservoir at the end 
of the previous period. That is, the fraction of the water requirement from each reser
voir matches the fraction of the total storage in that reservoir. and so on. This allocation 
is followed for a particular reservoir unless the previous storage stage plus current in
flow in the reservoir is smaller than the portion of the requirement that the reservoir is 
supposed to fill. In this case both storage and current inflow are completely contributed 
toward the requirement. This rule, which is keyed to current reservoir conditions. is 
likely to perform even better than the previously discussed rules (I and II). Rule III was 

also discussed in the text. 
Still another way (Rule IV) to allocate the relative contribution~ bet,vecn 

reservoirs is even more complicated but could improve perfo~mance still. further. 
Let us now consider the fraction of total water in the system pr~Jected to be ma par-
. · d if no release 1s made from that or 

hcular reservoir at the end of the current perw . . 
. . f th •ater reqmrement furmshcd from 

any other reservoir. That is. the fracllon ° e '' . h· , .. . f · ted svstem storaoe m t at resc n mr 
each reservoir is to match the fracllon ° pro1ec ·d The pr;J·ected storage in a 

h th · f no releases are ma e. ~ 
at t e end of the current mon 1 • 1 1. t d as the sum of the previous 

. . h d f the month is ca cu a e 
particular reserv01r at t e en o . d inflow without any release toward the 
storage (end of last month) plus the pro1ecte 
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water requirement. The projected system storage is the sum of these projected reser
voir storages over all reservoirs. This a11ocation rule would be followed unless insuf. 
ficient water is available from a particular reservoir to meet its designated 
contribution-in which case only available water (s.torage plus current inflow) 
would be contributed. TI1is rule is tuned even more tightly than previous rules to 

current conditions. 

(a) Using the notation in the chapter. write the six simulation equations for Rule III. 
Define a, and {3 1 both verbally and with mathematics. 

(b) Writing the simulation equations for Rule IV requires more machinery. First, it will 
be necessary to establish the projected inflow for each month in the long record. 
Hydrologists have observed that flows in a given basin are serially correlated 
month to month. For instance. the flow in a particular month seems to be well pre
dicted by the immediately preceding flow. Often. the best predictive equation for 
the flow in a particular month is based only on the flow in the single preceding 

month. An equation of the form 

y =ax+ b 

where 

Y = this month's flow (a prediction): 

X = last month's flow (an observation): and 

a. b = constants 

can be used to establish the projected flow in the current month. 

(1) TI1is predictive equation needs to be developed for every pair of months of 
the year. beginning with the January-December pair and ending with the 
December-November pair. By reference to a particular pair of months (and 
hence to any pair of months), explain how you would use the long record 
available to you on each stream to establish the predictive equation for each 
pair of months. 

(2) Having established 12 predictive equations, you can now proceed to devel
op the simulation equations. For purposes of these equations we will distin
guish two different flows in month t for each reservoir. We illustrate for 
reservoir 1 

11, = the recorded or .. filled-in" flow in month t reservoir 1; these flows 
constitute the historical record used in the simulation; and 

l1r = the predicted as opposed to actual flow in month r into reservoir 1 as 
established by the equation that predicts flow in month t from flow in 
month t - 1. 

With this notation. you can write a, and {3, as well as the six simulation 
equations. 
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Lessons in Context: 
A Multigoal Water 
Resources Problem 
Utilizing Multiple 
Techniques 

11.A INTRODUCTION: THE PROBLEM SETTING 

ll1e storage volume in a water reservoir evolves through time in response to random 
inputs and planned outputs. Reservoir operation is keyed to meeting goals with the 
quantities released. as well as meeting goals that involve the storage in the reservoir. 
111c mathematical model of reservoir storage has rather universal appeal since so 
many human-made systems involve storage. inputs, and releases. For instance, manu
facturing inventory systems involve manufacture, storage, and sales. Blood banking 
involves acquisition. storage. and distribution. The traffic intersection involves ve
hicle arrivals. storage in the street, and vehicle departures through the intersec
tion. Oil depot operation includes refining, storage, and sale/shipment. Military 
parts inventory systems acquire parts. store them, and distribute them at times and 
places of demand. In fact. the water reservoir can serve as a model for virtually 
any system that involves inventory. The differences between the systems we have 
cited ha\·c primarily to do with whether decisions are made at the input side (bow 
much to manufacture or purchase) or at the output side (how much to release). 
But the notions of inventory. operation, and meeting goals are typical to nearly all 
of the situations described. 

The lessons we will cover in this chapter follow: 

• Target hitting/goal programming (minimizing the sum of absolute values); 

• Minimizing the maximum deviation from a target; 

284 
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S, = reservoir Y - J , - re case in month 1 storage at 1rri~at1on 
-=target 

month r 
end of month t 

C~capacity , . 

U-L =unknown range 
goal for reservoir 
storage/elevation 

Figure 11.1 Multipurpose reservoir. 

E =:maximum dcsirahlc now 
--~._x, 

F =minimum desirahle 
environmental nowhv 

X, == Release to stream du.ring month r 

Q = minimum hydropowcr r~quircmcnt 
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• Minimizing the sum of squared deviations from a ta t ( . d . . . rge comex an concave 
programmmg by p1ecew1se approximation): 

• Minimizing the range (minimizing the maximum, maximizing the minimum): 
and ~ 

• Recursive programming. 

The system we will discuss is shown in Figure 11.1. It consists of a reservoir 
that will have multiple functions, all of which are important. The capacity of the 
reservoir is given; it is already in place. One of its functions is to supply irrigation 
water to an area of large farms. A target irrigation flow is furnished for each month. 
This is the allocation of water that results in the best crop yields for the mix of crops 
being grown. Another function is, to the extent possible, to maintain the flow in the 
stream below the reservoir within some desirable bounds. Flows larger than the up
per bound can ca use stream bank erosion. Flows less than the lower bound do not 
provide sufficient flow for fish survival and migration. 

A third function of the reservoir is recreation. To meet this need most effec
tively requires that the contents of the reservoir change as little as possible through 
the year. That is, the range of the storage values, the differen~e bet~een the largest 
and smallest storage over the year, should be as small as poss1~le. Tuts prevents. to a 
degree, the exposure of the unsightly mounds of earth t~at eXIst ben~ath_ the water 
surface. The last function is the production of hydroelectric energy, which is generat
ed when water is released through and turns a turbine. A min~u~ amount of hy-

. . . h Th e water that 1s directed through 
droelectnc energy is reqmred each mont · e sam . d 1. · d 
h 

. t am flow which as note ear 1er, is e-
t e turbines provides the down-reservoir s re ' ' 

sired to be within stated bounds. . . d f th upcomino 12 months. 
Th . b d t . ned is for the perto o e :::-

e operation to e e er~ . . d monthl stream flows are projected 
The current storage in the reserv01r is giv~n, a? fl ~historical correlations. Ob
for each of the next 12 months, using previous m m;s. a~han are flows in the upcom
viously, the flows in later months are much less cerb amt ken i's desired for the next 12 
· · h fir t steps to e a mg months. Nonetheless, a plan wit s d't' evolve That is, after the first 

. dif' d s con t tons . . 
months. It can and will be mo ie a , l 'nflow has entered. the system is 
month's actions are taken and the first monthfls rea 

1
e then projected. 12 months of 

in a new state. An additional 12 months of ow ar 
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operation arc determined~ the first month ·s operation or action is taken, a real inflow 
occurs, and a new reservoir contents is calculated at the end of the new first month. 
The process then repeats. 

This process of optimization over a future scenario. followed by the actual 
events of the first interval along with the first action in sequence. followed bv re
calculation of a new scenario and a subsequent optimization, with the steps repeat
ed over and over. is called recursive programming. This programming procedure 
brings the power of optimization to a process that evolves in time in an uncertain 
way. When the complete reservoir model is built, we will return to our discussion of 
recursive programming and elaborate on the sequence of steps. For now, what we 
have established is that we are determining, for a 12-month period of operation 
with 12 projected monthly inflows. the specific release actions that will guide the 
reservoir manager for the entire period. Only the first action will be taken, howev
er. before updating predictions and recalculating decisions for another 12 months. 

l11e variables and parameters needed for this problem are 

C = capacity of the reservoir. known; 

S, = storage in the reservoir at tire end of month t, unknown; 

X, = release to the stream during the month t (all of which passes through 
the turbines), unknown: 

Y, = release to the irrigation area during month t (none of which passes 
through the turbines). unknown; 

T, = the target level for the irrigation release in month t, known; 

U = the maximum reservoir storage that occurs over the 12 months, un
known: 

L = the lowest level of reservoir storage that occurs over the 12 months, 
unknown: 

E = the largest desirable stream flow, known; 

F = the smallest desirable stream flow, known; 

Q = the smallest level of the hydropower production rate over the 12-
month period in kilowatts, known; 

I, = projected inflow to the reservoir in month t, known; and 

S0 = initial storage in the reservoir, known. 

For this problem, we are ignoring evaporation and seepage from the reservoir. 
These processes are not particularly difficult to build into the model, but would ob· 
scure the programming issues we need to discuss. 

We will consider the four functions of the reservoir in turn; these are (1) mini
mizing the variation in storage, (2) hitting the irrigation target closely, (3) achieving 
stream flows within desirable bounds, and ( 4) producing a steady and specified hy
dro power production level. 
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There is an underlying model here to b 
1 

. 
. I b' . c exp amcd hcfo . , at1ona o Ject1ves or purposes of the . re we can focus on the opcr-

. · reservoir. The m d .1 . h . 
mass balance, a basic relation in hydrolo h 0 c is t at of inventory or 

f h. 1. gy, t at turns out to he · 1· 1 · 
a consequence o t 1s mearity the 1·nve t · a mear re at1on. As 

' n ory or balan · 
strict equality, can be an integral part of a Ii , cc cq~at1on. although it is a 
posure to a constraint that defines a relat· ncah~ program. This may he your first ex-

. Ions Ip rather than c f 1· · 
function, but this logic of linear definition w k ·. n orccs a 1m1t on a 
linear constraint-as you will see shortly. or s Just exactly the same as any other 

The mass .bal~nce equation for the reservoir says that the storage at the end of 
the current penod 1s equal to the storage at the end f th .· · 

1 . o e pre,., 1ous penod ( r - I ) 
less any re eases durmg the current period plus inflo d · h · 
That is, w urmg t e current pcnod. 

S, = S, _ 1 - X, - Y, + /
1 

where Yr and X, represent releases toward irrigation and toward down-reservoir 
stream flow. In standard form, written for each of the 12 months. the balance 
equation is 

t = 1, 2, . " ' 12. 

This equation will constitute a basic constraint of the reservoir model. As a con
straint of the model, it will always be enforced. That is, the appropriate mass balance 
equation will always be found to be honored in any postoptimization analysis of the 
storage-in pu t-ou tpu t sequence. 

In addition to the inventory equation/constraint, the basic model also limits 
the storage or reservoir contents to the capacity of the reservoir: 

t = 1, 2, ... ' 12. 

Water in excess of capacity will be directed either to the irrigation area or released 
through the turbines to down-reservoir stream flow. . . . 

F. 11 · · t' · the bui'ldt' ng of reserv01r models-which of necess1-ma y, It IS conven ion m t · t bor 
ty operate through the cycle time of one year-to ensure t~at wa er is 00

. . -

d d the year If 1t were. operauon m 
rowed from initial storage and squan ere over · " . t .. 

I ff t d To prevent borrowing wa er. a 
the subsequent year could be adverse Y a ec e · h t the end of p 
. h d 1 that forces t e storage a -

smgle constraint is appended to t e mo e . 't' 1 storage In this case the 
. 1 d the known 1m ta · · months of operation to equa or excee 

constraint is 

ddl.tional types of equations com-
. d these two a · l The mass balance equation an · We now proceed to exp ore . ae and operation. 

plete the basic model of reservmr storao 
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how to structure the goals for reservoir operation and how to structure the con
straints that dictate reservoir function. Both involve adding new constraints to the 
basic model.111e basic model is summarized as 

S, = S,_ 1 - X, - Y, + 11, 

S1 s C, 

S12 ~Sm 

t = 1, 2, ... ' 12, 

t = 1, 2, ... ' 12, 

or. in standard form, 

t = 1, 2, ... , 12, 

t=l,2, ... ,12, 

and 

t = 1, 2, ... ' 12. 

11.C DECREASING THE FLUCTUATION IN STORAGE 

The variability in reservoir storage can be approached in a number of ways. In fact, 
by the time you finish this chapter, you will be able to suggest at least several ap
proaches in addition to the one which we present here. Our suggestion for providing 
a stable pool level in the reservoir is to minimize the range of storage values that oc
cur through the 12-month period. By the range of storage values, we mean the dif
ference between the largest storage that occurs in the 12 months and the smallest 
storage that occurs in the 12 months. If this difference is pushed to its smallest value, 
we have successfully minimized the range of values. 

Another way to decrease fluctuations is to limit the month-to-month change 
in storage. This can be done, as we will show, but it does not limit effectively the 
range over the 12 months-unless the month-to-month change is very tightly con
trolled. Nonetheless~ we could add a constraint that forces any individual month-to
month change in storage to be less than or equal to, say, 25% of the range. What we 
are preventing here is an excursion of storage values that causes the entire range 
value to occur in just one month-to-month transition. 

To limit the range, we operate first on the largest storage to occur over the 
12 months. The largest storage is defined by the smallest value of storage that a!l 
end-of-period storages are less than. This value is called U, for upper limit. It ts 
precisely equal to the largest of all 12 storages. That is, 

t = 1, 2, ... , 12, 
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S,-uso 
' t :::: 1, 2, ... ' 12 

where some minimization of th ' 
111 e unknown u · · ne next operate 00 th k is implied. 
h Th e un nown JJ mont s. e smallest storage . d r· sma est storage to 

is e med by L where occur over the I 2 

I - 1 2 - , ' ... , 12. 
or 

s, - l ~ 0, t :::: 1, 2, ... , 12! 

and Lis precisely equal to the smaII t 
Lis implied. es of all 12 storages. Further. a maximization of 

To minimize the range of stora e valu . 
written together: g es requires both sets of constraints to be 

S, 5 U, t = 1, 2, ... , 12, 

s, ~ l, t :::: 1, 2, ... ' 12, 

which in standard form are 

Sr - Us 0 

S,-L~O 

t = 1, 2, ... ' 12, 

t :::: 1, 2, ... ' 12, 

U ~ 0, L ~ 0. 

The minimization is of 

z=U-L. 

Effectively, this minimization simultaneously pushes down on the maximum value 
and up on the lowest value, thus minimizing the range of storage values. 

We mentioned earlier that it might be of interest to control month-to-month 
changes. Storages can, of course, go up or down, forcing us to write not only con
straints on (S1 - S,_i) but also on (Sr-I - SJ If the limit of a month-to-month 
change is 25 % of the range, the constraints are 

S1 - Sr-I $ 0.25 (U - L), 

5
1

_ 1 - S, $ 0.25 (U - L), 

t = 1, 2, .... 12, 

t = 1. 2 .... ' 12. 
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and in standard form this is finally 

S, - S,_ 1 - 0.25U + 0.25L :5 O. t = 1. 2, ... , 12, 

S,_ 1 - S, - 0.25U + 0.25L :5 O. t = l, 2, ... , 12. 

11.D HITTING THE IRRIGATION TARGET 

The water provided from the reservoir for irrigation does not pass through the tur
bines nor contribute to down-reservoir stream flow. It goes only toward application 
to the soil on the area of large farms to stimulate the growth of crops. The agency 
that operates the reservoir has been given a target release for the irrigation area fo.r 
month t; it is fr. Releases may exceed Tr or be less than Tr, but Tr is the optimal re
lease. the release that will provide the best growth characteristics. 

In this section. we offer three criteria for target hitting, three measures of how 
closely releases cluster around the monthly targets. These are (1) minimization of 
the sum of absolute deviations from targets, (2) minimization of the maximum devi
ation from targets. and (3) minimization of the sum of squared deviations from tar
gets. The structuring of all three criteria requires that additional specialized 
constraints be appended to the basic model. 

11.D.1 Minimizing the Sum of Absolute Deviations 

This criterion suggests that the absolute value of the difference between the irriga
tion release and the irrigation target measures the "match" between the two. Larger 
values of difference imply less than optimal crop yields. Smaller values of difference 
imply crop yields that are closer to the maximum. The measure suggests that the de
cline in the value of the crop yield is one-to-one linear with the shortage or excess 
relative to the target. The sum of absolute deviations from the target is not a perfect 
measure. but a rough measure with some appeal. 

A loss function that indicates actual economic losses due to deviations from tar
gets would be better-if it could be produced. Unfortunately the loss function is gen
erally only a gleam in an economist's eye; it is rare to exist and rarer still to be reliable. 
Among other issues, the loss incurred in month t + 1 by a particular value of devia
tion depends on the deviation in the previous month t. If the corn crop was already 
lost by a shortage in the month of June~ a July shortage would be of little consequence. 
Thus~ utilizing a loss function is a grand idea, but one with little possibility of achieve
ment. The absolute value of the deviation then acts as a stand-in or surrogate for the 
unknown or unattainable loss function. 

When we say that we seek the set of irrigation releases that minimizes the sum 
of absolute deviations from targets, we mean that we desire to 

12 

Minimize Z = " I Y. T. I .£.JI- I 
t=l 
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where the absolute value symbol e 1 . Th . l nc oses a functio th 
at1ve. at is, re ease could exceed orb 1 n at could be positive or neg-
. d' l h e css than the t U mg uect y on t e absolute value of f . . argct. nfortunatcly, operat-

'bl I d a unction with 1 · poss1 e. nstea , the modeling of absol t d . . mcar programming is not 
by introducing the difference betweenut e eviat1ons from a target is accomplished 

wo new non · , . negat1\e variables as follows: 
Yr - Tr = w+ - w-

' I where 

w+ - .. 
' - a pos1ttve number if Y, exceeds T,. and 

w; = a positive number if T. exceeds Y. 
I I• 

or, in standard form, 

Y, - Wi + W; = 7;. 

This equation is written for all time periods, t = 1, 2, ... , 12. 
If Y, exceeds T,, we want Wi to be positive and w; to be zero. And if r. ex

ceeds }_!, we want w; to be p~sitive and w: to be zero. Also, if Y, equals 7;. both w; 
and W, should be zero. Obviously, there are many possible ways in which these re
quirements could be violated. For instance, suppose Yr = 34 and 7; = 40. The fol
lowing are a few of the infinite number of pairs of Wi and w; that satisfy the 
definitional constraint above: · 

(Wi, w;) = (0, 6) = (2, 8) = (10, 16) and so on. 

It would seem like magic if we could arrange the special condition that we desire in 
which always one of the two variables is positive and the other is zero. but in fact we 
can-with no difficulty. The device was created by Chames and is used in his inven
tion of goal programming. In fact, hitting targets with the deviation measured by the 
absolute value of the difference between release and target is precisely the form of 
goal programming that Charnes invented. . . 

How do we do it? How do we achieve no more than one of the two deviat10n-
al variables positive at a time? Before answering th.e ~uestion. it. is useful to set up 
the objective of minimizing the sum of absolute deviations. We wish to 

12 12 

Minimize Z = ~ w: + ~ w;. 
t=l t=l 

. . h w- are to be the negative deviations. 
The w+ are to be the positive deviations; t e t. h t h w-r is 1 d · t' if we can ensure t a w en r Together they represent the sum of evta ions-

positive, w; is zero, and vie~ ~er~a.' bove ob·ective ensures this relationship! 
Remarkably simply m1mmIZmg the a . . 1 h. h 

' · t nm w ic Here's why. Suppose we again had the s1tua 10 

Yr = 34 and Tr == 4o. 
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We display once again the three examples we gave that satisfied the definitional 
equation for Wiand w;; this time, their sum of values is indicated: 

0, 6 2, 8 10, 16, 

W+ + w- 6 
t t 10 26. 

The set of values for Wi and w; that gives the smallest sum of Wi and w; is always 
the set in which at least one of the two variables is zero. llms, by simply placing the 
deviational variables in the objective, we have automatically ensured that the vari
ables will properly represent the difference between release and target. It is certain
ly a coincidence that structuring the objective this way makes the variables take on 
the desired values, but it is a coincidence worth exploiting. 

It is informative to look at the shape of this objective function in this problem 
(Figure 11.2). When }~ and T, are equal, this objective has a value of 0. For every unit 
that Yr is below T,. the objective increases by one unit. For every unit that Yr is above 
T,, the objective also increases by one unit. Thus, the objective of minimizing tht 
sum of absolute deviations has a distinctive \!or notched shape as in Figure 11.2. 

To summarize this goal relative to the irrigation targets, we superimpose the 
following objective on the basic model (see Section 11.B for the basic model) along 
with the constraints that define the positive and negative deviations. That is, 

12 12 

Minimize z = L w:- + L w; 

Subject to: 

t=l t=I 

Yr - w; + w; = T,, 

w:-;:::: 0 

w;;:::: o 

t = 1, 2, ... ' 12, 

+ constraints of the basic model (Section 11.B). 

11.D.2 Minimizing the Maximum Deviation from a Target 

This criterion, minimizing the maximum deviation from a target, suggests that the 
losses that occur due to shortages or excesses relative to the irrigation target T, 

Figure 11.2 Shape of the objective in a 
minimization of the sum of absolute deviations. 

T, 
--Y,---.-.-
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climb quite steeply with distance fro th 

. . f h m e target By . . . . 
deviallon rom t e target, the largest 1 · mm1m1zmg the maximum 
. f . . . . osscs arc thus av . d d A . 

tive o mm1m1zmg the sum of the abs 1 t oi. e. · s with the objec-
. d . . o u e value of dev1at . . .. 

maximum eviatton may be viewed as a t d . 10ns, mm1m1zmg the 
minimizing losses. s an -m for the underlying objective of 

To minimize the maximum deviation f h 
two new constraints per time period in addi't~omt t e tar~ets'. we need to introduce 

' 10n o an objective. That is~ 

Minimize Z = M 

Subject to: Yr - r, :s M, 1 =l, 2 ~ .... 12, 

T, - Yr :s M, t = 1, 2, ... , 12, 

where 

M = the maximum deviation from any of the 12 targets. 

The first of these inequations deals with the case in which the release Yr is 
greater than the target. This constraint limits the positive difference (Yr - T,) be
tween the release and the target to no more than the unknown M. The second of the 
inequations is written for the situation in which the target is greater than the release. 
This constraint limits the positive difference (T, - Yr) to less than or equal to the 
unknown M. For any period t, one of these two conditions must occur. If release ex
ceeds target, the first constraint defines the deviation or excess, and the second con
straint is not binding. If target exceeds release, the second constraint defines the 
shortage, and the first constraint is not binding. In minimizing M, we are pushing 
down on the maximum difference, whether it be release less target or target minus 
release. In standard form, the constraints are 

Y, - M ~ T,, 

Y, + M ~ T,, 

t = 1, 2, ... '12, 

t = 1, 2, ... ' 12, 

but it is most useful to look at the constraints in their initial form to understand their 

meaning. l 
The solution to this problem will compress over alll ~onths uthldeblaerogbe~:;:e~a~ye 

. 11 'bl value The so ut1on wo 
shortage or overage to its sma est ~ossi e · . t th t define Mand the con-
minimizing the objective of M subject to the constr~m s a 
straints of the basic model (see Section 11.B). That is, 

Minimize Z = M 

Subject to: Y, - M ~ T,, 

y, + M ~fr, 
' . t of the basic model (Section 11.B). + constram s 

t = 1, 2, ... ' 12, 

t = 1, 2, .... 12. 
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11.D.3 Minimizing the Sum of Squared Deviations from Targets 

The goal of minimizing the sum of squared deviations of irrigation releases from 
targets can be easily written 

12 

Minimize Z = :L (Yr - T, )2 
t=l 

where all variables are as defined earlier. Unfortunately, the goal cannot be mini
mized in this form but requires some manipulation. In fact it requires extensive 
transformation, since up to now we have dealt only with the optimization of linear 
functions. 

We will deal with transforming the objective in steps, but before we begin the 
process of transformation. we note again that minimizing this goal is also a stand-in 
for minimizing losses. As with the goal of minimizing the sum of absolute deviations 
from targets, this goal suggests that losses are symmetric about the monthly target 
value. And~ as with the goal of minimizing the maximum deviation from the targets, 
this goal suggests that losses rise more steeply as the release "distance" from target 
increases on either side of the target (Figure 11.3). 

The objective can be expanded into three individual component sums as 
follows: 

12 12 

Minimize z = L (Yr - T, )2 = :L (Y; - 2T,Yr + r;) 
r=l r=l 

12 12 12 

LY; - L2T,Yr + :Ln. 
r=l t=l r=l 

Of the three components, the last one is recognized as a sum of constants and, 
hence~ nonoptimizable. This last term does not need to be written again in this prob
lem because nothing can be accomplished to change its value. The second term con
sists of 12 individual linear functions in Yr each with a slope of negative 2T,. This set 

Figure 11.3 Shape of a single term in 
the objective of minimization of the sum 
of squared deviations. 

Tr 

Release~ 
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of terms is in the correct form for proper application f 

1
. . 

d. . o mear programming. Hence. for these terms, or mary lmear programming may be l' d · h f 
app 1c wit out any urthcr steps. 

The first term, on the other hand, the sum of the squares of the 12 releases. is 
an entirely new form for us'? de~( with. Linear programming cannot handle such 
terms unless each of the fu~ct~ons is specially decomposed or separated into its suh
component terms. Once this ts done, however, linear programming will work. We 
have to introduce a new mathematical technology at this point to deal with these I 2 
terms-piecewise approximation-a procedure sometimes referred to as separable 
programming. You will see that the method of piecewise approximation of these 
convex functions produces multiple linear functions which can closely describe the 
actual shape of the convex functions. Piecewise approximation is presented in the 
box following Figure 11.4. You should read that boxed discussion at this point and 
then return to the text here to find out how it is applied. 

With this new technology, we can break up each of the 12 quadratic functions in
to individual segments, which total to the entire anticipated range of the variables Yr. 
Note that the quadratic functions, Y;, are convex and that we are minimizing the 
sum of these convex functions. For this reason, the segments will enter in the proper 
order. . . 

2
. 

The linear approximation of Yr is 

y~ = Co + CtYlt + C2.Y2r + C3Y3t + C4y4, 

where 

v. = the extent or length of the ith component segment that is occupied: Jll 

a· = the full or maximum length of the ith component segment; and 
l 

C c c and C4 are positive numbers. b 2, 3, I 
for the 11 other monthly re eases are 

These terms plus 11 ot~er sets ~f te~\ th y2 functions had been different 
placed in the objective function. Ordman y, 1 e ' 

a I _..1._a2--+-r-a3-'-a.i-: 
I I 
I 
I 
I 
I 
I 
I 
I 
I 

: C3 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

x1-7 
I 

I 
I I I +Y.ir-+i L_Y11-+r--Y21-+r-Y3r I I 
I I I 

-}',~ 

. :se approximation of Y~. 
Figure 11.4 Piece\\ 1 
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shapes. they would be approximated differently so that both the component seg
ment lengths and slopes would be different, but in this case, since they are all the 
same function, only one division into segments and slopes is needed. 

Of course. the constraints are expanded as well to include for every month / 

as well as 

Y, = Yir + Y2r + Y3r + Y4r 

or in standard form 

4 

Y, - LYit = 0 t = 1, 2, ... ' 12. 
i=1 

This constraint need not be written formally if ( ~ Y;r) had been substituted for Y, 

on every occasion in every constraint that it occurred. 

PIECEWISE APPROXIMATION OF NONLINEAR FUNCTIONS 

In this discussion we will only refer to functions of a single variable. Functions of 
multiple variables that cannot be separated into the sum of functions of single 
variables will not be considered. We can classify functions of a single variable in 
four ways: linear. convex. concave, and neither convex nor concave. Convex 
functions are bowl-shaped upward; a line joining any two points on a convex 
function lies entirely above the function except at its endpoints (Figure ll.5a). 
Concave functions are bowl-shaped downward; a line joining any two points on 
a concave function lies entirely below the function except for its endpoints 
(Figure l l .5b ). The last type of function cannot be classified as convex or con
cave because it has one or more portions that are of one type and one or more 
of the other (Figure 1 l.5c). 

What we will show here is how to minimize, via linear programming and 
piecewise approximation, the sum of convex functions. We will find in the process 
that we can minimize such a sum. but that we cannot maximize such a sum using 
this technique. We will also explain why we cannot maximize such a sum using 
piecewise approximation. Finally, we will ask you to consider how to deal with 
optimizing a sum of concave functions. 

Suppose we had an objective that consisted of the sum of two convex func
tions,f1 ( x1) and f2(x2), that we wished to minimize subject to a set of linear re
source constraints and the usual nonnegativity constraints. The two functions are 
shown in Figure 11.6 with short approximating segments drawn between adja
cent points on the curves. The distance between adjacent points is kept relatively 
short to produce good approximations of the curves. 
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Line segment 
lies above 

-;:: the function 
~ 

x 

(a) Convex function 

Linc segment 
lies below 
the function 

x 

(b) Concave function 

Figure 11.5 'T\,pe f f · .. , so unction of a single variable. 

x 

(c) Function that is 
neither convex 
nor concave 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I I 

~b1---+i+--b2--r--b1~ 
I - I - I - I 
,..- .(.I -----,- "-2---+;-- ;:3 -, 

---X1~ ---X2-----+-

Figure 11.6 Two convex functions whose sum is to be minimized. 

The actual spacing of points depends on the curvature of the functions and 
how closely we want to approximate their values. The parameters and the vari-
ables of the two approximations are listed in Table 11.l. 

The approximation produces two broken-line curves each of which repro-
duces the original functions within a margin of error dictated by the analyst-who 

performs the approximation. 
The function Ji (xi) is approximated by 

/1 (Xi) = C1J1 + C2)'2 + C3}'3 + C.tY.t 

which can be placed in the objective instead of fi(x1)· In the constraints. we need 

to add 
Yi s a17 Y2 s az, Y3 s a3, Y-t s a,. 

. re resent the extent to which each of t~e nu~-
where the variables Y1, Y2· y3, Y.i P . . d to write an 1dent1tv 
bered segments of function 1 is filled. In additwn, we nee · 
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298 A Multigoal Water Resources Problem Chap. ,1 

TABLE 11.1 APPROXIMATION OF TWO CONVEX FUNCTIONS 
-

Length of 
Segments Name of 

Number of (max value of Variable in Slope in the 
Function the Segment the variable) That Segment Segment 

1 a1 Yt Ct 

2 a2 )'2 C2 
1 

3 a3 )'3 C3 

4 a4 )'4 C4 

1 h1 Zt d1 

2 2 b2 Z2 d2 

3 b_, ZJ d3 

equation (in standard form)~ namely, that x1 is the same as the sum of y1 to y4; 

that is. 

Xi - (Yi + Y2 + Y3 + )'4) = 0. 

Similarly. the function f2(x2) is approximated by 

fi(x2) = dizi + d2z2 + d3z3 

which can be placed in the objective function in place of fi(x2). In the constraints 
we need to add 

Z I ::5 bi, Z2 ::5 b2, Z3 ::5 b3 

where the variables ZI, z2, z3 represent the extent to which each of the numbered 
segments of function 2 is filled. In addition, we need to write an identity equation 
(in standard form) that equates x2 with the sum of Zi, z2, and z3. That is, 

X2 - (zi + Z2 + Z3) = 0. 

Of course, the Yj and Zj are constrained to be nonnegative variables. 
The approximation procedure we have described has been rather mechanical; 

we have used segments and slopes and partial sums. We know the approximation 
is good. but will it work? That is, will the new, replaced objective and the new 
constraints operate together to produce a continuous curve? For instance, for 
[ 1 (xi). it is conceivable that YI and y3 would be positive and Y2 = 0. The approx
imation would be meaningless if such a situation occurred. Can it be prevented? 

It turns out that, so long as the function is convex and the objective is to 
minimize, such meaningless situations will never occur and variables will al
ways enter in the proper order. That is, if y3 were positive but did not fill its seg
ment, YI would equal ai, Y2 would equal a2, and y4 would be precisely zero. 
Similarly, if y2 were positive but did not fill its segment, y1 would equal a

1
, but 

y3 and Y.t would be zero. The combination of objective minimization and the 
function's convexity ensure that this will always be the case because it is always 
least expensive to take the earlier segments first-their slopes are less. And the 
variables will always fill these earlier segments in order before later variables 
fill later segments. 
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This rather surprising phenome .. 
f . non, our ab1hty t · . 

convex unctton and have the segme t . 0 piecewise approximate a 
. n s enter m the c . . however. If either of the two cond't' . . orrcct sequence. 1s limited 1 ions mm1mizaf ' change, the optimization would not work ir · mn or convexity. were to 

of convex functions, the last segment w ·Id we were to try to maximize the sum 
so on-a meaningless situation If w ou enter first, then the second last. and 

· e were to try to minimiz , th f functions-using piecewise approximation- . h c e sumo concave 
first. Why? As a consequence min' . . ~gai? t e ~ast segment would enter 

. ' ~m1zat1on via p1ecew1sc approximation can he accomphshed only when the functron being cut · t · . 
0 h h . . m o segments 1s stnctlv convex. n t e ot er hand, suppose the ob1ective was to b, . . . _ d · 

• J c max1m1ze and the f unc-tions were concave. Would the piecewise approx1·mat· h d k · 
. ion met o wor ? That 1s. 

would the segments enter m the proper order, first segment fl] d f t d 
t d ? Wh h 1 e 1rs . secon 

nex , an so on.? a.t are t e relative slopes of the first segment. second seg-
ment, and so on. Which segment gives the greatest "bang for the buck''? You 
probably have the answer by now. You can maximize a sum of concave functions 
by piecewise approximation-just as you can minimize the sum of convex func
tions by this method. You should make a chart of what you can and can't do with 
piecewise approximation and why. It will help you think about the technique
which incidentally is another contribution of Charnes. 

A related topic in piecewise approximation is what shapes work in greater than 
or equal constraints and what shapes work in less than or equal constraints. Using 
the same "bang for the buck" argument as above, a constraint consisting of the sum 
of concave functions which is greater than or equal to the right-hand side will have 
the piecewise variables enter in the proper order. This will not work if the con
straint is a less than or equal to constraint. And, using a like but inverse argument 
a constraint consisting of the sum of convex functions which is less than or equal to 
the right-hand side will also have the piecewise variables enter in the proper order. 
The variables will not enter in the proper order if the constraint is of the greater 
than or equal form. You should create a chart of these relationships as well. 

11.E PLACING THE RELEASE TO STREAM FLOW IN A TARGET 
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In Section 11 D we showed how linear programming could b~ used to dust.er irri~a
tion releases ~r~und a target. In contrast, in this section, we ~vill be attempThtmg tom-

. t interval or desirable range. e upper 
sert the releases to streamflow mto a targe b k through erosion. The 
limit of the interval is£, the flow that damage; st~eam ,::i :rovides adequate flow 
lower bound of the interval is F, the least ra~e: r~ eas~ounds is desirable; a release 
for fish survival and migration. A release wit n ~ ebsel 

. . . . · ble but less desira e. 
outside of these hm1ts is permissa f b 1 te deviations of stream flow re-

The goal will be to minimize the su~ o a sou h like the minimization of ab-
1 Th. goal IS very muc lease from the target interva . IS 

solute deviations from a target. . 'twas also suggested by Char~es. To 
This criterion and the means to achieve I . bl s· all are deviational vanables. 

d f. four new vana e ' m flow 
achieve this goal we need to e me h d . ations around the upper st re a 
One pair of variables is used to define t e evi 
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target E. The other pair of variables is used to define the deviations around the low. 
er stream flow target F. 

where 

X, - E =Vi - u;, 
X, - F = Vi - v;, 

t = 1, 2, ... , 12, 

t = 1, 2, ... ' 12, 

Vi = the amount by which the release exceeds E; 

u; = the amount by which the release falls short of E; 

v; = the amount by which the release exceeds F; and 

v; = the amount by which the release falls short of F. 

Of the four deviational variables, we are only concerned with Vi and v;; these 
variables represent deviations outside the target interval. The variables u; and Vi 
generally, though not always, represent deviations within the target interval. In any 
event, only Vi and v; are of importance here, and it is the sum of these variables 
that is minimized. If the sum of Vi and v; over all 12 months can be driven to zero, 
then every release to stream flow will have fallen within the target interval. 

The objective function term for a single month looks like Figure 11.7. 

Figure 11. 7 A single term of the 
objective of minimizing absolute 
deviations from a target interval. 

Deviation 
from 
target 
interval 

F E 

The problem of directing stream flow releases into the target interval can then 
be written as 

Subject to: 

12 12 

Minimize z = LVi + 22 v; 
t=l t=l 

X, - Vi + u; = E, 

X, - Vi + v; = F, 

t = 1, 2, ... ' 12, 

t = 1, 2, ... ' 12, 

+ basic model constraints (Section 11.B ). 
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It may be that exceedances of E are of great · 
th n F. A weight greater than one Id h er importance than shortfalls less 

a cou t en be placed on u;. And if shortfalls 
were of greater concern than exceedances the we1· ht h · 

d V - • g greater t an one could be 
place on 1. 

11 .F DELIVERING A HVDROPOWER REQUIREMENT (NONLINEAR 
PROGRAMMING TECHNIQUE) 

Hydropower is a co~mon purpose of reservoirs, and it is useful for illustrating 
nonlinear programming techniques because it involves the product of decision 
variables. We will show a nonlinear programming technique known as iterative 
approximation to optimize hydropower production. The hydropower equation 
indicates that the power generated is proportional to the product of head and the 
release through the turbines, with specific parameters determined by turbine de
sign. That is, the power generated in month tis given by 

where 

Pr= kH,X, 

P, = rate of power output in kilowatts in month t; 

H, = average head (height through which water falls) in feet during 

month t; 

X, = release during month t; and 

k = a constant. 

The head in the reservoir at any moment can be related via a linear approxi

mation to the storage in the reservoir 

H = mS + n 

'ble f1"t of a straight line to the . the best poss1 h d 
where m and n are chosen to give f t' 

0 
of storaoe. The average ea 

'b h d as a unc 10 e . concave curve that descn es ea rs at the average storage m 
. . d b the head that occu 

during month t is estimate Y 
month t, or 

where 
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so that 

- 111 ) H, = -(S, + S,_ 1 + n. 
2 

Recall that S, and S,_ 1 are defined by the inventory or mass balance equations of 
the basic model, and the basic model is retained as the foundation of this hy. 
dropowcr model. 

We pointed out earlier in this chapter that linear programming handles defini. 
tional equality constraints as well as the more common inequality constraints. The 
inventory or mass balance equations referred to above are examples of such equaJi. 
ty relations that we leave linear programming to enforce. To avoid algebraic manip. 
ulation, we do not replace H, in the power equation with its equivalent in terms of 5

1 

and S,_ 1• Instead. we add a definitional constraint for average head in every month. 
In this definitional constraint, average head is expressed in terms of beginning and 
ending storage. In standard form this is 

t = 1, 2, ... ' 12. 

1llis constraint type defines average head in terms of variables already defined in 
the basic model. It must, as a consequence, be written with the constraints of the ba
sic model in order for it to have meaning. 

With this definition of head now included along with the base model, we can 
rewrite the power equation, which has a multiplicative term, as a constraint 

t = 1, 2, ... ' 12, 

where Q is the minimal monthly level of hydropower to be produced over the 12-
month period. This constraint is clearly nonlinear and cannot be handled in its dis
played form by linear programming. 

11.F.1 The Method of Iterative Approximation for Nonlinear Programming 

The name "iterative approximation" is a nice way of saying: guess values of decision 
variables you cannot calculate; insert these values in the model to make the model 
linear and solvable; solve the model, finding new values for the decision variables 
you guessed; and insert those new values. Repeat the process until the variable values 
that are produced by model solution are within some small fraction of the variable 
values you inserted. The process is surprisingly powerful in a number of instances, of· 
ten stabilizing in six or seven steps or iterations and producing what appear to be 
'"good" solutions to otherwise relatively intractable problems. We say "good" solu· 
tions since we have no provably optimal solutions to compare them with. 

How does iterative approximation work in the hydropower model case t?at 
we are considering here? The constraints of the model for hydropower producuon 
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can be summarized as 

H - m - m ' 2s, 2S1-1==n, 

kH,X1 ~ Q, 

plus the basic model constraints (Section 11 B) 
and all variables greater than or equal to 0 .. 

303 

The hydropo~er constraints are the only constraints with nonlinearities. and it will be 
these constr~mts where. variable estimates are inserted to linearize the inequalities. 

For t~1s n~odel, with F. :5 ~' :5 £, a fair guess of X, might be ( E + F)/2. that 
is, at the ~1dpomt of the desued mterval. All 12 values of X, would initially be set at 
this level m the hydropower constraints, and only in the hydropower constraints. 
The values of X, in all other constraints are left free-free to assume their best val
ues. Each hydropower constraint has now become linear in a single variable. H,. 
yielding an entirely linear model. The linear programming model is then solved un
der some objective-perhaps one of the ones we have discussed. Values of all of the 
decision variables, the X, among them, are determined by solution of the linear pro
gramming model. The new values of X, are inserted in the hydropower constraints 
and the process is repeated-until the values of the X, which the model produces 
are sufficiently close to the values of the X, from the previous iteration that were in
serted. This final run is taken as the solution to the problem. 

11.G RECURSIVE PROGRAMMING 

Early in the chapter we described recursive programming, a techniq~e for optimiza
tion through time when the magnitude of future events are uncertam. We return to 

. l'd"fy d t nding of the concept. In our case. recursive programmmg now to so 1 1 un ers a . b · 
fl . t t the reservmr The stream flows can e 

the uncertain events are stream ow mpu s 0 d' . b. · li'kely much better 
. . 1 t flow pre ictions emg 

estimated, ho~ever, with ear Y s ream .
1 
moisture or snow pack in the present 

than later pre~1cted values. As an example, :~:s flow but less information about the 
month may give strong clues to next mon t f decisions are needed for the 
second, third, and later months. Nonetheles~, a se 

1
° not J·ust over the next period. 

. . · · ver the entire eye e-
upcommg penods that optimize o . t"mization model that spans the 

· · fl thus used man op 1 · The predicted m ows are . This is done despite the recog-
. . h t eriod of operation. ·11· entire cycle, not JUSt t e nex P . d The reason we are w1 mg to op-

d. · for later per10 s. f h nized poorer quality of pre 1ct1ons . h t the decisions that result rom t e 
timize over the entire cycle with such <la.ta is ti af t only the initial decisions-and 

· h · trrety n ac , · · d' · optimization will not be used m t eir en · utilized. Once the first perw . s 
. · b d n the best data-are d :vn-reservoir these are the dec1s1ons ase 0 . have been made to 0 ' . . 

. . k that is releases 1 · fl , has arrived m dec1s1ons have been ta en, ' h r· t month's actua m 0 '' 
. . t' n and t e irs stream flow as well as to irnga 10 ' . 

· · ducted agam. storage, the optimization is con 
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By reconducting the optimization, we mean that (1) a new set of 12 monthl 
inflows is estimated for the next 12-month period and (2) the programming model i~ 
resolved to provide values of the decisions X, and Y, for those 12 months. As a con
sequence of this procedure focusing on operation in the here-and-now, the impor
tance of the more uncertain future monthly flows is diminished, while the 
importance of the more certain prediction of the upcoming month's inflow is em
phasized. Once the actual inflow has materialized, we adapt to it by reestimating fu
ture inflows and recalculating decisions. For this reason, the procedure may also be 
referred to in the literature as adapth·e programming. The procedure is a cunning 
approach to the need for here-and-now decisions in the face of an uncertain future. 

CHAPTER SUMMARY 

Our goal in this chapter was to introduce new programming ideas in the context ot 
an actual problem setting. We first described a fundamental model of inventory, the 
water reservoir. a model useful in a number of practical modeling situations. Then 
we introduced a number of purposes that the reservoir was to fulfill. Probably there 
is a reservoir somewhere in the United States, maybe a number of reservoirs, that 
have the functions that we have suggested and goals that resemble the goals we de
scribed. Although we described multiple objectives for the reservoir operation, we 
did not presume to trade off one objective against another, because we did not real
ly prescribe which objective would be chosen for a given purpose. 

As we described in turn each objective in words, we introduced programming 
ideas to implement the optimization of that objective. For instance, to reduce the 
range of storage fluctuations over the year, we introduced the notion of the differ
ence between the values of the unknown upper and lower bounds on variables, a 
function that is precisely the range. To hit irrigation targets closely, we introduced 
three new programming ideas. The first was minimizing the sum of the absolute val
ues of deviations from the target, a technique that used an equation that defined the 
difference between two nonnegative variables. The second idea was to minimize the 
maximum deviation from targets, a deviation that could occur on either side of the 
target. The third idea was to minimize the squared deviations from targets. This last 
idea required us to explain the techniques of convex and concave programming by 
piecewise approximation. 

We wanted down-reservoir stream flow to be within a specified range. To ac
complish this, we showed how to minimize the sum of deviations from the target in
terval. To achieve a particular hydropower production level, we had to introduce a 
function that included the product of two variables. To handle this nonlinear func
tion, we described the technique of iterative approximation, a methodology that be
gins by estimating values of variables in nonlinear constraints. Having values for 
these variables allows the constraints to be linearized temporarily. This was followed 
by solution by linear programming, which produced corrected values of those same 
variables. The new values were inserted and the process was repeated until the val
ues of the variables stabilized. 
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Finally, we discussed recursive . 
f h. h programming . . 

each o w IC uses currently updated d t ' a sequence of optimizations, 
. . h . a a and produce f cychc time onzon. Only the most near-te d . . s a set o decisions over a 

f . rm ec1s1ons a · 
the pro~ess o updatt~g d.ata is repeated followed b re ever 1mplemen~ed. before 
Recursive programmmg 1s designed to prod d ~ ~not~er stage of opt1m1zation. 

· b · uce ec1s1ons m · uncertam y imperfect prediction of the ma .
1 

d an environment made 
gm u es of future events. 

EXERCISES 

11.1. 

11.2. 

11.3. 

11.4. 

11.5. 

11.6. 

Show how to minimize the maximum month-to-mo th h · , 
f d · d' . . n c angc m storage. Use standard 
orm an m 1cate non-negat1V1ty for any new variable(s). ._ 

We gave the desirable interval for releases to streamflo\" as F to E Sh h . · · · h · d · · 'Y • ow m" to m1m-
m1ze t ~ maximum ev1at~on from the target interval. Use standard form and indicate 
new vanables as nonnegative. 

Suppose that all the releases to stream flow can be placed in the interval between f d 
E. Show how to minimize the range within which the releases to stream flow fall. gi~·~n 
that all are between F and E. 

In determining irrigation releases to hit a target closely. we suggested that the '·dis
tance" measure be the difference between the release and the target. This would be an 
especially meaningful objective if the targets were not far in value from one another. It 
may be, however, that the targets may be very different from, say, the very early part of 
the growing season to a late month of fast growth prior to harvest. Suppose that the 
early month target is 5000 and the late month target is 10,000. If the release Yi is 4000 in 
the early month and 9000 in the late month, we count these as equivalent failures in 
several of the models that we built. Yet the first is a 20% shortage, and the second is a 
10% shortage. Perhaps they are not equivalent. We need to put the two measures of dif
ference on a common scale so that we are calculating impacts correctly. Our suggestion 
for the two models described below is that the distance be calculated as the difference 
between release and the target, divided by the target. In this way, deviations. are nor
malized; that is, a difference of 1000 when the target is 5000 is equivalent to a difference 

of 2000 when the target is 10,000. 

Set up in standard form the constraints and objective for minimizing the sum of the 
a. . . t Th t ·s minimize the sum of the ab-

normalized absolute deviations from targe s. a 1 • . f 
solute values of the fractional deviations from targets. Assume th~ c~nstramts o 
the basic model are already in place. Be sure to note that your vanab es are non-

negative. · l d · t' s . . . . . . the sum of the squared fract10na evrn ion 
b. Set up the ob1ect1ve for num~izmg h b . odel are alreadv in place. Indicate 

from targets. Again, the constramts oft e as1c m . . 
b 1 d· name the technique. 

how this problem should e so ve ' 
. h ual to or short of the target. Show h~w 

Suppose that all irrigation releases are eit er ehq ·n the fractional delivery of the tr-
. . . . th-to-month c ange I . l 

to mm1mize the maximum mon d. d' te nonnegativity appropriate Y· 
rigation target. Use standard form an in ica . . f r the hydropower problem of 

f . t. ve approx1mat1on o . 
Describe another method o itera 1X . th hydropower constramts. 
Section 11.F.l. That is, do not guess , in e 
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Lessons in Context: 
Transportation 
Systems 

12.A INTRODUCTION 

This is an advanced chapter. To comprehend the models in this chapter. the reader 
should understand the transportation problem as described in Section 6.D of Chap
ter 6, "Linear Programming Models of Network Flow." The reader should also be fa
miliar with the water resources chapter, Chapter 11, especially Section 11.B and 
11.D where a reservoir is modeled through time and irrigation releases are pro
grammed to hit target values as close as possible. Without these background materi
als, the first, third and fourth sections of this chapter may not be penetrable. 

This chapter, unlike other chapters of the book, consists of a number of sepa
rate and distinct problem settings. The common thread in t~e four settings w~ pre
sent is that all problems arise in the arena of transpo.rta~10~ system planning. a 
subdiscipline of civil engineering that is growing ste~dily m importance and that 
draws heavily upon the methodologies discussed i~ this.book. . . . . 

The first problem treats a classical civil engmeer~ng problem m high:~) de-
sign, the optimal vertical aJionment of a highway, m which cutting and fillm" are 

10 

b · • t The second problem ex-
be balanced to yield a highway segment of minimum cos · . . · h th_ b. . . d f rew of bus dnvers wit e o -
ammes the hiring and shift assignment by ay 0 a c d · · li"fi'ed form to b~ · . f d · It is presente m s1mp 
Jective of hiring the fewest number o nvers. . · rtance in the passenger 

. . . · blem of maJor impo --
sure, but m its comphcated form is a pro . . h t portation model of linear 
transport industry. The third problem .utilizes t ~ r;;:he origin-destination flows 
programming (LP) as a statistical techmque to estima 

307 
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on an urban expressway. l11c fourth and last problem deals with goods movement 
specifically supplying at least cost the empty containers needed for loading at eact. 
of a number of sites. The empty container distribution problem is still being struc~ 
lured and understood by researchers as they gradually come to grips with its re
markable complexity. Our version is, of necessity, basic, but complicated enough. 

12.B OPTIMAL VERTICAL ALIGNMENT OF A HIGHWAY 

In this problem, you will learn about free variables, about the absolute values of dc
'iations from a target, and about curve fitting using linear programming. 

A highway is to be constructed between points A and B through rolling ter
rain. The highway is replacing an existing road that winds and turns sharply and 
which has frequent and unacceptable elevation changes by today's standards.1lrns, 
the horizontal alignment of the highway is already known because it is dictated by 
the position of the current road as well as by land ownership patterns along the 
road. The new highway is planned in order to make travel safer and faster between 
A and B. Accordingly, the sharp bends are corrected in the new horizontal align
ment. Further. the rapid elevation changes also need to be corrected, in this case, by 
the vertical alignment which you arc to determine. In addition, the rate of change of 
grade needs to be constrained. influencing such factors as the ability to see a speci
fied distance and the reach of headlights. 

1l1e vertical alignment should follow a smooth curve that is anchored in height 
at the two ends of the highway. In between. the curve will have a limited grade in 
both directions as well as a limited rate of change of grade. The problem is to deter
mine the elevation of the road as a function of distance from the initial point A in 
the direction of point B. Instead of determining the elevation point by point, it is 
easier simply to create a smooth mathematical function that meets the constraints 
we have indicated on grade and on the rate of change of grade. 

111e topography is too rough for the new road to follow without some cutting 
and filling to lessen the slope of the road. The cuts are not so deep as to require blast
ing or tunneling. Nor are the fill sections deep enough to require bridges. It is a matter 
of shaving a piece here and padding a spot there. The decisions needed are how deep 
to cut and how much to fill so that the total cost of cutting and filling is minimum. The 
road must be a smooth curve or function~ it cannot have sudden changes in slope. 

111e slope or .. grade"' is limited lo sn feet of rise per foot of distance and sF feet of 
fall per foot of distance. finally~ the rate of change of slope is limited to q to allow for 
sufficient distance vision on the highway. The slope of the highway must also "feather 
in~~ to match the slope of the road in the two areas in which it joins with the old road. 

To begin the problem~ we will show how to estimate the cost of cutting and fill
ing based on the depth of cutting and filling. From Figure 12.1, the following defini
tions are apparent: 

a= average depth of the cut between 50 and 150 feet measured on the x axis 

b =average depth of the cut between 150 and 250 feet measured on the x axis 
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I Figure 12.1 Cuttin2 and fillin(J to 

achieve an acceptable road grade:: 
curvature. 

I 
50 

c = average depth of the cut between 250 and 350 feet measured on the x axis 

d = average depth of the cut between 350 and 450 feet measured on the x axis 

e = average depth of the cut between 450 and 550 feet measured on the x axis 

f = average depth of the cut between 550 and 650 feet measured on the x ax.is 

g = average depth of the fill between 650 and 750 feet measured on the x axis 

h = average depth of the fill between 750 and 850 feet measured on the x ax.is 

i = average depth of the fill between 850 and 950 feet measured on the x axis 

j = average depth of the fill between 950 and 1050 feet measured on the x axis 

cost/volume of cut = p dollars/cubic foot 

cost/volume of fill = q dollars/cubic foot 

The road is to be built w feet in width. 
The volume of the cut between 50 and 150 feet is calculated as the product of 

the depth of the cut times the road width times the segment length 0.r (a)("?(! 00) · 
The vol urne of the next cut is ( b )( w )(100), the volume of th~ th:~d cut 15 

( c )( 
11 

)( 
1
00 ). 

and so on. The total volume of cutting between 50 and 650 ee is 

( 1 OOw) (a + b + c + d + e + f) 

and the total cost of cutting is 

(p)(lOOw)(a + b + c + d + e + f). 

d 750 feet is calculated as the product of 
The volume of filling between 650 a~ ment length or (g)(w)(lOO). The 

the depth of filling times the road width times seg 
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volume of the next three segments of filling are ( h )( w) ( 100) + (i) ( w) (1 oo) + 
U) ( w) (100). 1l1e total volume of filling between 650 and 1050 feet is 

( lOOw) (g + h + i + j) 

and the total cost of filling is 

(q)(lOOw) (g + h + i + j). 

The total cost of cutting and filling is 

lOOw[p(a + b + c + d + e + f) + q(g + h + i + j)] 

or 

Z = 100w[p(total depth of cuts) + q(total depth of fill)]. 

To minimize this objective, it is sufficient to discard lOOw as it is a constant factor, 
and 

Minimize Z = p L cut depths + q L fill depths. 

Assume that a polynomial function of degree 5 is chosen for the profile of the 
road. Higher orders are found to give no significant decrease in cost. That is, we wish 
to find a curve of the form 

v = k x 5 + k x4 + k x 3 + k x 2 + k x + k . s 4 3 2 1 0 

where y is the elevation of the road at distance x from the origin. The constants 
k 1• k 2• k 3, k 4, k 5• and k 0 are unknowns which are to be determined. The actual eleva
tions of the current surface are noted at 100-foot intervals: 

r 1 = elevation at 100 feet (known); 

r2 = elevation at 200 feet (known); 

r; = elevation at lOOi feet (known); 

'" = elevation at lOOn feet (known). 

There are assumed to be n increments of 100 feet. 
The problem is then stated this way: 
Find the constants of the fifth-order polynomial curve which constants mini

mize the cost of cutting and filling subject to grade and rate of change of grade con
straints. Remember k 0 through k 5 are free to be positive or negative. 
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We define the following paramete d . 

rs an variables: 
kj = the unknown coefficient of th ., b . 

coefficient must be free to be c v~r~a lex raised to the jth power. the 
pos1t1vc or negative· 

+ . 
k j = the unknown value of k. if it is a .t. . . 

1 pos1 1ve coefficient: 

kj = the unknown value of ki if it is a negative coefficient; 

X; = the value of distance at the ith point on th h .. 1 . e onzonta axis. knmvn: 

r; = th~ actual height. of the ground prior to excavation or filling at the ith 
pomt on the horizontal axis, known; 

Y; = the height of the highway surface after cutting and fillino as defined 
by the function of x; b 

u; = the dep.t~ of f~lling at the ith point on the horizontal axis: u, represents 
the positive difference between value of the function evaluated at the 
point i and the height of the actual ground surface when the value of 
the function exceeds the height of the ground; it is unknown: and 

V; = the depth of the cutting at the ith point on the horizontal ax.is; it rep
resents the difference between the value of the function at i and the 
ground surface when the height of the ground surface is larger than 
the value of the function; it is unknown. 

We first write a definitional equation of the height of the highway surface after 
the cutting and/or filling has taken place. 

Note that the unknowns in this equation are the k values and Yi· The values of x, are 
known. In the problem summary, we convert this equality to ~tanda~d .form. . 

To model the depth of cut and/or fill, we write an equat~on defmmg the ~iffer
ence between the height of the highway sur~a~e at poin~ i as given by the functton of 
x and the actual surface prior to cutting or filling. That is, 

Y; - r; = u; - V;, i = 1, 2, .. ·. n. 

. f . n the problem summary. It can be 
The equation will be written lil standard or~ 1 

.t. e when the new hiohwav sur-
f fill' It IS pOSI IV e " 

seen that u; represents the depth o 1 mg: f It can also be seen that v, rep-
. h f the pnor sur ace. d face exceeds in height the he1g t 0 . . h the heioht of the old groun . . s1t1ve w en e 

resents the depth of cutting as it is po . 1 value for the height of the new 
. d f' d by the f uncttona . l f surface exceeds the height e me . th ob,1ective with the va ues 0 u, . ·n appear m e J • • • t t 

highway. The variables u; and V; WI f v· b the cost of cuttmg. I~ is impor an 
multiplied by the cost of filling and va~~~~ ~e ~o~tive at any value of distance. If the 
that these two variables should never 
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variables are handled properly in the constraints, as we shall explain, we can be con. 
fident that this condition will be met. 

Grade constraints require us to differentiate the function that gives the eleva. 
tion of the new highway. The grade of the highway, or the rate of change of its cleva. 
tion, is given by 

The value of this function evaluated at each point i cannot exceed sR to allow cars to 

climb at an adequate rate of speed. The value of this function must exceed -sF so 
that the highway docs not fall so quickly that brake use will be excessive. The con
straints have the form 

and 

Recall that the unknowns are the kj (j = 1, 2, ... , 5) and the known coefficients in 
the above constraints are 5xf, 4x/. 3xf. 2x;, and 1. 

l11e constraints on the rate of change of grade require us to take the second 
derivative of the function that gives the elevation of the new highway. The rate of 
change of grade is given by 

The value of this function evaluated at each point cannot exceed q. The constraints 
have the fom1 

20x[ks + l2:t}k4 + 6x;k3 + 2k2 :s: q, i = 1, 2, ... , n. 

The problem~s objective is to minimize the cost of cutting and filling or, as shown 
conceptually early in the discussion of the problem, 

II II 

Minimize Z = p L V; + q Lu;. 
i=l i=l 

This completes most of the guts of formulation, but there are two issues to clear up 
before we summarize the problem. The issues are related in concept. 
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The first concern centers on th . b 

f f ·11 d h e vana Jes u and h. depth o 1 an t e depth of cut in th . · ' v1. w 1ch arc defined a~ th·~· e equatton · '"' 

Y; - r; = ii· - V· 
I I• i = 1. 2 ..... n 

where Y; is the elevation of the new highw f· . . 
polynomial in x. For the problem to hav~ ay su~ ace as defined by the fifth-order 

I b · · c meaning the two variabl · · multaneous y e positive. If they were both .. ; . es mu~t not s1-
origin, the costs would be counted wrong. we\~~~~~eb:t s:~c distance x1 fr_om the 
filling at the same moment, an impossible situation. p ymg for both cutting and 

For two reasons, the condition of simultancou 1 · · · · . · Th . . s Y pos1t1vc cuttmg and fillmg 
will not occur. e fust reason 1s easy to explain We not d th ·r d ~ ~ . . · e at 1 u, an ,. were both 
positive, the costs would be counted wrong That 1·s one · -i h 1 . . . . · answer m a nuts e I. Bc-
cau~~ we are mm1m1zmg the costs of cutting and filling. both variables will not be 
positive together-else the solution is not minimum The other ans · . . . . wcr requires a 
dose of lmear programmmg and lmear algebra theory that we did not provide in the 
early chapters of the book and which was not treated as a prerequisite for reading 
the book. As a consequence, we can describe the condition that prevents both vari~ 
ables from being positive at the same moment, but we cannot justify it. 

In the linear programming theory chapter, we used the notion of a basis. a col
lection of vectors that defined which variables had the potential to be positive at a 
particular extreme point. If the ith vector were in the basis. the variable x, associat
ed with that vector could be positive in the basis. What we did not say was that t\vo 
vectors that were a simple multiple of one another would never be present together 
in the basis. That is, the variables associated with the two vectors would never both 
be eligible to be positive at the same time. The vectors associated with a ( u,. v,) pair 
are just the negative of each other. One vector is all zeros and a single one: the oth
er is all zeros and a single negative one in the same position as the_ positive one in 
the first vector. That is, the two vectors associated with a ( u,. v,) pair are related to 
one another by a simple multiple. One vector is -1 times the other. Hence th_e two 
vectors will not both appear in a basis at the same time, and h~nce. u, and vi will not 
both be positive at the same time. Thus, we have two explanations for the result that 
the simultaneous appearance of a positive u; and positive V; ~v~ll not occ~r. 

We have another result to explain, however. The coefficients. th~ ~j: are
1
to be 

h. th' f edom we add defm1t1ona con-
free to be positive or negative. To ac ieve is re · 
strain ts to the problem of the form 

kj = kj - kj, j = 1, 2, 3, 4, 5. 

. d. to the functional equations that de-
These constraints must be mcorporate llm . t all constraints that utilize k_;. 

f . h' h :vay as we as m o h me the elevation of the new 1g ' d' 1 bove it is easv to see that t e 
W. . . have imme iate y a . . h . , 

1th the equat10n wntten as we ' _ h oative of one another. t at is. a 
. . d . h e and k. are t e net) :u t b pau of vectors associate wit j J the associated vectors '' 1 no e 

simple multiple of one another. As a consequence, 
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in the basis at the same time, and kj and kj will not both be positive at the san 
. . . ie 

time. Thus, the representation using the above equation, written mto all constraint 
where ki appears. achieves a variable that is free to be positive {when kj > 0) 0~ 
negative (when kj > 0). . . 

TI1e mathematical problem statement can be summanzed m the following form: 

II n 

Minimize Z = p L V; + q Lu; 
i=l i=l 

Subject to: 

\'· - ,.:sk - ,.~k - ,-~k., - x?k,, - x·k 1 - ko = 0 
.·I ·"1 ) ·'1 4 ·"1 _, . I 1.. • I ' 

i=l,2, ... ,n, 

)'; - ll; + V; = r;, i = 1, 2, ... , n, 

S\Ai. + 4,.~k + 3,·~k + 2x·k + k ::5 s 
- . I" s ·"1 4 ·"1 3 . I 2 1 R' i=l,2, ... ,n, 

c:,.~k + 4,·~k + 3~·?k + 'h·.k + k ~ -sF _J.'\.I s ·"1 4 .·'1.1 3 ..... '\.I 2 1 ' i = 1, 2, ... , n, 

20x[k5 + l2xJk4 + 6x;k3 + 2k2 ::5 q, i = 1, 2, ... , n, 

Y;, U;, V; ~ 0, i = 1, 2, ... , n, 

k+ k- > 0 
j' j - ' j = 1,2,3,4,5 

where ki is replaced by (kj - kj) in all places where ki appears and for allj. 
Several points about the practicality of this model should be made. It may be 

desirable to maintain relatively constant grades over some distances. This would 
prevent continual shifting of gears. Such a goal, as reflected by permissible changes 
in grade at a number of success points of measurement could be accomplished by 
constraining the difference in slopes (as given by the derivative) between a series of 
points. 

Another issue that emerges occasionally during road repairs is traffic flow that 
shifts sides. If this situation is of concern, the minimum of the absolute value of the 
rate of rise or rate of fall would govern and a single number of grade would be used 
in both directions. 

12.C HIRING/SCHEDULING A CREW OF BUS DRIVERS 

In this problem, you will see how decision variables can be generated that are not at 
all obvious from an initial assessment of the problem. 

A small town is starting up a bus system with a single route to alleviate auto
mobile traffic through the downtown shopping and commercial area. The bus sys
tem is to run for 16 hours each day, from 5 A.M. until 9 P.M. Drivers will work on two 
shifts, the first from 5 A.M. until 1 P.M., the second from 1 P.M. until 9 P.M. Tue route 
from the first stop in the morning to the last stop in the outbound direction plus the 
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return trip back to the first stop requires . 
time for the stops. Thereafter the route approximately 120 minutes. including the 

. ' repeats through h times during the day. out t e day. seven more 

Throughout each weekday Monday throu h F .d 
stop every 15 minutes. If there w~re only 

0 
b g n ay. the bus should visit each 

. If . h b . ne us. a stop would not be revisited for 120 minutes. e1g t uses were operatmg, one bus w Id b bl · . 
15 · ou e a c to start from the first slop every mmutes, and hence each stop would be · ·

1 
d . · 

· f · h . . visi e every 15 mmutes. The rc-qmrement o e1g t buses translates mto eight drivers for h h"f h 
eac s 1 ton eac weekday 

On the weekend, each stop wilJ be visited every 30 m· t s· h · . . . mu es. mce t c round 
tnp takes 1~0 minutes, f~ur buses will be required to operate at a time on the 
weekend. This translates mto a need for four drivers on each shift on Saturday and 
Sund a~ · 

The public agency that has been created to operate the bus system has to hire 
drivers for the buses and wants to hire the least number of drivers possible that ful
fill the service requirements. Each driver will be hired/paid for five days. eight hours 
per day, each week. A driver's workweek has to be five consecutive days followed by 
two days off. The first of the five days could occur on any day of the week. If more 
drivers are hired than are usually needed at any moment in time, spare drivers can 
provide backup or sick leave service to a driver not currently available. Of course. 
there are two shifts, but the answers for each of the two shifts are the same since 
each shift has the same driver requirements. Since each shift has the same require
ments, we want to solve for the minimum number of drivers on each shift. 

Table 12.1 shows that there are seven ways to arrange a consecutive five-day 
workweek. This is accomplished simply by beginning each five-day week on a differ
ent one of the seven days of the week. On the vertical axis is listed the number of the 
workweek pattern, actually the number of the day that begins that wo~kweek. !n the 
horizontal dimension is the day of the week. A "one" appears at the mtersect1on of 

TABLE 12 1 PATTERNS OF WORK 

( i = workday) 

w Th F s 
s M T 

j= 
Pattern 

(4) (5) (6) (7) 
Number (1) (2) (3) 

1 0 0 
1 

1 1 1 1 
1 1 0 

1 1 1 
l 1 2 0 

1 l 
3 0 0 1 

l 1 1 

0 0 l 
1 l 4 1 1 

0 0 
1 1 5 1 1 

0 0 
1 6 1 1 l 0 0 

1 
7 1 1 1 - 8 .t -- 8 

8 8 
~ 

4 8 - .,...__ 
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the workweek pattern and day of the week-if that da.y is a workday in the work
week pattern. Otherwise, a zero appears. 1l1e bottom hne of the table displays the 
number of drivers needed on each particular day. 

TI1c step of formulation of bus crew scheduling is described next. We uninten
tionally make the formulati?~ look easy by presenti.ng ~ ~le~hod that .we know by 
experience will work. But this 1s not an easy formulation; 1t 1s, m fact, qmte subtle be
cause the variables arc not "natural." In Chapter 3, we described a problem cutting 
various sizes of smaller boards from large 4 ft. X 8 ft. plywood sheets. It was Exam
ple 3-7, the Thumbsmasher Lumber and Home Center, Part II-Cutting Plywood: 
An Integer Programming Problem with Hidden Variables. We indicated that the 
board-cutting problem did not have natural variables either, but that first it was nec
essary to generate feasible cutting patterns. llrnt is, different feasible and efficient 
patterns of cutting the plywood sheets were imagined. TI1en the decisions were how 
many sheets to cut according to each of the feasible patterns that had been generated. 
The variables are said to be columns~ columns of the linear programming problem, 
and the methodology is referred to as ··column generation:' 

The bus crew scheduling problem we have described here is also formulated 
by column generation. Natural variables we might think of would be the number of 
drivers assigned lo each shift and day of the week. Then, however, we would need to 
figure out how to write constraints that ensured that each driver worked five con
secutive days with two straight days off. In fact, if natural variables are used, we 
don't know how to do that. lllC .. natural variable" approach really doesn't seem to 
work here. Instead. we resort to column generation as in the plywood cutting prob
lem. We first generate feasible patterns of work, and here we are very fortunate. The 
number of work patterns is very small-especially because we require two consecu
tive days off. There are only seven five-day patterns, one beginning on each day of 
the week. If we allowed the two days off to be any two days of the week, the number 
of variables (the number of feasible work schedules) would be many more. 

In fact. the crew scheduling problem-as it is structured in the airline industry 
and in the mass transit administrations of our major cities-is a vastly more compli
cated problem than the problem we deal with here. It is more complicated because 
workdays and workweeks can be broken in many and various ways and the number 
of feasible work patterns is very. very large. Thousands of work patterns may be con
sidered. Nonetheless. the column generation approach remains the only available 
way to attack the problem. Because there are so many "columns" (or feasible wor.k 
patterns). it becomes necessary to generate them by computer. Once the problem is 
··solved.~~ the analyst sees the work patterns generated and then chosen for the very 
first time. 

The following parameters, definitions, and decision variables are needed to 
structure the problem: 

i = day number (1 =Sunday, 2 =Monday, etc.); 

j = pattern number; 

r; = number of drivers required on day i; 
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• j - um er o drivers assigned to . . 

. pattern J. an mtcg. . I . 
N. = th . er va ucd vanahlc; and 

' e patterns J that include . 

1l1e values of r; are 

The patterns N,· are 

t as a workday. 

r1 = 4, '2 = 8, r == 8 
3 • · · · • '6 == 8 r- = 4 ' / . 

N1 == (1, 4, 5, 6, 7). 

N2 == (1,2,5,6.7). 

N"J == (1, 2, 3, 6, 7). 

N.t == (1, 2, 3, 4, 7), 

Ns == (1,2.3,4,5). 

N6 = (2,3,4,5,6),and 

N1 = (3, 4, 5, 6, 7). 

The driver requirement for day 1 constraints may be written as follows: 

This constraint says that any driver hired for pattern 1 (Sunday through Thursday) 
+ any driver hired for pattern 4 (Wednesday through Sunday) + any driver hired 
for pattern 5 (Thursday through Monday) + any driver hired for pattern 6 (Friday 
through Tuesday) + any driver hired for pattern 7 (Saturday through Wednesday) 
can provide one of the four drivers needed on Sunday. 

Similar constraints can be written for day 2 to day 7. namely, 

The objective is to 

x 1 + X2 + X5 + x6 + X7 ~ 8, day 2. 

Xi + X2 + X3 + x6 + X7 ~ 8, day 3, 

X1 + Xz + X3 + X4 + X7 ~ 8. day 4, 

X1 + Xz + X3 + X4 + X5 ~ 8, day 5, 

Xz + X3 + X4 + X5 + X6 ~ 8. day 6. 

X3 + X4 + X5 + X6 + X7 ~ 4, day 7. 

. + ,. + r-. . . + r + X4 + .\ 5 ·"6 • ' 
Mimm1ze Z = X1 + X2 · 3 
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TI1e constraints and objective can be written in condensed forms. The con. 
straint for day 1 can be written 

Lxi ~ 4. 
jEN1 

The constraint says that any of those drivers hired according to the patterns in the 
set N1 (the patterns that provide service on day 1) can be utilized to meet the driver 
requirement for day 1. 

In general, the constraint for day i can be written 

This constraint says that any of those drivers hired according to the patterns in the 
set N; (the patterns that provide service on day i) can be utilized to meet the driver 
requirements for that day. 

The problem can be summarized as 

7 

Minimize Z = 2:xi 
j=l 

Subject to: 

LXi ~ 8, i = 2, 3, ... '6 
jeN, 

LXi ~ 4 
jeN-: 

xi = integer, j = 1, 2, ... , 7. 

TI1e answer to this problem is to hire a total of ten drivers, according to the fol
lowing rules: 

x1 = the number hired Sunday through Thursday = 1 

x2 = the number hired Monday through Friday = 4 

x3 = the number hired Tuesday through Saturday = 1 

x4 = the number hired Wednesday through Sunday = 1 

x5 = the number hired Thursday through Monday = 1 

x6 = the number hired Friday through Tuesday = 1 

x7 = the number hired Saturday through Wednesday = 1. 
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With these decision variables all w kd . 

. I I d . ec ay constraint. wit 1 no surp us rivers on any of tho , d· · 'are met as precise equ· i·t· . . h . . sc ays The we k d a 1 lt'i 
by JUSt one; t at is. five drivers are avail bl · c en constraints are exceeded 
than the needed four. The extra drive a chon each of Saturday and Sundav rath ··r 

· I . r on t csc day b . 1 
t: 

bus termma , and the mdividual so ass· d s can c assigned duties at the 
Th bl 

. ignc can be rotated . 
e pro em we have just structured d . . among the five availahlc. 

· f · 1 · an solved 1s a sm· II d . · 1 .. s1on o an immense y important and v . · · a an s1mp 1f1c<l ver-
. C cry complicated pr hi · 

planning. rew scheduling must be achic d b h . 0 cm in transportation 
line companies, and by the transit com ve . Y th c railroad c~mpanics. hy the air-

k I 
· . pames t at serve major . d · · · 

Wor ru es, mcludmg maximum workda lcn th b . . . an minor c1t1c:s. 
relief at fixed geographic points and re~art g 1' rfokcn into pieces of work. with 

· • on v a ter allowable rest · · · 
enormous mteger programming problems Th , bl .. gl\·e nsc to 

d d I 
· ese pro ems arc regular I\· b "ine 

structure an so ved and restructured and solv. d · b h · · · · t: . ~ 
d d 

· . c again Y t e major airlines rail-
roa s, an transit companies. A full-scale problem wa b d h . · · 
b 

· · h s cyan t e scope of this text. 
ut 1t 1s. oped that the small problem we introduced provides a flavor of th. b-

lems bemg solved. e pro 

12.D ESTIMATING ORIGIN-DESTINATION FLOWS ON AN 
EXPRESSWAY 

An urban expressway is under study by the city traffic department. Delavs and 
backups have been occurring on the expressway with increasing frequency. The city 
council is considering authorizing construction of an increased number of lanes in 
selected sections of the highway. They are also considering a set of traffic lights that 
would limit access to the highway to predetermined rates that do not cause backups. 
And they may make changes in local roads to speed up nonexpressway traffic and 
draw travelers from the expressway to the local roads. The actual decisions taken 
will depend on the vehicle flows between the various sections of the city. flows that 

are presently unknown. 
To aid the council in its deliberations, the traffic department has undertaken to 

count vehicles entering and exiting the expressway at all the junct~ons of the ex
pressway with local streets. They will also be counting th~ flow of vehicles on all seg
ments of the expressway itself, that is, between all pomts of acc~ss/egress to t~e 
expressway. These counts of vehicle rates (vehicles per. hour) are bemg performed m 
the hope of estimating the point-to-point flows of v~hicl~s. . . . Fi 17 7 

The diagram of the expressway and its entry-exit pomts is shm~ n m igus/re -·-: 
f ll · h urly rates of vehicle acces egress 

By organized counting of vehicles, the 0 . owmg ~ fl · the direction of the ... cen-
were determined during the two-hour penod ~f tr~ c ow :::Ubered sequentiallv from 
tral business district. Note that t~e entra~ce~eXl~ P~:et~:~~;al business district. W~ have 
the origin of the expressway to its ternunation m . 

. the expressway at the ith access pomt: 
a. = the vehicles per hour entenng , . . . t· d 

' . . ssway at the 1th exit pom . an 
b. = vehicles per hour ex1tmg the expre 

J • 

n = the number of entry-exit pomts. 
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~~ ~ire~tion of morning 
~~raffic now 

I~~\~-. 
Fi~rc 12.2 l11e expressway and 
its exit/entrance points. 

Central Business 
District 

Chap. 12 

In addition to measuring rates of vehicle entry and exit, the traffic department sets 
up counters on each segment of the expressway itself so that the total flow of vehi
cles toward the central business district is known. Thus, we have 

q;, ;+ 1 = vehicles per hour traveling on the segment of the expressway between exit
entrance i and i + 1. 

The data obtained by the measurement exercise are certainly suggestive of the 
underlying situation. They are not, however, the product desired. Even though the 
traffic department now knows flows entering, flows on, and flows exiting the ex
pressway. they do not know the flow that enters the expressway at the ith point 
bound for exit at the jth point. It is this origin-destination (0-D) information that is 
critical for decision making, especially for improvement of local options and light 
timing. 

A long-time member of the traffic department suggests that the vehicle count 
be supplemented by a survey of motorists who are entering the expressway. As the 
vehicles enter the highway, police would indicate motorists to park on the shoulder, 
and people with clipboards would ask the driver at which local road they would ex
it. The survey would require considerable personnel at each of the entry ramps all at 
the same time. It would also disrupt traffic and subject people to delays that could 
cause lateness. and definitely the project would cause aggravation. 

A young recent hire in the traffic department suggests the possibility of using 
linear programming to derive the needed origin-destination flows from the mea
surements of flows entering, flows on, and flows exiting the expressway. The man
agement of the traffic department is skeptical that such information can be derived 
from the existing data, but is willing to discuss the issue. Their thoughtful approa~h 
is that whatever this young person can do must "explain" the data that are already in 

hand, and they tell the employee what the criteria are that the 0-D data must meet. 
"The derived origin-destination flows that are present on each segment of the 

expressway must sum to a number reasonably near the actual flow measured on that 
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segment. Furthermore, if all the derived 0-D fl . . . 
summed over all of their destinations that owhs ongmatmg at an entry point arc 

d . sum s ould be th t f actually measure at the entry point. Likewise if all th . era co entry that was 
minate at a particular exit point are summ d, e derived 0-D flows that tcr-

e over all of thei · · h should be the rate of exit that was actually meas d h . r ?ngms. t at sum 
Th f h ure at t e exit pomt ·· e response o t e young employee is enthu . . Th · 

f h ff d siastic. e employee tells the di-n~ctor o t eff~ra IC ep~rtment, "You've described the model that I can. build:· 
Smee the tra 1c survey will be costly and potentially pai f I d · h 

· 1 · . . n u an smcc t c employ-ee, workmg a one, promises the needed ongm-desti'nati'on fl · k h d. 
ows m a wee t e 1-rector of the department says to go ahead. · 

This is the problem that the young traffic engineer structured and solved. 
Let: 

x;1 = the unknown hourly flow of vehicles between origin i and destination j. 

As the management of the traffic department described, the sum over all des
tinations of the flow of vehicles originating at i must be the entry rate measured at 
point i. That is, 

n 

L X;i = a;, i = 1, 2, ... , n. 
j=i+l 

Note the limits of the summation. It is assumed that the flows that enter at i can on
ly exit "downstream" of point i, that is, at points f + 1, i. :- 2, · ·:, n. In a simil~r 
fashion, the sum over all origins of the flow of vehicles exitmg at J must be the exit 
rate measured at point j. That is, 

j-1 
""' v - b 1· = 2, 3, ... , n. £.i"'ij - i' 
i=l 

. db d Although flows to j can origi-
Again, the limits of the summatI~n shoul e ~~~~ ~f orioination of flows that can 
n~te starting at the fir~t e~try pomt, ~he ~ast Pis . _ 1. Note also that we have no 
discharge at j is the pomt JUSt precedmg J, that. : l 

. . . h no explammg to do. . 
discharge at the first pomt so we ave . . th t pushes these origin destinat10n 

It remains for us to structure an objectiveb a d on the expressway itself. To 
1 . . the flows o serve . flows in the direction of exp ammg b the ith and (i + 1 )st exit-en-

th egment etween . do this we consider the flow on e s . · ted at any of the entry pomts 
' . t uld have ongma . . 

try points. The flows on this segmen co . . these flows must have destmati~ns at 
from 1 up to the ith entry point. In a~dition,h 1 t point of the expressway m the 

. t omt n t e as points from the ( i + 1 )st pomt o P ' . 
. f these flows is central business distnct. The sum 0 



Lessons in Context: Transportation Systems Chap. 12 

This sum is to be as rca~"'nahly ne.ar to the actual tlow. <11.; + t • as possible. hut it 
is not to be greater than q,_, ... 1 because such a set of flow~ would not make ph~~ical 
sense. Thu~ 

Introducing the slack \'ariablc gh·cs 

I r. 

~ ~ ... + '' 1 = q · 1 ; = 1. 2. . ... 11 - 1. ~ ~ ·'n 1.1• 1.1- • 

1=11=1·1 

With this equation. with its slack \'ariable. we can now structure at least three 
objectives. all of which are meaningful. First. we can seek those origin-destination 
flows which minimize the sum of absolute deviations from below the flows on all of 
the segments. That is. 

Subject to: 

i n 

n-1 

Minimize Z = L 11;_;+1 
i=l 

L L X;j + U1,;+J = q,,,+h 
r= 1 1=1•1 

i=l,2, ... ,n-1, 

,, 
L x 11 =a,. 

1=14) 

xi/ ;:::: 0. i = 1. 2 ..... "· j > i. 

i=l,2, ... ,11, 

j = 2, 3, ... ' 11, 

Second. we can minimize the squared deviation from be]ow as fo]]ows: 

11-I 

M ... z ~ 2 1mm1zc = ~ 111,;+i 
1=1 

subject to the same constraints as the furmu]ation above. Actual imp]cmcntation of 
minimizing the sum of squares of variab1es requires the use of piecewise approxi .. 
ma lion of convex functions. a procedure we described in Chapter J 1 in the context 
of closely hitting irrigation targets with the releases from a reservoir. 

Finally. we can minimize the maximum deviation from below from among the 
11 1.,. 1 in the following way: 

Minimize Z :.:...; 111 
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Subject to: 

11,., ... 1 ~ m. 

11 

L x,, =al. 
1=1~1 

j-1 

Lx,1 = b,. 
r=l 

and all variables are nonnegative. 

i ·::.;. I , ........ n - 1. 

i == I , 
• -· ...• 11 - 1. 

i == 1.2 ..... 11. 

j = 2. l .... ll. 

12.E THE EMPTY CONTAINER DISTRIBUTION PROBLEM: THE 
OTHER SIDE OF THE SHIPPING COIN 

l2J 

In this problem you \\ill see how the transportation problem can be structured 
through time and how storages can be cumulated at origins and destinations. 

In Chapter 6, you read about the transportation problem. a problem in which 
goods are shipped from origins to destinations (factories to warehouses is one ex
ample). Often bulky goods are moved in large metal containers that can scrYc either 
as a truck or railcar payload. These containers can shift from rail to truck to ocean 
vessel and back. The question naturally arises as to how to best secure the empty 
containers that are to be loaded at each point of disembarkation. The empty con
tainers that are needed for loading must be moved to the shipping site from sites of 
supply where the empty containers have accumulated from prior movements .. Thcse 
points of supply where empty containers are warehoused are at seaports and mlan~ 
depots. l11e optimal distribution of containers from p~ints of supply where the~· sit 
empty to points of demand where they will be loaded is called the empty contamcr 

distribution problem. . . 1· t. 
~ . . . 1 .. t d 1 formulate m its most rca 1s 1c flus problem 1s exceedingly comp 1c,, e o . . . . . 

. 1 f h'. t. t we haw to s1mphfy its fca-
form. Thus to make the problem access1b c or t is ex • · .a . • 

• · . h II• ing to state neath· anu man 
lures extensively Even so. the problem remains c a cng . · . . : . . . · . 1 roblcm is ol maJor importance 
understandable fashion. Nonetheless, because t lC Pk ti ti·n1c and effort to state it 
· I · · · d ·tr\I we do ta e 1c 
Ill t le goods movement/sh1ppmg m us J.' <l . . r urtccrtaintY in both the 
I ·11 ·1 is r·m omncss o . lcrc. One realistic f caturc we w1 onu ' b th,· re is more to this proh-

. t. · 1 ·rs Rcmcm er ~ . 
supply ol and demand for empty con 311 c " 1 . 1 of the chapter should g.1vc 

I . . . 11 • . ·f ·rcnccs at l tc en{ . hi , cm, but this mtroduct1on as we ,,s re c . . lite cmi>tv ~ontamcr pro cm. 
. . · , htcraturc on · · . · • 1· 

the carctul student entry lo the g1owm~ .... that there is only one kmJ/sllc 0 

To simplify the problem. we consider. ~nst. ti . >f suppl,· and lkmanJ. We 
. . 1 , . • . • onlv f 1vc mon is c. • • . I . · th • plan-l:on ta mcr, and second, that t lclc ,trc · 1 . <l Jcman<l <lc~1al c · 1 ~ c . 

· t ·s of supp V ''" . I t ·onn~ntcnt rnuld use more months. but cst11na c. · 11 : ·hoscn is arbitrary ni l . 
· .11 11bcr actua ) ( · J d . 11 I" ·1rl' kno\\ n 

nmg horizon is extended. lf.! nm 1 . t ·uri'lics an cnM "· • · . w , . I · , ·tssmnc t "' :; 
Im purposes of presentation. c '' s<. • • 
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with certainty through the planning horizon. The five months of supply and demand 
are offset by just one month. That is, the demand at the beginning of the first month 
cannot be met by the supply that is available at the beginning of the first month be
cause of the time it takes to ship the empty containers to each of the possible desti
nations. The demand for empty containers at the beginning of the first period then 
needs to be met by some prior plan outside the present scheduling model. Further
more, we assume that all empty container shipments can reach their destination 
within one month so that a shipment from a supply point at the beginning of one pe
riod is fully available at the point of demand to which it was shipped by the begin
ning of the next period. The delivery window. the time of arrival for the quantity of 
empty containers required at a destination at the beginning of time period t, is any 
time period prior to 1. That is, storage at the sites of demand is possible. 

The unknown decision variables for this problem are, first, flow variables be
tween supply and demand points. which occur during each month, and second, stor
age variables. which reflect the inventory of empty containers at sites of availability 
and demand. The known parameters are ( 1) the number of empty containers that 
become newly available at each site of supply at the beginning of each month, (2) 
the number of empty containers that are needed at each site of demand at the be
ginning of each month. (3) the cost of shipment between sites of supply and de
mand, and ( 4) the costs of container storage at sites of availability and demand. The 
variables and parameters are defined as follows: 

x,.1, = the number of empty containers shipped from supply point i to de
mand point j during month t. These containers are assumed to be 
shipped at the beginning of t to arrive at j by the end of period t so 
that they may be used for loaded shipment from j in the next month 
(1 + 1 ). The containers cannot be loaded until the period after the 
month of shipment: 

a,., = the number of empty containers that newly arrive at supply point i 
throughout the month prior to month t and become fully available at 
the beginning of month t; 

S,., = the number of empty containers in storage at supply point i at the 
end of month t. This is calculated from the storage at the end of the 
prior month plus new arrivals available for shipment in the current 
month (a,.,) less all shipments from i in the tth month; 

bjr = the number of empty containers required for loading at demand 
point j at the beginning of month t. This is the number of containers 
that need to be loaded for shipment at j; 

Zjr = the number of empty containers in storage at demand point j at the 
end of month 1. This is composed of the prior month's end-of-period 
storage plus new empty container arrivals at the beginning of t less 
withdrawals ( bfr) at the beginning of month t; 

cif = the cost to ship one container from supply point i to demand point j; 
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the cost to store an empty c t'. 
h on amcr at supply point i for one month: 
~~n~~~t to store an empty container at demand point i for one 

the number of supply points; and 

the number of demand points. 

TI1e availabilities at supply points: the requirements at demand points. and the 
storages at both supply and demand pomts are summarized in terms of time of mca· 
surement in Table 12.2. 

TABLE 12.2 SUPPLY AND DEMAND FOR EMPTY CONTAINERS AT TWO SITES. SITES ; AND j ARE AS
SUMED CLOSE ENOUGH IN SHIPMENT TIME THAT CONTAINERS LEAVING SITE i AT THE BEGINNING 
OF ONE TIME PERIOD WILL ARRIVE AT SITE j BY THE BEGINNING OF THE NEXT PERIOD. THEY WILL 
NOT BE AVAILABLE UNTIL THAT PERIOD AS WELL. 
~ 

Arrivals and Storage Storage and Shipments 
at Supply Point i at Demand Point j 

Newly Arrived Empty 
Empty Containers Empty Containers Empty Containers Containc:rs 
Available for the Stored at the Stored at the Needed for 
Upcoming Period End of the Month End of the Month Loading 

Sio Z,o 

Beginning of period 1 a;1 
b,1' 

1st Time period 
S;1 Z11 End of period 1 

Beginning of period 2 a,1 
b;: 

2nd Time period 
Sr2 z1~ End of period 2 

b,1 
Beginning of period 3 a;J 

3rd Time period 
S;:i Z,-:i End of period 3 

b,J 
Beginning of period 4 a;~ 
4thTi . d z,J -

ime per10 
S;J _End of period 4 .....___ 

b,. 

Beginning of period 5 a;; 
5th Ti . 

l,5 -ime penod 
S;5 -End of period 5 ,___ 

b.i-- - l;" 
r---. 

-- -Beginning of period 6 -ai6 -----i---- /:>,-r---
-L__-------

* 
Demand being met by a prior plan. 
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We begin the model by developing the storage equations: The storage at sup. 
ply point i at the end of month tis given by 

n 

S;1 = S;. 1- 1 +a;, - ~x;i'' 
j=1 

t = 1, 2, 3, 4, 5. 

At supply point i, the storage at the end oft is equal to the storage at i at the 
end oft - 1 plus any new arrivals of empty containers that became available for use 
at the beginning of month t minus all shipments out of i during t. The newly available 
empty containers actually accumulated during the previous month ( t - 1) but are 
now considered available for shipment during t. 

At demand point j, the storage at the end of month tis given by 

m 

Z1, = zj.r-1 + ~Xij.r-1 - bit' 
i=l 

t = 1, 2, 3, 4, 5. 

The storage at the jth demand point at the end of month t is equal to the stor
age at the end oft - 1 plus inputs from supply points that were shipped at the be
ginning of month t - 1 arriving at j at the beginning oft, minus the number of empty 
containers taken for loading at the beginning of month t. Note that the shipments 
from supply points originated during month t - 1 (at the beginning), but they are 
becoming available for loading for the first time at the beginning of month t. This 
arrangement prevents us from meeting current demand using containers that were 
shipped to j during the current month-our assumption is that they are not available 
until the ne:>a.'1 month. It is assumed that all demand for empty containers is met in 
each time period so that no unmet demand accumulates through the planning peri
od. These storage equations will be converted to the standard form of equality con· 
straints in a moment. 

In addition to the storage equations. we can write constraints on shipment
from supply points and to demand points. The amount shipped from supply point i 
to all demand points j is limited to the number of empty containers available at sup
ply point i. That is. 

n 

,Lx;rr::; si.1-1 + al1. 
·= j 

i = 1. 2 ..... m. 

1 = 1. 2 ..... 6. 

Gnd th~ number of containers aYailable to demand point j for loading at the begiD
~;-r, g oft mu~t e'xe.ed the quan1j1y requfred: 

lx .. ~-: - z ... :-: ::::: b_.~· j = 1.2 .... . n . 

.r = 2. 3. ,_ .. 5. 
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In fact, however, while these last two constraints m . 
Th . ay ~em appropnate tbev are 

unnecessary. e storage equations already enforce the e d' . . · -
h h . s con 1t1ons m the follow-

·10g way. Note t at eac storage equation defines the 1 h d f . s orage at t e en o a 
ID?~th. In the equation for ~torage at each supply ~int. it is seen that storage is di-
mm1she~ by ~h~ su~ of shipments t~ dem~nd pomts. Since the storage can never 
be negat1~e (1t is a lm~ar pr~g~a~nung vanable), the sum of shipments out of the 
supply pomt automat1cally is lmuted to that storage value plus new arrivals as an 
upper bound. . 

In the equation for storage at each demand point, it is seen that storage at the end 
oft is diminished by the current (month t) demand for empty containers and incre
mented by the inflow of empty containers during t. Again. since the storage at the end 
of t can never be negative, the storage at the end oft - 1 plus the inflow of containers 
during t must exceed the number of containers that were loaded at the beginning of 
month t. That is, the storage definition equation already enforces the logic of the 
constraint that requires an adequate number of empty containers to be available at 
the beginning of each month. 

The objective is 

Subject to: 

m n 6 m 6 n 6 

Minimize~ :L 2c;;X;;r + 2 2d;Sit + L Lelir 
i=l j=l r=l i=l r=l 1=1 r=l 

n 

S. - S· 1 + ""'x;,·r = au. ll 1,1- ~ 
j=l 

; = 1. 2 ... .• m, 

t = 1. 2 ..... 5. 

m 

Z + Z , ""'x·. -1 = bp j = t 2. .... n. 
- . 1· 1-1 ,- ~ l/.I 

JI • i=l 

S Z X . ::> 0. 
ii• jt• iJI -

t = 2. 3 ..... 6. 

i = l,1. .... m. 

j == L.2. .... n. 

r == L 2. · · · · 6· 

. distnburion pr~ 
.-nft'tt" .c;ont.a.mf1 ..i;.""""' -• our }.ea\lng the wJUt'A-- • • headaehe me~ 

The reader will appr~ take an aspiriD -~ ~ er. y Cl1J could. if 
lem at this point and_ may ,.s to · cl dlis i;edlCll rA :!: ii! 11iiidl 001 cW 
tion as the authors did after~~ w the -" m lilt sunb!;ht- m 
you v.~ attempl to eneod the ~ r$- tood- .a 

demands are met. but the ~ 
other nonmatbematical dn'-enJOIL 
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CHAPTER SUMMARY 

In this chapter we have chosen to present a selection of systems problems in the field 
of transportation. The selection was made to introduce the student to the wide array 
of problems with which transportation systems analysts deal. Transportation, in both 
its public and private settings, is a rich area of optimization applications. The first ap
plication was to the design of the optimal vertical alignment of a highway, where ar
eas and amounts to cut and areas and amounts to fill must be identified. The goal was 
a least costly cut-and-fill operation. Constraints included (1) achieving a smooth 
curve for the highway, (2) maintaining grades in both directions that do not violate 
preset norms. and (3) limiting the rate of change of grade in both directions. 

From the problem of cutting and filling we moved to a problem in the schedul
ing of bus drivers. We sought to hire the least number of drivers to cover the needs of 
a bus system while at the same time distributing those drivers across all of the poten
tial 5-day shifts. To do this, we had to define variables that were not obvious at the 
outset of the problem but reflected an adaptation of problem information. The vari
ables introduced are called hidden variables, because of their lack of initial trans
parency. and the technique of creation of those variables is called column generation. 
The optimal scheduling of personnel in transportation systems--drivers, pilots, atten
dants. etc.-is a problem of enormous economic importance, and this small problem 
that introduces column generation is a sample of a much larger literature. 

The third problem showed how the transportation problem could be adapted 
to infer values for data that were not initially collected. In this case, we had already 
collected entry and exit rates on a freeway, as well as flow rates on each section of 
the expressway. From these data we showed how we could derive all of the origin
to-destination flows of automobiles that used the highway. We did this by adapting 
the basic structure of the transportation problem to include those unknown flows 
between the origins and destinations. 

Our final transportation application was the most difficult. This was the prob
lem of empty container distribution-a problem that in its simplest, one-interval 
form is just a transportation problem. The choices on where to ship empty contain
ers for their next use needs to anticipate future needs and future movements. As a 
consequence. these kinds of problems become dynamic in nature and, in fact, re
semble the reservoir model in storage adjustments through time. That is, these prob· 
lems become not only problems in optimal spatial movement but also problems in 
scheduling inventory. Hence, the empty container distribution problem is a problem 
in shipping, storing, and releasing through time-a spatial and temporal optimiza· 
tion in a single problem. 

EXERCISES 

U.1. An airplane pilot buying fuel. Puddlejumper Airlines (PA, for short) has a regular 
route from city 1 through six more cities with return to city 1. The number of passengers 
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on board each leg of the trip is k f . 

d nown a1rly well in d , . . 
groun , so to speak, and has to count a Vance. PA 1s Just getting off th·· 

(J every dollar A i.: 
partment eff) wants the pilot to pur h f · s a consequence. the svstems dc-

h · . c asc uel at sto I - · 
to carry t e entire flight's needs from ·t 1 p . ps a ong the way rather than trv 

ci Y · nces alo h -of where and how much to buy is a c 1. ng t c route varv so the decision 
. . omp 1cated one Th , · · 

hnear programming and has an idea on h . · e s~stems department knows 
Th f 1 . . ow ll may be applied 

e ue consumed m flymg the kth 1 f h . · 
number of passengers on board (really th .cg 

0
. the Journey depends not onh- on the 

cir we1g t plus th · h . · 
but also on the weight of fuel being carried Th . . e we1g t of their luggage) 
from one city to the next. The rule is that th~ 

1 
at is. it costs money to carry excess fuel 

1 h 
· d d . Pane must carry at least the amount of fu-

e t at 1s nee e to carry its load from city k to c·t . k + I (I 
amount. 1 Y eg k) plus some reserve 

Let: 

bk = amount of fuel consumed on leg k if no extra fuel is carried on board. 
and 

rk = the reserve amount of fuel to be carried on leg k. 

By extra fuel we mean any fuel in excess of (bk + rd. that is. in excess of the min
imum requirement on leg k. In addition to bk and rko we have the additional parameters: 

uk = maximum amount of fuel that the plane can safely carry on leg k (actu
ally at the start of leg k); 

f k = fraction of extra fuel on leg k burned on leg k: and 

ck = cost of fuel purchased at k before beginning the kth leg (the trip from k 

tok+l). 

The decision variables for the problem are 

Yk = the amount of fuel in the plane's tanks when it lands at city k. and 

xk = the amount of fuel purchased at city k. 

. th t we know the extra fuel on board 
To calculate the fuel consumed on leg k requrres a 
at takeoff from k. That number is 

Yk + x k - (bk + rd 

l k · n addition to bk. is 
so that the extra fuel burned on eg · 1 

fk(Yk + Xk - bk - rJ.;). 

The total fuel burned is 

bk + fk(Yk + Xk - bk - rd 

h 
the plane arrives at city k + 1. 

l · the tanks w en 
so that you can calculate the fue 10 
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The PA systems department needs to dctcm1ine fuel amounts to buy at each citv 
so that the total cost of fuel purchases is as small as possible. Write the standard-form 
linear program. (1l1is problem in another situation is the creation of Norman Waite of 
the IBM Corporation.) 

12.2. A detail in the vertical highway alignment problem. A pair of constraints were inten
tionally left out of the formulation of this problem. The constraints were described 
verbally but were not written in mathematics. Specifically, the highway segment un
der plan has to be "feathered'' into the two prior segments that were already built to 
needed specifications. That is. al each of the two points of attachment to previously 
built portions of the highway. the slope of the segment under plan as well as the high
way elevation have to match the slope and elevation of the highway portion to which 
it is attaching. Write these two pairs of constraints.1l1e slope al zero distance is s0 and 
at the end of the. segment. s1~. The elevation at zero distance is Yo and at the end of the 
segment YE· 

12.3. Light timing at a road intersection with a steady rate of vehicle arrivals. A light is to be 
timed at an intersection of two one-way roads for the period of the morning rush hour. 
The intersection is relatively isolated from other decisions being made in the highway 
network. The length of a light cycle has already been set al three minutes. There are 40 
light cycles in the morning rush hour. Of this cycle time, a certain amount is lost to the 
movement of vehicles. 111at is. when the light turns from red to green in each of the two 
directions. there is a delay in vehicles entering the intersection. Generally, this total loss 
time is approximated by the length of the amber phase. We will use 20 seconds as the 
loss time. A survey of traffic on the two roads during the morning rush hour has given ar
rival rates al the intersection through time. (See the accompanying figure.) 

l 
---- Direction 1 0 

a1t =vehicles/minute 
arriving during 
the r th three minute 
cycle. direction 1 

l Direction 2 

a21 = vehicles/minute 
arriving during 
the r th three minute 
cycle, direction 2 

The light cycle is the standard green-amber-red sequence. The decision variables 
for light timing are 

gt = the minutes of green time in direction 1, and 

g; = the minutes of green time in direction 2. 

The diagram of light timing shows that green time, direction 1, corresponds closely 
to red time. direction 2, and green time, direction 2, corresponds closely to red time, 
direction 1. 
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Amber 

! Amber 

Direction J 

Direction 2 

r 
Amber 

Am her 

Thus, the sum of green time in the tw . . 
de. That is, o d1rect1ons is lhc totaJ usable t. " . . 

· imc m the light cy-

g1 + g; = 3 - 0.33 = 2.67 minutes -
. ' I - I. 2 ..... 40. 

Not all the green time in each d' . . · 1. · . 1rectmn 1s alwa}· d d 
m me m a particular direction can be cle d . I s nee e . Sometimes. all '•chicles 
· I k . are m ess than th· ·1 b · mg a s ac green time when the li'ght · c avai a Je green timc. lcav-
Th is green when no h · I . 

us, we need four new variables: ve ic cs are available to clear. 

X1 = used green time, direction I: 

Ur = slack green time, direction I: 

x; = used green time, direction 2: 

U, = slack green time, direction 2. 

The sum of these variables is equal to the usable time in the Iiaht cvcle 
0 .. • 

x, + Ur + x; + ii; = 2.67 minutes. 

and this equation replaces the previous equation. 
An intersection has a clearance rate in each direction, the maximum rate at which 

vehicles move through the intersection in each direction. once flow '"gets up to speed." 
Let 

r1 = vehicles per minute that can clear in direction l, and 

r2 = vehicles per minute that can clear in direction 2. 

The vehicle movement through the intersection in direction I is the product of 
the clearance rate and used green time r1 x,. The movement ~ dir~cti~n 2 is. ~y similar 
convention r

2
X,. Assume that both directions start with no vehicles m lme waiting at the 

time of the first green phase. 
Let: 

. d f the tth Jioht cycle in direction 1. unknown. 
S 11 = vehicle storage at the en ° 0 

and 

f h tth lieht cvcle in direction 2. un-
S2, = vehicle storage at the end 0 t e ... · 

known. 
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Write the storage/inventory equations for directions 1 and 2 that calculate S1, and s 
from the data given and the decisions made on green time in each direction. 

21 

Using the storage equations, show how to mini?1ize the m~ximum line length 
(storage of vehicles) in any direction through the mornmg rush pcnod. 

U.4. Appl~ing recursive programming to the empty container distribution problem. How 
would you apply the concept of recursive programming. discussed in the water re
sources chapter, to improve the solution of the empty container distribution problem? 
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Dynamic Programming 
and Nonlinear 
Programming 

13.A INTRODUCTION 

We are concerned in this chapter with five methods, all of which are useful for 
finding the optimum solution for problems with nonlinear objective functions. 
These methods are dynamic programming, unconstrained optimization. calculus 
with substitution, Lagrange multipliers, and gradient search. We discuss the math
ematical aspects of these topics and provide examples of their application. partic
ularly in environmental, hydraulic, and structural engineering. None of these 
nonlinear methods utilizes the mathematical technology developed for linear and 
integer programming. They are different orders of ideas from the simplex-based 

optimization we have been discussing up to now. . 
The techniques presented in this chapter do not exhaust the realm of nonlme~r 

optimization. Many other techniques exist, and some are sunplex based: The simplex-

b 
. · h' t · Chapter 11 which covers an 

ased methods are discussed earher m t is tex m · .. t The water resources problem is 
extended problem in water resources managemen · d . f . . . t' on of convex an conca' e unc-
used as a vehicle to introduce piecewise approxuna 

1 
. t. ·s presented there · . . f · · se approx.ima ion 1 · 

hons. A self-contained d1scuss1on o piecewi . nli·near obJ·ective func-
p· . . . b li d both to certam no 
.1ecew1se approximation can e app e d' . Chapter 11 contains a treatment 

hons and certain nonlinear constramts. In a~ . 1t10~' . bles multiplv one another. In 

Of 1
. . · h' h two dec1s1on 'ana · 1. a non mear constramt m w 1c . . rt d by approximation. to a mear 

that treatment the nonlinear constramt is conve eth, dolog.ies that are specific for 
' f uses on me 0 

constraint. This chapter, in contrast, oc 333 
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nonlinear obj. ective functions with no constraints, with one constraint, or perh 
· · · d · . aps with a few constraints. The first topic taken up is ynam1c programnung. 

13.B DYNAMIC PROGRAMMING 

13.B.1 Theory 

Recall that linear programming means the determination of "programs'' of action 
for linear problems. D~·namic programming has a parallel meaning; it is the deter. 
mination of Hprograms .. of action for problems whose decisions are made at succes
sive stages. often time stages. A better. but perhaps less classy, name for dynamic 
programming might be "'staged optimization,'' implying decision making at each of a 
number of successive stages. Whereas linear programming utilizes a directed search 
of the feasible extreme points defined by the constraint set, dynamic programming 
utilizes the .. principle of optimality.!' Dynamic programming and the principle of 
optimality that underlies it are the creations of the applied mathematician Richard 
Bellman and date from the 1950s. Bellman ·s original statement of the principle of 
optimality was a rather lengthy and convoluted sentence that students and re
searchers read and promptly forgot. even though the mathematical underpin
nings were retained. In the 1960s! Kaufmann, a French operations research 
analyst. restated the principle in a simplified yet mathematically elegant way. We 
utilize his restatement to introduce you to dynamic programming. Kaufmann put 
the principle this way: 

An optimal policy contains only optimal subpolicies. 

111is clean restatement affords us the opportunity of some nonmathematical 
discussion. 

13.B.2 Application 

Siting Solid Waste Recycling Centers. Imagine that we can open a num
ber of recycling centers in half a dozen counties of a state. Each additional recy
cling center positioned in each county increases access of the people in that county 
to the recyclm~ cente~s. ~county can have 0, 1, 2, up to at most 25 recycling centers, 
and 25 centers is the hm1t of the number that can be located in total in all the coun
ties. That is, all the centers could be allocated to a single county if that is opt~mal. 
A~cess of the people in a county is measured by the number of people withm 15 
mmut~s travel b): ca.r to ~ recycling center in that county. We assume that when~ 
recyclm~ center is sited m .a ~ounty, it is positioned optimally for the number~ 
centers m the county; that is, if p recycling centers are allocated to a county, th y 
a~e ~resum~d to be sited in such a way that the maximum number of people are 
w1thm 15 mmutes of a center. 



Sec. 13.B Dynamic Programming 335 

Now assume that the recycling centers have been allocated to the six counties 
by a method that provides a globally optimal solution to the allocation. Suppose 
that solution looks like the following: 

(3, 6, 2, 4, 4, 6) 

where the numbers in parentheses represent, in order, the number of centers allocat
ed to county 1, county 2, and so on, up to county 6. Now suppose we had an addition
al requirement on our allocation, namely, that exactly 10 centers must be allocated 
in total lo county 3, county 4, and county 5. This happens to be the exact amount 
already allocated to counties 3, 4, and 5 and distributed (2, 4, 4) to those counties. Is 
this allocation of 10 to counties 3, 4, and 5 optimal? It must be, else the original opti
mal allocation of 25 units to all six counties would be wrong. In fact, the allocation of 
(3, 6, 2) to the first three counties must be the optimal way to distribute 11 to these 
counties and (4,4,6) must be the optimal way to distribute 14 to the last three counties. 
That is, an optimal policy must contain only optimal subpolicies. Dynamic program
ming utilizes this principle of subsystem optimization to implement a methodology for 
finding globally optimal solutions. 

In general, a dynamic programming problem finds the allocation (xi, x 2 • ... , 

xj, ... , x,,) ton stages, which optimizes an objective function subject to one or a few 
constraints. That is, the dynamic programming problem may be stated as 

Maximize or Minimize f 1(xi) + f 2(x2) + · · · + fj(x,) + · · · + f,,(xn) (13.1) 

Subject to: x 1 + x2 + · · · + xi + · · · + x,, = B 

where the return or loss function is fJ(x,), a monotonically increasing or decreasing 
function of xi, the amount of resource allocated to stage j. The methodology for de
riving the optimal allocation is created in the following way. 

Let us say that 25 units of resources are to be allocated among all the n stages 
of the optimization. The subsystem optimization begins at the first stage and pro
ceeds stage by stage with allocations. Let us say we have reached the fifth staoe and 
are examin~ng possibl~ all~cations. At the fifth stage we are developing not th: opti
mal allocallon to the first five stages, but all the optimal ways to allocate O. 1. 2 ..... 
25 units to those five stages. For example. if 10 units \Vere to be allocated to the first 
five stages, with the remaining 15 to the last n - 5 stages, these 10 units mioht be 
distributed optimally as b 

(2, 3, 0, 4, 1) 

with an objective function value of 470,000 for these five staoes. If 11 units were to 
be allocated, the distribution might be b 

(2, 3, 1, 4, 1) 

with a return of 475,000. If 12 units were to be allocated, the distribution is 

(2, 4, 1, 4, 1) 
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with a return of 479.500 and so on. We can construct a table for allocation to the first 
five stages that shows the objective value and the sequence of allocated numbc f 

. f I . bl rs or 
each possible allocation to the five st.ages. A port1.on o . t us. ta e appears as Table 13.1. 
Even though we don't show allocat1on of 25 umts. this wII~ be part of the completed 
table, as will allocation of 24. 23. and so on. down to zero umts. 

We now move on to the sixth stage where we will develop a table with simil 
information to that developed for the fifth stage. The development of the tab~r 
makes use of a combination of a simple en~m.eration and Bellman's principle of op~ 
timality. To build the new table. we need a hstmg of the payoffs or returns from allo-
cation of O, 1. 2 ..... 25 units to stage 6. We can call these ~umbers f6(0),f6(1 ). 
/ 6(2), [ 6(3) ..... [ 6(25). where f6(x6 ) is the return from allocatmg x6 to stage 6. 

Suppose 14 units are to be allocated to the first six stages. TI1en the amount al
located to stage 6 can take on any value between 0 and 14. Suppose 0 units are de
voted to stage 6 itself, leaving the entire 14 units to be distributed among the 
preceding five stages. We know how to distribute 14 units to the preceding stages 
from a quick look at Table 13.1. llms. the solution for zero allocated to stage 6 is im
mediately known. Suppose 1 unit of the 14 units is to be allocated to stage 6, with the 
remaining 13 units to be divided among the five preceding stages. The payoff from 
this division is also immediately known. It is the return from allocating one unit to 
stage 6. namely f6( 1 ), plus the optimal return from allocating 13 units to stages 1to5, 
which we already know. or a total return of / 6( 1) + 483,500, and the allocation to the 
first five stages is (2. 4, 2. 4, 1 ). 

Suppose 2 units of the 14 are to be devoted to stage 6, leaving 12 to be allocat· 
ed to the preceding five stages. The return from this allocation is / 6(2) + 479,500. If 
3 units of the 14 are devoted to stage 6, then 11 remain for stages 1 to 5 and the re· 
turn is .f6(3) + 475.000. If 4 units of the 14 go to stage 6, the return is /6(4) + 
470.000. and so on. Basically we are performing a search over all possible ways to al· 
locate 14 units to the first six stages. From this search, we will select the optimum 

TABLE 13.1 OPTIMAL ALLOCATIONS TO THE FIRST FIVE STAGES 

Amount 
(Number of Centers) 

Allocated to Stages 1 to 5 

9 

10 

11 

12 
13 

14 

Optimal Allocation of 
Centers by Stage 

(2,2,0,4, 1) 
(2,3,0,4, 1) 
(2,3,1,4,1) 
(2,4,1,4,1) 
(2,4,2,4,1) 
(3,4,2,4, 1) 

Fi. .. 5 (x 17 Xz, · .. , Xs) 
Objective Value Associat.ed 
with the Optimal Allocauon 

469,000 

470,000 

475,000 

479,500 

483,500 

487,000 
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(highest-value) distribution, which we will say is (2, 3, 1, 4, 1, 3). ~at is, we are cl~im
ing that the optimal way to distribute 14 units to stages 1 to 6 involves th~ optimal 
way to distribute 11 units to stages 1 to 5 plus 3 units to stage 6. We have found the 
optimal way to distribute 14 units by the following search over x 6, the amount allo-

cated to the sixth stage: 

Max [f6(x6 ) + F1 ... 5(14 - x6)] 
x6 =0. 1. 2 •... , 14 

where F1. .. s( 14 - x6 ) is the optimal return from distributing 14 - x 6 units to stages 

1to5. 
Now suppose we want to distribute 15 units to stages 1 to 6. We can find the 

optimal way to distribute 15 units by a similar search, this time over x6 = 0, 1, 

2, ... , 15. That is, we seek the 

Max [!6( x6) + F1 ... s( 15 - x6) ]. 
x6 =0, I, 2 .... , 15 

The optimal way to distribute 16 units is to find the 

Max [f6(x6 ) + F1 ... s(16 - x6)] 
xl'>=O, I, 2 .... , 16 

and so on. 
By conducting these successive searches over x 6 for all possible allocations 

0, 1, 2, ... , 25 to the first six stages, we can create a new table like Table 13.1 but 
with allocations to the first six as opposed to first five stages. The table would have 
the same type of information as Table 13.l. 

In general, if we represent the amount allocated to the first k stages as A. we 
can summarize the search process at stage k as finding for all A = 0, 1. .... 25 

(13.2) 

The value of A corresponds to the values in the leftmost column of Table 13.1. 
Equation 13.2 is known as the dynamic programming recursive equation, and A is 
often referred to as the state of the system, since it represents the amount of the re
source allocated at any point in the calculations. 

Looking at this formula allows us the opportunity to explain how the principle 
of optimality is implemented. Recall the statement that "An optimal policy contains 
only optimal subpolicies." If A units are to be distributed to the first k stages. the op
timal allocation (optimal policy) consists of the highest payoff way to distribute xk 

units to the kth stage and (A - xk) units to the k - 1 preceding stages. The search 
considers only those allocations of (A - xk) to stages 1, 2, ... , k - 1 that are opti
mal. That is, the search considers only optimal subpolicies. 

. It is worth noting that the objective functions are not considered to have a pre
defmed shape. They may be convex, concave, or a mixture. Some may even be linear. 
but if all were linear, you could determine an optimal allocation with little effort. All 
that w?ul~ be necessary is to allocate all units to the stage with the greatest slope of 
the ob1ective function. 
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TABLE 13.2 PAYOFF OR RETURN FUNCTIONS FROM SITING RECYCLING CENTERS BY 
COUNTY (PEOPLE, IN THOUSANDS, COVERED BY BEST ALLOCATION OF UNITS) 

Number of Recycling County County County County County 
Centers Allocated 1 2 3 4 5 

14 910 1012 890 977 790 

13 895 998 861 965 772 

12 876 979 826 945 752 

11 856 957 787 915 730 

10 831 933 746 877 704 

9 802 906 699 836 674 

8 762 871 646 789 639 

7 712 830 588 737 598 

6 652 776 526 676 552 

5 567 702 457 604 498 
4 475 612 383 514 417 
3 375 509 301 413 330 
2 270 370 210 302 238 
1 150 200 110 160 130 
0 0 0 0 0 0 

We present next a complete and self-contained example of staged optimization. 
Once again, we are siting recycling centers, this time a total of 14 of them in five coun
ties. Table 13.2 lists the payoff or return for siting 0, 1, 2, 3, ... , and so on recycling 
centers in each of the five counties. There is zero payoff from locating zero centers.A 
glance at the return function suggests that payoffs are initially higher for the first fe~v 
centers in county 2 and also in county 4. It will be interesting to see whether the opti· 
mal allocations coincides with or reinforces this observation. 

Table 13.3 is an enumeration of all the possible ways to allocate optimally 0, 1, 
2. 3~ up to 14 centers to the first two counties. For instance, if 11 centers are to be al· 
located to the first two stages, the optimal division is 6 to the first and 5 to the sec· 
and. If only 5 are to be allocated, the optimal allocation is 2 to the first and 3 to the 
second stage. Each optimal pair is established by a search over x

2 
which seeks the 

which is developed for all values of A = O, 1, 2, ... , 14. The last column of Table 13.3 
becomes the first column of Table 13.4. 

Table 13.4 cons~ders th~ optimal allocation of o, 1, 2, ... , 14 units to the fir:~ 
three stages or counties. Its first column consists of the return or payoff, as well. 
the actual allocation from allocating O, 1, 2, ... , 14 centers to the first two coun~e~ 
The third column is the payoff or return for allocating centers to county 3 a~ ~~ 
the same as column 3 of Table 13.2. The fourth and fifth columns are the optun 
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TABLE 13.3 OPTIMAL ALLOCATION OF CENTERS TO THE FIRST TWO STAGES 

Units A to be Allocated to 
Stage 1and2 

14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

Optimal Allocation of A 
Units Between Stage 1 and 2 

(7, 7) 
(7,6) 
(6,6) 
(6,5) 
(5,5) 
(5,4) 
(4,4) 
(3,4) 
(3,3) 
(2,3) 
(1,3) 
(1, 2) 
(0,2) 
(0, 1) 
(0,0) 

Max[!2(x2) + f 1(A - x2)]"' 
r: 

People (in Thousands) Covered 
by the Best Allocation of A 

Units to Stages l and 2 
(Found by Search) 

1542 
1488 
1428 
1354 
1269 
1179 
1087 
987 
884 
779 
659 
520 
370 
200 

0 

•Becomes Fi. .. 2(A) at the next iteration. 

TABLE 13.4 OPTIMAL ALLOCATION OF CENTERS TO THE FIRST THREE STAGES 

F1. .. 2(A) 
The Value of the 
Objective When 
A ls Optimally 

Allocated 
Between Stages 

1and2 

Value and 
Allocation 

1542 (7, 7) 
1488 (7, 6) 
1428 (6, 6) 
1354 (6, 5) 
1269 (5, 5) 
1179 (5,4) 

1087 (4, 4) 
987 (3, 4) 
884 (3, 3) 
779 (2, 3) 
659 (1, 3) 
520 (1, 2) 
370 (0, 2) 
200(0,1) 

0 (0, 0) 

Units A to 
Be 

Allocated 
to Stages 

1,2,3 

14 
13 
12 
11 
10 
9 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

/J(.t3) 

(if .l°J = A) 

890 
861 
826 
787 
746 
699 

646 
588 
526 
457 
383 
301 
210 
110 

0 

Optimal 
Allocation of A 
Units Among 
Stages 1, 2, 3 

(6,5,3) 
(5,5,3) 
(5,4.3) 
(5.4,2) 
(4,4.2) 
(3,4.2) 
(4,4.1) 
(3,4,1) 
(3,3,1) 
(2,3.1) 
(2,3,0) 
(1,3,0) 
(1, 2, 0) 
(0,2,0) 
(0, 1. 0) 
(0,0,0) 

F1. .. 3(A) = Max([l(x~) + F1 .. 2(A - :c3)] 
.t.\ 

People (in Thousands) Covered 
by the Best Allocation of A 
Units to Stages 1, 2, and 3 

(Found by Search) 

1655 
1570 
1480 
1389 
1297 
1197 
1197 
1097 
994 
889 
779 
659 
520 
370 
200 

0 
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allocations of A units to t.he first thre~ counties, ~s ~ell as th~ return from that 0 . 

timal allocation. The optimal allocation of A .umts is established by enumerati~ 
all the ways A can be allocated between the fust three stages where only 0 t' g 

. · ·d d . P •maI allocations of A - x3 to the fITst two counties are cons1 ere . That 1s, we find 

F1 ... 3(A) = Max[f3(x3) + Fi ... 2(A - x3)] 
x.~ 

for all values of A = 0, 1, 2, ... , 14. 
Table 13.5 repeats the process of enumeration, this time for x4 to stage 4 and 

A - x
4 

to stages 1, 2, and 3, where (A - x 4) is always allocated optimally (i.e., only 

TABLE 13.5 OPTIMAL ALLOCATION OF CENTERS TO THE FIRST FOUR STAGES 

F1. . .4(A) = 

F1. .. :;(A) 
M.ax[/4(x4) + F1. .. 3(A - .;·~)] 

.\~ 

The Value of the People (in Thousands) 

Objective \\'hen A Is Units A to Optimal Covered by the Best 
Optimally Divided Be Allocated Allocation of A Allocation of A Units to 

Between Stages to Stages Units to Stages Stages 1, 2, 3, 4 
1to3 1. 2. 3, 4 f.i(x.i)(if X.i = A) 1,2,3,4 (Found by Search) 

Value and 

Allocation 

1655 (6. 5. 3) 14 977 (4,4,2,4) 1811 

1570 (5. 5. 3) 13 965 (3,4,2,4) 1711 

13 (4,4,1,4) 1711 

1480 (5. 4. 3) 12 945 (3,4,1,4) 1611 

1389 (5.4. 2) 11 915 (3,4,1,3) 1510 

1297 (4.4.2) IO 877 (3,3,1,3) 1407 

1197 (3. 4. 2) 9 836 (2, 3, 1, 3) 1302 
1197 (4.4.1) 9 

1097 (3. 4, 1) 8 789 (2,3,0,3) 1192 
994 (3. 3, 1) 7 737 (2,3,0,2) 1081 
889 (2,3, I) 6 676 (1, 3, 0, 2) 961 
779 (2, 3. 0) 5 604 (1,2,0,2) 822 
659(1,3,0) 4 514 (1,2,0,1) 680 
520 (1. 2, 0) 3 413 (0,2,0,1) 530 
370 (0, 2, 0) 2 302 (0,2,0,0) 370 
200 (0.1, 0) 160 (0, 1, 0, 0) 200 

0(0,0.0) 0 0 (0,0,0,0) 0 
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TABLE 13.6 OPTIMAL ALLOCATION OF CENTERS T 
0 THE FIRST FIVE STAGES 

F1. . ..i(A) Fi :'i(A) = 
The Value of the Units A 

Objective When A Is lo Be 
~!n[f~(X<;) + Fi .i( A - x'i)] 

Optimally Divided Allocated 
Optimal People (in Thousands) Covered 

Among Stages to Stages 
Allocation of by the Best Allocation of A 

A Units to 
1, 2, ... '4 1to5 f~(x.~)(if x5 = A) 

Units to all Five Stages 
Stages 1to5 (Found by Search) 

Value and Allocation 

1811 (4,4,2,4) 14 790 (3, 4, 1. 4, 2) 1849 
1711 (3,4,2,4) 13 772 (3. 4, 1, 3, 2) 1748 
1711(4,4,1,4) 13 

1611 (3, 4, 1, 4) 12 752 (3, 3, 1, 3, 2) 1645 
1510 (3, 4, 1, 3) 11 730 (2, 3, 1, 3, 2) 1540 
1407 (3, 3, 1, 3) 10 704 (2, 3, 1, 3, 1) 1432 
1302 (2, 3, 1, 3) 9 674 (2,3,0,3,1) 1322 
1192 (2, 3, 0, 3) 8 639 (2,3,0,2, 1) 1211 
1081 (2, 3, 0, 2) 7 598 (1, 3, 0, 2, 1) 1091 
961 (1, 3, 0, 2) 6 552 (1,3,0,2,0) 961 
822 (1, 2, 0, 2) 5 498 {l,2,0,2,0) 822 
680 (1, 2, 0, 1) 4 417 (1, 2, 0, 1, 0) 680 

530 (0, 2, 0, 1) 3 330 (0,2,0,1,0) 530 

370 (0, 2, 0, 0) 2 238 (0,2,0,0,0) 370 

200 (0, 1, 1, 0) 1 130 (0, 1, 0, 0, 0) 200 

0 (0, 0, 0,0) 0 0 (0,0,0,0,0) 0 

optimal allocations are considered) to these first three stages. Table 13.6 goes 
through parallel calculations to establish the optimal allocation of A = 0, 1, 2, ... , 14 
to the five counties. The interested reader can follow the allocations/searches to verify 
that the procedure has been correctly implemented or to find any error in the 
process. The optimal return for siting 14 centers in the five counties is 1,849,000 peo
ple located within 15 minutes driving time of a recycling center. The optimal distrib
ution of centers is (3 ,4, 1, 4, 2). 

An alert reader will ask, as you probably have already asked, "Suppose the 
stages were presented in a different order, what happens?" The principle of opti
mality is such that the answer in terms of quantity of resource allocated to each 
stage will not change; it is not dependent on the order of presentation of the stages. 

The reader interested in mastering dynamic programming is referred to the 
well-regarded text The Art and Theory of Dynamic Programming by Dreyfus and 

Law (Academic Press, 1977). 
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13.B.3 Computational Efficiency 

Dynamic programming does suffer one flaw, whic.h has become known by the color. 
ful name "the curse of dimensionality." The curse 1s merely the flaw that limits its . . . d ap. 
Plication. You noted that the objective funct10n was opt1m1ze subject to a sin 1 'h l t · ge constraint. Dynamic programming wit more t rnn one cons ramt can be very diffi. 
cult to implement. There are tricks to implement the. technique subject to more than 
one constraint, but they are beyond the scope of tlus text. The text by Dreyfus and 
Law suggests one such method for handling more than one constraint. 

Finally. we should compare dynamic programming to enumeration. Suppose 
we have /1 stages and b units of resource to allocate among then stages. The number 
of ways these b units can be allocated (enumerated) is 

(n + b - 1)! 
E= . 

b!(n - 1)! (13.3) 

It can be shown that dynamic programming will require a comparison of D alloca
tions where 

D = (1 + b)[n( 1 + %) - b]. (13.4) 

If 11 = 10 and b = 20~ then E = 10,015,005 ways to enumerate solutions, and 
D = 1890 solutions to be compared, a clear advantage for dynamic programming. 

13.C NONLINEAR PROGRAMMING: BACKGROUND 

13.C. 1 Maxima, Minima, and Saddle Points 

Assume that the gain or loss from alternative engineering designs can be represent
ed by the function of one variable, shown in Figure 13.l. The engineer wants to find 
the highest or lowest point on the bounded function. Such a point is called the global 
maximum or global minimum: 

A function f(x) defined over a closed region has a global maximum at the point Xo if 
f(x) :s f(xo) forallxallowable. 

By changing the inequality to 2:, the definition of global minimum is obtained. 
Ver~fy that points~ and Bin Figure 13.l represent the global maximum and glob:~ 
mm1mum~ respectively. Note also that the global maximum occurs at the upp 
bound constraint on x. 

Except for point C, which will be discussed later all the labeled points are also 
of interest in the Blocal" sense; that is, within a small ;egion they represent the best 
(or worst) that can be done: 

A function f(x) is defined at all points within a ~- . hb h d f The function bas 
1 al . . u ne1g or oo o x0• all 

a .oc ma~mum at Xo if there exists an e~ 0 < e < o, such that f(xo) ;;::: f(x) for 
x m the e-ne1ghborhood of xrJ· 
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Figure 13.1 Constrained 
function of one variable. 

Reversing the sign to :5 defines a local minimum. Verify that points A. D~ 
and F represent local maxima, while points Band E represent local minima (points 
F and Bare simultaneously local and global optima). 

Point C is of little interest to the engineer since it represents neither a local nor 
global optimum point. At point C, the slope is zero, and the function changes form 
(from concave to convex, as defined later). Such a point is called a horizontal inflec
tion point in one dimension and a saddle point in two or more dimensions: 

A function has a saddle point at x0 if all partial derivatives are equal to zero at the 
point, but x0 does not satisfy the definition of a local maximum or minimum. 

Figure 13.2 explains how the point got its name. 

Figure 13.2 Illustration of a 

saddle point. 
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13.C.2 Form of a Function 

It is sometimes useful to know the form of a function when attempting to find an op. 
timal point. Define 

A strictly convex (strictly concave) function is one for which a straight line draw 
· f · ·11 h · n be. tween anv two pomts on the unctJOn w1 cvcryw ere overestunate ( undcrest' . • . 1mate) 

the value of the function between the two pomts. 

Some examples are shown in Figure 13.3. 
It can also be shown that the sum of strictly convex (strictly concave) functio 

is strictly convex (strictly concave) and that adding or subtracting a linear functi~s 
(or a constant) from a strictly convex (strictly concave) function does not change th~ 
form of the function. 

Example 13-1. 

Determine the form of the function f(x) for x > 0. 

I ... .. r f ( x) = - + .r-' - v x + 3x + 4. 
x 

Solution: Since the first three terms are strictly convex, and adding a linear function 
(or a constant) will not change the form of the function. the function f(x) is strictly con· 
vex for the range specified. 

These background observations will be used in the discussions that follow. 

Figure 13.3 Form of a function. 

Strictly 
convex 

x 

Strictly 
convex 

x 

Strictly 
concave 

x 

Neither 

x 
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13.D UNCONSTRAINED OPTIMIZATION 

13.D.1 Theory 

The unconstrained optimization problem can b d e cxprcssc as: 

Optimize Z = f (xJi x2, •••• xn). (13.5) 

From calculus we know that for local optima of the unconstrained f 1· 1 · 
d

. . . unc ion o exist. 
a necessary con 111011 1s that the gradient vector \! f == O; that is. · 

Vf = - - ··· - == 0 ( 
af af af) 
ax1' iJx2' 'ax" 

(13.6) 

which says that each partial derivative must equal zero simultaneoL1Sly. Equation 13.6 
defines a critical point, or stationary point, of the function: 

A function f(x1i X2, •.. , x,,) has a critical point, or stationary point, at x0 if \f = 0 at x0. 

A critical point, or stationary point, can be a local minimum, local maximum. 
or saddle point. Since we are not interested in the latter type of point, it is useful to 
have the following sufficiency condition to distinguish between the type of points: 

For a function of only one variable, if /(ll(x0) = 0, /( 2l(x0) = 0, .... f'n 1 (xo) = 0. but 
f(n+l)(x0) '# O; thenf(x) has a relative maximum at x0 if n is odd and f'n+l)(xo) < 0: 
f(x) has a relative minimum at x0 if n is odd and f(n+ll(x0) > 0. If n is even.f(x) has a 

horizontal inflection point (saddle point) at xo. 

For a function of two variables, where v f = 0 and 

where Ho = hessian matrix of order 2 evaluated at xo; 

0 d A d D < o then relative maximum at (x~. xg); 
If AD - BC > an an ' 

. . t ( o ro). 
If AD - BC > 0 and A and D > 0, then relative mm1mum a x1'. z . 

If AD - BC < 0, then saddle point; and 

If AD - BC = 0, then inconclusive. 
. . the mid-1700s and are attributed in part 

Development of these cond1t1o~s dat::;o~ 46) and Lagrange ( 1736-1813). Further 
to the mathematicians M~claurm <1. - k by Hancock (1960). 
development is available m the classic wor 
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Example 13-2. 
Determine the stationary point and type of point found for 

f(x1' x2) = xr - x~ + 4. 

Solution: 

at 
2x1 = 0 } ax1 x? = 0 

at -2x
2 

= 0 ~ x~ = 0 

ax1 

Ho=[~ ~2] = [~ ~] 
AD - BC = -4 < O. therefore saddle point. 

Similar sufficiency conditions hold for functions of three or more variables, but are 
complicated and omitted here. (See Gottfried and Weisman, 1973.) 

Given the complexity of the sufficiency conditions, the following observation 
is sometimes useful: 

A strictly convex (strictly concave) function will possess at most only one stationary 
point (it may have none). and that poinL if it exists~ is the global minimum (global max
imum) of the function. 

The reader may want to carry out a few simple sketches to prove the observation. 

13.D.2 Applications 

A common characteristic of unconstrained optimization problems in engineering is 
the presence of strong tradeoffs between problem components. This is demonstrat
ed in the following two applications. 

Optimal Capacity Expansion. As population increases, wastewater treat
ment plants and interceptor sewers must be built to handle additional waste flow. 
Ideally. the capacity expansions stay just ahead of waste flow growth, as shown in 
Figure 13.4. The question arises as to what the optimal expansion size and timing 
should be. 

Considering t~e facility cost itself, there is a strong argument for building 
large. and therefore mfrequently. Both wastewater treatment plants and interceptor 
sewers demonstrate economies of scale defined by 

c(x) = axb 

where 

0 < b < 1 
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Figure 13.4 Optimal capacity 
expansion problem. 

c( x) = present worth cost of capital and operation and maintenance($ million); 

x = hydraulic design capacity (million gallons per day, MGD); 

a = constant; and 

b = constant, the economy of scale factor. 

A typical cost function is shown in Figure 13.5. Due to the shape of the func
tion (strictly concave), there is an incentive to build one large facility now rather 
than a sequence of smaller ones. 

20 

15 

10 

5 

0 2 4 6 8 

Size of facility (MGD) 

10 Figure 13.5 Cost function showing economies 
of scale (a= .tQ, b = 0.7). 
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Figure 13.6 Present worth factor. 
e_,, (r = 6perccnt). 
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Counteracting this approach is the fact that if expenditures are put off into the 
future. their present worth cost is decreased. This is illustrated in Figure 13.6, where 
the present worth factor for continuous discounting is plotted. 

The tradeoff is between economies of scale (build large now) and discount
ing (build small now). The problem can be modeled as an unconstrained opti
mization problem. The solution steps will follow the early work by Manne (1961). 
Define 

D = rate of linear demand increase (MGD per year); 

t = time. in years: and 

r = rate of discount selected by Congress for use in the analysis of water 
resource projects. expressed as a decimal. 

The key to solving this problem is the observation that at any point of capacity 
expansion. to, t1. t2. and so on, the future situation is identical with respect to making 
the expansion decision. Therefore, the size of the expansion at each of these times 
should be identical~ that is, x~ = x; = xi, and so on. This, of course, means that 

and 

"'-D' xi - t. 

Write the present worth cost (PWC) of all expansions over n periods of length r' 
years each: 

PW C = axb e-rro + axbe-rr' + b -r2t' b -r3t' be-mt' (13.7) 
ax e + ax e + · · · + ax · 

If t0 = 0, 

PWC === axh(l + e-rr' + e-2rr' + e-3rr' + ... + e-"''') 

=== axb[l + e-rr' + (e-rr')2 + (e-rr')3 + ... + (e-''')"]. 
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The term e _,,. can be bounded as 

1 
O < -;( < 1 for r > O t' > () e . . 

TI1erefore, as n ~ oo, the geometri'c . series converges to 

and 

1 - e-rr· 

axb 
PWC=--

1 - e-rr'. 
Substitute x = Dt' and take natural logs: 

ln(PWC) = In a + b ln(Dt') - ln(l - e_',.). 

Take the partial with respect tot': 

a b re-rt~ 
-[ln(PWC)] = - - - O at , to' ,. - • 1 - e-' 0 
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(13.8) 

This can be solved for t0 for fixed values of the economy of scale factor, b. and dis
count rate, r. Note that the optimal time between expansions does not depend on the 
rate of demand growth, D, a remarkable result. In contrast, the size of the expansion 
does depend on D, since x0 = Dt0. Evaluation of the second partial at t&~ though la
borious, confirms that a relative minimum has been found. Alternatively, one can di
rectly plot the total cost function (equation 13.8) as total cost versus t' and see that 
the relative minimum is also the global minimum. 

Table 13.7 summarizes optimal expansion times (design periods) for wastewater 
treatment plants giving secondary treatment (b typically ranging from 0.6 to 0.8). 
Table 13.8 does the same for interceptor sewers (b typically ranging from 0.3 to 0.5). 

TABLE 13.7 OPTIMAL EXPANSION TIME FOR TREAT-
MENT PLANTS (YEARS: USEPA, 1975) 

Economy of Scale Factor 
Discount 0.8 
Rate(%) 0.6 0.7 

5 19 13 9 

7 13 10 6 

9 7 ~ 
10 

8 6 ~ 
12 
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TABLE 13.8 OPTIMAL EXPANSION TIME FOR INTER-
CEPTOR SEWERS (YEARS: USEPA, 1975) 

Economy of Scale Factor 
Discount 
Rate(%) 0.3 0.4 0.5 

5 40 31 24 

7 28 22 17 

10 20 16 12 

12 18 14 10 

Traditional design periods for treatment plants and interceptor sewers have 
been 20 and 50 years. respectively. While these figures may have been essenti31Jv 
correct for the low interest rates (from 2 to 4 % ) prevailing in the 1950s and 1960~. 
they should be closely questioned for higher rates. The federal discount rate peaked 
at 8.875% in the late 1980s and was 6.125% in fiscal 2002. The USEPA considered 
the above analysis in modifying its now historical Construction Grants Program 
(USEPA. 1975). Private investment decisions, for which interest rates are usually 
much higher than the federal discount rate. would follow a similar analysis. 

Optimal Reservoir Size for Irrigation. The total benefit (TB) derived 
from irrigation water in a region has been estimated as TB = lOOq - 0.0005q2

, 

where TB is expressed as dollars per year ($/yr) and q represents dependable water 
supply. expressed in acre-feet per year (AF/yr). 

Estimates of the annual total cost (TC) of a reservoir at different sizes results in 
the expression TC = 44.42 q0

·
90 + 0.098 qI.45 , where TC is in units of dollars per 

year. 
The agency responsible for reservoir construction wishes to maximize net ben

efit (NB). defined as total benefit minus total cost. Algebraically, 

Maximize NB(q) = TB(q) - TC(q). (13.9) 

The necessary conditions for a stationary point are 

aNB aTB arc 
-=---=O 

aq aq aq 

or 

MB(q) = MC(q) (13.10) 

where M~ and MC a:e marginal benefit and marginal cost, respectively. 
Takmg the partial derivatives 

' 

MB(q) = 100 - O.OOlq 

MC(q) = 39.98q-o.to + 0.142q°.45. 
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Figure 13.7 Optimal size of an 
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Equating these and solving for q0 is difficult. A graphical approach is both easier 
and more instructive. Figure 13.7 shows the point of intersection of the two 
curves at q0 equal to about 66,000 AF/yr. Since the area under the MB curve far 
exceeds the area under the MC curve up to the point of intersection, we know 
that net benefits have been maximized. The point q0 is a global maximum, q*, by 
observation. 

The reader wiII recognize the MB curve to be the demand curve for irrigation 
water. For an amount of water, q*, actuaIIy to be used, the price of irrigation water 
must be set equal to p*, about $34.00/ AF. At this price, net benefits are maximized. 

The tradeoff in this problem is complex; it is between benefits that increase at 
a declining rate as more irrigation water is made available (declining marginal ben
efit as less suitable land is brought under irrigation) and a reservoir cost that in
creases at an increasing rate in terms of q (declining marginal water yield as 
reservoir capacity is increased). 

13.E CALCULUS WITH SUBSTITUTION 

13.E.1 Theory 

The calculus with substitution technique is useful f.or smaII nonlinear optimization 
problems having equality constraints. The problem is to 

Optimize Z = f (xi, X2, · · ·' x,,) 
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Subject to: 

gi(.ti, X2, ... 'x,,) = b1 

g2(x1' x2, ... , x,,) = b2 

where m < 1z. 
This problem has been referred to in the literature as the "classical optimiza

tion problem:' In theory, we could use the constraint equations to solve for 111 vari
ables in terms of the remaining ( /1 - m) variables and substitute these expressions 
into the objective function, producing an unconstrained optimization problem in 
(n - m) variables. Calculus could then be applied as in the previous section. 

In practice, however, it is usually difficult or impossible to solve the constraint 
equations form variables, especially when the number of constraints becomes more 
than a few. The method of Lagrange multipliers, described in the next section, then 
becomes a useful alternative approach. First. let us look at some cases where the cal
culus with substitution method is the best approach, giving rapid insight into an en
gineering problem. 

13.E.2 Applications 

Best Hydraulic Section. For open channel flow, the Manning equation is 
commonly used: 

where 

c 
Q = ___!!!_A R213S112 

Q = discharge ( ft3 /sec); 

C,,, = an empirical constant, 

= 1.49 ft 113 /sec; 

11 
(13.11) 

11 = Manning roughness factor, a constant that depends on channel material; 

A = flow cross-sectional area ( ft2); 

R = hydraulic radius (ft); 

= Alp' where P is wetted channel perimeter (ft); and 

5 = slope of the energy grade line, also equal to channel slope for steady, 
umform flow. 



Sec. 13.E Calculus with S b . . u st1tut1on 
353 

I 
" 
1 

b 
..i Figure 13.8 R ectangular channel cross section. 

Assume that Q c . . ' m' n, and Sare know F 
section ts to be rectangular as show . p· n. urther, assume that the channel 
a d h · h h ' n m 1gure 13 8 Th cross 
n e1g t, 'are to be determined so . . : . e channel bottom width b 

Assume ~ost of the lining is proportio~::~ ~m1ml ize the cost of the channel lini~g~ 
problem 1s to 0 ota wetted perimeter ( b + 2h). The 

Minimize p = b + 2h 

Subject to: 

1.49 ( bh )213 

--;-(biz) (b + 2hf35Il2 = Q (13.12) 

which is in the classical optimization format Th . 
there is no way to solve for one variabl . t . efreader ca~ venfy, however, that 
tion Th d e m erms o the other m the constraint equa 
ing ;he ~~rotce. ure ca~not continue directly, but it will be shown that by transform: 

1 
. ns ramt, an important observation can be made that will then . 

so ut1on. permit a 

The constraint can be written: 

( bh )512 ( nQ )312 
(b + 2h) = l.49S112 = ki 

or 

(bh) 512 = ki(b + 2h) 

bh = [ k 1 ( b + 2h) ]215
• 

Since ( b + 2h) is to be minimized, the term on the right will take on its mini
mum possible value in the final solution. This means that the expression on the left 
will also assume its minimum possible value in the final solution. However. the ex
pression (bh) is just A, so it is concluded that both wetted perimeter and area will be 
minimized in the final optimal solution. This is of great practical significance, since 
excavation costs are closely related to the cross-sectional area of flow. Both lining 
and excavation costs will tend to be minimized simultaneously. 
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By observing the last form of the constraint, it can also be said that for an 
chosen value for the wetted perimeter term ( b + 2/t )o (note that b and It a: pre. 
prechosen) and related ri~ht~ha~d-side consta~t, ~k1(b + 2/i)0]2'5, represe~i:' 
cross-sectional area, the opt1m1zat10n problem will fmd the best combination of~ 
and h so that 

(b* + 2h*) = (b + 2'1)o 

and 

(b*lz*) = A* = [k 1(b + 2h.)0]
215 = A 0, a minimum. 

In other words, for a preselected cross-sectional area of flow, the optimization 
problem will choose band h to minimize the wetted perimeter. This last observation 
allows the problem to be recast in a simpler but equivalent form: 

Minimize P = b + 2h 

Subject to: 

biz = k (13.13) 

which says that for any required cross-sectional area, we seek the best values for b 
and lz to minimize the wetted perimeter. Calculus with substitution can be used on 
this simpler problem. Solving for h in terms of b: 

and substituting, 

and 

Therefore, 

Minimize P = b + 2kb-1 

aP 
ab = 1 - 2kb-2 = o 

b2 = 2k 

bo =Vlk 

k 1 
ho= - =-Vik V2k 2 . 

bo == 2h0• 
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S~nce the transf~n~1ed objective function is strictly convex, the stationary point 
found is the gl~bal mi?imum. The best rectangular channel to minimize lining cost 
has a bottom width twice the length of each vertical side. 

A similar approach can be taken to determine the best geometry for other 
cross-sectional shapes when the wetted perimeter is to be minimized. 

Optimal Tank Design. It is desired to construct a vertical cylindrical steel 
tank as shown in Figure 13.9. The tank is open at the top, and it is known that the 
bottom must be twice as thick as the sides {thickness has been determined). Since a 
large number of tanks of different volume are to be constructed, the designer wants 
to determine whether there is an optimal shape (diameter-to-height ratio) that all 
the tanks should have. Assume that the weight of material used represents total cost 
of the tank. The problem is to 

(7TD2) 
Minimize M = t( Tr Dh) + 2t -

4
- (13.14) 

TrD2h = k Subject to: 
4 

where Mis the total amount of material used (cubic feet), tis the thic~ness of t~e 
sides (feet), and k is the required volume of a tank (cubic feet). Solvmg for h m 

terms of D, 

and substituting, 

4k 
h=

TrD2 

4tk 1 2 
Minimize M = D + 2 tTr D 

Ir 

.,,,,._.----- ..... 
/ 

LL...--_D j Figure 13.9 
Vertical cylindrical steel tank. 
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which is strictly convex in terms of D. I~ the stationary point exists, it will be the 
global minimum. Take the partial derivative and set equal to zero: 

Substituting for h produces 

so that 

aM 4tk 
- = -- + t1TD = 0 
aD D2 

4k 
D3 =-

TT 

(4k) 113 

D* = - . 
1T 

* (4k)l/3 h = -
1T 

D"' 
-. = 1.0. 
h 

The most economical tank design under the given conditions is to have the height of 
the tank equal to the diameter. 

13.F LAGRANGE MULTIPLIERS 

13.F.1 Theory 

Another method to handle nonlinear mathematical programming problems is the 
technique known as Lagrange multipliers. Our simplified treatment will not build 
a theoretical foundation for the technique, but will focus on the way it is made 
operational. 

In its most general form, the technique appends all constraints to the o~igi?al 
objective function. creating a new problem statement with an expanded ob1ecuve 
function and no constraints. Although we illustrate the methodology with a problem 
in three variables and two constraints, the reader should be able to extend the for· 
mulation to situations in which the number of variables and the number of con· 
straints differ from these illustrative values. 

Suppose the objective is 

Minimize or maximize Z = f (xi, x2, x3 ) 

and the constraints, which are two in number, are 

gl (xb X2, X3) = bi, 

g2(xi, Xz, x3) = b2. 
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We let A. 1 and A.2 be the Lag 357 
. range multipl' 

constramts, respectively and f h •ers associated with th f' 
' orm t e new and . e irst and second 

- unconstramed objective as 
L - f ( x 1' X2, X3) + A [b - ( 

1 1 g I x 1' x 2' X:~) J + A [b - ( 
h . . 2 2 g2 x], x 2 t 3) J 

w ere L is ref erred to as the l . ' · · 
£ Id d . . h . . agrangzan function An 
~ e mto t e ob3ective function in this wa . y number of constraints can be 

w1eldy to solve, especially if the const . y, although the problem can become un-
d d . ramts are nonlin Th now re uce to an Objective function o J d ear. e problem statement is 

F · n y, an the methods f I J Ive partial derivatives need to b t k o ca cu us may be applied. 
partial derivatives with respect to he fa hen to _apply the calculus. These are the 

h . eac o t e variables · to eac of the multipliers A and \ Th d . . 'X1i X2, X3, and with respect 
' 1 /\2. e envatives \ h · h ·11 b take the following general form: ' :v ic w1 e set equal to zero, 

aL 
aA.l = b1 - g1(X1iXi,X3) 

aL 
dA2 = h2 - g2(x1i Xi, X3). 

When the five resulting equations are set equal to zero, it is often possible to solve for 
the five unknowns (xi, x2, x3, Ai, A2). In fact, more than one solution may occur. When 
multiple solutions obtain, one may reflect a minimum, another a maximum, and still 
others indicate a local minimum or local maximum to a strangely shaped surface. 

Without proof, we also state that the Lagrange multiplier A; can be interpreted 
to represent the change in the objective function at optimality caused by a small 
change in the right-hand-side constant of constraint i; that is, 

llf 
A; = f1b.' 

I 

(13.15) 

The Lagrange multiplier thus has the same meaning as the dual variable in linear 

programming. . . · · 
The reader interested in the "why" of Lagrange mulhphers can have their in-

tuition heightened by reading appropriate sections of any. one of m?st advanced :1-
culus texts or Introduction to Mathematical Programmmg by Wmston (Duxb Y 

Press, 1994). 
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13.F.2 Applications 

Sheet Metal Forming. Suppose we have a square of sheet metal with 'd 
• • SJ eS 

that is to be cut and folded mto a tople~s box of max1mu~ v~lume. Figure 13.
10 shows the square with the cuts as dashed Imes, the folds as sohd Imes, and waste 

I h d d . . area 
shaded. Some small amount next to t 1e s a e waste area is retamed for solde . 
and connection to adjacent box sides; this "overlap area" is the small area betwnng 
the dotted and solid lines. Determine the dimensions of cutting, x, y, and z. een 

Those quick at geometry will note that since the problem setup insists that th 
sides meet evenly at the ~op w~en folded up (box he.ight eq~al to z), x must equal}~ 
However, we leave the d1mens10ns as x, y, and z for dlustrat1ve purposes. · 

The problem may be stated as 

The Lagrangian function is 

Maximize xy z 

Subject to: x + 2z = S 

y + 2z = S. 

L = xyz + A1(S - x - 2z) + A2(S - y - 2z). 

The partial derivatives are taken and are set equal to zero 

aL 
- = yz - Ai= 0 ax 
aL 
- = xz - A2 = 0 
ay 

aL 
az = xy - 2A1 - 2A2 = O 

.: : ; ( .· ~ . ·. \ . 
. . - ; z ~. . ~ ~ . 

Figure 13.10 A square of sheet metal. 
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iJL 
aA1 = s - x - 2z = o 

aL 
aA2 = s - Y - 2z = o. 

Adding the first two equations gives 

z(x + y) = (A1 + A2). 

The third equation can also be solved for (A1 + A2); that is, 

so that 

1 
(A1+A2)=2xy 

1 
z(x + y) = 

2
xy. 

359 

The variable x is a function of z from the fourth equation, and y is a function of z 
from the fifth: 

x = (S - 2z), y = (S - 2z) 

indicating that x and y are equal. Hence, 

becomes 

or 

1 
z(x + y) = 2xy 

1 2 
2xz = 2x 

1 
z = -x. 

4 

1 
Since x + 2z = Sand z = 4x, we have 

x + 2G)x = S 

or 
2 

v == -s ·" 3 
f ld and depth of the cuts of 

giving a solution for length of the 0 s 
2 

x == y == 3S 

and 
1 

z == -S. 
6 
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1 . . l d b d" . 2 2 That is the box has sides of -S m he1g 1t an ase 1mens10ns of -S by -s . 
' 6 3 3 ' With 

2 ~ 
maximal volume of 

27
s·. 

Optimal Reinforced Concrete Beam Design. Figure 13.11 shows a . . . 1 . . rein. 
forced concrete beam of rectangular cross section wit 1 tensmn remforcement 

0 1 
, 

. d . t M I n ). The beam is to be designed to resist a es1gn momen , "' at east cost. Total cost. 
the sum of the cost of steel reinforcing ~ars, concrete, .wooden formwork, and any a;~ 
chitectural building adjustments that m1~ht be necessitated by excessive beam width 
or depth. For simplicity, only the matenal cost of steel ~nd concrete will be consid
ered. Assume A615 Grade 60 steel at $500/ton ($0.85/in. per foot of beam) and 4000 
psi normal weight concrete at $25/yd3 ($0.93/ft2 per foot of beam). Costs are based 
on local conditions. Take M11 to be 300 kip-feet, and assume that 2.5 in. of concrete, 
measured from the centroid of steel reinforcement, is needed for proper cover. 

Define 

x1 = cross-sectional area of steel reinforcement 
(usually designated As) (square inches); 

x 2 = effective depth of beam (depth to centroid of reinforcing steel, 
usually designated d)(inches ); and 

x3 = beam width (usually designated b) (inches). 

For a one-foot length of beam, cost can be expressed as 

m1mize = 0.85x 1 + 0.93 -M. . . C (X2 + 2.5)(X3) 
12 12 . 

Combining terms, 

Minimize C = 0.85x1 + 0.00646x2x3 + 0.01615x3. 

1~ 
b=x3 

Figure 13.11 Reinforced concrete beam. 

d==-Xz 

2.5" 
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Four constraints are generally needed The ri·rst t d · d f h . . · wo are enve rom t e 
American Con~rete I~shtute Code (ACI, 1992). A certain minimum amount of steel 
reinforce"?ent is reqmred by the code to ensure that the beam is stronger when act
ing as a remforced b~am th~n when. acting as a plain concrete section (utilizing the 
strength of c~ncrete m tens1on). TI11s avoids the possible sudden failure of a plain 
concrete section. For the type of steel chosen, the limit is 

x 
_· -

1 
;::: 0.00333. 

X2X3 

On the other hand, too much steel reinforcement cannot be used or the failure 
mode of the beam will be through sudden compressive failure of the concrete at the 
top, rather than a slow excessive deflection caused by failure of the steel. For the 
type of steel and concrete chosen, the code limit is 

X1 
- s; 0.0214. 
X2X3 

The third constraint ensures that the resisting moment of the beam is equal to 
the imposed design moment. The general equation is 

where 

( 
Asfy ) 

MR= <PAs/y d - 1.7f~b 

MR = resisting moment of the beam (inch-pounds); 

<P = a strength reduction factor which reduces the . 
theoretical strength of the beam to account for .m;~or 
adverse field conditions, equal to 0.90 for bendmb, 

fy = yield strength of steel reinforcement (psi); and 

f~ = compressive strength of concrete (psi). . . . 
. ki -feet and simphfymg. results m 

Substituting x1' Xz, and X3, convertmg to p 
2 

4 5v ~· - 39.706X1 
= 300 . 

. ·"'1-"2 X3 

. . . that a stronoer beam than necessary will 
. . db it is mtmt1ve e> An equal sign 1s use ecause 

not result. . ran e multiplier technique. The result. 
This model can be solved usmg the ~ag Jequately place the rebars with the 

however is a beam that is too tall a~d thm to a bars A fourth constraint is there-
' d aration between ' . 

required concrete cover an sep' 
fore necessary: 

X3 ?: 12. 
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The choice of 12 inches is an initial guess that can be refined as optimizatio 
h . . n result 

are obtained. This finalizes the model, but t e question anses as to how it s 
. . . 1· . can be 

solved with Lagrange mult1phers when mequa 1ty constramts are present. A . 
. . h I . k . simple 

trick will do. We summarize the constramt set wit t 1e tnc mcluded: 

X1 2 0 
- - X4 = 0. 0333 
X2X3 

~ + x~ = 0.0214 
X2X3 . 

xt 
4.5X1X2 - 39.706- = 300 

X3 

X3 - X~ = 12. 

By including squared slack and surplus variables, the goal of subtractina or 
b 

adding a positive quantity is guaranteed in each inequality constraint, without further 
constraints on the slack or surplus variables themselves. The Lagrangian function 
can now be written 

and partials taken 

L = 0.85x1 + 0.00646x2x3 + 0.01615x3 

+ Ai(0.00333 - ~ + x~) 
X2X3 

+ ..\2(0.0214 - ~ - x~) 
X2X3 

+ A3(3oo - 4.5x1x2 + 39.706:!) 
+ ..\4(12 - x3 + x~) 
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aL x 
a..\ = 0.00333 - -L + x2 == 0 l X2X3 4 

aL - x1 
a\ - 0.0214 - - _ x2 == 0 A2 X2X3 5 

aL 2 
aA

3 
= 300 - 4.5x1x2 + 39.706~ == o 

X3 

aL 
a..\4 = 12 - X3 + x~ == 0. 
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meric;r~ ten equations in t~n unknowns can be solved using any convenient nu-
. ethod that solves simultaneous nonlinear equations (see Shan 1975) Th 

result 1s ' . e 

x~ = 2.38 in2 Ai == 0.0 

x; = 29.80 in. A2 == 0.0 

xi = 12.0 in. A3 == $0.00724 per foot perk-ft 

x; = 0.05767 A4 == $0.19735 per foot per inch 

x; = 0.12143 c· == $4.53 per foot. 

x~ = 0.0 

The reader may want to verify that the solution satisfies the necessary condi
tions. Note that the value of A; for noncritical constraints is zero. The A; for critical 
constraints can be used to predict the change in optimal cost caused by a small 
change in the value of the right-hand-side constants. For example, if the imposed de
sign moment were decreased by 100 kip-feet, the predicted cost of an optimally re
designed beam would be 

C~ew = c• + A3 ll.b3 

= 4.53 + ( 0.00724 )( -100) 

= 4.53 - 0.72 

= $3.83/ft. 
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The actual optimal cost is $3.71/ft, indicating that even for a rather large chan . 
· ful d · · h · ge rn the right-hand side, the dual variable 1s a use pre 1ctor m t 1s ~ase. 

Results of such optimization models. as well as years of design experien 
. f . f d . ce, are 

incorporated in standard design procedures or rem orce concrete design (Sp' 
. 1 1 . d. . . . iegeJ 

and Limbrunner. 1992). ~oweve_r, smce ~ca economic con 1t10ns _va~y, It is always 
useful to periodically denve optimal designs as a check. Some optimization res 

1 
are available as an aid in deriving optimal designs (Friel, 1974). u ts 

13.G GRADIENT SEARCH 

The methodology of Lagrange multipliers is so versatile that we will use it immedi
ately to derive our next procedure to handle nonlinear objective functions. We begin 
with an unconstrained objective function in two variables,f(x, y), which may have 
unusual shape. It may, in fact~ have multiple minima or maxima-a hill here, valleys 
there. Although we illustrate gradient search for a problem with a function of two 
variables, the method can easily be generalized to any number of independent vari
ables. The unconstrained objective we are considering is such that the well-known 
analytical techniques of taking partial derivatives and setting them equal to zero, 
followed by solution for the variables~ do not work. The technique of setting partial 
derivatives to zero does not work on our unconstrained objective because, let us say. 
there is no way to separate the variables in the partial derivatives and hence to sol\'e 
for them. 

Faced with such an unconstrained objective, we need to devise a strategy that 
can assist us in finding its optimum. Suppose we desire to 

Maximize Z = f(x, y) 

where x and y are coordinates in the horizontal plane and z may be thought of as 
the elevation above the horizontal plane. We can take partial derivatives and set 
them equal to zero, but we are unable to find values of x and y, unable to solve the 
equations. 

We now derive a formula for searching the xy space to find the local maxima. 
that is, the points at which the partial derivatives are in fact zero, or very, very close 
to zero. Some functions may have only one maximum; some may have many .. 

Suppose we are standing at some point our current point c with coordinates 
xc, ye, in xy space. As mountain climbers, we 'look around and de~lare our strateg~'. 
'•fastest way to the top!" In mathematical terms this means "follow the gradient, 
the ~irection with the ~reatest rate of increase given our step size; hence the na~~ 
gradient search. The hill on which we are standing is presumed relatively s~o~he 
ove~ short steps. Our plan is to take a step of length s' where s is measure? JO at 
ho~1zontal plane, but .we need to know the direction of that step, the directJOO th d. 
delivers the greatest mcrease in the objective function given the step size planne 
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To establish the direction that yield th . 

. s e maximum ch . h . . 
step size, we make use of the concept of th .ang.c m t e objective given the 

e total derivative dz, which is given by 
az a~ 

dz == -dx + ..!:d 
iJx iJy y. 

If steps ax and dy, both of unknown magnitud d . . 
directions, the change in the obiecf d . e an. sign, are taken m the x and y 

J ive, z, is approximated by 

dz == (az) dx + (az) ~Y 
ax c iJy c 

where the partial derivatives are evaluated at c the cur t ·t· nr h · 
. . . . , ren pos1 ion. ne ave previ-

ously spec1f1ed that the step size 1s s The quest1'on now 1·s ho'· f t · h 
• . . • • N ar o move m eac coordmate direction, given such a step size. 
Our problem is to 

M . . (az) (az) ax1m1ze ilz == - ilx + - ily 
ax c iJy c 

(13.16) 

Subject to: (ilx) 2 + (ily) 2 = 52. 

The constraint, of course, is the Pythagorean theorem and indicates the required re
lationship between step size and movement in the two directions. Lagrange multi
pliers will be used to solve this problem (although it could also be solved by 
calculus). The Lagrangian function is established as 

L = (az) dx + (az) ily + A[s2 - (ilx) 2 - (ily)2] 
ax c ay c 

where A is the Lagrange multiplier. In the following derivation we drop the notation 
of c for the current point but will understand that the partials have.knm~n values that 
are associated with the current position. We can now take the partials with respect to 
dx and ~y as well as with respect to A and set these partial derivatives equal to zero: 

aL az - = - - 2ALlx = 0 
aax ax 

aL = az - 2Ail Y = o 
aay a_v 

a L = s2 - ( Ll x) 2 - ( ~ Y) 2 = o. 
a A 

Solving for A in the first two equations provides 

1 az 
A=--

2dx ax 
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1 az 
A.=--. 

2ay ay 

When these two representations of A are equated, we arrive at the relation 

azlax ax= ~v--. 
· azlay 

Chap. 13 

Substituting for ilx in the step size equation, (dx)2 + (ily)2 = s2
, yields a relation 

which can be solved for .iy as 

s(azlay) 

ily = [(azlax)2 + (azlay)2] 112• 

Of course, the equation for .:lx is a parallel one; that is, 

s(azlax) 
Ax=--------

. [(azlax)2 + (azlay)2] 112 • 

(13.17) 

(13.18) 

The values of Lix and Liy are those that maximize ilz, the change in z, given the step 
sizes. 

When the step of sizes is taken, the new coordinates are 

x =Xe+ .ix 

Y = Ye + .:ly. 

In general, the relation for the kth step is 

xk = xk-1 + ~x 

l = /- 1 + ay (13.19) 

where .ix and Liy are evaluated by the equations above. 
These relations can be generalized for functions of n variables xi, x2, •.• , Xn in 

which case the steps in each of the n directions are 

s(azlaxj) . 
Li X j = [ n ] 112 (J = 1, 2, ... , n). 

L (azlaxj) 2 

j=l 

(13.20) 

The choice of a step size is important, but there are no hard and fast rules. At 
the first step, a value of s small in relation to the space being searched, perhaps ~n 
the order one-one hundredth of the length of the space, might be chosen. The siz: 
of the step might be decreased on every subsequent move by a factor so that th 
move does not consistently carry the search past the point of interest. One rule out 
of many possible rules might be to make the step size (llk)s, where k is the number 
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h f . e ourth mo · 
on t e ust move. Experimentaf ve is one-fourth of th . 

'T' 10n on the rat f e size of the step 
necessary. i.oo fast a rate of redu t' . e o step size reduct· . . c IOn will result . . IOn may weIJ be 
mg pomt. Too slow a rate may result . h m little movement fro th · · . m t e search b . m e start-
tween pomts with high rates of ch · . ouncmg around the b . ange, but with space c-
solut10n. · no progress toward the optimal 

What does each step accomplish? It . 
. h . . . carnes the sear h t . 

new pomt t e partial denvatives are ev I t d Wh c o a new pomt. and at each 
h a ua e en th . 1 

to zero, t e search terminates. Partials e 1 · e part1a s are sufficiently close 
spot, or hill top, of the objective functio~u~:o ze~o, of ~ourse, are the indicator of a flat 
determined and recorded The analyst d fi. such a pomt the value of the objective is 

· e mes w at suffic' ti I 
The search may well lead to a local . ten Y c ose to zero means. 

not to the top of the highest hiII The seamahx1mt ubm, the t.op of one of many hills. and 
. · re ' o e credible mu t b · · 

random startmg points and foIIow each path t ·1 h' h , . s . egm at multiple 
I · I f 0 1 s tg est pomt. It 1s hoped that the 

mu .tip e start.s rom random positions increases the possibility of findino the true 
optimal solution. In any event from among all the h' h · (f ~ h 1 1 · '. . 1g est pomts rom amono alI 
t :, oca optima ~ound), the pomt with the highest value of the objective is repo;ted 
as the best solution found." 

SUMMARY 

In this chapter, we introduced five methods useful for finding the optimum solution 
for problems with nonlinear objective functions and/or constraints. The first, dynamic 
programming, is useful when the problem can be viewed as a staged decision 
process wherein the principle of optimality can be applied. In contrast, the nonlinear 
programming methods of unconstrained optimization, calculus with substitution. 
Lagrange multipliers, and gradient search rely upon fundamental and advanced 
concepts from calculus. Advantages and disadvantages of each method have been il
lustrated when applied to typical engineering problems. 

EXERCISES 

13.1. 

13.2. 

(a) In Table 13.3, show the calculations necessary to compute Fi.· 2 (
7)· 

(b) In Table 13.4, show the calculations necessary to compute Fi..J (10). 
· arv to compute f1 dll). 

(c) In Table 13.6, show the calculations necess 1 .... 

her on the same river, sometimes they can be 
If reservoirs are located close to one anot . 1 t the sum of the individual reser-
treated as one large reservoir with a. capacity eq.u:d ~afe yield for water supply. a total 
voir capacities. For example, to provide the reqmr . d Three potential sites for reser-

( f) ·ght be requue . . 
capacity of 40 million acre-feet ma . mi d t are provided in the accompanymg 
voirs exist along a short stretch of nv~r. Cost 

1 
a a ge at least cost. Further develop-

. h qu1Ted tota stora 
table. It is desired to achieve t er~ I (1975). 

r d m Wathne eta· 
ment of this problem can be ioun 
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(a) Write the mathematical programming model for the problem. 

(b) Write the dynamic programming recursive equation for the problem and define 
terms. 

(c) Construct tables and calculate the optimal cost and associat~d ~ptimal reservoir size 
at each site to achieve a total storage of from 0 to 50 maf (m increments of 5 man. 

(d) Plot optimal cost versus total system storage. 

Reservoir 
Resen•oir Size Total Cost 

Reservoir Site (maf) ($million) 

5 3 

10 5 

15 11 

2 5 5 

10 7 

15 16 

3 5 6 

10 9 

15 12 

20 20 

13.3. Consider the case of parallel streams to be used for water supply for a city. Assume that 
the best site for a reservoir has been found on each stream and that the cost has been 
evaluated in terms of reservoir capacity at each site. Further, for each site the safe yield 
(based on a once-in-50-year recurrence interval shortage) has been found as a function 
of reservoir capacity. Cost can then be expressed in terms of safe yield for each poten
tial reservoir site as shown in the accompanying table. The city wants to meet its water 
supply need at least cost. Further development of this problem can be found in Wathne 
et al. (1975). 

Define: 

x k = safe yield draft from reservoir k (on stream k); 

ck(xk) = cost as a function of safe yield draft from reservoir k; 

D = total water supply draft required by the city; and 

n = number of parallel streams. 

(a) Write the mathematical programming model that describes this problem. 

(b) Write the dynamic programming recursive equation for the problem. 

(c) Construct tables and calculate the optimal cost and associated optimal draft from 
each stream to achieve a total draft of from 30 to 100 million gallons per day 
(MGD) in increments of 10 MGD. 

(d) Plot optimal cost versus total system safe yield. 
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Stream Safe Yield 
Reservoir 

Draft (MGD) 
Total Cost 
($million) 

IO 0 
20 22 
30 44 

20 0 
2 

30 6 
40 18 
50 50 

3 0 0 
10 IO 
20 14 

13.4. A wa te~ resources agenc ha . level of mvest . y s three projects in wh· h . . ment m each project, a benefit is achi:~ d1t c~n mvest. According to the 
e as m the following table. 

Investment Total Benefit Net Benefit 
Project ($million) ($million) ($million) 

0 0 0 

5 6 1 

10 12 2 

15 22 7 

2 0 0 0 

5 12 7 

10 16 6 

15 18 3 

3 0 0 0 

5 8 3 

10 16 6 

15 24 9 

~e agency takes as its goal the maximization of net benefits, defined as total benefit 
mm us investment cost. The agency bas an authorized budget of up to $25 million to al-

locate among the projects. 
. Construct tables and perform calculations to detennine the best investment pol-
icy using dynamic programming. What is the best policy and associated net benefit? 

IJ.S. The following problem is adapted from Satbaye and Hall (1976).A long aqueduct is to 
be sized by sections to deliver irrigation water to /1 irrigation districts, as shown in the 
sketch below. The amount of water to be used by each district is to be detennined. 
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Define: 

Dynamic Programming and Nonlinear Programming 

x,.. = amount of water delivered annually to irrigation district k; 

Q = total amount of water available; 

q,.. = total amount of water allocated to the first k districts; 

Chap. 13 

v,..(x,..) = value or net benefit (present worth) from allocating an amount of 
water xk to irrigation district k; and 

c,..(qk) = cost (present worth) of aqueduct section k, based on an annual total 
flow of qk. 

It is desired to maximize overall net benefits of the project. 

(a) Write the mathematical programming model for the problem. 

(b) Write the dynamic programming recursive equation that will solve the problem. 

(c) If 1.100.000 acre-feet of water were available (equal to Q), xk and qk were broken 
into 100.000 AF increments, and n = 5 districts: 

(1) How many possible solutions are there (by enumeration)? 
(2) How many allocations will have to be compared using DP? 

13.6. Are the following functions strictly convex, strictly concave, or neither? 

(a) f(x) = lnx - x2 + x0
·
6 + x -10, forx > 0. 

(b) f(x) = 3x4 
- 2 ln x - 5x0

·
3 

- 2x + 4, for x > 0. 

(c) 
3 ~ ? f ( x) = - - In x + x-' + x- - 1 
x ' 

(d) f (x1x2) = XT + x~ + __!__ + x2, 
X1 

(e) f (x1x2) = -rT - 2x~ + 5, 

for x > 0. 

for X1 > 0, X2 > 0. 

for X1 > 0, X2 > 0. 

13.7. Find the stationary points(s) and type of point for 

1 
(a) f (x) = x 3 + - + x, for x > 0. 

x 

(b) f(x) = x 3. 

( c) f ( x) = x sin x, 

2x 
(d) f (x) = 1 + x2. 

-1T :s x :s 'TT. 
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Find the stationary points(s) d . 

an type of pomt for 

13.9. 

13.10. 

13.11. 

(a) f(x1i X2) = xr - x1x2
• 

(b) f(xi, x2) = (x1 - 2)2 + (x
2 

_ 1 )2. 

(c) f(xi, .t2) = In x
1
x, - x ... 

- I ·\2· 

(d) f(xi, x2) = x1 + x, - (x
1 

_ 4)2 _ ( , 
- X2 - 3 )-. 

From past records of highway canst t" . rue ion and mamt 
partment determines the following 

1 
. . cnancc costs. a state highway de-

ways within the state· cost re ationships for two-lane bituminous hieh-. ~ 

cc( X) = 0.1 x2·0 

1 
c,,,(x) = 3.0-

x 

where the equations hold for (0.5 :s x :s 10.0) and where 

x = pavement thickness (inches): 

cc(x) = annualized construction cost (millions of dollars per mile per year): and 

c,,,(x) = annual maintenance cost (millions of dollars per mile per year). 

(a) In words, describe the basic tradeoff decision that the highway department must 
make. 

(b) Determine the optimal pavement thickness, justifying the type of point found. 

(c) If pavement thickness can be specified only in whole inches, what is the best pave
ment thickness. considering normal variance in pavement thickness caused by field 
construction conditions? How sensitive is the optimal cost to small changes in 
thickness? 

Three towns have decided that they would like to build jointly an airport to serve all 
three communities. They also decided that the location of the airport should minimize 
the sum of the population-weighted, squared distance from the airport to each of the 

towns. 
On a map, the coordinates (x, y) (from an arbitrar! origin) of the towns are (2. 6). 

(7, 5), and (3, 1) with respective populations of 60,000, ,,0,000, and 90.?<JO .peopl~. F~.d 
the best location (x, y) for the airport. recalling that distance from pomt / to po mt J 1s 

dij = V(xi - xjf + (y; - yj}2. 

Verify the type of point found. . 
. d f three cities are to receive water from 

As shown in the accompanying left-ban d 
1~ej ation of the well field is to be deter-

one well field, which is ~et to be .d:velop~ · e 
0
;ay. city 2 is to receive 2.0 MGD. and 

mined. City 1 is to receive 1.0 nulhon g~ ons perb found from the rioht-hand figure. 
Th t of dehvery can e 0 

• 
city 3 needs 3.0 MGD. e cos .1 f 'pe depending on flow quantity. 

- . · f $1000 per IDI e o p1 • ... 
where cost is given mum ts 0 . . are (l5 40), (l2.10), and (50. 20). respec-

Map coordinates (in miles) of cities l-J ' 

lively. 
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The distance between two points i and j is given by 

d;j = V(x; - xj)2 + (Y; - yj)2. 

(a) Write the objective function with constants substituted where appropriate. 

(b) What problems do you see in solving the simultaneous partial derivatives? 

( c) Detem1ine the solution by spreadsheet enumeration, using a grid size of one m .1 
by one mile. What arc the best coordinates for the well field? 

1 
e 

Well 4 
Y City 1 location 

\ unknown 

1.~City3 
City2 

x 
1 2 3 

Flow (MGD) 

13.U. The market price of an item is $250. The production cost, C, for a particular company is 
a function of its output level, q, and is given by C = lOOqr.2

, where C is in units of dol
lars and q is the number of units produced. The firm wants to maximize profit, defined 
as total revenue minus total cost. 

(a) Determine the optimum output level to maximize profit for the firm and derive the 
sufficiency condition to show that the output does, in fact, represent a local maximum. 

(b) Arguing from the form of the objective function, what type of stationary point has 
been found? 

13.13. Solve the following problem using calculus with substitution. What type of critical point 
has been found, based on the sufficiency conditions? 

0 .. z 1 1 pt1m1ze = - + -
Xi X2 

Subject to: x 1 + x2 = 1. 

13.14. For the following problem, add a squared slack variable, x~, to the first constraint to 
produce an equation. 

(a) Solve the optimization problem using calculus with substitution (ultimately a prob
lem in one variable). 

(b) For the answer found, derive the sufficiency condition and state the type of critical 
point. 

(c) From the form of the revised objective function, is the critical point a global opti
mum? If so, what type? 
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Optimize z == 4 ~ X1X2 + x
1 
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Subject to· . x, :s 5 

13.15. U . x, + x, == IO 
smg calculus with subst't . ~ . 
I t . . . I ut1on. dcte . 

nc o m1mm1ze wetted p . rmine the optimal d' .· 
cnmeter for a given cross-sect· 1mlens1ons of a triangular chan-

1ona area A . ssumc no frcchoard. 

-1 
, /'. '////, / 

I 

(J 
0 

13.16. Using ca.lc~J~s with substitution, determine the o . . . 
nel to mm1mize wetted perimeter f, . pt1mal ~1mens10ns of a trapezoidal chan-

or a given cross-sectional area. Assume no freeboard. 

/ '////// 

h 
(J (J 

I~ w ./ 

l3.17. Which is the most efficient channel shape: rectangular, triangular, or trapezoidal? Use 
re.suits from the text and exercises 15 and 16 for the optimal wetted perimeter. along 
with the Manning equation. How much more efficient is the most efficient channel 
shape, in percentage terms? 

13.18. Highway departments often store salt in sheds for use in road de-icing. Assume a coni
cal shape as shown in the accompanying figure, and assume that the shed is filled from 
the top of the structure. The circular base pad costs 50 dollars per square yard. The 
slanted sides of the cone are made of wood and shingles. and cost 30 dollars per square 
yard of curved surface. Each cone must hold 300 cubic yards of salt. 

(a) Write a mathematical programming model that will find the best height (h) of the 
cone and radius (r) of the base to minimize the total cost of the structure. Solve 

using calculus with substitution. . . 
(b) If the angle of repose of dry salt is 35°. what modification to the optimal design 

would be necessary, if any? 
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h 

Area of curved surface = TrrYr2 + h2 

13.19. Solve the optimization problem in exercise 14 using the method of Lagrange multipli
ers. If one of the constraint right-hand sides could be relaxed by one unit, which con
straint would yield the greatest objective function gain? By how much would the 
objective function be expected to improve? 

13.20. A rectangular container is open at the top and must have a volume of 10 yd3 (see figure 
below). The side materials cost C dollars per square yard, while material for the bottom 
costs 2C dollars per square yard. 

(a) Solve for the optimal dimensions using Lagrange multipliers. 

(b) What are the units for ..\ 1? 

(c) If it were desired to have the container hold 13 yd3 instead of 10 yd3, by how much 
would cost be expected to increase? Use the value of ..\1 to estimate the change in 
cost-do not resolve the problem. 

lz 

13.21. Determine the largest ellipse and smallest ellipse that will satisfy the equation of a cir
cle, that is, 

(a) Solve graphically. 

Optimize Z = XI + 2x~ 

Subject to: XI + x~ = 1. 

(b) Solve using Lagrange multipliers. 
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13.22. Set up the following prob) . . 375 
tivity condition on X2 muste~ J~ Its Lagrange multiplier i 
Lagrangian function and d ~ andled explicitly as an adod~~· Note that the non-ncga-
1 · . enve the I 1t1onal co t · owmg solution satisfies th re ated necessary co d' . ns .ramt. Show the 
straint would yield the g e nec.essary conditions: x == 5 n Jt1ons. Venfy that the fol-

reatest improvement in the I b' '~2 = 5. Relaxing which con-
. o ~ect1ve function? 

Optimize z = 4x 
1X2 + X1 

Subject to: x 
1 

$ 5 

X1 + X2 = 10 

with X1 unrestricted, x
2 
~ 0 

13.23. Refer to the optimal reinf d · . orce concrete beam d . 
emattcal programming model includ' th es1gn example. Reformulate the math-
conditions: ' mg e cost of formwork, and under the following 

concrete: 
steel: 

form work: 
imposed moment: 

steel placement: 
beam width: 

4,000 psi nonnal weight at $25/ydJ 
A615 Grade 60 at $500/ton· 

• 2 I 

pme at $3.00/ft contact area· 
300 kip-feet; I 

two rows at bottom (total beam height = d + 4 0. h )· d 
I. . . . me es . an 

no 1m1tatlon (no constraint). 

(a) Verify that the following solution satisfies your model. 

x; = 4.11 in2 C* = $19.37 per ft. 

x~ = 20.01 in 

x; = 9.59 in 

(b) Based on the model outcome, if one wanted to invest in research to reduce the cost 
of such beams, where would attention be most productively directed? 

(c) What do you conclude about the sensitivity of the optimal beam design to inclusion 
of the cost of formwork in this case? 

13.24. The city councils of three rural towns have agreed to build jointly a solid waste transfer 
station at a location between the towns that will minimize the sum of distances to the 
transfer station from the towns. Map coordinates, in miles, are (x, y) = (10, 30), (40. 

10), and (60, 50) for cities 1, 2, 3, respectively. Recall that 

d;i = Y(x; - x/ + (y,. - yj)2. 

· d · the method of gradient search. The 
Assume the location is to be determme usmg . all hr ·.- d 
search space is limited to points inside a rectangle encompassmg t. ee c1 ies. ahn a 

) _ (20 20) Assume a step stze one one- un-
random starting point is selected ~s (x, Y - ' a~sin rectangle. Determine the op-
dredth the length of the smallest si~e of the enc~mt~e as:ociated improvement in the 
timal direction to move at the first step, an 
objective function. 
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Engineering 
Economics I: Interest 
and Equivalence 

14.A INTRODUCTION 

14.A.1 Engineering Economics 

~ngineering economics is the application of a standard set of equivalence equations 
~n determining the relative economic value of a small set of alternative capital 
mvestments that differ in their time streams of costs and benefits. 

This chapter will develop the necessary equivalence equations and proYide 
practice in their application. Chapter 15 will use these equations in the context of 
the choice between alternative capital investments common to civil and environ
mental engineering. Finally, Chapter 16 will include the real-world complications of 

depreciation, taxes. and inflation. 
Together, the three chapters should provide good preparation for those por-

tions of the Fundamentals of Enoineering (FE) and Principles and Practice of Engi
neering (PE) exams that deal wi~h engineering economics. :nie topics should also be 
of considerable value in personal financial planmng: a special section on t~1s topic 1s 
included at the end of Chapter 16, and all three chapters mclude home\\ork p1ob-

l 
. . . b untered in personal fmance. 

ems representing situations that may e enco . . d ,· . evelo ed are intended for use by civil a~ e~\ •-
Most important, the tools d P . . t that require enomewng 

ronmental engineers in those public and pnvate prhoJeC st.re proJ·ect to d~termin~ 
. . . d t . th er for t e en I 

e.conomtc analysts to be carne, ou • et f the project to ensure the most 
f mancial feasibility or for certain components 

0 

377 
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economical design. Please note. however. that the final choice in any project d . 
. h .d . ec1-

sion will include factors other than econonuc; sue cons1 erations as environme t 
1 · 1 d 1· · n a and social impacts. regional economic deve opment, an po 1hcal concerns are not 

addressed here. 

14.A.2 Cash Flow Table and Diagram 

The time stream of costs and benefits that results from a financial transaction can 
be displayed in either a cash flow table or cash flow diagram format. For example, 
suppose a person decides to borrow $10,000 and has agreed to pay back this 
amount by paying $1000 during years 1. 2, and 3, and $11,000 during year 4. From 
the viewpoint of the borrower, a cash flow table can be set up as in Table 14.1. The 
sign convention is that receipts are positive and disbursements are negative. Addi
tionally. an end-of-period convention applies; if any receipts or disbursements occur 
within a time period. they do not appear until the end of that time period. Thus, the 
$10,000 is received at the end of year 0 (the present), while payments are made at 
the end of years 1. 2, 3, and 4. 

Alternatively. the same time stream can be represented in a cash flow diagram 
as in Figure 14.1. Note that no attempt is made to plot the arrows to scale, although 
usually some attempt is made to represent relative magnitudes. As in the cash flow 
table. the end-of-period convention applies, and time period zero represents the 
present. Also note that the sign of the cash flow depends on the viewpoint taken; in 
this case, that of the borrower. The cash flow from the viewpoint of the lender 
would have the opposite sign. 

14.A.3 Simple Interest and Equivalence 

Simple annual interest is interest computed only on the principal outstanding for a 
year. The principal is the amount given by the lender to the borrower. The cash flow 
table and cash flow diagram in the previous section represent a person who has bor
rowed $10,000 principal now and has agreed to pay simple annual interest of lO~o 
($1000) on the outstanding principal for four years. At the end of the fourth year, m 
addition to the interest, the principal is also to be repaid. 

TABLE 14.1 CASH FLOW TABLE 

End of Year 
Receipts/ 

Disbursements 

0 $10,000 

-1.000 

2 -1,000 

3 -1,000 

4 -11,000 
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Receipts ( +) 

2 

Disbursements ( - ) 
1000 1000 1000 

11,000 
Figure 14.1 Cash flow diagram. 

From th~ vie.wpoint of both lender and borrower, the cash flow is "optima1.·· 
The borrower IS w1llmg to pay the stated simple annual interest to obtain use of the 
$10,000 for four years, and the lender is willing to give up use of the same amount 
for four years in exchange for the annual interest payments. In other words. the cur
rent arrangement is equivalent to (or possibly better than) the best arrangement 
that either party could obtain elsewhere. To be satisfied with the cash flow, the bor
rower must not be able to borrow the money from any other lender at less simple 
annual interest; conversely, the lender cannot find any borrower who is willing to 
pay more simple annual interest. 

If the interest rate were to be changed~ equivalence would break down. At a 
higher interest rate, the borrower would not be willing to borrow, while at a lower 
interest rate the lender would not be willing to lend. 

To su~marize, for a financial investment to be worthwhile, the interest earned 
must be at least equivalent to that which could be obtained elsewhere. 

14.B COMPOUND INTEREST: SINGLE PAYMENT 

14.B.1 Present Worth and Future Worth 

. . d both the principal and interest out-
Compound interest 1s mterest com~ute on 
standing for a given time period. Defme . 

. d interest time penod. 
i = interest rate for a given compoun 

expressed as a decimal; 

fl = number of time periods; 

f ner and p = present amount 0 mo ' . 
t the end of penod n. 

F = future amount of money a . . 
d earn compound mterest 

. d 11 in a bank today, an d of period n? 
If one were to deposit p o ars ·1 ble to receive at the en 

h would be ava1 a 
for fl time periods, how. muc in Fi ure 14.2. 
The cash flow diagram is shown g 
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F 

2 n-2 n-1 n 

Figure 14.2 Cash flow diagram for bank deposit. 
p 

The calculation can be made as follows: 

End of Period Amount Available 

0 p =P 

1 P(l + i) = P{l + i) 

2 P(l + i)(l + i) = P{l + i)2 

3 P(l + i)2(1 + i) = P{l + i)3 

n p ( 1 + i )'' - I (1 + i) = P(l + W 

or 

F = P(l +it 

which is the single-payment compound amount formula, and the term 

(1 + it = single-payment compound amount factor 

= (F!PJ 11) 

or 

F = P(F/P, i, n) 

(14.1) 

(14.2) 

which can be read as "the future amount, F, equals the present amount, P, times the 
factor for F given P compounded at interest rate i for n periods." The notation cho
sen enables the symbolic cancellation of "P" on the right-hand side of the function
al equation. 

Equation (14.1) can be solved for Pin terms of F: 

P = F(l + i)-n (14.3) 

which is the single-payment present worth formula, and the term 

or 

(1 + n-n = single-payment present worth factor 

= (PIF,i,n) 

P = F(PIF, i, n). (14.4) 
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for public sector projects, the single-payment present worth factor is often referred 
to as the single-payment present value factor, also known as the discount factor. 

14.e.2 Equivalence 

Tue amounts P and F are equivalent in the sense that if an individual could earn 
compound interest, i, over n periods, the present amount, P, would become Fat the 
end of period n. If, however, the individual could earn a higher interest rate on the 
amount P, the offer of Fin the future would no longer be equivalent to P, because 
the individual could earn more than the amount Fat the higher rate. Whether equiv
alence exists between given amounts P and F, therefore, depends on the interest 
rate under which the comparison is being made. 

The factors (F/P, i, n) and (PIF, i, n) are provided in the Appendix for common 
values of i and n. 

Example 14-1. 

Compute the present amount, P, that would be equivalent to the two receipts shown in 
the cash flow diagram. The compound interest rate for a period is 5%. Demonstrate 
equivalence for your answer. 

2000 

1000 

2 3 4 5 6 7 8 

p 

Solution: Use the tables in the Appendix or perform a direct computation: 

p = 2000(PIF, 5%, 3) + lOOO(PIF, 5%, 8) 

or 

P = 2000(1 + o.osr3 + 1000(1 + o.osrs 
= 2000(0.863838) + 1000(0.676839) 

= 1727.68 + 676.84 

= $2404.52. 

d. t'on Assume a present amount, · · the reverse 1rec 1 · 
Equivalence can be shown by gomg m f t receipts. The amount grows to a 
$2404.52, and show that it will produce the two u ure 
future amount, F3, in three years, 

F3 = $2404.52(1 + 0.05)3 

= $2783.53 
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at which time $2000 is received, leaving $783.53 to grow at 5 % for 5 years to an amount Fs. 

Fs = $783.53(1 + 0.05)5 

= $1000.00 

which is the desired amount. Note that at any other interest rate, the future amounts 
would not be produced exactly. and equivalency would not hold. Also note that the 
maintenance of at least six decimal places is recommended in most cases to ensure suf
ficient accuracy. especially when /1 is large. Finally observe that the principle of super
position was used to find P. Cash flows can be broken into subsets and treated 
individually using equivalence relationships. 

14.B.3 Rule of 72 

From tables for the single-payment compound amount factor, an interesting obser
vation can be made: the rule of 72; a present sum doubles in value when the product 
of the interest rate (in percent) and number of compounding periods is about 72. This 
is shown in Table 14.2. 

The rule of 72 is useful when making mental estimates of growth rates of mon
ey, population, inflation and so on. For example, if the 1980 rate of inflation approx
imating 12 % had continued, consumer prices would have doubled in only 6 years. At 
the 2000 inflation rate of about 3%. it would have taken 24 years. 

The reverse is also true-present value is only one-half that of a future 
amount obeying the rule of 72. At 7% interest, a project benefit received 10 years in 
the future is worth only one-half that amount today. Since the rule is repetitive, it 
can also be said that a benefit received 20 years in the future is worth only one
fourth that amount today. again assuming an interest rate of 7%. 

14.B.4 Nominal and Effective Interest Rate 

Banks will often quote an interest rate oL say, "4% compounded quarterly." The inter
pretation is that for each quarter of a year 1 % interest is earned. Since compounding 
is carried out each quarter, the actual annual effective interest rate earned is slightly 
more than the nominal interest rate of 4 % . The nominal interest rate for a time period 
ignores the effect of any subperiod compounding. The effective interest rate for a time 

TABLE 14.2 COMPOUND AMOUNT FACTORS DEMONSTRATING THE RULE OF 72 

11 i X II (FIP. i, n)" 11 i x ll (F/P, i, n)* 

1 72 72 2.05 7 10 70 1.97 

2 36 72 2.04 8 9 72 2.00 

3 24 72 2.03 9 8 72 1.99 

4 18 72 2.03 10 7 70 1.95 

5 14 70 1.98 11 7 77 2.08 

6 12 72 2.01 12 6 72 1.97 

"'Rounded to two decimal spaces. 
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eriod includes the effect of any subperiod compounding Uni ·f· d h . p . . . . ess spec1 1e ot erw1se, a 
quoted n~mmal rate is assumed to apply to a time period of one year. 

Def me: 

r P = nominal interest rate for a time period: 

m = number of compounding subperiods per time period; 

i P = effective interest rate for a time period; and 

is = effective subperiod interest rate, equal to rP/m. 

To derive the effective rate of interest for a time period due to subperiod com
pounding, imagine one dollar compounded over m subperiods of a time period. The 
total amount, F, at the end of one time period would be 

( 
r )m ( r )m 

F = $1 1 + :i = 1 + :i . 
Deducting the $1 initial amount produces the effective interest rate for the 

time period as a decimal, 

( 
r )m 

ip = 1 + ~ - 1 

which can also be expressed as 

ip = (1 + isr' - 1. 

Example 14-2. 
hl f. d th effective annual interest rate. 

Given 7% interest compounded mont y, m e 

Solution: 
ry = 0.07. m = 12. is = r_,.lm = 0.07/12 = 0.005833 

. = ( l + j )"' _ 1 = ( 1 + Q.005833) I:! - 1 
'.r s 

iy = 0.072286 or 7.23%. 

14.B.5 Continuous Compounding 

(14.5) 

(14.6) 

is compounded over m subperiods 
lf n is the number of periods, and a present sum h future amount after n periods 
of a period at a nominal period interest rate, r, t e 
becomes 

(14.7) 
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If the number of compounding subperiods, m, is allowed to become very large th 
solution will represent continuous compounding. Mathematically, ' e 

( 
r )mn 

F=Plim 1+- . 
m-oc 111 

Let x =rim. Then nm = (llx)(rn), and equation 14.8 becomes 

F = P lim [(1 + x) 111'"· 
x-o 

From calculus. 

lim(l + x) 11x = e. 
x-0 

Equation 14.9 can then be written as 

compound amount: F = Pe'" = P(FIP, r, n). 

Conversely. 

present worth: P = Fe-rn = F(P!F, r, n). 

(14.8) 

(14.9) 

(14.10) 

(14.11) 

(14.12) 

To determine the effective interest rate for one time period, consider one dol
lar compounded continuously for one period: 

F = $1e'(t) = e'. 

Subtracting the initial $1~ the effective interest is 

iP = e' - 1. (14.13) 

Example 14-3. 

A bank offers a nominal interest rate of 7%, compounded continuously. What is the ef
fective rate? 

Solution: Since a time period is not mentioned, it is assumed that the nominal rate is 
for one year. The effective rate for one year is 

i_\" = er - 1 = e0-'JI - 1 = 1.07251 - 1 = 0.07251 or 7.25% 

which compares with the effective rate of 7.23% (found in Example 14-2) for monthly 
compounding. 

Example 14-4. 

At an annual nominal rate of 2, 4, 6, 8, and 10%, compounded continuously, bow long 
does it take for a present amount to double in value? Does the rule of 72 apply for con
tinuous compounding at these rates? 

Solution: F = Pem. where F = 2, P = 1. Taking the natural log: 

In 2 = In 1 + rn In e 

or 

0.6931 = rn 
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and 

lOOrn = 69.31 

from which it can be observed that the rule of 72 becomes th I f 
69 

f · 
. . e ru e o or contmuous 

discountmg. However, st~ce most phenomena are described in terms of their annual ef-
fective rate of compoundmg, the rule of 72 is more useful and could be applied even for 
continuous compounding with little error. 

Finall~, note ~h~t. the terms ~and n must refer to the same time period when used in an 
equation. This 1s illustrated m Example 14-5. 

Example 14-5. 

A bank quotes a quarterly interest rate of 2%. compounded continuouslv. \vbat is the 
(a} effective quarterly interest rate? (b) nominal annual interest rate? and (c) effective 
annual interest rate? 

Solution: 

(a) Note that the quoted rate is the nominal quarterly interest rate. The effective 
quarterly rate is given by 

i = er - 1 = e0
·
02 

- 1 = 1.0202 - 1 = 0.0202 = 2.02 ~·o. q 

(b) The nominal annual interest rate is the rate ignoring any compounding during 
subperiods. It is simply 4 x 2%~ or 8%. 

(c) The effective annual interest rate can be found in one of three ways: 
(1) Observing that the quarterly effective return will be compounded four times 

a year: 

;_,. = (1 + ;sr - 1 = (1 + 0.0202)~ - 1 = o.0833 = 8.33%. 

(2) Using the formula for future worth with n = 4 time periods and a nominal 

rate of 2 % per quarter, 

(3) 

F = Pe'n = $1 e(O.O:!)'~' = 1.0833 

b h .. al $1 to obtain the effective interest rate: su tract t e ongm 

i\' = 1.0833 - 1 = 0.0833 = 8.33%. 

. . . I 1 . terest rate of 8% with continuous compounding. 
Usmg the nonuna annua m 

with 

p = $1,, = 0.08, and n = 1 

F = le(o.o.g)(tl = 1.0833 

i.}' = 1.0833 - 1 = 0.0833 = 8.33%. 
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14.C STANDARD CASH FLOW SERIES 

The single-payment compound amount or present worth formulas could be applied to 

each end-of-period payment in an arbitrary cash flow to resolve the series into its sin
gle-payment equivalent. However~ it is inconvenient to do so. Certain cash flow series 
occur so frequently that standard formulas have been derived to express the equiva
lence relationships. These are summarized in the following sections. Derivations are 
available in many standard engineering economics texts, such as those listed in the end 
of this chapter. Results are also provided in a tabular fom1at in the Appendix. 

14.C.1 Uniform Series 

TI1e standard cash flow diagram for a uniform series is shown in Table 14.3. Note the 
absence of a payment at the end of period zero, but the presence of a payment at the 

TABLE 14.3 UNIFORM SERIES EQUIVALENCE FORMULAS 

Item 

Present 
worth 
formula/ 
factor 

Capital 
recoYery 
formula/ 
factor 

Compound 
amount 
formula! 
factor 

Sinking 
fund 
formula/ 
factor 

Diagram 

A 

0 

P=? 

A=? 

0 

p 

A 

0 

F=? 

A=? 

F 

Equation 

p = A[-( I_+_i)_" _-_I] 
i(I + i)" 

A = P[-i(_I _+_i)_"_] 
( 1 + i)" - 1 

F = A[-(1_+_i}_" _-_I] 

A - F[--'-· --] 
( 1 + i)'1 - 1 

Symbolic Form 

P = A(PIA,i,n) 

A = P(AIP, i, n) 

F = A(F/A, i, 11) 

A = F(AIF, i, 11) 
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end of period n. The uniform series present worth factor (pwf) (P',. . ) f' d h 
h f "f · f , 1n, z, n . m s t e 

present wort 0 
. a um or~ sen~s 0 n receipts or payments of amount A each peri-

od while the uniform series capita/ recovery factor (crf) (AJP 
1
· n) p ·t 

1 
l _ , . . , , , , erm1 s ca cu a 

tion of the. umform senes amount, A, that will recover an initial capital investment, 
p in /1 penods. 

' The uniform series compound amount factor (ca!), (FIA, i, n). is used to find 
the future worth of a uniform series, A, while the uniform series sinking fund factor 
(sff), (Al F, i, ~ ), permits calculat~on ?f the uniform series amount, A, that must be 
deposited to fmance a future capital mvestment, F, in period n. 

Uniform series are common in civil and environmental engineering. Opera
tion and maintenance costs, estimated benefit streams from projects. and annualized 
capital costs are common examples. 

14.C.2 Arithmetic Gradient Series 

Table 14.4 shows the standard cash flow diagram for an arithmetic gradient series. 
Note that there is no receipt at the end of period 1 and that the present worth term 
is therefore two periods removed from the first gradient amount. G. . 

Repair costs are sometimes assumed to increase linearly with time, as are esti
mated benefits from projects. 

Example 14-6. 

Convert the following series to its equivalent future worth, F. when i is 12%. 

120 90 100 110 __ _ 
60 10 - ~o - - - - -

..-::..,- --
-~__JL...-...L--.L.----, ll = 7 
I 
I 
I 
I 
I 

t 
p F='? 

. d an arithmetic gradient series 
Solution: Break the series up into a uniform senes an 
where A = 60 and G = 10. Then 

2 01 7)] ( FI P 12 % . 7 ) F = [A(PIA, 12%, 7) + G(PIG. 1 io, , 

= [60(4.563757) + 10(11.644267))(2.210681) 

= $862.76. 
. nientlv allows a uniform se-. . c radient sen es conve . 

Note that the format of the anthmeti g 
ries to be broken out, as in this example. 
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TABLE 14.4 ARITHMETIC AND GEOMETRIC GRADIENT SERIES EQUIVALENCE FORMULAS 

Item 

Arithmetic 
Gradient Series 

Geometric 
Gradient Series 

Diagram 

(n-l)G 
(n-2)G,,/ 

,' 

• • • 0 -~-_..._ _______ ...___. 11 

1 2 3 4 

P=? Gradient= G 

• • • 
Or----------...__.n 

2 3 

P=? Growth rate=g 

14.C.3 Geometric Gradient Series 

Equation and 
Symbolic Form 

p = G[-(l_+_i)_" _-_in_-_1] 
;2(1 + i)" 

P = G(PIG, i, 11) 

(ii= g): 

[ 
1 - ( 1 + g n 1 + i) -n l 

P =At . 
1-g 

P = A 1(P!Ai. g, i, n) 

(i = g): 

P = A 1[n(l + W1
] 

Table 14.4 illustrates the format of the geometric gradient series.At the end of year 1, 
an amount, A1' is received. The series then grows at a compound (geometric) rate,g, 
per period. given by 

(14.14) 

Because there are three parameters (g, i, n) in the geometric gradient series pre
sent worth formula, a tabular format is inconvenient, and the equation in Table 14.4 
must be used directly. 

The geometric gradient series is useful in cases of double compounding, for 
example, when benefits from a project grow at a compound rate and are themselves 
subject to compound interest (e.g., hydroelectric generation benefits may grow at a 
compound rate equal to that of a region's economy, while the benefit itself is 
compounded financially). 
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TABLE 14.5 UNIFORM SERIES EOUI 
CONTINUOUS COMPo0~~~~E FORMULAS UNDER 

Item Equation Symbolic Form 

Present worth 
[ ~· - I l formula/factor P-A P = A(PIA.r,n) e'n( e' - 1) 

Capital recovery A = p[ e'"( e' - I) l formula/factor e'n - 1 A = P(AIP,r, n) 

Compound amount [e'"-1] formula/factor F=A-- F = A(FIA, r, 11) e' - 1 

Sinking fund A-f-1] formula/factor e"' - 1 A = F(AJF. r, n) 

14.C.4 Uniform Series: Continuous Compounding 

In the formulas presented in Table 14.3 for uniform series, if the interest rate, i, is re
placed by the effective interest rate for a time period under continuous compounding, 

i = e' - 1 
p ' 

the equations in Table 14.5 are produced. Note that r is the nominal interest rate for 
the period to which n refers. 

Example 14-7. 

John has set up an automatic deposit plan between his place of employment and his 
bank. Every month, $300 is deposited. The bank pays 8% interest, compounded month
ly. A competitor bank pays the same interest rate, but offers continuous co~pound.ing. 
Over three years, what would be the monetary gain of using the bank offenng continu-

ous compounding? 

Solution: Under monthly compounding, 

. = '.r = 0·08 
= 0.006667 1

"' m 12 

[ 
(1 + i) 11 

- 1 l 
F,,, = A(F/A, i, n) = A i 

[ 
(1 + 0.006667)

36 
- l l 

= 300 0.006667 

= $12,160.68. 
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Under continuous compounding.A is a monthly deposit; therefore, r is for a month and 
equals 0.006667. as above: 

[
e"' - 1] 

Fe= A(FIA,r,n) =A e' - l 

[

e(0.006667)(36) _ 1] 
=300-----

e0.006667 _ 1 

= $12,165.60. 

Difference: $4.92 in favor of continuous compounding over three years; negligible con
sidering other factors. 

14.C.5 Capitalized Cost 

In certain cases, it is necessary to assume that a service or facility will be provided forev
er. Major pipelines, highways, dams, and water and wastewater treatment plants often fall 
into this category. Periodically, they will be replaced or renovated to maintain a desired 
level of service. In such situations, the analysis period (or planning horizon) is infinity. 

What is the present worth of cost for such facilities? The amount of money 
needed to be set aside now to provide for perpetual service is the capitalized cost of 
a project. The situation is illustrated in Figure 14.3. If an amount P were set aside, in 
one year an amount of interest Pi would be available to spend. In the next year, a 
similar amount of interest, Pi, would be available, and so on. The amount, P, would 
never change and, in fact, could not be drawn upon or it would not last to infinity. 

If A must be spent each year to maintain perpetual service, the initial principal 
must be made large enough such that 

A = Pi (14.15) 

or. rearranging, 

= P(AIP, i, oo) 

P=A 
i 

= A(PIA, i, oo) 

(14.16) 

(14.17) 

(14.18) 

where (Al P, i, oc) is the uniform series capital recovery factor for an infinite series, 
equal to the interest rate, i, and (PIA, i, oo) is the uniform series present worth fac
tor for an infinite series, equal to lli. 

Two complications occur in determining the capitalized cost of construction pro
jects. One is that an initial cost of construction (at t = 0) is usually involved, and the 

Figure 14.3 Equivalence relationship for 
capitalized cost. 

AAA AAA 

.....-..t .............. t t_......_~ ·_._~ 1' t t t .. ; 0: ! 2 3 

P=? 
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b f 
n or replace 

after a num er o years. The initial co ment does not alwa 
it to the necessary capitalized cost Th st ca~ be_ handled immed· ;s1 occur annually. but 
to its equivalent annual series bef. ~ penod1c replacement c ia te y by merely adding ore It can be capitaliz d os must be resolved in-

Example 14-8. e . 

A dam initially costs $30 mill' ·11· I ion and must b mt ion. nterest is 8%. Find th . . e renovated eve , 50 , 
project in perpetuity. e cap1tahzed cost sufficient to "( } ears at a cost of $10 onstruct and renovate the 

Solution: Draw the cash fl d' ow 1agram: 

$30 m 
$10 m $10m $10m 

••• 
50 100 

:c 
150 

P=? 

t ton renovation cost to th I f . Spread each $10 m·11· . duce an annual infinite series: e e t over the precedmg 50 years to pro-

Solve for A: 

then 

$10m 

0 I ,,, . I l l i.;.v l l "=SO 

AAA AAA 

A = F(AIF, i, n) = $10,000,000 (Alf, 8%, 50) 

= 10,000,000 (0.001743) 

= $17,430 

p = $30,000,000 + $17,430(1/0.08) 

= $30,217,875. 

After paying $30 million for initial construction. the remaining $217 ,875 set aside 
would pay for renovation at 50-year intervals in perpetuity. Check: 

$217,875(1.08)50 = $10.218.689 

w~ich is approximately equal to $10,217,875. the predicted amount. (Note that even 
With interest tables carried to six decimal places. considerable round-off error can be 
present when compounding occurs over long planning horizons. here 50 years.) 
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An alternative solution approach recognizes the following relationship. 

PRcn( 1.08)50 = 10,000,000 + PRcn 

46.901612PRcn = 10,000,000 + PRcn 

PRcn = $217.857 

which is a more accurate estimate of the capitalized cost of renovation alone. 

CHAPTER SUMMARY 

This chapter has developed the concepts of simple and compound interest and equiva
lence. Standard cash flow series were presented along with the corresponding equiva
lence formulas. In Chapter 15. these equivalence relationships will be applied to 
determine which project, out of a small set of alternative projects, is the most economical. 

EXERCISES 

14.1. A bank has agreed to lend $100.000 for five years at simple annual interest of 8%. 
Show the cash flow table and cash flow diagram from the viewpoint of the bank, as
suming that no early principal payments are made and interest is paid annually. 

14.2. A company has arranged a four-year loan for $30,000 with simple annual interest of 
6% paid annually. In addition, it decides to pay back $10,000, $5000, and $3000 of the 
principal at the end of years 1, 2, and 3. respectively. Fill in the following table from the 
viewpoint of the company: 

End of Amount Principal Principal Interest Final 
Year Received Paid Outstanding Paid Cash Flow 

0 

I 

2 

3 

4 

14.3. A person promises to pay annually simple annual interest, i, on a loan where a constant 
fraction. f of the outstanding principal is paid back each year until the final year when 
both the interest and remaining principal are paid. For the cash flow table shown, find 
the values of i and f Solve mathematically. 

End of Year Receipt/Disbursement 

0 $10.000 

1 -5,800 

2 -2,900 

3 -1,450 

4 -725 

5 -675 
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An engineer can purchase a corporate bond for $10,000 that pays $200 in interest, semi-14.4. ( 
annually, for five years ten payments). At the end of five years, in addition to the last 
$200 interest payn:ient, the o~ig~nal $10,000 inv~stment is repaid. Draw the cash flow di
agram for the engmeer. Is this investment equivalent to a simple annual interest of 5% 
that can be earned in an alternative investment? 

5 Find the unknown quantity, assuming compound interest: 14 •• 

1000 

i=8% 

2 3 4 
(b) (a) 

F=? P=? 

1484 

i=? 

(c) (d) 

2 3 4 5 6 

12.000 

i=5% 
8000 

2 3 4 5 

F=? 
i=4% 

2 3 4 5 

6 

400 

1000 800 

$1x106 

F=? 
i=1% i=7% 

800 

(0 (e) 
3 4 48 49 50 II= 5 1 2 

1000 p =? 

5000 
F F F 

7988 
l ' 

i=6% 
i=8% 

(h) -"T 

3 4 5 6 7 (g) 2 
II=? 

t 
10.000 

1000 
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14.6. A recent graduate invests $4000 in a stock mutual fund. If. a conservative estimate of 
after-tax compound interest is 8%. how many years would 1t take to buy a $16,000 car 
using the fund? Solve by the rule of 72. 

14.7. A water resources engineer is trying to decide on the number of years over which 
to estimate future benefits and costs for a project. The engineer decides not to 
count any future benefits or costs that have a present worth amount less than 3% 
of their future worth amount. If the compound interest rate is 8%, use the rule of 
72 to determine the number of years over which to estimate future benefits and 
costs. 

14.8. For the period 1984-1994, operational speed and disk storage capacity of comput
ers doubled about every two years. Using the rule of 72, what compound annual 
rate of increase does this represent? Check your answer analytically. What do you 
observe? 

14.9. Compare the effective annual interest rate produced under the following frequencies 
of subperiod compounding: (a) yearly, (b) semiannually, (c) quarterly, (d) monthly, (e) 
weekly. and (f) daily. Use interest rates of 3, 8, and 30%. What do you observe? 

14.10. An engineer in a developing country observes that his project bank account has 
grown from 1.600,000 to 1.769,279 (local currency units) in 20 days with no deposits 
or withdrawals being made. He knows that the account earns interest compounded 
daily. 

(a) What is the daily compound rate of interest, in percent, earned on the account? 

(b) What is the effective annual interest, in percent? 

(c) What is the nominal annual interest, in percent? 

14.lL Six years ago Juanita put $2000 in a special bank account. Today, her account shows 
$3425. She thinks that this is a good deal and would like to tell her friends about it 
tonight. The bank is already closed, however, and the only thing she is sure of is that the 
account pays interest compounded monthly. Compute the nominal annual interest and 
the effective annual interest for this account. 

14.U. Whoops! In Exercise 14.11,just as Juanita was about to leave the house for her meet
ing, her husband, Enrique, learns of her plan and says he is "sure" that the account pays 
interest compounded continuously. Recompute both the nominal annual interest and 
effective annual interest, assuming continuous compounding. 

14.13. At the end of five years, an account paying 6% interest, compounded continuously, 
shows a balance of $10,798.87. If only an initial deposit was made, what was the 
amount? What is the effective annual interest? 

14.14. Find the unknown quantity in each of the following, using the standard series equiva
lence formulas and tables in the Appendix. Give preference to the approach yielding 
the fewest computational steps. For problem ( e ), solve using interpolation of the tables 
in the Appendix. 
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30 

10 10 10 

(a) 
(b) 

2 3 4 5 6 
i = 5% 

50 50 50 50 50 50 
l 

- l l ~ 

1 ~ 
1 

n=7 

P=? 1 5 5 5 5 5 5 
30 i=4% 

60 
F=? 

F=? 

10 A=? 
i=8% 

(c) 
n=5 (d) . . . 

,,_........_....a......--J.. n = 30 

20 
30 i=7% 

40 
50 1000 

60 

$327.83 
P=? 

i=? i=5% 

(e) n=25 (f) 2 3 4 5 6 

• • • 
5 5 5 5 5 50 

60 
70 

80 
90 

100 

An engineer buys a piece of equipment for $1000 and spends $90 per year on mainte
nance. During the fourth year, a major overhaul cost of $300 is expected. Benefits from 
use of the equipment follow an arithmetic gradient series with G = $50. At the end of 
six years the engineer sells the equipment for $400. Draw the cash flow diagram from 
the engineer's viewpoint. 
For the following diagram, assuming equivalence, determine the interest rate using the 
compound interest tables with interpolation. 

40 40 40 40 40 40 

2000 
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14.17. A hydroelectric dam is projected to produce annual benefits that grow in concert with 
the regional economic growth rate of 2%. The first benefit amount, $600,000, occurs at 
the end of year 5 (after the dam is constructed and the reservoir fills). If the interest 
rate is 8% and the benefits are assumed to continue growing through year 50 (50-year 
planning period), what is the present value of benefits (at t = O)? 

14.18. A newly employed engineer decides to place 5 % of her salary every year into a retire
ment account. Her first year salary is $45.000, and it is anticipated that her real salary 
(after removing the effect of inflation) will increase 3% per year. What will be in the ac
count at the end of year 30 if annual interest earned on the account is 

(a) 5%? 

(b) 3%? 

14.19. Rework Example 14-7 assuming that John makes automatic deposits of $150 semi
monthly (two times per month) instead of $300 per month. 

14.20. Linda has just opened a savings account at a bank that pays 6% interest, compounded 
continuously. She deposits $30 to open the account and then deposits $30 semimonthly 
(two times per month) for two years. At the end of the two-year period, how much is in 
her account? 

14.21. A university has a ··sabbatical plan'' for its faculty whereby six years are on campus, and 
the ne>..1 year is off campus. Salary in the sabbatical year is not fully covered, however. A 
professor estimates she will have to spend a total of $15.000 of her own money in equal 
monthly withdrawals of $1,250 in the sabbatical year. She will continue to use her current 
bank during the off year. The bank pays 5% interest, compounded continuously. 

If she makes uniform monthly deposits to her bank over the six-year period, 
what amount must she deposit each month to cover her sabbatical year expenditure? 
Draw the cash flow diagram from the professor's viewpoint. 

14.22. In an irrigation district in the West, an irrigator can purchase an extra share (allotment) 
which entitles the holder to 0.7 acre-feet (AF) of water per year in perpetuity. If the 
share costs $1600. what is the cost of one acre-foot of water to the irrigator? Assume an 
interest rate of 8%. 

14.23. A city wants to set aside enough money to build, operate, and renovate a sewage 
treatment plant in perpetuity. An engineering company estimates that the plant will 
cost an immediate $20 million to build and will require $5 million every 20 years to 
replace major equipment and $10 million every 50 years to pay for major structural 
renovation. It is estimated that operation and maintenance costs will be $1.5 million 
every year. What amount will the city need to set aside? Interest earned on the an
nuity is 7%. 

14.24. A public utility commission requires that a trust fund be established by a private company 
wishing to build and maintain a water treatment plant for a small city. The company must 
deposit enough money to build the plant and then to operate and renovate the facility in 
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perpetmty. e plant will cost $10 000 000 . 
$600 000 d b ' ' to build ha 

' o ' ?n must e renovated every 20 ears ' s an annual operating expense of 
earns 6 Yo interest. What amount must the coy at a ~ost of $1,000,000. The trust fund 

mpany put m the trust fund? 

14.25. The Division of Sanitation of a city b . 
$100,000 and plans to keep it seven yea~~sb:fonew s~lid .waste collection vehicle for 
costs are expected to be $400 in the fir t re selling It for $20,000. Vehicle repair 

. f h s year and grow 20°/c 
savmgs rom t e new vehicle follow an arithmetic . 0 per year thereafter. Cost 
the cash flow diagram from the viewpoint of th Dg~a.d~ent senes with G = $500. Draw 

e IVISion of Sanitation. 

14.26. A $20,000 loan from a family member is t b · 
End of Year 2: $10 000· End of YI 3. 

0
R e P~Id off as follows: End of Year l: $5.000: 

' ' ear · emamder Due I 1 . 
pounded yearly. Fill in the table. · n erest rate Is 10% com-

End of Total Interest Principal 
Year Payment Payment 

Principal 
Payment Outstanding 

0 0 0 0 

1 5000 

2 10,000 

3 

14.27. In 1978, the real Gross Domestic Product (GDP) of China was $119.7 billion. In 1995. 
the real GDP was $594.6 billion. Over this period. what was the compound annual per
centage rate of growth of real GDP? 

14.28. An individual deposits $1000 in a bank now and at the end of 10 years withdraws 
$1480.24. This represents 4% interest compounded annually. How much of the amount 
withdrawn is interest? How much is principal? 

14.29. The U.S. Army Corps of Engineers Civil Works Construction Cost Index is a measure 
of the cost of building water resources development projects such as dams and reser
voirs. In 1967, the index was 100.00. In 1990, the index was 398.34. an approximate qua
drupling. Using the Rule of 72, estimate the compound annual rate of increase in cost 
of water resource development projects during this period. 

14.30. A country with 20 million people is growing at 4% per y~ar. Another c~untry has 160 
million people and is growing at 1 % per year. When will the population of the two 

countries be equal? Solve using the Rule of 72. and show all work. 

14.31. A paperboy age 17 wants to be a millionaire (more or less) at age 57. If hedcoudld ear~ 
' ' · t nt what would he nee to epos1t 

a compound rate of interest of 7% on an mves me ' 
now? Solve using the Rule of 72, showing all work. 
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14.32. Use the Rule of 72 to find the initial amount. P, in the cash flow diagram. Interest 

rate is 7%. 

so 
40 

32 32 
4, 

0 

IO 20 30 40 

P=? 

14.33. A bank account earns 6% compounded continuously. What are the effective and nom
inal interest rates for a 10-year period? 

14.34. If a bank account earns 3 % interest compounded continuously, what is the effective in
terest rate for 6 months? (Carry to six decimal places.) 

14.35. A $50,000, 30-year home loan can be obtained at 9% compound interest. For simplicity, 
assume that compounding is annual. and payments are made annually in a uniform 
series. Fill in the table below. Do not worry about years beyond Year 2. At the End of 
Year 1. what percentage of the total payment is made on the principal? On the interest? 

End of Total Interest Principal Principal 
Year Payment Payment Payment Outstanding 

0 

1 

2 

14.36. A $10.000 loan is to be paid off in equal annual installments over 3 years at 9% com
pound interest. Assume annual compounding. Fill in the table. 

End of Total Interest Principal Principal 
Year Payment Payment Payment Outstanding 

0 0 0 0 

1 

2 

3 
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14.37. For the diagram, assuming equivalence det . . 
· ' ermine the mtere t h · ing the compound mterest tables. s rate Y mterpolation us-

A= $100 

,_ _ __.__--J 11 = 30 

$900 

14.38. A foreign bank account pays 100% interest compounded monthly. 

(a) If a company deposits $50,000 each month, what will be in its bank account at the 
end of three years? 

(b) What is the effective annual interest, in percent? 

14.39. * An elderly lady owns a home for which she has completely paid. She arranges a reverse 
mortgage for $100,000, whereby she will receive monthly payments for the home from 
a bank. She will be allowed to live in the house until her death, whereupon her estate 
will receive the equivalent of the remaining payments in a lump sum. The bank then 
owns the home. One month after she turns 70, she begins receiving monthly payments 
on a 30-year reverse mortgage at 7% interest compounded monthly. 

(a) What monthly payment does she receive? 
(b) At the time of her death at age 80, what lump sum payment is made to her estate? 

14.40. For the diagram, assuming equivalence, determine the interest rate. Use interpolation 
of the tables in the Appendix. 

500 

400 

300 

200 

100 

n=6 

p = $725 
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14.41. * Janet deposits a fixed percent of her salary in a retirement account each year. The first 
year she deposits $1500. If her salary increases at a rate of 4% per year, and the account 
earns 4 % interest compounded annually, how long will it take her to have at least 
$30.000 in the account? 

14.42. An engineering company buys a used pickup truck for $6000, keeps it for 5 years, and 
salvages it for $1000. Annual costs for gas, oil, and other normal costs are $900. Repair 
costs are $200 the first year and then grow at an 8% compound annual rate. TI1e engi
neering company uses an interest rate of 8%. Draw the cash flow diagram, and calcu
late present worth of cost (salvage is treated as a reduction in cost). 

14.43. An electric utility plans to build a nuclear power plant. It estimates construction costs 
will be 1, 2, 3, 2. and 1 billion dollars in Years 1-5, respectively. Operating costs will be 
$0.5 billion in Year 6, thereafter growing arithmetically at a rate of $0.5 billion per year 
out to Year 50. Benefits to the utility in electricity sales are estimated to be $1.0 billion 
in year 6, then growing at a rate of 2% out to year 50. In years 51-53, decommissioning 
costs of $3. 2, and 1 billion are incurred, respectively. Draw the cash flow diagram from 
the utility's viewpoint. 

14.44. * One person starts a formal investment club by establishing a stock "mutual fund" man
aged by the club. and invests $1000 at the end of Year 1 in the fund. Each year thereafter 
for nine years. one new member is added to the club. Each member invests $1000 each 
year in the mutual fund in the name of the club, thereby creating an arithmetic gradient 
series of deposits. Thus, at the end of Year 10, an increment of $10,000 is added to the 
mutual fund. The fund compounds at a 10% annual rate. At the end of Year 11, the club 
stops contributing and instead withdraws an amount A 1 such that if withdrawals in
crease at a 3% annual rate (geometric growth), the fund will be exhausted at the end of 
Year 20. Note that the fund continues to earn a return of 10% through Year 20. 

(a) Draw the cash flow diagram. 
(b) What is the amount. Ai. that should be withdrawn at the end of Year 11? 
( c) To what percentage of the amount, A 1, is the first club member entitled? 

14.45. A foreign bank account pays 80% interest compounded continuously. 

(a) If weekly deposits of 100 local currency units are made beginning at the end of 
week one, what will be in the account at the end of two years? 

(b) What is the effective annual interest, in percent? 

14.46. A worker makes bi-weekly (i.e., once every two weeks) deposits of $50 to a bank ac
count that earns 3 % interest compounded continuously. Assume 52 weeks in a year. 

(a) After 5 years, what amount of money can be withdrawn from the account? 
(b) What is the effective rate of interest for one year? 
( c) What is the nominal rate of interest for 5 years? 
(d) What is the effective rate of interest for 5 years? 

14.47. A bank in a developing country pays 15% compounded continuously. A person has 
10,000 local currency units on deposit and wishes to withdraw a constant amount each 
week so as to exhaust the account in two years. Assume 52 weeks in a year. 

(a) What is the constant amount that has to be withdrawn each week? 
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(b) What is the nominal interest rate for t . 

. h . . a wo-year penod') 
(c) What 1st e effective mterest rate for t . · 

a wo-year penod? 

A newly hired city engineer discovers that a 1 f . 
l l rust und exists to · · tate the oca wastewater treatment plant in . mamtam and rehabili-

and annual maintenance costs are $300 000 ~pet~ity. The~e is $5,500.000 in the fund. 
no one is sure yet what the final cost ~as. ic thee p ~a~t ~:s JUst been r~?abilitated, but 
years, what amount can be spent for each rehab in~he futu:~~e rehab1htat~d e:ery 20 
pounded annually. Show the cash flow diagram. · Interest rate 1s 6 Yo com-

A wealthy benefactor wants to establish an endowme t t f · · f l n o pay orever the salarv of one 
umvers1ty acu ty member and the tuition fees and book f t d · , , s or en un ergraduates The 
salary for the endowed faculty member is $96 000 per year bl hi · . . , , paya e mont y, com-
mencmg at the end of the first month of employment. Tuition, fees. and books total 
$2,000 pe.r stu?ent per quarter, payable at the start of each quarter. Assume the 
scholarships will be awarded for the summer quarter as well as the three academic 
year quarters. I~ the endowment earns 6% compounded monthly, what amount will 
have to be set aside? Show the cash flow diagram. 

An engineer currently (in Year 1) earns $80,000 a year and expects her salary to in
crease annually at a 5 % compound rate until retirement, which is 10 years away. At that 
time, she wants to supplement her pension with an amount equal to 10% of her last 
working year's salary (i.e., salary for year 10). She wants to be able to receive this an
nual supplemental amount for as long as she lives and then wants her heirs to be able 
to continue withdrawing this amount. The analysis period is therefore infinite. She es
tablishes a fund into which she contributes a constant percentage of her annual salary 
at the end of each year for 10 years. The fund earns 7% compound interest. What con
stant percentage of her salary will have to be saved each year to provide the desired 
supplement forever? Show the cash flow diagram. 

A state highway department is planning the construction of a 50 mile, four-lane toll 
road. It estimates that the construction cost (t = 0) will be $200,000,000 and annual 
maintenance costs will be $1,000,000 per year forever. In addition, every 10 years in 
perpetuity, a major resurfacing will have to be carried out at a cost of $10,000,0?0: It is 
estimated that 6 000 000 cars and 600 000 trucks will use the road each year, and it is de
cided that the t~ll charged to a truck ~ill be four times that of a car. Interest rate is 7%. 

(a) Show the cash flow diagram. 
(b) Determine what the toll should be for each car and truck to cover all expenses over 

an infinite planning period. Note: the toll does not vary year-to-year. 
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Engineering 
Economics II: Choice 
Between Alternatives 

15.A INTRODUCTION 

In this chapter, four economically exact methods will be presented to determine the 
best alternative out of a small set of mutually exclusive alternatives. The analysis 
methods are (1) present worth, (2) annual cash flow, (3) incremental benefit-cost ra
tio, and ( 4) incremental rate of return. A fifth approach, payback period analysis. 
gives only an approximate solution to the choice problem and is often incorrect in 
an economic sense. It is presented, however, because it is commonly referred to in 
civil and environmental engineering practice and in business applications. 

Breakeven analysis is a specialized technique often used in engineering practice 
to test the sensitivity of a solution to input parameters, either financial or physical. 

15·8 BASIC CONCEPTS 

15.B.1 Maximization of Net Benefits 

S
. . . h reservoir one of the central is-
mgle Proiect For a smgle project sue as a ' . 

. J • . 1 the scale m1oht represent 
sues is the size or scale Q at which to bmld. For examp e, . . e h. h d , ' ' d t 1 ntenon by w ic to e-
reservoir storage in thousand acre-feet. The fun amen a c 
ter01ine proper project scale is the maximization of net benefits: -

M 
. . NB(Q) - TB(Q) - TC(Q) ( 1).1) 

ax1m1ze -
403 
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where 

Engineering Economics II: Choice Between Alternatives 

NB(Q) = net benefit as a function of scale; 

TB(Q) = total benefit as a function of scale; and 

TC ( Q) = total cost as a function of scale. 

To maximize the above function, take the derivative and set equal to zero: 

dNB(Q) 

dQ 
= 

dTB(Q) dTC(Q) 
dQ - dQ = 0 

giving the necessary condition 

or 

where 

MB(Q) = MC(Q) 

MB(Q) 
MC(Q) = l.O 

MB(Q) = marginal benefit as a function of scale, and 

MC ( Q) = marginal cost as a function of scale. 

Chap. 15 

(15.2) 

(15.3) 

So long as marginal benefit exceeds marginal cost, project scale should be in
creased. When the two are exactly equal, stop. To proceed any further would pro
duce marginal costs that exceed marginal benefits, and net benefits would be 
reduced. The situation is illustrated in Figure 15.1, where the optimal scale of project 
is Q*. Note~ however, that the same necessary condition (equation 15.2) applies as 
well to the minimization of net benefits (also shown in Figure 15.1). Analytically, the 
second derivative would be necessary to determine the type of point found (as dis
cussed in Chapter 13 ). 

It will be useful for later sections of this chapter to illustrate the economics of 
a single project in an alternative form (Figure 15.2). The axes of the graph are total 
cost (x axis) and total benefit (y axis). The line shown at a 45° slope represents 
points where total cost and total benefit are equal, and has a slope of 1.0. Project 
economic data from Figure 15.1 are transposed onto Figure 15.2. Total cost can now 
be interpreted (indirectly) as the scale of the project (x axis). The corresponding to
tal benefit is also plotted (y axis). If total benefit falls below the 45° line, the project 
is not economically justified at that scale. Conversely, if total benefit falls above the 
line~ the project is worthwhile. The vertical distance from the total benefit line to the 
45° line represents net benefit (positive or negative). The maximum positive dis
tance is desired, where net benefits are maximized. 
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Minimum 
NB(Q) 

1 
~Maximum 

: NB(Q) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Q* 

Scale of project, Q (thousand acre-feet) 

~ 
§ 
u 
~ ·2' Minimum 

'1. NB(Q) 

TC(Q*) 

Maximum 
NB(Q) 

Project total cost($) 

TC(Q) 

TB(Q) 
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!igur~ lS.1 ~~aximization of net 
enef1ts for a single project. 

Figure 15.2 Cost-benefit plot 
for a single project. 

!in The large~t positive distance can be found in Figure 15.2 by moving the 45° th: ::r~llel_ to itself and upward until it is tangent to the curved line. The slope of 
r 5 lme is 1.0, therefore, at the point of tangency, the necessary condition ( equa-
ihon 15.3) is satisfied and net benefits are maximized. Point Q' again results. It 

s ould be d · · · I · f. d h · f m. . note that the necessary cond1t1on 1s a so satls 1e at t e pomt o 

munurn net benefits, as shown in Figure 15.2. 
Multiple Projects. Often, the decision problem is to choose the best project out 

of as t f . . . . . . . e o mutually exclusive projects.Again, the economic cntenon 1s max1m1za11on 
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TABLE 15.1 COST AND BENEFIT DATA FOR SIX PROJECTS 

Project 

E c A D F B 

Benefit ($ million) 3.0 11.0 12.0 17.0 19.0 19.0 

Cost ($ million) 5.0 7.0 10.0 12.0 16.0 19.0 

Net benefit($ million) -2.0 4.0 2.0 5.0 3.0 0.0 

of net benefits: choose that project out of the set of projects that will maximize net 
benefits. Note that there is no cost constraint imposed on the problem. 

Multiple projects can be analyzed using the theory developed for a single pro
ject in the last section. Cost and benefit data are provided in Table 15.1 for six hypo
thetical projects. Projects are arranged in order of increasing cost. Figure 15.3 is a 
plot of the data in the format developed in the last section: total project cost repre
sents project scale. The optimal project can be found graphically by moving the 45° 
line upward and parallel to itself. Project D is the last project that the line passes 
through and is therefore optimal. Figure 15.3 will be useful in later sections of this 
chapter. 

Although Figure 15.3 clearly identifies differences between projects, the solu
tion can, of course, be found directly in Table 15.1. Simple subtraction of total cost 
from total benefit yields net benefit, which is highest for project D. 

Figure 15.3 Cost-benefit plot 
for multiple projects. 
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15.e.2 Sunk Costs 

Sunk costs are costs already incurred or committed to . . 

done. As such, they should have no bearing on 'about which nothing can be 
present or futur d · · 

action should be based on current alternatives and th . e ec1s1ons; any new 
· · . e1r outcomes Altha h th" · 

correct from an economic v1ewpomt, it is often emotionall or . . . u_g . is is 
ignore past investments of time, money, and effort. y poht1cally difficult to 

15.B.3 Opportunity Cost 

The opport~nity cost o~ a resource used on a project is the value of the resource 
when used m the ~ost hkely alternativ~ endeavor. In a perfectly competitive econ
omy, the opportumty cost of a resource is equal to its market price. 

15.C PRESENT WORTH ANALYSIS 

15.C.1 Criterion 

Present worth analysis is the most commonly applied technique in civil and envi
ronmental engineering economics. Choice of the best project from a set of projects 
is made using the maximization of net benefits criterion: 

where 

Maxi_mize {PWNBj = PWBj - PWCj} 
J 

PW NB = present worth of project net benefit; 

PW B = present worth of project benefit; 

PW C = present worth of project cost; and 

j = project index (j = 1, 2, · · ·' N). 

(15.4) 

If all projects deliver the same benefit, the criterion reduces to ~inding the al
ternative with minimum PWC. Conversely, if costs are fixed, the ch01ce reduces to 

finding the alternative delivering greatest PWB. . . · often expressed 
In civil and environmental engineering, the above cntenon is th· · 

. h meaning as present wor . m terms of present value, which has t e same 

Maximize {PVNBi = PVBi - PVCi} (l
5
·
5

) 
j 

15.C.2 Analysis Period 
to compare alternative projects in a 

In present worth analysis, care must be tak~n 1 ·ng horizon of the alterna-
"f · " al · period or P anru . · d au manner In particular, the an ysis h' a common analysis per10 : · · to ac 1eve 
hves must be the same. There are four ways 
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Figure 15.4 Analysis period 
equal to the least common 
multiple of the lifetimes of the 
al tern a ti ves. 

(a) Alternative 1 (6-ycar life) 

r Initial cost 

6-year life 

Salvage value 

I 
Salvage value+ 

I I I _J 

Replacement cost 

6-year life 

(b) Altemath·e 2 (4-year life) 

Salvage value 

I I Replacement cost Replacement cost ! Initial cost 

4-year life 4-year life 4-year life 

1. Use the least common multiple of the useful lifetimes of the alternatives. At 
the end of each alternative's lifetime, a salvage value is received and a replace
ment cost is incurred, as illustrated in Figure 15.4. 

2. For a fixed analysis period not equal to a common multiple of the lifetimes, use 
the market value of the alternatives at the end of the analysis period, as shown 
in Figure 15.5. 

Figure 15.5 Analysis period not 
equal to least common multiple 
of the lifetimes of the 
alternatives. 

Salvage 
value 

• Market 
value 

Initial cost Replacement cost 

6-ycar life 

10-ycar analysis period 

Initial cost 

4-year life 

Salvage 
value 

Replacement cost 

4-year life 

6-year life 

Salvage 
' value 

Market 
value 

I 
Replacement cost 

' I 

4-ye~r life 
I 

l~·~~~~~~~~~~~~~~~~~~--
1 

I 
I 

10-year analysis period 
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3 Fix the analysis period at a large number of years and · . 
• · d ignore costs or benefits (includmg salvage an replacement) beyond this time · d F 

1 . peno . or examp e. water resource projects often have a 50-year planning hor" . 1 . . 1zon. 
4• Use an infirute ana ys1s penod that includes benefits and costs occurring forever. 

Example 15-1. 

An engineering company is consideri.ng the purchase of one of two computer systems. 
System 1 is based on small, decentralized personal computers and has an initial cost of 
$100,000. These will be replaced in five years at the same cost. SI00,000. Salvage value 
is $10,000 at the end of years 5 and 10. It is estimated that the benefits for the first five 
years will be $30,000 per year, and for the second five years. $60.000 per year. 

System 2 is based on larger, more powerful work stations and has an initial cost 
of $500,000. Replacement will occur at the end of year 10, with a salvage value of $5000. 
Benefits are estimated to be $90,000 per year over the ten-year period. 

The firm uses a 10% rate of interest. Which system should the company pur
chase, if any? 

Solution: Since neither costs nor benefits are fixed, choose the sys~em that has the 
highest present worth of net benefits, PWNB (if positive). By convention. treat salvage 
value as a reduction in cost. Draw the cash flow diagrams for each system as a common 
multiple of ten years. 

System 1 (small): 

S=lOK 

S=lOK t 
t 60K 60K 60K 60K 60K 

30K 30K 30K 30K 30K 

0 __ _l_J__.l_...L-t-..L-~-.a.--- 11= 10 

lOOK 
lOOK 

000 (PIF lO'Y« 5) - 10,000 (PIF, 10%, 5) 
PWC1 = 100,000 + 100, ' 0

' 

- 10,000 (PIF, 10%, 10) 

= 100,000 + 100,000 (0.620921) - 10,000 (0.620921) 

- 10,000 (0.385543) 

= $152,027. S)(PIF 10%. 5) 
00 (PIA 10% · · PWB - 30 000(PIA,10%, 5) + 60,0 , , 

1 - ' 60 000 (3.790787)(0.620921) 
= 30,000 (3.790787) + ' 

= $254,950. 

PWNB1 = PWB1 - PWCi 

= 254,950 - 152,027 

= $102.923. 
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System 2 (large): 

or 
SOOK 

A=90K 
t5K 

t t t t 1 1 t t t t n=lO 

PWC2 = 500,000 - 5000 (PIF, 10%, 10) 

= 500,000 - 5000 (0.385543) 

= $498,072. 

PWB2 = 90,000 (PIA, 10%, 10) 

= 90.000 ( 6.144567) 

= $553.011. 

= 553,011 - 498,072 

= $54,939. 

PWNB2 < PWNB1 : • choose system 1 (small) 

PWNB; = $102,923. 

Chap. 15 

Example 15-2. 

A city water department has decided that two alternatives are available to meet the 
need for an additional 40 million gallons of water per day. One is to build a dam and 
reservoir, the other is to undertake a strong program of water conservation/education. 
The dam and related facilities can be constructed over three years at a cost of $20 mil
lion in year 1, $10 million in year 2, and $5 million in year 3. Thereafter, maintenance is 
$0.5 million per year. 

The conservation program will cost $5 million the first year, $4 million the sec
ond year, and $3 million the third year. Thereafter, $2 million per year will have to be 
spent to maintain low water use. 

The planning horizon for both alternatives is 50 years; any costs beyond this 
length of time are ignored, and an interest rate of 7% is to be used. Which alternative 
should be undertaken? 

Solution: Note that total benefits of supplying 40 MGD are the same for both alter
natives. The alternative with the minimum cost should then be selected. Draw the cash 
flow diagrams and find the present worth of cost for the two alternatives. 
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Dam 

Annual Cash Flo A w nalysis 

PWC0 

0 2 

n ==50 

10 

20m 

PW Co = $20m(P/F, 7%, 1) + 10 P/F o 

+ [D.5(PIA, 7%, 47)](P;F, ;;.~;·)2 ) + 5(PJF. 7%, 3) 

= 20(0.934579) + 10(0.873439) + + 5(0.816298) 
0.5( 13.691608) (0.816298) 

= 18.692 + 8.734 + 4.081 + 5.588 

= $37,095,000. 

Conservation PW Cc 

n=50 

5 

4 3 2 2···2 2 2 

l i l l l ~ l l r =so 
2 2 2 2 2 2 2 2 

+-..... ---
~ l l -I 

3 3 3 

PWCc = 2(P/A, 7%, 50) + 3(P/A, 7%3) - l(P/G, 7%, 3) 

= 2(13.800746) + 3(2.624316) - 1(2.506035) 

lS = $32,968,000. PWCc < PWC0 :. choose conservation . 

. DANNUA 
L CASH FLOW ANALYSIS 

15 D 1 C . · · r1terion 
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Maximiz t' anal . a 10n of net benefit remains the economic criterion in annual cash flow 
ysis. Instead of computing present worth, however, the annual worth (annualized 
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benefit cost or net benefit) is calculated. Because annual worth and present ' ' . .· . . . Worth 
are equivalent measures, the two methods are 1denttcal.1l1e cntenon is 

where 

Maximize {EUANBj = EUABj - EUACi} (IS.6) 
i 

EVAN B = equivalent uniform annual net benefit; 

EUAB = equivalent uniform annual benefit; 

EUAC = equivalent uniform annual cost; and 

j = project index (j = 1~ 2, ... , N). 

15.D.2 Analysis Period 

Annual cash flow analysis is unique in its ability to handle varying lifetimes of alter
natives in a convenient manner. Several situations are possible. 

Analysis Period a Multiple of Equal Lifetimes. In this case, annual cash flow 
for one lifetime can be used to choose between alternatives, as illustrated in Example 
15-3. 

Example 15-3. 

An engineer must choose between two pumps for use in a water distribution system. 
Both pump A and pump B will deliver water at an adequate flow rate and pressure 
head. Analysis period is 24 years. Data are given below. The interest rate is 7%. Find 
the best pump. 

Pump A PumpB 

Initial cost ($) 200,000 300,000 

Operating cost ($/yr) 30,000 23,000 

Lifetime (yrs) 12 12 

Salvage value($) 10,000 60,000 

Solution: Lifetimes and benefits are the same for the two pumps; therefore, make a 
direct comparison of annual cost, EUAC. 

EUACA = 200.000 (AIP, 7%, 12) + 30,000 - 10,000 (AIF, 7%, 12) 

= 200,000 (0.125902) + 30,000 - 10,000 (0.055902) 

= $54,621. 

EUACB = 300,000 (AIP, 7%, 12) + 23,000 - 60,000 (AIF, 7%, 12) 

= 300,000 (0.125902) + 23,000 - 60,000 (0.055902) 

= $57,416. 

The EUAC of pump A is lower: choose pump A. 
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If the analysis period were any . 
. h mteger multiple f h 

ternattves, t e annual cost ( EUAC) w Id . 0 t e equal lifetimes of the ai-
d l . . . I . ou remain the s . 

ha t 1e same m1t1a costs, operating co t d ame, assuming replacements 
. . Id b s s, an salvage val Th Itfetnne wou e repeated for each l'f t' ue. e annual cost for one 

f I . I e ime up to the d f h 
there ore, on y one lifetime need be analyzed. en o t c analysis period: 

Analysis Period Equal to Least C . 
analysis period is the least common mult' ~m~~n Multiple of Lifetimes. If the 
annual cash flow computed for one lifeti· Ip e 

0 
tb e lifetimes of the alternatives. the 

. me can e used for c · 
alternatives. The reason is that the annual cash flow ~m~anson among the 
tive is repeated, as the alternative is repetitiv I Ifor one lifetime of an alterna-
multiple of the lifetimes. This is illustrated in ~x~~~ea~~~/P to the least common 

Example 15-4. 

Assume that the lifetime of pump B in Example 15 3 . 16 
1 · · d · . · - Is vears rather than 1? The 

ana ys1s per10 is 48 years. Which pump is now the best? · -· 

Solution: The EUAC for pump A· th · · · · · . . is e same, smce it is repetitively replaced: EUAC.\ = 
$54,621. The hfehme of pump B has changed, so its EUAC must be recomputed. · 

EUACB = 300,000 (A!P, 7%, 16) + 23,000 - 60.000 (AIF. 7%. 16) 

= 300,000 ( 0.105858) + 23,000 - 60,000 ( 0.035858) 

= 31,757 + 23,000 - 2151 

= $52,606. 

This represents the EUAC for the entire 48-year period as pump B is repetitivelv re-
placed. Pump B has a lower EUAC; therefore, choose pump B. · 

Analysis Period Long But Undefined. Many facilities are intended to be 
kept in operation indefinitely. The analysis period is, therefore, long but undefined. 
Alternatives can be viewed as being replaced as often as necessary to maintain ser
vice. The annual cash flow for one lifetime is therefore an adequate measure for 
comparison between alternatives. 

Infinite Analysis Period. Under an infinite analysis period. the assumption is 
that the facility will be replaced constantly with an identical alternative. The annual 
cash flow for a single lifetime is again adequate for comparison. 

Analysis Period Not a Least Common Multiple of Lifetimes. For the 
pump example, if an analysis period of 24 years were insisted upon, specia~ tr~at
ment would have to be given to pump B if it had a lifetime of 16 years (the lifetime 
of pump A remains at 12 years). The market value of pump Bat the.end of 8 ye~rs 
of its (second) life would have to be estimated in order to compare its EUAC with 

that of pump A. 

15.D.3 Conclusion 
U · · · · · th n using the present worth crite-

smg the annual cash flow cntenon is often easier a . . . ft ff. · 
· . EUAC for one lifetlffie is o en su 1c1ent 

non when comparing alternatives. Computmg 



414 Engineering Economics II: Choice Between Alternatives Chap. 1S 

for comparison. Annual cash flow and present worth analysis give the same result 
due to equivalence. 

15.E INCREMENTAL BENEFIT-COST RATIO ANALYSIS 

15.E.1 Criterion 

The benefit-cost ratio for an alternative is defined as 

B PWB 
B-C ratio = C = PWC (15.7) 

or. equivalently~ 

B EUAB 

C EUAC 
(15.8) 

and the ratio must be ;::::: 1.0 for an economic project. 
The B-C ratio is commonly reported for water resource development projects 

such as hydroelectric or flood control reservoirs and navigation improvements, and 
typically ranges from 1.0 to more than 3.0. It serves as a convenient way to summa
rize the economics of a project: $2.00 are returned for every $1.00 invested, if the 
B-C ratio is 2.0. 

As important as the B-C ratio is, maximization of the ratio is not the proper 
economic criterion. As always, maximization of net benefits is the economic goal. 
However. the B-C ratio can be used to achieve this goal if an incremental analysis is 
conducted. 

15.E.2 Procedure 

Two cases are possible: 
Case A. If all alternatives have either the same benefit or cost, choose that al

ternative with the largest B-C ratio, provided that the ratio is greater than or equal 
to unity. If none, choose the do-nothing alternative. Net benefit will be maximized. 

Case B. If neither benefit nor cost is the same for all alternatives, conduct in
cremental benefit-cost analysis: 

1. Compute PWB and PWC (or EUAB and EUAC) for each alternative. 
2. Discard any alternative having B/C < 1.0. 

3. Order the remaining alternatives from lowest cost to highest cost, and number 
the projects 1, 2, ... , P. 

4. For projects 1 and 2, compute 

PWB2 - PWB1 

PWC2 - PWC1 
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or 

Incremental Benefit-Cost Rat'io A 
1 

. 
na ys1s 

~B EUAB2 - EUAB
1 

~C - EUAC2 - EUAC
1

• 

If 6.BI 6.C ~ 1.0, select project 2 as best so far. 

If 6.BI 6.C < 1.0, select project 1 as best so far. 
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5. Compute 6.B/ 6.C between the best project so far and the next most costly pro
ject not yet tested. 

If 6.B/ 6.C ~ 1.0, select the more costly project as best so far. 

If 6.B/ 6.C < 1.0, keep the lesser cost project as best so far. 

6. Repeat step 5 until all projects have been tested. The surviving project is the best. 

Example 15-5. 

Use the project data in Table 15.l and find the best alternative using incremental B-C 
ratio analysis. 

Solution: The data are reproduced below. Projects are already ordered from lowest 
cost to highest cost, and the B-C ratios are shown. Alternative E is discarded. 

!::..B 12.0 - 11.0 = ~ < 1.0 : . keep C: Compute AC for C to A: 3 o 
L.1 10.0 - 7.0 . 

!::..B 17.0 -11.0 = 6·0 > 1.0 :. selectD: 
Compute !::..C for C to D: 12.0 - 7.0 5.0 

t::..B 19.0 - 17.0 = 2·0 < LO . ·. keep D: 
Compute !::..C for D to F: 16.0 - 12.0 4.0 

llB 19.0 - 17.0 = 2·0 < 1.0 . ·. keep D. 
Compute /lC for D to B: 19.0 - 12.0 7.0 

. BIC - 142 PWNB = $5.0 million. (Note · · oiect D 1s best, - · ' No other projects · · pr J • • ct c was not selected.) 
that the project with the highest B-C ratio, proJe ' 

Project 

D F B 

E c A 
19.0 19.0 

12.0 17.0 
3.0 11.0 19.0 Benefit ($ million) 

12.0 16.0 
5.0 7.0 10.0 

1.00 Cost($ million) 1.42 1.19 
1.57 1.20 

0.60 
B-C ratio 

(discard) 
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Figure 15.6 Incremental B-C 
ratio analysis for Example 15.5. 
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The procedure applied in Example 15-5 is shown graphically in Figure 15.6. 
Dashed lines represent incremental comparisons made, and the slope of each dashed 
line represents the incremental B-C ratio tested. 

fJ.B . I BC . slope = tJ.C = mcrementa - ratio 

It is therefore possible to see why certain moves were not made. If the slope of 
the line between the best project so far and the next project tested is less than 1.0, 
the move should not be made, because net benefits would be reduced. If the slope is 
greater than (or equal to) 1.0, the move should be made to the next project tested, 
because net benefits would increase (or stay the same). 

15.E.3 Conclusion 

Incremental B-C ratio analysis is the straightforward implementation of marginal 
analysis as expressed by equation 15.3: 

MB(Q) 
MC(Q) = 1.0. 

The procedure therefore guarantees maximization of net benefits. Note that bene
fits and costs must be properly calculated using either present worth or annual cash 
flow analysis. 

15.F INCREMENTAL RATE OF RETURN ANALYSIS 

15.F.1 Internal Rate of Return 

Incremental rate of return analysis is based upon the concept of the internal rate of 
return (IRR), t, for a capital investment. The IRR is the interest rate that equates 
benefits to costs for the given cash flow, that is, the interest rate for which 

PWB = PWC (15.9) 
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e urn Analysis 

or 

EUAB == EUAC 
At the internal rate of return net be f' · ' ne its are zero. 
Example 15-6. 

Find the internal rate of return for th f . 
e ollowing cash flow: 

End of Year Receipt/Disbursement 

0 $-1000 

257 
2 257 
3 257 
4 257 
5 257 

Solution: Set PW C = Pim: 

1000 = 257 (PIA,(, 5) 

3.891050 = (PIA, ( 5) 

From the Appendix, t = 9.0%. 
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(15.10) 

Because the internal rate of return establishes equivalence between benefits and 
costs, it can also be interpreted as the rate of compound interest earned on an invest
ment. As such, it can be compared, in a manner to be described in Section 15.F.3. to the 
rate of return that can be earned in alternative investments to determine whether the 
investment is worthwhile. 

15.F.2 Minimum Attractive Rate of Return 

The minimum attractive rate of return (MARR) is the highest compound rate of in
terest that can be obtained in alternative investments. It is therefore the minimum 
rate of return that the investment in question must earn to be attractive. Many busi
nesses establish a MARR that the IRR of proposed investments must meet or ex-

ceed to be considered further. 
If the IRR for an investment exceeds the MARR, the net ?enefit~ would be 

positive if the MARR were used in the calculation. Conversely, if IRR is less than 
MARR, the net benefit would be negative if the MARR were use.d. Th~ reaso~ for 
th . . . . . d · nmental engmeermg projects 

is is important: in essentially all clVll an envuo . . · d 
( I · f while benefits are receive 
and most others) costs are incurred ear Y m ime, . d' · t' 1 · · ' . h JRR benefits 1stant m 1me are 
,~t~ m time. At a rate of interest higher than t e when brought back to present 
discounted" (reduced) more than u~-front .c~st~Uustrated in Example 15-7 and 

value, and net benefit becomes negative. This is i 
Figure 15.7. 
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1000 

800 

600 
(+) 

400 

200 

PWNB 

-200 

-400 
(-) 

-600 

-800 

-1000 

Accept .... ~-t--~• Reject 

Figure 15.7 PWNB versus interest rate for Example 15-7. 

Chap. 15 

Example 15-7. 

For the cash flow shown. calculate and plot PWNB for different interest rates and find 
the IRR. 

A=SO 

11=50 

P=IOOO 

Solution: Calculate 

PWNB = PWB - PWC 

= A(PIA, i, 50) - 1000 

for i = 0, 1, 2, ... , 10% and plot in Figure 15.7. 

By graphical interpolation, t = 4.4%. 

In Figure 15.7, the effect of using a high interest rate to discount benefi_ts 
and costs is clearly shown. If a MARR of 10% were established for the project in 
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Example 15-7, the IRR of 4.4% would clear) indicr .. 
however, the MARR were set at 3%, the IR~ of 

4 
a~e ccono~1c infeasibility. If. 

benefits at the 3 % rate. .4 Yo would imply positive net 

The decision rule can be summarized for a · I · 
~ smg e project: 

If I RR ~ MARR, accept. 

If I RR < MARR, reject. 

15.F.3 Incremental Rate of Return Analysis 

To choose .the best project o~t of a set of mutually exclusive projects using rate of 
return, an mcremental analysis must be performed. This ensures that the economic 
criterion of maximization of net benefits is achieved. The procedure is as follows: 

1. For each of the mutually exclusive alternatives, compute the internal rate of 
return, IRR, also abbreviated as ROR. Discard any for which ROR < MARR. 

2. Order the remaining alternatives from lowest cost to highest cost and begin 
the procedure with the two lowest-cost alternatives on the list. 

3. Compute the difference in cash flows between the two projects as 

{higher-cost project} - {lower-cost project} = {incremental cash flow}. 

4. Compute the incremental rate of return, D.ROR, for the incremental cash flow. 
Follow the decision rule: 

If ~RO R ~ MARR, accept the higher-cost project as best so far. 

If ~ROR < MARR, accept the lower-cost project as best so far. 

5. Compare the best project so far with the next highest-cost roject n_o~ yet ~~st
ed by returning to step 3. If the list is exhausted, stop. The ast survivmg a er-

native is the best. 

The procedure is illustrated in Example 15-8· 

Example 15-8. h 
. h b t oject to undertake. Solve by t e 

Use the data in the table below to determ1~er~t: (~A~R) is 8%. 
incremental rate of return method. Intere 

Project ($ million) 

A D 
End of Year E c 

10.0 12.0 
0 -5.0 -7.0 

2.533 1.788 
0.447 1.639 

! 
2 l ! ! 

1.788 2.533 
10 0.447 1.639 

16.6% 
( (-) 19.5% 

F 

16.0 

2.833 

2.833 

12.0% 

B 

19.0 

2.833 

i 

2.833 

8.0% 
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Solution: Projects are already listed in ascending order of cost. TI1e last row shows th 
calculated /RR for each project. Project E is discarded because i* < MARR. In th: 
next step, compare increments sequentially. 

A-C D-C F-D B-D 

Incremental C 3.0 5.0 4.0 7.0 

Incremental annual B 0.149 0.894 0.300 0.300 

ilROR (-) 12.3% (-) (-) 

Decision KcepC Accept D KeepD KeepD 

The increment A-C produces a negative rate of return (the sum of undiscounted 
benefits is less than cost): therefore~ alternative C is kept as best so far. The increment 
D-C produces il.ROR = 12.3%. which is greater than the MARR (8%); Dis accepted 
as best so far and compared with alternative F, producing a negative rate of return.Dis 
then compared to B. again resulting in il.ROR negative; Dis accepted as best so far. No 
further alternatives exist: stop.Dis best project: choose project D. 

The steps taken in Example 15-8 are shown graphically in Figure 15.8 as 
dashed lines. The initial calculation of internal rates of return establishes that it is 
worthwhile moving from the do-nothing alternative (at the origin) to project C, the 
lowest-cost feasible alternative. From C, project A was tested (A-C) and found not 
to be worthwhile; C was returned to as best so far and tested with D, and so on. 

Figure 15.8 Steps in incremental rate 
of return analysis for Example 15-8. 
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The graphical representation in p· 

tgure 15 8 d' 1 ;lROR procedure. As long as the slope of th . · isp ays the rationale for the 
equal to) 1.0, the ilRO R for that step will b e incremental step is greater than (or 
the step will be taken; that is, e greater than (or equal to) MARR. and 

dB 
ac ;::: 1.0 ~ AROR ;::: MARR. 

(15.11) 

Why? Recall that Figure 15.8 is drawn based . . 
and costs at the MARR, 8% in this case. (Figure 15 so·n ~scountmg a.nnual ~enefits 
the data in Example 15-8 is the same as Table 15 1 ). Al~ . e same as Figure 1).3. and 
· 15 8 h · · · Y mcremental steps shown in Figure . as a vmg A 

8 
AC == 1.0 

(15.12) 

automatically requires that 

AROR ==MARR (15.13) 

for that step. If any other ilROR were used, discounted benefits would not equal 
discounted costs. If an incremental slope greater than 1.0 is displayed in Figure J 5.8, a 
aROR > MARR would be required to discount the benefits so they exactly equaled 
cost. 

The rationale for dROR analysis is therefore the same as for present worth 
(or annual cash flow) analysis: maximization of net benefits by carrying the scale of 
the project to the point where marginal benefit equals marginal cost. 

15.G PAYBACK PERIOD 

The payback period is the period of time required for.undiscounted benefits of an 
investment to equal undiscounted costs. Example 15-9 illustrates the method. 

Example 15-9. 

Determine the payback period for each of the following alternatives: 

Receipt/Disbursement 

End of 
Alt.B 

Year Alt.A 

0 $-80,000 $-40,000 

20,000 20,000 

30.000 20.000 
2 

40,000 5,000 
3 

50.000 5,000 
4 

fi 
r time. alternative A has a p~y-

. t of bene its ove - ggestml' 
Solution: Assuming continuous r~ceip has a payback period of 2.0 years. su -- ::-
back period of 2.75 years. Alternative B · 
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that it should be the preferred alter~ati:e. ~owever, i~ interest is 8.0%, the PWNB 
is $32.743 while that for Bis $3310, md1catmg that A is the preferred alternative. of A 

Example 15-9 illustrates the fact that the payback period is only a crud . 
· · h I · 1 P b k · d l · · e estt. mate of whether a project is wort w u e. ay ac per10 ana ys1s ignores 

• The time value of money, and 
• Any receipts or disbursements beyond the payback period. 

The payback period is often quoted for business investments, but it should not 
serve as a substitute for more accurate methods. 

15.H BREAKEVEN ANALYSIS 

Breake,·en anal)•sis determines the value of a parameter necessary to make two alter. 
natives economically equivalent. The analysis is usually expressed in the form of a 
breakeven chart, wherein the format is to plot the parameter on the x axis and the mea
sure-of-goodness, or economic criterion, on the y axis. Sensitivity analysis is closely re
lated. being the determination of the magnitude of variation in a parameter that would 
be necessary to change a decision. The three concepts are illustrated in Example 15-10. 

Example 15-10. 

Two alternatives are indicated below. At what value of annual benefit, x, would A be 
equivalent to B? Illustrate in a breakeven chart. If the best estimate for benefits of A 
were in the range $2600-3000 per year, would the choice of the best alternative be sen· 
sitive to the benefit estimate? n = 20 years, i = 7%. 

Initial cost 

Annual benefit 

Alternative 

A 

$20,000 

x 

B 

$15,000 

2,000 

Solution: Using PWNB as the criterion, 

Solving. 

x(PIA 7%, 20) - 20,000 = 2000 (PIA, 7%, 20) - 15,000 

10.594014x - 20,000 
(plot, Alt. A) 

6188.03. 
(plot, Alt. B) 

x = $2472. 

!he b.reakeven chart is shown in Figure 15.9. Because the range in parameter es!i~::~ 
is entirely above the breakeven point, the solution is not sensitive to the benefit 
mate: choose alternative A. 



Chap. 15 Exercises 

20,000 

10,000 

Alternative B 

...-.. 
~ 
CCI 

0 
~ 
0... 1000 2000 3000 4000 

-10,000 
Alternative A 

-20,000 

Figure 15.9 Breakeven chart for Example 15-10. 
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The current chapter details approaches to choosing the best alternative to implement 
from a set of mutually exclusive alternatives. Four methods-(1) present worth 
analysis, (2) annual cash flow analysis, (3) incremental benefit-cost ratio analysis, and 
( 4) incremental rate of return analysis-maximize net benefits and produce the same 
answer for a given problem. Payback period analysis is an approximate method that 
does not always choose the best alternative. Breakeven and sensitivity analysis are 
useful when problem parameters are not known with certainty. 

EXERCISES 

15.1. Assume the following equations for the total benefit and total cost of a reservoir project 
as a function of scale, Q, expressed as million gallons water delivered per day (MGD): 

TB = 1,000,000 Q0
·
7 

TC = 5000 Q2·
0 
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where TB and TC are expressed in millions of dollars, present worth. Determine the 
scale of the project graphically and analytically. 

15.2. An engineering student has just finished the freshman year and has received an offer of 
$20,000 per year in a full-time job. with prospects of salary increasing 3 % per year until 
retirement after 33 years. If employment is taken, the student will likely not finish his 
engineering degree. Tuition and other costs are $10,000 next year, increasing at 7% per 
year. A starting salary of $45.000 could be expected upon graduation from the four
year program. Salary increases in the engineering job are estimated at 4% per year un
til retirement after 30 years. 

On the basis of economics alone. should the student take the job now or finish college? 
Analyze as two mutually exclusive alternatives and solve with present worth analysis. 
Interest rate is 7%. 

15.3. Rework Exercise 15.2 using only one option, that of attending college. Treat the lost 
salary of a job as an opportunity cost of college. 

15.4. A flood control project has a construction cost during the first year of $10 million, dur
ing the second year $6 million, and during the third year $2 million. It is completed at 
the end of the third year and thereafter incurs an annual operating cost of $200,000 per 
year. Benefits from the project also begin during the fourth year and are valued at $1.5 
million in that year. growing at a 2% compound rate of increase out to the planning 
horizon (analysis period) of 50 years. The interest rate is taken to be 6%. Carefully 
draw the cash flow diagram. What is the present worth of cost? What is the present 
worth of benefit? Is this a viable project economically? 

15.5. In addition to annual maintenance cost, the water supply dam in Example 15-2 must be 
renovated every 50 years at a cost of $10 million. What is the effect on PWC of the dam 
and water conservation alternatives caused by ignoring all costs beyond the 50-year 
planning horizon? Does the inclusion of perpetual costs change the decision? 

15.6. The activated sludge unit of a wastewater treatment plant requires an aerator. Two op
tions exist and have the characteristics shown in the table. The city owner of the treat
ment plant sets an interest rate of 8%. Analysis period is 10 years. Determine which 
aerator to purchase. 

Aerator A Aerator B 

Initial cost 400,000 200,000 

Annual operating cost 60,000 75,000 

Salvage value 60,000 20,000 

Lifetime (years) 10 5 

(a) Form the cash flow table for a present worth analysis, showing the correct sign for 
all entries. Also show the incremental cash flow column (A-B). 

(b) Solve by present worth analysis. 

(c) Solve by annual cash flow analysis. 

(d) Solve by incremental benefit-cost ratio analysis. 

(e) Solve by incremental rate of return analysis. Do not find the exact value for the in
cremental rate of return, just check at the MARR. 



Chap. 15 Exercises 

15.7. 
425 

A wastewater treatment plant must b b . . 
· .1 b c mlt to imp opt10ns are ava1 a le: a secondary tr rove water qualitv on , . . eatment pla 1 . , a stream. Two 

tertiary treatment plant removing 95 01 f h n removing 85% of the poll t. 
10 o t c pollu · u ion or a 

en a doJJar value as shown in the tabl A lion. Improved water qualitv is · _ 
l . . d) . e. ssume that b I , g1v 

(ana ys1s per~o ts 20 years. The MARR is S% D : Y aw. the planning horizon 
the method hsted below. · etermmc the best plant to huild using 

Secondary Tertiary 
(S million) (S million) 

Initial cost 
20.0 40.0 

Annual operating cost 1.0 2.0 
Annual benefit 3.5 7.0 
Lifetime (years) 20 20 

(a) F~rm the cash flow .table for the alternatives showing the correct sign for all en-
tnes. Also show the mcremental cash flow column (T-S). 

(b) Solve using present worth analysis. 

(c) Solve using annual cash flow analysis. 

( d) Solve using incremental benefit-cost ratio analysis. 

( e) Solve using incremental rate of return analysis, assuming that each alternative has 
a satisfactory internal rate of return. 

15.8. An engineering firm has identified five ways to cut costs in its main office. Only one of 
the options can be implemented, however, since each involves significant training time 
for staff engineers. Data are provided in the table. Each option has a lifetime of seven 
years, and the firm sets a MARR at 15%. 

Option 

A B c D E 

Capital cost ($ million) 2.713 0.375 1.650 0.088 0.950 

0.093 0.270 0.132 0.147 0.228 
Annual cost ($million/yr) 

0.890 0.288 0.841 0.312 0.505 
Annual benefit($ million/yr) 

(a) Solve by present worth analysis. 

15.9. 

(b) Solve by annual cash flow analysis. . 

(c) Solve by incremental benefit-cost ratio an~lys1~. h full detailed procedure. 
f t analysis. usmg t e (d) Solve by incremental rate o re urn . . 

thod an analyst is given the 
. b the rate-of-return me . 

In comparing three alternatives Y 
following information (see figure): 

. hould be chosen? 
(a) If the MARR is 8%. which alternahve s ? 

. . should be chosen. 
(b) If the MARR is 9%. which altemat1ve 
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Alternative 1 Alternative 2 Alternative 3 
(least costly) (most costly) 

ROR(%):7.3~ )O.\ ;·5 

a ROR (% ): 12.l 8.8 

15.10. Determine the payback period for the following investments: 

End of 
Year A B c 

0 $-1000 $-1000 $-1000 

1 500 300 -500 

2 400 400 700 

3 300 500 700 

4 200 600 700 

5 100 700 700 

How does the choice of investment using payback period compare to present worth 
analysis if MARR is 5%? 

15.11. If the payback period were calculated on the basis of actual time value of money (at 
11 = 0) at the prevailing MARR, would it be longer, shorter, or stay the same? Why? 

15.U. A contractor is considering the purchase of an earthmover to avoid the cost of a rental 
unit. The earthmover costs $350,000 initially and will cost $7000 per year to store and 
maintain. When used, the operating cost is $300 per day to the contractor. A rental unit 
costs $500 per day to rent and operate. The contractor estimates that he would keep the 
earthmover 20 years and could then sell it at salvage for $20,000. He requires a 12% 
rate of return on any investment. 

Determine how many days per year he would have to operate the earthmover to make 
it a worthwhile purchase. Sketch the breakeven chart for this situation. 

15.13. Construction cost of a sewage treatment plant shows "economies of scale," where cost 
increases as the capacity of the plant increases, but at a decreasing rate; that is, the cost 
curve is concave and can be expressed in the form 

c = 1,300,000 Q0·65 

where Q is the capacity of the plant in million gallons per day and C is the construction 
cost (in dollars). 

Demand for sewage treatment for a city is projected to increase linearly from zero to
day to 20 MGD 20 years from now (1 MGD per year increase). 

Under the assumption that either one or four plant expansions will occur (20 MGD 
capacity now or four expansions of 5 MGD each, with the first now), determine the 
breakeven interest rate at which the cost of one expansion exactly equals the cost of 
four expansions. Plot the breakeven chart. If the city sets the MARR at 6%, how many 
expansions (one or four) should occur? 
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15.14. In comparing three alternatives b h . 
4

27 
· th f 11 · · Y 1 e rncrcme t I given e o owmg information· n a rate of return h · met od. an analyst is 

Rate of Return(%): 

Alt.1 
(least costly) 

Alt.2 Alt.3 
(most costly) 

14.5 15. l 12.3 

~ROR(2-1) = 11.J AROR(3-1) -
' - 13.9: ilROR(3-2) = 20.2. 

(a) If the MARR is 12%, which alternative should b h . ec osen'J 
(b) If the MARR IS 14%, which alternative should be chosen~ 

15.15. In comparing three alternatives by the incremental t 
is provided the following information: ra e of return method. an engineer 

ROR: 

aROR: 

dROR: 

Alternative 1 
(least costly) 

Alternative 2 Alternative 3 
(most costly) 

13.~ 11.2 12.8 

~ "'14.1/1 
12.3 

(a) If the MARR is 8%, which alternative should be chosen? 
(b) If the MARR is 12%, which alternative should be chosen? 

(c) If the MARR is 13%, which alternative should be chosen? 

15.16. In comparing three alternatives by the incremental rate of return method. an engineer 
is provided the following information: 

ROR: 

aROR: 

ilROR: 

Alternative 1 
(least costly) 

Alternative 2 Alternative 3 
(most costly) 

9.\ ;·2~ /8.3 
7.7 10.l 

L-----8.8 -----

(a) If the MARR is 7%, which alternative should be chosen: 
· hould be chosen. 

(b) If the MARR is 8%, which alternauve s ? 
· hould be chosen· 

(c) If the MARR is 9% which alternatives 
' · h ld be chosen? 

(d) If the MARR is 10%, which alternatives ou 
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15.17. In comparing three alternatives. the following data result. 

ROR: 

Alternative 1 
(lowest cost) 

Alternative 2 Alternative 3 
(highest cost) 

10.3 9.2 11.0 

~/~/ 
iiROR: 8.7 9.7 

aROR: .__ _____ 8.9 ------

(a) If the MARR is 8.5%, which alternative should be chosen? 

(b) If the MARR is 9.1 %. which alternative should be chosen? 

(c) If the MARR is 10.5%, which alternative should be chosen? 

(d) If the MARR is 11.3%. which alternative should be chosen? 

15.18. A city is planning a new pipeline to supply water from distant mountains. The planning 
horizon chosen is 50 years, and the city uses an interest rate of 7%. For $250 million, the 
city can build a pipeline now that would supply its needs for 50 years, or it could build 
the project in two stages: $150 million now and $200 million in Year 25. Annual opera
tion and maintenance for the first stage of the two-stage project is $3.0 million through 
Year 25 followed by $6.0 million for the combined first and second stage project after 
Year 25 and through Year 50. 

(a) Form the cash flow table for the two alternatives and the incremental investment, 
showing the correct signs for all entries. 

(b) Using present worth analysis, determine the best project. 

(c) Using annual cash flow analysis, determine the best project. 

(d) Using incremental rate of return analysis, determine the best project. Check at the 
MARR only; do not try to find the incremental ROR itself. 

(e) Using incremental benefit-cost ratio analysis, determine the best project. 

15.19. A highway department must select one of two pavement repair options for a 10-mile 
section of a four-lane highway. The analysis period is 8 years, and interest rate is 8%. 

Initial cost 

Annual cost 

Lifetime 

Option 1 

$5,300,000 

300,000 

8 years 

Option 2 

$3,000,000 

400,000 

4 years 

(a) Form the cash flow table for the alternatives and the incremental investment, using 
standard sign convention. 

(b) Using present worth analysis, find the best repair option. 

(c) Using annual cash flow analysis, find the best repair option. 
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15.20. 

U . . ~9 
(d) smg mcremental rate of return 1 . . 

cut of checking at the MARR on~~a ys1s, find the best repair option. Use the short-

(e) Using incremental benefit-cost ratio a 1 . . 
. . na ys1s, fmd the best repair option. 

A potential site for a reservoir is being 1 . eva uated for tw 1 . 
small water supply reserv01r or a large fl d 0 mutua ly exclusive options: a 

' oo control rese · D are shown. Interest rate to be used is 83 a d h . . rvorr. ata on the two options 
, n t e lifetime of both options is 50 years. 

Water Supply Flood Control 
($ million) ($ million) 

Initial cost 

Annual operating cost 

Annual benefit 

50.0 95.0 

0.5 

9.0 
0.5 

12.0 

(a) Sho~ the cash flow table, using the correct sign convention for all entries includin 
the mcremental column. g 

(b) Solve by the present worth method. 

(c) Solve by the annual cash flow method. 

(d) Solve by the incremental benefit-cost ratio method. 

( e) Solve by the incremental rate of return method, assuming that each project is eco
nomically worthwhile. Find the actual incremental rate of return. 

15.21. A site on a major river is being evaluated for a new lock and dam for navigation purpos
es. Two options are considered: (a) single 1200-foot lock or (b) single 1200-foot lock and 
a single 600-foot lock (two locks, side by side). Benefits and costs of the two options are 
indicated in the table. Interest rate to be used is 7%, and the planning period is 50 years. 

15.22. 

Initial cost 

Single Lock 
($million) 

60.0 

Double Locks 
($million) 

85.0 

Annual operating cost 1.0 1.5 

Annual benefit 12.0 16.0 

(a) Show the cash flow table, using the correct sign convention for all entries including 

the incremental column. 
(b) Solve by the present worth method. 

(c) Solve by the annual cash flow method. · that each alternative 
(d) Solve by the incremental benefit-cost ratio method, assuming 

has a B-C ratio greater than LO. . that each alternative has a 
( e) Solve by the incremental rate of return methohd, at ssut nunof c~ecking at the MARR only. 

f tum Use the s or cu 
satisfactory internal rate o re · . . . 

. for its murucipal sohd waste. 
A city is trying to decide whether to build a transfer :ta:~': station for transfer to larger 

k ·n haul solid waste 0 · · t built the If built, the collection true s WI dfill If the transfer statton 15 no · 
trucks which will take the solid waste todfill~ lad~ tiy Cost data are provided in ~he table. 

'. · · 1 l to the lan rrec · - Th MARR is 7%. collection vehicles wil trave h bilitated after z, years. e 
Note that the transfer station must be re a 
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NQ..IS TS 

Initial cost ($ million) 0 30 

Annual operating cost($ million) 4 2 

Rehabilitation cost at 25 years($ million) 0 10 

Lifetime (years) 50 50 

(a) Show the cash flow table. using the correct sign convention for all entries including 
the incremental column. 

(b) Solve using the present worth method. 

(c) Solve using the annual cash flow method. 

(d) Solve using the incremental benefit-cost ratio method. 

(c) Solve using the incremental rate of return method. Do not find the exact incre
mental rate of return; just check at the MARR. 

15.23. A private company has offered to design, build, operate, maintain, and rehabilitate a 
wastewater treatment plant in perpetuity for a city in return for an annual payment of 
$1.000.000 (with the first payment one year from now). In trying to decide whether this 
is a good offer. the city gathers the following general information about wastewater 
treatment plants of the type in question: 

(a) the capitalized O&M costs of a plant are about equal to 80 percent of the initial 
cost to design and build the plant; and 

(b) the cost of each rehabilitation is about 30 percent of the initial cost to design and 
build the plant. and rehabilitation can be expected to occur every 30 years. 

If the city were to take on the project itself, what maximum initial cost (at n = 0) could 
the city afford to incur to design and build the plant, and still be as well off as with the 
offer of the private company? Interest rate is 7%. Draw the cash flow diagram and 
sketch the breakeven chart for this problem. 

15.24. An engineer must decide between two chemical coagulation systems for a 10 million gal
lon per day water treatment plant. The cost of system 1 is known, and is provided in the 
table. Interest rate is 5%. and the analysis period is 20 years. The cost of chemicals for sys
tem 2 is uncertain. System 2 uses chemicals at a rate of 160 pounds per day. At what price 
(dollars per pound) of chemicals for system 2 are the two options equivalent? Solve using 
annual cash flow analysis, and draw the breakeven chart for this problem. 

Initial cost 

Annual chemical cost 

Lifetime 

System 1 

$300,000 

$50,000 

20 years 

System 2 

$500,000 

unknown 

20 years 

15.25. A construction firm buys and replaces its dump trucks periodically. It is considering ~he 
choice between two versions of the same make of truck: (1) the standard version, which 
costs $50,000 and is replaced every 7 years, or (2) the heavy-duty version, which co~ts 
$70,000 and whose replacement frequency is unknown to the firm. If operation and main
tenance costs of the two trucks are assumed to be the same, how long must the heavy-duty 
truck last in order to be equivalent to the standard version? Solve using annual cash flow 
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15.26. 

1 . d d 431 ana ys1s, an raw the cash flow ct1· agrams and b k of 10%. rca even chart The f' · 1rm uses a MARR 
A student is trying lo decide which oft 
V 4 D t 'd . wo cars to purcha 

- . a a are prov1 ed m the table E h ·1 se; an old V-8, or an equallv old 
d h · · ac w1 l serve th d , -

mate t at repair costs and lifetimes for the t~o e .stu ent s needs. and it is csti-
will be kept 5 years and then sold for 1 cars will be about the same. The car 

. sa vage value Th · . 
down to the gas mtleage that the two cars t Th · e ~nmary difference comes 
to be $1.20 per gallon. ge · e average pnce of gasoline is assumed 

Using the data in the table determi· h . ' ne ow manv m·l 
would have to dnve to cause the cost of the t . J 

1 cs per year the student 
. . wo options to be the If h d 

typically dnves 8,000 miles per year which c h Id b same. t e stu ent 
breakeven chart. The student's MARR,· 701 ar s ou e purchased? Sketch the 

IS 10. 

V-8 V-4 

Purchase price($) 2000 5000 
Salvage value ($) 500 1250 
Gas mileage (miles per gallon) 12 30 
Useful life (years) 5 5 

15.27. In Exercise 15.26, if the student selected a higher MARR, which alternative would ben
efit the most, V-8 or V-4? 

15.28. A homeowner must buy a new furnace. Two choices exist: a standard efficiency model 
having an average fuel use efficiency (AFUE) of 70 percent, or a high efficiency model 
having an AFUE of 90 percent. Based on these efficiencies, to provide the necessary heat 
to the house, a standard furnace will consume 136.3 thousand cubic feet (MCF) of gas per 
year and a high efficiency model will consume 106.0 MCF per year. Other data are: 

Standard High 

Initial cost ($) 2500 3500 

Annual repair cost ($) 100 250 

Lifetime (years) 20 20 

Using a 7% interest rate and annual cash flow analysis, at what unit cost of gas ($hper 
· th? Draw the breakeven c art 

MCF) will the two ~ltemativ~s be of equal econo~1ct';~r as. costs $7.80 per MCF. which 
for the two alternatives, showmg the breakeven pom · g 
alternative is preferable? 
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Economics 111: 
Depreciation, Taxes, 
Inflation, and Personal 
Financial Planning 

16.A INTRODUCTION 

In practice~ economic decisions are complicated by such considerations as taxes. 
possible tax deductions (one of which is depreciation of an asset). and inflation. 
These same considerations play a strong role in personal financial planning. This 
chapter will show how to include such factors in engineering economic calculations. 

In addition. it has been the observation (and experience) of the authors that 
more attention should be given to personal financial planning by young engineers 
startino their career. Certain nontraditional topics are therefore included in this 
chapte; in the area of personal financial planning. The reader is advised that most 
topics in this chapter are influenced by tax law that changes frequently. Therefore. 
descriptions and examples are meant to be illustrative: current tax law must be ap-

plied in each case. 

16·8 DEPRECIATION 

. . a trade or business or for the production of 
The value of property acqwred for use m . d of )'ears for income tax purpos-
. . all d d ted over a per10 
mcome can be systematic Y e uc . f more than one year and must be of such a 
es. The property must have a useful hfe 0 tm· 1e Common examples are ma-

b obsolete over · . 
nature that it will wear out or ecome. d b ·id·ng improvements. landscaping. 

. b 'ldmos an u1 I 
chmery, equipment, computers, U1 e 

433 
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and rental property. Land is not depreciable, because it is viewed as not wearing out 
or becoming obsolete. In addition, special tax rules apply to the depreciation of 
computer software and automobiles. If computers or peripheral equipment are not 
used entirely at a place of business. special rules also apply. 

Depreciable property is classified into two broad categories: (1) real property
buildings and building structural components, and (2) personal property-all property 
other than real property. Note that both personal and real property may be owned 
and used by either an individual or a business. To be depreciable, however, the prop
erty must be used by a business or in the production of income by an individual. 

Herein. depreciation is defined as the allocation of the cost (minus salvage val
ue) of an asset over its useful or depreciable life for tax purposes. Thus, 

where 

Dtotal = P - S 

D101a1 = total depreciation allowable over time; 

P = initial asset value or cost; and 

S = salvage value. 

{16.1) 

The book ''aloe of an asset in year n is its initial cost or value minus any de
preciation charges taken up to that time: 

where 

11-I 

BV,1 = P - ~Dr 
r=O 

B\ln = book value of an asset in year n, and 

Dr = depreciation taken at the end of year t. 

(16.2) 

Note that book value in year 1, BVi, is equal to P since no depreciation is tak
en at t = 0. Note also that book value always includes salvage value. If depreciation 
represented an accurate measure of how an asset wears out or goes obsolete, then 
book value would represent the remaining value, or worth, of the asset. In practice, 
depreciation charges are determined more by accounting rules and tax laws than by 
actual economic depreciation. 

16.B.1 Straight-Line Depreciation 

One approach to depreciation is to assume that the annual depreciation charge is a 
constant amount chosen to produce a book value of Sat the end of year N: 

1 
SLDr = N (P - S) (16.3) 
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where 

Depreciation 

SLD, = straight-line depreciation taken at the end of year t, and 

N = useful (or depreciable) lifetime. 

Example 16-1. 

435 

An asset is purchased for $10,000 and is to be depreciated over five years. Salvage val
ue at the end of year 5 is $1000. Using straight-line depreciation. what is the annual de
preciation charge and schedule of book value? 

Solution: Annual depreciation is 

1 1 
SLD1 = N (P - S) = S (10,000 - 1000) 

= $1800 

which gives a schedule for book value as follows: 

Year Book Value in Year t Depreciation Amount at end of Year r 

1 $10,000 $1800 

2 8,200 1800 

3 6,400 1800 

4 4,600 1800 

5 2,800 1800 

2:6 1,000 

(salvage value) 

h dule of book value is a straight . 16 1 Note that the sc e . 1 d · n Figure · · 
Book value is p otte I . . ed as a continuous process. 
line only if depreciation IS view 

Figure 16.1 
ple 16-1. 

·arion for Exam
Straight-line deprec1 
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16.B.2 Sum-of-the-Years' -Digits Depreciation 

An interesting depreciation method is the sum·of-the-years'-digits (SOYD). An ad
vantage of this method over straight-line depreciation is in having larger deprecia
tion amounts early in time. This permits larger tax deductions and resultant savings 
early in time, which can be invested to earn compound interest. Overall returns are 
therefore higher than under straight-line depreciation for most cases. 

The method uses the sum-of-the-years'-digits for the depreciation period of 
length N: 

total sum of the years' digits = 1 + 2 + 3 + · · · + (N - 1) + N (16.4) 

N 
=-(N+l) 

2 

and calculates depreciation for the end of year t as 

(16.5) 

useful life remaining at beginning of year t 
SOY DDr = total sum of the years· digits (P - S) (l6·6) 

N - t + 1 
= (N/2)(N + 1) (P - S) (16.7) 

where SOY DD1 = sum-of-the-years'-digits depreciation at the end of year t. 

Example 16-2. 

Compute the SOYD depreciation for the data in Example 16-1: P = $10,000, 
S = $1000. N = 5. 

Solution: 

SOY D = I + 2 + 3 + 4 + 5 

N 5 
= -(N + I) = -(5 + 1) = 15 

2 2 

5 - 1 + 1 5 
SOY DD1 = 

15 
(10,000 - 1000) = lS (9000) = $3000 

5-2+1 4 
SOY DD2 = 

15 
(10,000 - 1000) = 

15 
(9000) = $2400 

5 - 3 + 1 3 
SOY DD3 = lS (10,000 - 1000) = 

15 
(9000) = $1800 

5-4+1 2 
SOY DD4 = lS (10,000 - 1000) = !5(9000) = $1200 
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5 - 5 + l 
SOY DD"= (10000 1 

. 15 ' ' - lOOO) =: 15 (9000) =: $600 

sum == $9000. 
Total depreciation is $9000 leaving only 5 1 1 
h h

. h SOY · '. a vage va ue at the end of vear ;V = s 
Note t e ig er D deprec1at1on values in years 1 d 2 · . · · 
line depreciation ($1800 every year). an as compared to straight-

16.B.3 Declining Balance Depreciation 

Declining balance depreciation (DBD) is based on taking a constant fraction of the 
current book value as the depreciation amount at the end of every year. Double de· 
dining balance depreciation (DDBD) uses the fraction 2/N: 

2 2 
DDBD1 = N (book value) = N (BVz) 

= ~(P - total depreciation taken to date). (16.8) 
N 

For year 1, 

If S = 0, straight-line depreciation would give 

SLD1 "' ~(P - S) "' ~p 
. r 200% that of straight-line 

· tion to be twice, o , . 
showing double declining balance depr~c1aot double for subsequent years. howe'>'er. 

h t the amount is n 
for the first year. Note t a a 150% rate, or . · cheme uses 

Another depreciation s 
_ !2 (book value). 

(150%) DBD, - N 

(16.9) 

Example 16-3. . . the data of E:<arnple 
d 16_,.,. p == s 10.000. 

16-1 an -· 

Compute DDB depreciation for 
s = $1000, and N == 

5· 

Solution: 
2 

- ~(BV,) == 5(BV,). 
- ~(book value) - N 

DDBDs - N 
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Year BV, DDBD, 

1 $10,000 $4000 

2 6000 2400 

3 3600 1440 

4 2160 864 

5 1296 296* 

2:6 1000 
(salvage value) 

*Note that the full DDBD at the end of year 5 ($1296(0.40) = $518.40) cannot 
be taken because this would dri\'e book \'alue below salvage value ($1000). Also 
note that DDBD in years 1 and 2 is considerably higher than SLD. DDBD is high
er than SOYDD for year 1 and equal in year 2. 

Chap. 16 

Example 16-3 illustrates a complication with the DDB or 150% DB method: 
book value is not guaranteed to be equal to salvage at the end of year N if the for
mula is strictly adhered to. Three cases can result: 

1. For high values of salvage relative to initial cost, DDB or 150% DB are likely 
to give book values below salvage. To compensate, merely cut off the depreci
ation schedule early, taking a smaller depreciation amount than indicated for 
the year in question, in order to exactly reach salvage value (this was done in 
Example 16-3). 

2. For low values of salvage relative to initial cost, DDB or 150% DB are likely 
to give book values above salvage. To compensate for this, tax law allows 
switching from declining balance depreciation to straight-line depreciation at 
any time. This permits salvage value to be exactly met. 

3. It is possible for DDB or 150% DB to produce book value exactly equal to sal
vage value in the last year, but this is rare in actual practice. 

The three cases are illustrated graphically in Figure 16.2, and a numerical example 
of case 2 is provided in Example 16-4. 

Example 16-4. 

Compute DDB depreciation for P = $50,000, N = 5, and S = $2000. 

Solution: 

2 2 2 
DDBD1 = N (book value) = -(B\1r) = -(B\1r). 

N 5 

Allow for a switch to SL by computing the alternative SL depreciation at the end of 
each year, based upon the current book value and life remaining. 
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0 
2 3 4 5 

~iFe 16.2 Possible relationship of book 
'a ue to salvage. 

Alternative SL Depreciation 
I 

SLD1 = L(BVr - S) 

DOB Depreciation 

Year 
Book Value in at End of Year t Life Remaining. 

Year r. BV, (2/N)(BV,) L SLD1 

$50,000 s20.ooo• 5 S9.600 

2 30,000 12.000* ~ 7.000 

3 18,000 7,200* 3 5.333 

4 10,800 4.320 2 .tAOO'" 
HOO* 

5 6.400 

~6 2.000 

*Maximum depreciation amount is taken for the year. Note that when S"itch to SL is made. rcmainine 

depreciation amounts arc constant. • 

~he table format of Example 16-4 should be used for 200% and 150% declining 
a lance depreciation calculations to allow for a switch to SL. if necessary. 
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16.8.4 Modified Accelerated Cost Recovery System Depreciation 

The Tax Reform Act of 1986 (PL99-514) outlines the modified accelerated cost re .. 
covery system (MACRS) depreciation method. It applies to most tangible personal 
or real property placed in service a ft er 1986. From 1981 through 1986, the 
accelerated cost recovery s~'stem (ACRS) depreciation method was used. The two 
systems are very similar. Both provide tax advantages over previously discussed 
methods in that the statutory depreciation period is generally shorter than the use
ful life of an asset, and salvage value is assumed to be zero. MACRS itself consists 
of two depreciation systems: the General Depreciation System (GDS) and the 
Alternath'e Depreciation System (ADS). By far the most common, only GDS will 
be described. 

To calculate allowable depreciation. the property class and recove1y period of the 
asset under GDS must be found by using Table l6.l. TI1en the prescribed percentage 

TABLE 16.1 PROPERTY CLASS AND RECOVERY PERIOD FOR ASSETS UNDER MACRS (GOS) 
DEPRECIATION 

Class Life. L 
(yr) 

L ~ 4 

.t<L<W 

10 ~ L < 16 

Property Class and 
Reco\'cry Period (yr) 

3-ycar property 

5-year property 

7-ycar property 

Depreciable Asset 

Personal Property 

Over-the-road tractor units 

Information systems (computers and peripheral equipment) 

Data-handling equipment except computers (typewriters, 
calculators. copiers. duplicating equipment) 

Airplanes and helicopters 

Automobiles.* buses. taxis 

Light general purpose trucks 

Heavy general purpose trucks and concrete ready-mix 

Trailers and trailer-mounted containers 

Offshore oil and gas drilling equipment and vessels 

Onshore oil and gas drilling equipment 

Construction and real estate development equipment 

Equipment used in research and development 

Equipment used for qualified electrical energy generation 
(geothermal. solar, wind, biomass) 

Office f urniturc. fixtures. and equipment 

Railroad cars, locomotives, tracks 

(co11t.) 
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(cont.) 

Class Life, L p (yr) roperty Class and 
_________ R_ecovery Period (yr) 

16 :SL < 20 

20 :SL< 25 

L ?. 25 

10-year property 

15-year property 

20-year property 

25-year property 

27.5-yr property 

31.5-yr property 

39-yr property 

M' . Depreciable Asset 
i inmg equipment ( i 
Concret . or sand, gravel cl 

c and concrete . ay. stone. etc.) 

Waste reductio product plants 
n and reso Barg urce recov es, tugs, vessels f ery plants 

La or water tr 
nd improvements . ansportation 

drain f . . (sidewalks, r d 
I d age_ ac1htics, wharves, d ;a s._canals, waterwavs 
an scapmg) oc s. bndges. fences . . 

Municipal · wastewater treatm 
Cemen ent plants 
p· . t manufacturing plants 

ipelme transportation of o1·1 
N .gas 

uclear electrical generation .plants 
Farm building ( s general purpose) 
Hydroelectric plants 

Coal-fired electrical generation plants 

Municipal sewers** 

Water utility plants, pipelineso 

Real Property 

Residential rental property 

Nonresidential real prope;ty (placed . . 
May 13, 1993) m service before 

Nonresidential real property (placed in service o 
after May 13, I 993) n or 

50-yr property Railroad grading or tunnel bore 

*Other sp · I~~~~~~~===~=~~-_:_==~-===:_ _______ _ 
.,. ccia conditions a 1 d . . 
· 20 years if placed . .PP Y to eprcc1at1on of automobiles. 

Source: IRS p . 1~ service before June 12, 1996. 
ubhcahon 946 (2002). 

for depr · · · . eciatton m each year is read from Table 16.2or16.3. Table 16.2. MACRS for 
personal property, is based on 200% DB depreciation for the 3-. 5-, 7- and 10-year 
property classes, with a switch to SL depreciation so as to maximize depreciation in 
e~ch year. For the 15- and 20-year property classes, 150% DB depreciation is used 
with a switch to SL. A midyear convention applies to b?t~; that i.s' if the asset is 
pl~ced in service at any time during the year. the deprecial!on penod starts at the 

midpoint of the year. 

441 
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TABLE 16.2 MACRS (GOS) DEPRECIATION FOR PERSONAL PROPERTY 

Recovery 
Year 3-year 5-year 

1 33.33 20.00 

2 44.45 32.00 

3 14.81 19.20 

4 7.41 11.52 

5 11.52 

6 5.76 

7 
8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Recovery Period• 

7-year 10-year 

14.29 10.00 

24.49 18.00 

17.49 14.40 

12.49 11.52 

8.93 9.22 

8.92 7.37 

8.93 6.55 

4.46 6.55 

6.56 

6.55 

3.28 

15-year 

5.00 

9.50 

8.55 

7.70 

6.93 

6.23 

5.90 

5.90 

5.91 

5.90 

5.91 

5.90 

5.91 

5.90 

5.91 

2.95 

20-year 

3.750 

7.219 

6.677 

6.177 
5.713 

5.285 

4.888 

4.522 

4.462 

4.461 

4.462 

4.461 

4.462 

4.461 

4.462 

4.461 

4.462 

4.461 

4.462 

4.461 

2.231 

*For 3-, 5-. 7-. and 10-ycar rcco\'ery periods, the depreciation method is 200% DB with switch to SL. For 15- and 20-year re
co\'ef}' periods. the depreciation method is 150% DB with switch to SL. Midyear convention. 
Source: lRS Publication 946 (2002). 

Table 16.3, MACRS for real property, is based on straight-line depreciation 
with a midmonth convention; that is, if an asset is placed in service at any time dur
ing a month~ it is assumed to begin its depreciable life at the midpoint of the month 
(one-half month depreciation). 

Example 16-5. 

An engineering company purchases files, cabinets, desks, and chairs for use in the of
fice. The $10,000 purchase is made March 10. Find the allowable depreciation amounts 
for current and future years. 
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TABLE 16.3 MACRS (GOS) FOR REAL PROPERTY 

Recovery 

Year 
Jan Feb Mar A 

-------------__ ,pr May Jun Jul Aug 

27.S-Year Residential Rental R I p 
1 

2-9 

Even years 10--26 

Odd years 11-27 

28 

29 

ca ropcrty* 
3.485 3.182 2.879 2.576 2.273 1 970 

3.636 3.636 3.636 3.636 3 636 3. l.667 l.364 I.061 D.758 o.m o.152 

3.637 3.637 3.637 3.637 3..637 3 ·:36 3.636 3.636 3.636 3.636 3.636 3.636 

3.636 3.636 . 
37 1636 1636 1636 3.636 3 636 3 636 

3.636 3.636 3.636 3.636 3.637 3.637 3.637 3.637 3:637 3:637 
1.970 2.273 2.576 2.879 3.182 3.485 3.636 3.636 3.636 3.636 3.636 3.636 

0.000 0.000 o.ooo o.ooo 0.000 0.000 0.152 0.455 0.758 1.061 1.36-1 1.667 

3LS-Year Nonresidential Real Proper1y (pla<ed in senice before OS/IJ/9lJ• 
1 

3.042 2.778 2.513 2.249 1.984 1.720 1.455 1.190 0.926 0.661 
0.397 0.132 2-7 

3.175 3.175 3.175 3.175 3.175 3.175 3.175 3.175 3.175 3.175 3.175 
3.175 8 

3.175 3.174 3.175 3.174 3.175 3.174 3.175 3.175 3.175 3.175 3.175 
3.175 Odd years 9-31 

3.174 3.175 3.174 3.175 3.174 3.175 3.174 3.175 3.174 3.175 3.174 
3.175 Even years 10--30 

3.175 3.174 3.175 3.174 3.175 3.174 3.175 3.174 3.175 3.174 3.175 3.174 32 1.720 1.984 2.249 2.513 2.778 3.042 3.175 3.174 3.175 3.174 3.175 3.17-t 
33 0.000 0.000 0.000 0.000 0.000 0.000 0.132 0.397 0.661 0.926 l.190 1.455 

39-Year Nonresidential Real Property (placed in scnicc on or after OS/13193)* 

2.461 2.247 2.033 1.819 1.605 1.391 1.177 0.963 0.749 0.535 0.321 0.107 

2-39 2.564 2.564 2.564 2.564 2.564 2.564 2.564 2.564 2.564 2.564 2.564 2.564 

40 0.107 0.321 0.535 0.749 0.963 1.177 1.391 1.605 1.819 2.033 2.247 2.461 

*Depreciation method is SL with midmonth convention. 
Source: IRS Publication 946 (2002). 

. d f 'ture to be seven-vear propertv. Solution: Table 16.1 shows office eqmpment an urru · · 
Table 16.2 provides allowable depreciation percentages: 

Year MACRSo/o Depreciation Amount 

14.29 
$1429 
2449 

2 24.49 
1749 

3 17.49 
1249 

4 12.49 
893 

5 8.93 892 
6 8.92 893 
7 8.93 446 
8 4.46 

$10.000 

Total: 100 

443 
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7 
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Example 16-6. 

Determine the year in which to switch from 200% DB to SL depreciation for seven
year property. Assume a $100 depreciable asset. 

Solution: Compute the 200% DB depreciation amount and compare to the alterna
tive SL depreciation amount. N = 7 for 200% DBD, while for SLD, Lis remaining de
preciable life, which varies. 

200% DB Alternative SL 
Book Value Depreciation Depreciation 

in Year r (2/N)(BV) (1/L)(BV - S) Comments 

$100 $14.29* $7.14 L = 7 .0 for SL; use half of full-year amount. 

85.71 24.49* 13.19 L = 6.5 for SL. 

61.22 17.49* 11.13 L = 5.5 for SL. 

43.73 12.49* 9.72 L = 4.5 for SL. 

31.24 8.92 8.93* L = 3.5 for SL. 

22.31 8.92* Continue with SL. 

13.39 8.93* Continue with SL. 

4.46 4.46* Continue with SL. 

*Maximum depreciation amount: alternate digits in SL to eliminate effect of round-off 

Note that since the asset value is $100, the depreciation amounts correspond to the de
preciation factors in Table 16.2, which are expressed in percent. 

Example 16-7. 

On October 29. 2002, an engineering company purchased a new office site for $200,000, 
of which land value represents $50,000. Determine the depreciation schedule for cur
rent and future years. 

Solution: The acquisition is nonresidential real property placed in service on or after 
May 13, 1993. therefore. it represents 39-year property. However, land is not deprecia
ble. leaving only $150,000 to be depreciated. Table 16.3 can be used by entering the col
umn for October: 

Recovery Year 

2-39 

40 

Factor ( % ) for 39-Year Property 

0.535 

2.564 

2.033 

Total = 100.00 

Depreciation Amount 

$802.50 

3,846.00 

3,049.50 

$150,000.00 
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Note that the effect of rou d 445 
h 'd n -off has I t e mt month convention a 1· a ready been take . 

PP 1es. n into account in -r, hi 
ia c 16.3. and 

16.B.5 Other Property and De .. 
Prec1at1on Method 

Intangible Personal Property . 
5 

· ht f h' · · Intangible copyng s, ranc ises, videocassettes f personal propertv incl d 
d · , so tware pr 1 u es patents 

pro ucmg assets. Related costs mi'nu 1 ogram~ books. and simi'Ja . · · , s savage ma b d · r re\cnuc-
( as estimated by the owner) or by th . ' Y e epreciatcd over the u f 11 .f 

fr . . e mcome foreca t d . . sc u 1 c 
latter, act10nal depreciation in any . . s epreciatmn method. Using th . year 1s given by th . . .... c 
the asset m that year to the total inco e ratio of mcome received from 

me expected to be earned from the asset. 

Example 16-8. 

An engineer has written a software pro ram d . . 
enues from its sale are $10 000 and cost gf ~n .received copynght. Expected rev-

~~a~~nzeursot:nlgf 1shaele~0in the ;~rre~t tax ye:r ~:~~n~~~,~~ ~~~~~h~· ~a!~~~ai~1:s~~;,:d 1 come 1orecast method? 

Solution: Multiply by the ratio of income to total expected income: 

2500 
1 O,OOO ( 4000) = $1000 depreciation. 

Units of Production. The units of production depreciation method can be 
elected in place of MACRS for assets that have lifetimes easily measured in terms of 
production units. Depreciation in any year is given by the ratio of production in that 
year to total lifetime production of the asset. 

Example 16-9. 

For $3000 a company purchases a photocopier machine having a ~.000.000-copy life-
' 1 h fi t 50 000 copies are made. \\'hat time as estimated by the manufacturer. n t e irs year, · 

is allowable depreciation using the units of production method? 

. d . . the year to total lifetime production: 
Solution: Multiply by the ratio of pro uction m 

50,000 (3000) = $150 depreciation. 
1,000,000 

. conditions, computer soft\v~re p~r
Computer Software. Under cert9a91~ . depreciated using a stra1ght-lm.e 

A st 10 1 J IS ·r cka 0 e 1s 
chased for a business after. ~gu . 'he month of purchase. Thus. 1 a pa .., 0 

) ) 

method over 36 months, begmnmg with 1 . t'on for ?002 is $50 ( == (6136 )($.)00 · 
$300 deprecia 1 -

purchased on July 7, 2002 for ' 
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16.8.6 Choice of Depreciation Method 

Tite most advantageous depreciation method to use in any given situation depend 
on many factors. Among these are (1) interest r~~e used i~ comparisons, (2) Iengt~ 
of depreciation period, (3) investment opportumt1es resulting from tax savings over 
time, and ( 4) pattern of tax liabilities for the person or firm year by year. Since some 
of these factors are difficult to estimate, a person or firm may choose to use just one 
of the methods as standard practice unless unusual circumstances arise. As noted it 
is generally advisable to obtain depreciation deductions early in time in order 'to 
maximize present worth of benefits from tax savings. Tax laws limit the degree of 
choice between the methods. 

16.B.7 Amortization and Depletion 

Amortization. Certain business expenses cannot be deducted entirely in the 
year of their occurrence~ and yet do not represent depreciable assets (they do not 
wear out or become obsolete). The expense of acquiring and holding intangible as
sets such as goodwill. going-concern value, know-how, government-granted licenses 
or permits. leases. patents. copyrights. trade names, and similar items can be 
amortized over prescribed periods of time. usually 15 years. Business start-up ex
penses. at the election of the taxpayer, may be amortized over a 60-month period, 
beginning with the month in which business begins. The deductions are prorated 
equally over each month of the 60-month period. 

Depletion. Assets of such natural resources as mineral ores, oil and gas 
wells. and timber are used up over time. The investment in these resources is al
lowed to be deducted from income under certain rules. Two calculation methods are 
used in most cases: cost depletion and percentage depletion. The method yielding 
the largest depletion allowance must be used in that year. For most oil and gas wells 
and for timber~ only cost depletion is allowed. 

Cost depletion is based on the number of physical units of the resource recov
erable at the beginning of the year and the number of units sold during the year. The 
calculation is 

. . . ( units sold in year ) 
cost deplet10n = (adjusted basis) . 

units recoverable at beginning of year 

The adjusted cost basis is the updated asset cost minus any depletion allowances 
taken to date. Also. updated estimates of units recoverable should be used as they 
become available. 

Example 16-10. 

For $100.000 a company purchased a tract of land having 1,000,000 board-feet of tim· 
ber. The timber itself was valued at $80,000. Depletion credits of $20,000 have been taken 
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447 to date on 250,000 board-feet cut and Jd 
1 d Wh · h so · n the currc t sol . at IS t e current year depletion all n year, 125JXXJ hoard-feet were owancc? 

Solution: Calculate using updated cost bas· d 
is an recoverable units: 

cost depletion == (80,000 - 20.000)(~)· 
1.000,000 - 250.000 

:::: $10,000. 

Percentage depletion is computed as a percentage of gross income and is un
usual in that the depletion allowance can be claimed even if the adjusted basis in 
the resource is zero. The percentages allowed are prescribed by law and vary by 
resource. Selected resources and their applicable percentages are provided in 
Table 16.4. A depletion allowance cannot be greater than 50% of the taxable in
come before deducting depletion. Special rules apply to oil and gas weJJs (see 26 
USC Section 613A). 

TABLE 16.4 PERCENTAGE DEPLETION RATES FOR CERTAIN NATURAL RESOURCES 

Natural Resource 

Sulfur and uranium mines . . e mica ores of antimony. cadmium, cobalt, 
U.S. deposits of asbestos, baUXIte, graphit bd · nickel platinum. tin, tungsten. 

lead, lithium, manganese, mercury, moly enum, ' 
and zinc 

· ore and oil shale U.S. deposits of gold, silver, copper, iron ' 
U.S. geothermal deposits 

. . f 22% or 15% rates 
Metal mines not quahfymg or fractorv properties 
Clays sold for purposes dependent on re . 

Coal, lignite, sodium chloride .. 
·pe or bnck facture of sewer p1 

Clay and shale used for manu . weioht aggregates 
Clay shale and slate used for hght 0 

... mamental stone). 
, ' h n dimension stone or o . brine 

Gravel peat, sand, stone (other t _a and roofing tile, and if from 
' f drainage · d clay used in manufacture o . d magnesium chlon e 

. l . chloride. an bbl or concrete wells-bromme, ca cium d material. ru e, 
. ballast. roa Any mineral used as nprap, 
·ri d elsewhere th aggregate if not classi ie diatomaceous ear · 

l ·um carbonates, shells. potash. b rax ca c1 d oyster All other minerals (e.g., 0 ' ble clam shells an 
. 1· tone mar ' dolomite, gramte, imes ' 

1 
tone) 

. . rnamenta s dimension stone or 0 

· 5 61t-613A-20C>') Secuon Source: Internal Revenue Code ( - ' 

Percentage 
Depletion 

Rate 

22 

15 

IO 

7.5 

5 
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Example 16-11. 

16.CTAXES 

A gold mine has a total income of $800,000 and expenses of $400,000 for a given year. 
What is the allowable depletion deduction? 

Solution: Table 16.4 gives 15% as the per~e~ta~e depletion rate. Calculate the deple
tion amount without considering the 50% lim1tat1on: 

depletion amount = (0.15)(800,000) = $120,000. 

Determine limitation amount: 

gross income - expenses = taxable income 

800.000 - 400,000 = 400,000 taxable 

(0.50) ( $400,000) = $200,000 limitation. 

Since the limitation is greater than the indicated percentage depletion amount, 
the full $120.000 can be claimed: answer = $120,000. 

16.C.1 Corporate Income Tax Base and Rate 

Taxable income for corporations is generally given by 

taxable income = gross income + capital gains net of capital losses (16.10) 

- current expenses - depreciation - depletion allowance. 

Current expenses are by far the largest category of deductions. These include 
salary and wages~ materials and supplies, routine maintenance, rent, bad debts, taxes 
and licenses. interest, pension plans, heat, light, telephone, and advertising. Capital 
gains and losses are defined by 

capital gain or loss = sale price - book value. (16.11) 

Capital gains are taxed as regular income for corporations, and capital losses 
can be deducted only to the extent of capital gains. Any excess of capital losses over 
capital gains for a year can be carried back three years and, if not entirely used up, 
can be carried forward up to five years. 

Note that expenditures for capital assets are not deducted in the year of their 
occurrence but are depreciated, amortized, or depleted in the current and later years. 
Similarly, salvage value, to the extent that it is equal to book value, is not treated as 
income. 

Corporate federal income tax rates for 2002 are given in Table 16.5. In ad.di
tion, states and municipalities often levy corporate income taxes, generally totahng 
from 1to12%. 
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1'ABLE 16.5 CORPORATE FEDERAL INCOME TAX R 
,,.. ATES FOR 2002 

449 

---- Taxable Income -----

But Not Over 
Incremental 

over Tax Rate(%) 

0 50,000 15 
Tax on Income Falling Within a Bracket 

50,000 75,000 25 SO + 15% of excess over $0 

75,000 100,000 34 
$7,500 + 25% of excess over $50.000 

100,000 335,000 39 
$13.750 + 34% of excess over $75.000 

335,000 10,000,000 34 
522•250 + 39% of excess over $100.000 

10,000,000 15,000,000 35 
$ll3,900 + 34% of excess over $335.000 

S3.400,000 + 35% of excess over $10,000.000 
15.000,000 18,333,333 38 s5.15o,ooo + 38% of excess over SIS,000,000 
18,333,333 35 $6.4l6,667 + 35% of excess over $18.333,333 

Source: IRS Publication 542 (2002). 

Example 16-12. 

An engineering company has revenues of$1,000,000 for the calendar year. Expenses are 
$600,000, capital gains are $300,000, capital losses are $200,000, depreciation is $100,000, 
and depletion is $50,000. What are the firm's taxable income and tax payment due? 

Solution: Capital losses of $200,000 can offset a portion of capital gains, leaving a net 
capital gain of $100,000. 

taxable income = 1,000,000 + 100,000 - 600,000 - 100,000 - 50.000 

= $350,000. 

tax payment = 0.15(50,000) + 0.25(25,000) + 0.34(25,000) + 

0.39(235,000) + 0.34(15,000) 

= $119,000. 

More simply, 

- $113 900 + 0.34(350.000 - 335,000) 
tax payment - ' 

= $119.000 

which is 34.0% of taxable income. 

t Base and Rate 
16.C.2 Individual Income ax 

1 
have detailed but importa?t 

ti and most ru es I rules in force m 
Warning! Tax law changes frequen nly, to be illustrative of genera 

· ·s meant o Y 
exceptions. The followmg 1 t be followed. 
tax year 2002. Current tax law mus 
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TABLE 16.6 INCREMENTAL 2002 FEDERAL INCOME TAX RATES FOR INDIVIDUALS 

Taxable Income 
Bracket 

$0-6000 

$6000-27,950 

$27 ,950--07 ,700 

$67. 700--141.250 

$141,250-307,050 

Over $307 .050 

Incremental 
Tax Rate(%) 

10 

15 

27 

30 

35 

38.6 

Single 

Tax for Income Falling Within Bracket 

$0 + 10% of amount over $0 

$600.00 + 15% of amount over $6000 

$3,892.50 + 27% of amount over $27,950 

$14,625.00 + 30% of amount over $67,700 

$36,690.00 + 35% of amount over $141,250 

$94,720.00 + 38.6% of amount over $307,050 

Married-Filing Jointly 

$0-12.000 

$12.000-46.700 

$46.700-112.850 

$112.850-171.950 

$171.950-307.050 

Over $307 .050 

Source: IRS Publication 17 (2002). 

10 

15 

27 

30 

35 

38.6 

$0 + 10% of amount over $0 

$1200.00 + 15% of amount over $12,000 

$6405.00 + 27% of amount over $46,700 

$24,265.50 + 30% of amount over $112,850 

$41,995.50 + 35% of amount over $171,950 

$89,280.50 + 38.6% of amount over $307,050 

Federal income tax for individuals is computed on taxable income using the 
tax rate schedule provided in Table 16.6. As is the case for corporations, the schedule 
is a graduated income tax. having progressively higher incremental rates with rising 
income. 

Determination of federal income tax due from individuals requires the com-
putation of 

• gross, or total, income, 

• adjusted gross income (AGI), and 

• taxable income. 

Gross, or total, income for IRS purposes is defined as 

gross, or total, income = non-deductible wages and salaries + tips + 
taxable interest + dividends + taxable refunds of 
state and local taxes + alimony received + 
business income (or loss) + short-term capital 
gain (or loss) + taxable pensions, annuities, or 
IRA distributions + rental income + royalties + 
unemployment compensation + taxable portion 
of Social Securitv hPnPfitc ..L ,,. .... ,.._ :-~~-'"" 
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Note that in the com . 
l · d . putation of 451 

sa anes o not mclude ta d gross incom f 
l x- eductibJ e or IRS 

emp oyer-sponsored retirement I e employee or e purposes. wages and 
by the employer on the annu I WP ans. Wages and saiari mpJoyer contributions to 

t th t f d l · a -2 form d · es reported t h no e a e era legislation b . . o not mclud h o t e emplovce 
vide tax-advantaged treatmen~mf ~o~s1dered at the timee ~f e~~ co~t~ibutions. Also 

Certain adjustments are m~dd1v1dends. t is wntmg would pro-
e to gross, or tot l . 

Ad. a, mcome· 
lJUStments = K-12 educ t · 

a or expenses + ta d . 
traditional IRA + stude t I x-. educt1ble contributions to a 

d ~ n oan interest d d · an iees deduction + M d' . e uct1on + tuition 
. e 1cal Savings A 

movmg expenses + on h If ccount deduction + 
e- a of self I 

self-employed health . -emp oyment tax + 
msurance deduct· + 1 SEP, SIMPLE and quaI'f' d I .ion se £-employed 

' I ie pans + mte t 
withdrawal of savinos + 1· . res penalty on early 

b a 1mony paid. 

Adjusted gross income (AGI) is then given by 

adjusted gross income = gross, or total, income - adjustments. 

Taxable income can then be found as 
(16.12) 

taxable income = adjusted gross income 

- larger of itemized deductions or standard deduction 

- exemptions. (16.13) 

The standard deduction for the 2002 tax year was $4700 for single taxpayers or 
$7850 for married taxpayers filing a joint return. The exemption amount was $3000 
for each person dependent on the gross income for his or her living. The itemized 
deduction amount is given by 

itemized deduction = medical and dental expenses exceeding 7.5% of AGI + 
state and local income taxes + real estate (property) 
taxes + personal property taxes + home ~10rtgage 
interest and pro rata points + investment mterest + 
charitable contributions (cash or fair market value) : 

. d lty or theft losses + sum of unre1m-unre1mburse casua · f . 
b . ss expenses, tax preparat10n ees. 

bursed employee usme . 
es and other m1sceilaneous 

investment expens , 
deductions exceeding 2% of AGL 

. 1 de dues to professional orga-
. expenses me u . . 

U nreimbursed employee busmess , . b . ess travel. educational expenses 
. . . . k uppbes, usm 

n1zations, journal subscnpt1ons, boo s, s 
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required by your employer to maintain or improve skills in your current job, and 
any necessary safety equipment, tools, or uniforms. 

For individuals, capital gains are given special tax treatment. Short-term cap .. 
ital gains (losses) are received from the sale of assets held for one year or less and 
if not offset, are taxed as ordinary income. Long-term capital gains (losses) are re~ 
ceived from the sale of assets held more than one year and, if not offset, are taxed 
at rates lower than for ordinary income. In 2002, for taxpayers in the 15% brack
et. long-term capital gains were taxed at 10% for assets held more than one year 
but not more than five years, and at 8% for assets held more than five years. For 
tax brackets 27% or greater. a 20% rate on long-term capital gains applies. How
eveL note that long-term capital losses can offset short-term capital gains, and 
short-term capital losses can offset long-term capital gains. Any net capital loss 
can be deducted directly from income up to a limit of $3000. Any losses above 
$3000 can be carried fonvard to future years. Note that these rules are more liberal 
than in the case of corporations where any capital loss can be used only to offset a 
capital gain. 

Example 6-13. 

Brian. a recent graduate. accepts a job and incurs qualified moving expenses of $1000. 
His salary is $48.000. interest income for the tax year is $150, dividends from stocks are 
$60. short-term capital loss from the sale of stock is $600. and long-term capital gain 
from the sale of other stock is $1000. Interest penalty on early withdrawal of savings 
from a certificate of deposit is $40. and interest payments on a student loan are $270. 
Charitable contributions are $500, slate and local income taxes are $2400, and medical 
expenses do not exceed the 7 .5 % limit. Employee business expenses are $1200, which 
includes a $100 depreciation allowance for a qualified capital asset. Brain rents an 
apartment and. therefore. does not qualify for property tax or home mortgage deduc
tions. If he is single. what is Brian ·s (a) gross. or total, income, (b) adjusted gross income, 
(c) taxable income. and (d) tax owed? 

Solution: 

(a) There is no net capital loss to subtract from income, because the long-term cap
ital gain of $1000 exceeds the short-term capital loss of $600 (net long-term 
capital gain of $400): 

Gross. or total. income = $48,000 wages + 150 interest + 60 dividends == $48,210. 

(b) AGI = $48.210 gross income - 40 interest penalty - 270 interest on student loan 
= $47,900. 

(c) Taxable income: Check employee business expenses (EBE) and other miscella-
neous expenses: . 
0.02 (AGI) = 0.02(47,900) = $958, which is less than the $1200 employee busi
ness expense incurred, therefore allowable EBE = $1200 - 958 == $242. 
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Calculate itemized deduct' tons: 

$ 0 medical and dental 

2400 state and local income tax 
500 charitable contributions es 

1000 moving expense 

242 employee business expense 
$4142 

453 

which is less than the standard deduction of $4700 . ?002 T k 
deduction. m - · ia e the standard 

Taxable income = $47,900 AGI 

- 4700 standard deduction 
- 3000 personal exemption (one) 
$40,200 taxable income. 

(d) Tax owed: On ordinary income, compute the tax two ways for illustration. Using 
incremental tax rates: 

0.10(6000) + 0.15(21,950) + 0.27(40,200 - 27.950) = $7200. 

Using the formula in Table 16.6, 

$3892.50 + 0.27( 40,200 - 27,950) = $7200. 

This represents an average federal tax rate of 

$7200 = 17.9% on taxable income, or 
$40,200 

~ = 14.9% on gross, or total, income 
$48,210 

. d in lower income tax brackets. 
. . I ff t of income taxe . . Be 

which shows the benef1cia ~ ec b dded to the tax on ordinary mcome. -
. l ams must e a . 

Tax on long-term capita g ate of 20% applies: 
B . i's i'n the 27% bracket, a tax r cause nan 

. . = 0.20( $400) = $SO. 
Long-term capital gams tax - $7280. 

d - 7200 + 80 -
Total tax owe -
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16.C.3 Combined Incremental Tax Rate 

Many business and personal economic decisions are made "at the margin," that is 
based on the incremental tax rate that would apply to a small change in incom~ 
when combined federal, state. and local taxes are considered. As noted above, federal 
taxable income excludes taxes paid to state and local government. The reverse is not 
true, however. For an increment of income, the applicable incremental tax can be 
computed using the incremental tax rates for the appropriate bracket: 

a tax = a income( 1 - ~ state and local tax rate) d federal tax rate 

+ d income ( d state and local tax rate) 

= d income [ ( 1 - il state and local tax rate) d federal tax rate 

+ d state and local tax rate] 

from which 

.l rate = ( 1 - ~ state and local tax rate) d federal tax rate 

+ .l state and local tax rate. 

Example 16-14. 

(16.14) 

An engineer is married. files jointly, and projects taxable income in the 27% federal 
bracket. An opportunity to earn $1000 arises. What incremental tax rate would apply if 
the incremental state tax rate is 5% and local taxes are 2%? 

Solution: Simple addition would produce a total tax rate of 34 % . Due to federal tax 
credits. the actual incremental rate will be less: 

~rate = (1 - 0.07)(0.27) + 0.07 

= 32.1 %. 

16.C.4 Before-Tax and After-Tax Rate of Return 

Since taxes are levied on investment income, the after-tax rate of return will always 
be less than the before-tax return. Depreciation serves to moderate the impact of 
taxes, however. 

Example 16-15. 

For a corporation, calculate the before- and after-tax rate of return on the following in
vestment, excluding and then including depreciation (straight-line, N = 5, S = O). Incre
mental tax rate is 35% and the firm is profitable. 
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~ 
~ 

0 

1 

2 
3 

4 

5 

s-10.ooo 
1200 
2400 

3600 

4800 
6000 

Solution: Calculate rate of return b f e ore taxes: 
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l0,000 = 1200 (PIA '* 5) ' 1 1 + 1200 (PIG, i*, 5). 

Note that the sum of the two fact h A . . ors must be 8 333333 I t e ppend1x, z* (before) = 18.1 %. . . nterpolating from the tables in 

From the after-tax cash flow: 

Year Cash Flow Tax After-Tax Cash flow 

0 $ 10,000 S-10,000 

1 1200 -420 780 

2 2400 -840 1560 

3 3600 -1260 2340 

4 4800 -1680 3120 

5 6000 -2100 3900 

Calculate rate of return after taxes: 

$10,000 = 180(PIA, i*, 5) + 780 (PIG, i*, 5). 

The sum of the two factors must now be 12.820513. Interpolating from the tables 

in the Appendix, i*(after) = 4.4%. 
Including depreciation, 

After-Tax 

Year 
Depreciation 

Taxable Income Tax Cash Flow 

Cash Flow s 10.000 

0 $-10,000 S280 1480 
$-800 

1 1200 $2000 -1.W 2260 
400 

2 2400 
2()00 -560 3~0 

1600 

3 3600 
2000 -980 3820 

2800 

4 4800 
2()00 -1400 

4600 
.moo 

5 6000 
2()00 
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Calculate rate of return including depreciation and taxes: 

10,000 = l480(PIA, i*, 5) + 780(P/G, i*, 5). 

Using the Appendix with trial values of i* and interpolating. 

i*(after. w/deprec) = 13.1 %. 

Chap. 16 

Note that since the firm is profitable, the excess depreciation amount at the end of year 
1 can be used to offset income elsewhere in the firm. creating a tax savings ($280). Con
clusion: The rate of return is strongly influenced by both taxes and depreciation. 

16.D INFLATION 

16.D.1 Historical Inflation Rates 

Cost Indices. The Consumer Price Index (CPI) follows the cost of a stan-
dard bundle of consumer goods over time, as shown in Table 16. 7 and Figure 16.3. 

TABLE 16.7 CONSUMER PRICE INDEX (CPI} 

1940 14.1 1960 29.6 1980 82.4 2000 172.2 
1941 14.8 1961 29.9 1981 91.0 2001 177.1 
1942 16.4 1962 30.3 1982 96.5 2002 179.9 

1943 17.4 1963 30.6 1983 99.7 
19-M 17.6 1964 31.0 1984 103.9 
1945 18.0 1965 31.6 1985 107.6 
1946 19.6 1966 32.5 1986 109.6 
1947 22.4 1967 33.4 1987 113.6 
1948 24.1 1968 34.8 1988 118.3 
1949 23.8 1969 36.7 1989 124.0 
1950 24.l 1970 38.8 1990 130.7 
1951 26.0 1971 40.5 1991 136.2 
1952 26.6 1972 41.8 1992 140.3 
1953 26.8 1973 44.5 1993 144.5 
1954 26.9 1974 49.3 1994 148.2 
1955 26.8 1975 53.8 1995 152.4 
1956 27.2 1976 56.9 1996 156.9 
1957 28.1 1977 60.6 1997 160.5 
1958 28.9 1978 65.3 1998 163.0 

1939 14.0 1959 29.l 1979 72.6 1999 166.6 

Index: 1982-1984 = 100. 
Source: U.S. Council of Economic Advisors. 
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The r:lative importa.nce of co~ponents of the index in December 2002 was housing 
( 40.9 Yo), transportation (17.3 Yo), food (14.6% ),medical care (6.0% ), energy (6.7% ). 
apparel and upkeep ( 4.2 % ), and other (10.3% ). A shortcoming of the index (and all 
such indices) is immediately apparent. Not everyone purchases the same bundle of 
goods; therefore, the index may not apply to a particular individual. Another diffi
culty is that quality of goods changes over time, and this is not reflected in the index. 
Further, buying patterns change over time, while the package of commodities in the 
index stays constant over long periods. Nevertheless, it is a very useful indicator of 
price inflation and often serves as an index to adjust salary, wages. and retirement 
benefits. Figure 16.3 indicates that inflation is quite variable on a year-to-year per-

centage basis. . . . . 
Other indices are more appropriate for measuring pnce _mfla~wn m the c~n
. . t• C t Index (CCI) is provided m Table 16.8. It struct1on mdustry. The Construe ion os · , d 

f l bor structural steel. cement. an 
measures the cost of fixed amounts 0 common a ' 1 d (BCI) \vhi'ch substi-

. 16 8 · th B 'Jding Cost n ex · · 
lumber. Also shown m Table · IS e w . h CCI (the materials list is the 
tutes skilled labor in place of common labor m t e . te for residential and com-
same. in the B Cl and cc9. The BCI is more n~n~r:~ available on a monthly ba-
mercial buildin o construction. Both the CCI a d 

• t:> 1 E · ·11g News Recor . . 
sis, published in the journa ngmeen . . the Civil Works Construction 

f E · ers mamtams · The US Army Corps o ngme urce development projects. · · . 'f ater reso . 
Cost Index ( CWCCI), which IS specI IC .to w nents such as reserv01rs. dams. 
S . . . f ific project compo . d The com-ubmd1ces are available or spec 'd dredomo. an so on. ·1 ds and bn ges, r:> ei • t mponents 
locks, power plants, roads, raI roa . d the effect of 20 pro1ec c~ , 

· · ~ bl 16 8 mclu es · I 0 available on a 
pos1te index provided m 1a e · dates The index is a s 

1 ·ectcostup · 
and can be used for genera proJ 
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TABLE 16.8 COMMON COST INDICES 

Consfrucfion Cost Index (CCI) (calendar year average: 1913 = 100) 

1906 
1907 
1908 

1909 
1910 

1911 
1912 
1913 
1914 
1915 
1916 
1917 
1918 
1919 

95 

101 

97 

91 
96 

93 
91 

100 

89 
93 

130 
181 
189 
198 

1920 
1921 
1922 
1923 
1924 
1925 
1926 
1927 
1928 
1929 
1930 

1931 
1932 
1933 
1934 

251 

202 
174 
214 
215 
207 
208 

206 
207 

207 
203 
181 
157 
170 
198 

1935 
1936 
1937 
1938 
1939 
1940 
1941 
1942 
1943 
1944 
1945 
1946 
1947 
1948 
1949 

196 

206 
235 
236 
236 
242 
258 
276 

290 
299 

308 
346 

413 

461 
477 

Building Cost Index (RCI) (calendar year average: 1913 = 100) 

1913 
1914 
1915 
1916 
1917 
1918 
1919 
1920 
1921 
1922 
1923 
1924 

100 

92 
95 

131 

167 
159 
159 
207 
166 
155 

186 
186 

1925 
1926 
1927 
1928 
1929 
1930 
1931 
1932 
1933 
1934 

1935 
1936 
1937 
1938 
1939 

183 
185 
186 
188 

191 
185 
168 
131 
148 
167 
166 
172 

196 
197 
197 

1940 
1941 
1942 
1943 
1944 
1945 
1946 
1947 
1948 
1949 
1950 
1951 
1952 

1953 
1954 

203 
211 

222 
229 
235 
239 
262 
313 
341 
352 
375 
401 
416 
431 
446 

1950 
1951 
1952 
1953 
1954 
1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1964 

1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1964 

1965 
1966 
1967 
1968 
1969 

510 
543 
569 
600 
628 
660 
692 
724 

759 
797 
824 
847 
872 

901 

936 

469 
491 
509 
525 
548 
559 
568 
580 
594 
612 
627 
650 
676 
721 
790 

1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 

1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 

971 
1019 
1074 
l 155 
1269 
1381 
1581 
1753 
1895 
2020 
2212 
2401 
2576 
2776 
3003 

836 
948 

1048 
1138 
1205 
1306 
1425 
1545 
1674 
1819 
1941 
2097 
2234 
2384 
2417 

1980 
1981 
1982 
1983 
1984 

1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 

1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 

3237 
3535 
3825 
4066 
4146 
4195 
4295 
4406 
4519 
4615 
4732 
4835 
4985 
5210 
5408 

2428 
2483 
2541 
2598 
2634 

2702 
2751 
2834 
2996 

3111 
3111 
3203 
3364 
3391 
3456 

1995 5471 
1996 5620 
1997 5826 
1998 5920 
1999 6059 
2000 6221 

2001 6334 
2002 6538 

2000 3539 
2001 3574 
2002 3623 

(co'1/.) 



TABLE 16.8 (cont.) 

Civil Works Construction Cost Index (CWCCI): Composite Index (fiscal year average: 1967 = 100; example: FY1988 = Oct. l, 1987-Sept. 30, 1988) 

1975 189.80 1985 354.31 1995 452.31 

1976 203.43 1986 356.24 1996 462.16 

1967 100.00 1977 215.68 1987 361.43 1997 472.17 

1968 104.98 1978 234.58 1988 374.45 1998 478.10 

1969 112.09 1979 255.68 1989 388.68 1999 486.21 

1970 119.92 1980 280.71 1990 398.34 2000 497.07 

1971 132.17 1981 308.09 1991 406.78 2001 503.52 

1972 142.49 1982 329.87 1992 415.22 2002 516.76 
1973 149.16 1983 340.21 1993 427.83 

1974 166.25 1984 349.63 1994 439.45 

Source: CCI and BCI, E11gi11ecri11g News Record; CWCCl, U.S. Army Corps or Engineers EMI 110-2-1304. 

~ 
co 
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quarterly basis. Because the CWCCI is not available before 1967, the CCI can be 
used to update to 1967 ~after which the CW CCI can be used. For simplicity, the fis
cal year index can be treated as a calendar year index in long-term cost updates. 

Example 16-16. 

A multiple-purpose reservoir project had a construction cost of $14,500,000 in 1954. 
What would the same project cost if built in 1993? 

Solution: First use the CCI to update to 1967; then use the CWCCI. 

CC/1967 
C1961 = C1954CC/ 

1954 

1074 
= 14.500,000 628 

= 24.797.771 

CWCC/1993 
C1993 = C1967CWCC/ 1967 

428.49 
= 24,797.771100.00 

= 100,626,000. 

Note: Original cost is usually expressed at the midpoint of a multiyear construction pe
riod. in 1954 dollars in this case. 

Other indices are also available. The U.S. Environmental Protection Agency 
(EPA) historically has published indices for wastewater treatment plants and sani
tary sewers. while the Bureau of Reclamation uses indices appropriate to water re
source development projects of that agency. 

Inflation Rate. Because cost indices measure the price of a standard pack
age of goods, they reflect pure price inflation. The inflation rate, f, is the compound 
rate of increase in price of a good or fixed package of goods and is usually expressed 
on an annual basis. In general, 

where 

Fa = actual future price of a good; 

Pa = actual price in period zero; 

f = inflation rate per period; and 

n = number of periods. 

Deflation is said to occur if f is negative. 

(16.15) 
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Example 16-17. 461 

What was the overaIJ annual rate of . fl . . 
· 70 2000? '" ation in c · 
19 - · onsumcr goods for the period 

Solution: Pa = ~, 1970 = C P ! 1970; Fa ::: p 2001 == 
2
r.rn 

38.8, CP/
2000 = 172.2. a CPI ·From Table 16-7. CPJ 1 '-,~ 1J = 

172.2 == 38.8( I + !)Yi 

f == 5.1 %. 

16.D.2 Inflation-Adjusted (Real) Rate of Return 

If future returns from an investment are expressed in future (actual, or current) dol
lars rather than today's (constant, or real) dollars, they must be converted to the lat
ter before the real (inflation-adjusted) rate of return can be found. The analysis is 
complicated by the presence of depreciation and taxes. Depreciation write-offs are 
in today's dollars, while taxes are based upon future (actual, or current) taxable in
come. 

Example 16-18. 

Find the nominal and real rates of return for the investment shown. if the inflati.on rate 
is 5 % . Depreciation is straight line over five years, with no salvage, and a margmal tax 
rate of 34% applies. 

Year Actual Cash Flow 

0 S-1000 

350 

2 400 

3 450 

4 500 

5 550 

Solution: Account for depreciation and taxes: 

Actual After-Tax 

Actual Tax Cash Flow 

Year Cash Flow S-1000 

0 -51 299 
0 $-1000 

-200 
150 

-68 
332 

350 200 365 
400 -200 

250 
-85 

398 2 
-200 -102 450 300 431 3 
-200 -119 

4 500 
-200 

350 

5 550 
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Convert actual after-tax cash flow to real dollars: 

Year 

0 

1 

2 

3 

4 

5 

Actual After-Tax Cash Flow 

$-1000 

299 
332 
365 
398 
431 

Multiply by 

(1 + [)0 

(1 + n-1 

<1 + n-2 

(1 + 1r:i. 
(1 + tr4 

( 1 + n-s 

Find the nominal rate of return: 

1000 = 299(1 + ;*r1 + 332(1 + ;*r2 + 365(1 + i*t3 

+ 398( 1 + ;*r4 + 431(1 + i*t5
• 

By trial and error. i* nominal = 22.36%. 
Find the real rate of return: 

1000 = 28s(1 + i*r1 + 301(1 + i*r2 + 315(1 + i*t3 

+ 327(1 + ;*r4 + 338(1 + i*r5
• 

By trial and error, i* real = 16.53 % . 

Chap. 16 

Real Cash Flow 

$-1000 

285 

301 

315 

327 
338 

Note that real rate of return is not simply 5% less than the nominal rate. 

Relationship Between Nominal and Real Rate of Return. Consider an 
investment. P, with a single actual payment, Fa, in period n. The inflation-adjusted 
payment is 

Fa = Frcal = Fa(l + f r 11 

and the real rate of return, t, is that rate that produces 

This can be written as 

P = Fa(l + tr11 

(1 + f*) 11 

Fa P=-----
(l + i*)'1(1 + f)" 

Fa = ~~~~~~~ 
[(1 + t)(l + f)]/l 

Fa = ~~~~~~~-
( 1 + t + f + tf)n 

Fa 

(1 + ut 
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where u is the nominal, or overaIJ 
rate of return . 

• given by 
ll==(+f+· .. If. 

463 

Example 16-19. (16.16) 

Use the overall rate of return found. E 
m xample 16-18 t I 

• o ca culatc the real rate of return 
SolutJOn: u = 22.36 % ; f == 0.0S: find i*: · 

ll ::: i* + f + i*J 
ll - f 

i*==-
l + f 

::: 0.2236 - 0.05 
1.05 

::: 16.53% 

which was found by trial and error in Example 16-18. 

Example 16-20. 

A three-year Treasury note is purchased for $10,000 and pays 6% interest ($600) each 
year for three years. At the end of year 3, in addition to the interest, the $10.000 origi
nal payment is returned. Inflation is expected to be 3, 4, and 5% in years C 2. and 3. re
spectively. Neglecting taxes, what is the nominal and real rate of return on the note? 

Solution: Because inflation varies by year, create price indices to deflate future payments. 

Year Actual Cash Aow Price Index Real Cash Flow 

0 $-10,000 $100.00 S-10.000.00 

2 

3 

600 

600 

600 

10,000 

103.00 582.52 

107.12 560.12 

112.48 533A5 

8.890.79 

. I h flow multiplied by the ratio of price 
fl · Yi ar 2 1s actua cas ~or. example, real cash ow 1~ e lOO.OO/l0?.12) = $560.12. . 

md1ces for Year 0 and Year 2. (600)( f turn usino actual dollars. 
· al rall rate o re 0 

Determine the nomm • ove _ 1 

-2 600(1 + u(' + 10.000(1 + u) -
10,000 = 600(1 + ur1 + 600(l + u) + 

giving u = 6.00%. . 
The real rate of return is __ , 

.•)-1 + 560.12(1 + r) -
== 582.52( 1 + I ·• -3 

10,000 .• -3 + 8890.79(1 + l ) • 

+ 533.45(1 + l ) 
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An approximation can be found by using u = 0.06 and f = 0.04 (midpoint inflation) in 

II - f .. 
I=--

1 + f 
yielding 1.92%. Trial and error produces the true value for real rate of return: 

t = 1.96%. 

16.E PERSONAL FINANCIAL PLANNING 

Most of the engineering economics and mathematical modeling topics discussed in 
this book are directly applicable to personal financial planning. Illustration of some 
specific application areas follows. Also, it should be noted that there are many use
ful guides to personal financial planning in the popular literature (some are listed in 
the bibliography at the end of this chapter). The authors encourage all recent engi
neering graduates to become familiar with these guides and to develop personal fi
nancial plans early in their career. An example adapted from The Wealthy Barber 
(Chilton. 1991) explains why. 

Example 16-21. 

At age 22, one of two twins (twin A) starts investing $2000 per year in a retirement ac
count earning 8% compounded annually tax free. He invests for only eight years and 
never saves a penny thereafter. The other twin (twin B) waits 10 years, then invests 
$2000 in a similar account every year for 33 years until age 65. The twins meet at age 65 
and discuss retirement plans. What is the relative value of their accounts? 

Solution: 

Twin A: F65 = A(PIA. 8%, 8)(FIP, 8%, 43) 

= 2,000(5.746639)(27.36664) 

= $314,532. 

Twin B: F65 = A(FIA, 8%, 33) 

= 2000(145.95061) 

= $291,901. 

Conclusion: Twin A is slightly better off, even though contributions were made for only 
eight years. More of twin A's final amount is composed of interest earnings than is the 
case for twin B~ illustrating the advantage of investing early. 

16.E.1 Mortgage Interest and Principal Payments 

A mortgage is the commitment of an asset (such as a home) as security for a loan. In
terest on a home mortgage is tax deductible if you itemize. The interest deduction ~p
plies to both the principal and second residence, if any. Loans used to acqmre, 
construct, or improve a first or second home are called home acquisition loans, for 
which the interest on up to $1 million in debt is deductible. Loans secured by a home 
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mortgage but used for any other p 465 
l urpose are c II d 

interest on a oan amount up to $100 000 . a e home eqwn· 1 . 
Joan subject to interest deductibility' is deductible. The amou~t :~~~· f~r which the 
the fair market value of the home mi~~nnot exceed the home equih.· itsc lfodmef. equity 

· · h · s any outstand· 1 "J e , e med as 
ductmn mt e mterest deduction must b . mg oan principal Furth 

. e made 1f the d' · er. a re-
gle taxpayer, or marned taxpayer filingjo· ti a JUsted gross income for a · _ 

m y, exceeds $137,300 (in 2002 ). sm 

Example 16-22. 

A single taxpayer with an adjusted gros . 
to purchase certain consumer goods Ths mcome of ~90,000 obtains a home equitv loan 

. · e outstandmg · · 1 . . • 
gage 1s $40,000 and he obtains a $70.000 1 R . pnncipa on his original mort-
$100,000. What is the Joan amount for \~hich oa?. air market. value of the home is 

an mterest deduction may be taken? 

Solution: The taxpayer's AGI is less than $137 300 d · . . 
· · . • •so no re uct1on m mterest deduc-

tion 1s necessary. The loan amount sub1ect to an interest d d t. · f · 
• • • . i e uc 10n 1s air market value 

mmus any unpaid loan prmc1pal: 

$100,000 - $40,000 = $60.000. 

This is less than the $100,000 allowable ceiling; therefore! interest on the entire $60.000 
is tax deductible. Note, however, that interest on $10,000 of the $70.000 loan is not tax 
deductible. Also note that it is highly unusual for a bank to loan more than 80-90% of 
the equity amount held by the homeowner, and higher interest rates apply to these 
higher percentages. 

A loan payment is composed of an interest payment an~ a payment that r~
duces the principal of the loan. These two amounts vary over time, as computed m 

Example 16-23. 

Example 16-23. . 
. h second residence for $130.000! of which 

As an investment, an engmeer pure ases. ad 
1 

is obtained at 8% compounded 
$100,000 is the mortgage loan.A 30-year fi.xe -rate oan 
monthly with monthly payments. 

(a) 

(b) 

What is the monthly mortgage payment? . t and principal for the first 
t between mteres f 

What is the division of the paymen $50 000 is made in month 4 and another o 
. · df II payment of ' nine months 1f a wm a 

$40,000 is made in month 7? 

Solution: 

(a) 100,000 

~m 
AAAA 

II ::30 (12) 
==360 

-ir;= •• Hl 
• • ' AAA 
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'v 0.08 -
im = _.:..... = -- = 0.006666~ 

111 12 

A = P(AIP, i, n) 

( 
i(l + i)" ) 

= 100.000 (1 + i)" - 1 

(
0.006666(1 + 0.006666)~60 ) 

= 100 000 -
~ ( 1 + 0.006666 )360 

- 1 

= $733.76 per month. 

Chap. 16 

(b) For the first month, interest is owed in the amount of 

End of 
Month 

0 

1 

2 

3 

4* 

5 

6 

7* 

8 

9 

(0.006666)($100,000) = $666.67 

but a payment of $733.76 is made. The difference, $67.09, goes toward re
ducing the principal to $99.932.91. on which interest is owed at the end of 
month 2 in the amount of 

(0.006666)( $99,932.91) = $666.22 

and so on, as summarized in the following table. 

Payment on 
Principal as 

One Month Payment on Percentage of Principal 
Payment Interest Principal Payment Outstanding 

100,000.00 

733.76 666.67 67.09 9.14 99,932.91 

733.76 666.22 67.54 9.20 99,865.37 

733.76 665.77 67.99 9.27 99,797.38 

50,000.00 665.32 49,334.68 98.67 50,462.70 

733.76 336.42 397.34 54.15 50,065.36 

733.76 333.77 399.99 54.51 49,665.37 

40.000.00 331.10 39,668.90 99.17 9,996.47 

733.76 66.64 667.12 90.92 9,329.35 

733.76 62.20 671.56 91.52 8,657.79 

'Windfall payments. 

Note: 

• Initially, monthly payments are almost entirely (over 90%) devoted to paying interest. 

• When principal outstanding is cut in half to about $50,000, about half of the pay
ment goes toward reducing the principal. 

• When only about 10% of the principal is outstanding ($10,000), about 90% of the 
payment goes toward reducing principal. 
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windfall payments), a total of abxam$ple 16-23, under a 

. h . b h out 7970. . normal rep 
wh1c IS a ove t e standard ded . m interest would b . a!'mcnt plan (no 

couple filing jointly in 2002. Als:ct~~n of $4700 for a single 
1
::aid m the first year. 

than $2000 per year on this hou ' ~ pert~ taxes are deducf bl payer or $7850 for a 
fits of home ownership. It shou~de. 1 ese figures indicate the1c e a_ndd could be more 

f a so be not d h ons1 erablc tax b 
amount o mortgage interest to th b e t at lending inst't . ene-
(IRS) each year {usually in Januarye) forrower and to the Inter~a; ~t10,ns report t_he 

or the previous ta e\cnue Service x year 
16.E.2 Home Finance · 

There are many rules of thumb used t d . 
ff d o etermme how h . . . 

can a or to pay on a home mortgage h muc an mdJVJdual or familv 
· h ' or w at the purch · ~ house m1g t be. All such rules have sho t . ase pnce of an affordable 

final decision depends on the personal ~~~mt~gs ~nd sh.ould be used with care. The 
and the financial assessment of prospective ~~rt~ h~blls of the prospective buyer 
rules are g ge enders. Some commonly used 

1. You c~n afford to buy a home that costs 2.5 times your annual income (Morris 
and Siegel, 1992). 

2. Monthly "home costs" should not exceed one to one-and-a-half week's take
home pay (Bamford et al., 1992). Home costs are taken to mean mortgage, in
surance, and taxes. 

3. Real estate experts suggest that a middle-income family can afford to pay 35% 
of its gross annual income for housing-including utilities, heating. insurance, 
taxes, maintenance, repairs, and mortgage payments (Bamford et al., 1992). 

4. Lenders often use guidelines established by the Federal National Mortgage 
Association that say the monthly debt obligation on a house-mortgage pay
ment, property taxes, and insurance-should not exceed 28% of ~onthly gross 
income, and total housing and other debts should not exceed 36 Yo of monthly 
gross income, all based on a 10% initial down payment. 

Example 16-24. 
. $6? 000 of which $4l800 is take-home. Her 

An engineer has a gross annual mcome of -~vin 's zero debt). Aside from mortgage 
car and other consumer purchases are from s. gd( heatino (oas). $750: electricity. 

. t are estimate as e e 
payments, other annual housmg ~os s 340: maintenance and repairs. $6~:. an~ 
$1000· water $460· phone, $800; msurance! $ . f af'ordable home for this mdr-

' ' ' . . . um pnce o an 1' .., 

Property tax $2300. Estimate the maxim d d monthlv over _,o years, assum-
. ' . · 9% compoun e · 

v1dual if the mortgage mterest rate is 
ing a 10% down payment. 

Solution: 

R . 5(62 000) = $15S,OOO. 
ule 1: Simply 2. • .. (~) = $!263/month. 

Rule 2: Home costs could be up to (l.:.>) 5Z 
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Subtracting nonmortgage home costs, 

340 + 2300 
1263 -

12 
= 1263 - 220 = $1043/month for mortgage only. 

At 9% over 30 years, compounded monthly, 

P = A(PIA, 0.0075, 360) 

= 1.043(124.28187) 

= $129.626. 

Considering the down payment, 

(x - O.lx) = 129,626 

x = $144,029. 

Rule 3: Using 35% of gross annual income, 

0.35(62,000) 

12 
= $1808/month. 

Subtract nonmortgage payments 

1808 340 + 2300 + 750 + 1000 + 460 + 800 + 600 $1287/ h -
12 

= mont mortgage. 

At 9% interest as before! 

p = 1287(124.28187) 

= $159.951. 

Again! considering down payment, 

(x - O.lx) = 159,951 

x = $177,723. 

Rule 4: Using 28% of monthly gross income! 

(
62,000) 

(0.28) U- = $1447/month. 

Subtracting nonmortgage debt obligations, 

2300 + 340 
1447 -

12 
= $1227/month mortgage. 

As before. 

p = 1227( 124.28187) = $152,494; 



Sec. 16.E Personal Financial Pl . 
anning 

with down payment x _ $ • - 169 438 469 
There are no other debt ' · s, so the 36o/c r . 

o irnu docs not · apply: 

x == $ 169.438 
TI1e estimates have a ran f · 

ge o over $30.000 b . 
. ut stJll serve l . 

16.E.3 Retirement Accounts 
0 

PTO\'Jde some guidance. 

General. In retirement · . 
Security, (2) employer-sponso;~~c~~~ Is most commonly provided th h ( 
defined-contribution pensions (4) el md~d~benefit pensions. (3) emp~~\~g 1) Social 

d (5) · t . ' n 1v1dual Retir . er-sponsored 
an pnva e retlfement savings. If th ement Arrangements (IRA·) 
ther on a full-time or part-time basis-· ese are. not adequate, continued work s< 

. . is an option A c -e1 
retirement mcome should be at least ?O-sooi · ~mmon rule of thumb is that 

· t · 10 of pre-retire f to mam am generally the same standa d fr . ment mal annual income 
dec~de ?n the appropriate percentage ~as~d ~~n~. However. each individual should 
pro1ect10ns and individual goals. his or her specific household budget 

s~nt a~:~:~:y~~c\~::·ea!~:~t~~~~~.~:~!~~n:;:s~~:;t~~:10~;:!:~t~:;~~~ 
fI~al annual mco~e, benefits decrease as income goes up. For enoineers and other 
high-wage profess10nals, Social Security benefits represent a dep;ndable but unac
ceptably small percentage of final average salary. 

. Employer-Sponsored Defined-Benefit Pensions. Defined-benefit pen-
sion plans are funded entirely by the employer using actuarial data on expected life
times of the employee group, and the level of future benefits desired. Only one 
company account exists, from which all beneficiaries are paid. Benefits are generally 
determined by the number of years an employee has been with the company and his 
or her final average salary. Company qualified plans are monitored by the federal 
government to ensure that stated benefits can be met. Qualified plans also have the 
advantage that employer contributions are not counted as income to the ~mployee 
in the year they are contributed, thereby deferring payment of taxes u.ntil benefit~ 
are received. Historically, this was the most common private sector pension plan, bu 

it has gradually lost favor to defined-contribution plans. 

. d C tribution Pensions. Defined-con-
. Employer-Sponsored Defme · on f d payment upon retirement. 

tnbution pension plans do not guarantee a hixe pan)'. an account is estab-
R · · d by t e com · . 

ather than a single account mamtame 1 and employee contnbute 
lished for each employee. Generally, both ~he ~mp oftye~ being a fixed percentage 

' ntnbuuon ° e .... · t 
to the account with the employers co r· t the employee in reuremen ' · · Bene its 0 · th 
match of the employee's contnbutJO~S. d erformance of investments ID e 
depend both on the level of contribut~~ns anl p are monitored by the federal 

ahf1ed Pans 
employee ·s account. Company qu 
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government, and contributions are tax deferred. There is a wide variety of de
fined-contribution pension plans, including subsidized thrift; employee stock 
ownership plans; profit sharing; and deferred compensation plans-401(k) for 
the private sector, 403(b) for religious, charitable, public educational, or nonprof
it organizations, and 457 for state and local government and tax-exempt organi
zations other than religious organizations. 

Deferred compensation 401(k) plans are common in engineering firms. Such 
plans offer the benefit of tax deferral on both employee and any employer contri
butions. Accumulations (e.g., interest and dividend earnings and capital apprecia
tion) in the fund are also tax deferred until withdrawn in retirement. The annual 
salary reduction limit for 401(k), 403(b), and 457 plans in 2002 was $11,000, increas
ing by $1000 per year to $15,000 in 2006. Employees 50 or older may be allowed ad
ditional .. catch up'' contributions. The relatively high contribution limits are another 
advantage of these plans. Investment choices within an account vary by employer; 
some are quite limited. others are wide-ranging. Withdrawals before age 59! are 
subject to a 10% penalty (payable to the IRS), and income taxes must be paid, un
less the funds are transferred to another retirement account. Some employers offer 
to provide a match of employee contributions up to a certain percentage of employ
ee salary. If so. the employee should make every effort to contribute at least up to 
the limit of the match. 

A simplified employee pension plan (SEP), if established by an employer, allows 
the employee the option of an elective deferral of income whereby the employer 
contributes part of the employee's income in addition to the employer's contribu
tion. Neither employer nor employee contributions are taxed in the year of contri
bution. but are taxed along with accumulations upon withdrawal in retirement. If a 
person is self-employed, or earns self-employment income in addition to income 
from a place of employment. he or she may set up a Keogh plan and make tax-de
f erred contributions to the account, within certain limits. 

With any employer-sponsored retirement plan, an employee may withdraw his 
or her own contributions at any time, including at termination of employment. 
HoweveL unless the employee is l'ested, he or she cannot withdraw any contribu
tions made by the company, nor any interest earned in the account (including inter
est on the employee·s own contributions). The Tax Reform Act of 1986 requires 
that. at the employer's choice, employees either be 100% vested after five years or 
20% vested after three years and incrementally graduated to full vesting after seven 
years. Vesting can be sooner than these limits, at the employer's discretion. Vesting is 
an important consideration when deciding whether and when to leave one employ
ment to accept another. 

It is very important to note that, if the employee wishes to move funds from one 
retirement plan to another (if changing employers, for example), it is best that the 
employee never receive the funds personally. Rather, the employee should authorize 
the second plan to request a rollover of the funds to it from the first plan. This pro
cedure avoids the possibility that the employee may incur an early withdrawal 
penalty and be required to pay taxes on the withdrawal. 
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come can set up an IRA through ge:ents ORAs). Anya h 
credit union approved by the IRSatny ank, brokerage firm i~e w o has earned in-

. d f" d . o serve as . , surance compa 
come ts e me to mclude salary and custodian for the ac ny._or 

· · wages but t · count. Earned in 
contnbutions to IRA accounts cann t ' no Interest or dividend· -
traditional IRA, whether contribut1'oon excefed earned income for a give1nn~~me.FTotal 

. . s are ully · II ,ear. or a 
depends on ftlmg status, income and 1. 'partia y, or not at all tax--deduct'bJ 

I 20 , re 1rement pla 1 e 
ployment. n 02, a single taxpayer could .b n coverage at the place of em-
50) to a traditional IRA. If married filing. ~on1tn ute up to $3000 ($3500 if over age 

· . JOmt y. each spo 1 . ($3500 tf over age 50) if total earned in · use cou d contnbute $3000 
tions and all accumulations are tax-deferrceodme t\~las .sufficient. Deductible contribu-

bl . un I withdrawn and th regular taxa e mcome (any contributions p . 
1 

are en treated as 
) E d . . . rev1ous y taxed can be withdraw t 

free . xcept un er special conditions withdrawal (d' .b . n ax-
91 b" 100 , s istn ut10ns) taken before age 

5 2 are su Ject to a Yo penalty and regular income t s ·f· . . . . 
· b · b · ax. pec1 1ed mm1mum d1stn-

but1ons must egm y Apnl 1 of the year following the · h. h h 
h 701 year m w 1c t e person reac es age 2. 

In contrast, contributions to a Roth IRA are not tax-deductible at all but II 
withdrawals (of contributions and accumulations) are tax-free. Contributio~ Iim:ts 
are the same as for a traditional IRA. However, total contributions to a traditional 
and Roth IRA in any year cannot exceed the individual limits stated above. With
drawals taken before age 59! are subject to a 10% penalty and regular income tax. 
There are no requirements on the age at which to begin taking distributions. 

Drawbacks of an IRA are (1) the relatively small amounts that can be con
tributed (as opposed to employer-sponsored defined contribution pension plans) 
and (2) the fact that in most cases contributions to a trad~tional IRA are ?ot entirely 
tax-deductible, and contributions to a Roth IRA are entirely nondeductible. 

Private Retirement Savings. Private retirement savings are an import~nt 
. . Th t k many forms e o stock portfohos, 

Part of overall retirement stab1hty. ey can a e ' 'b'' 
1 . 11 t 'bles and real estate or renta bonds certificates of deposit, saVJngs accounts, co ec 1 · . . d 

, . . . d. . o ish between retlfement savmgs an 
property. However, It IS important to istmbu d d replenished manv times 
normal savings. Normal savings are generally use. up ~~s. or even a home i~ rather 
during a working life. Saving for cars, colle~e, vacatti~n be effective retirement savings 

d · for retrremen · 10 ' · short-term when compare to saVIIlg . 
1 

( penalties) to access. Otherwise, 
should be set aside in accounts that are difficuft carryth y are needed in retirement. In 

·11 b nt be ore e b it is likely that such savings WI e spe d IRAs have an advantage e-
. n plans an k I this regard employer-sponsored pensi~ ·ngs in the form of stoc s or rea 

' · t etrrement savi . · d t lower 
ca use they are hard to access. Pnva e r ital ains upon liquidat10n are taxe a 
estate have the advantage that any cap g . b r·t pen-

. d defined ene I 
rates than regular mcome. . d employer-sponsore d rd of living 

. S · I Secunty an l yee 's stan a To summanze, ocia aintain an emp 0 . d IRAs have 
· . b dequate to m . · pensions an 

s1ons generally will not e a d defimed contnbuuon e tax-deductible 
onsore f h se plans ar · upon retirement. Employer-sp . advantages o t e 

developed to fill the gap. The prunary 

-----
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contributions and tax-deferred accumulations. In addition, employers may make 
tax-deferred contributions to the plans or provide a partial match of employee con
tributions. Private retirement savings are another important source of retirement in
come. Example 16-25 demonstrates the advantages of tax-deferred contributions 
and accumulations. 

Example 16-25. 

With annual contributions of $2000. calculate the amount accumulated after 30 years in 
a retirement savings account at 8% interest with 

(a) tax on contributions and accumulations (incremental tax rate of 28% ); 
(b) tax on contributions but not accumulations; 
(c) tax-deferred contributions and accumulations. 

What are the final amounts normalized in percentage terms? 

Solution: 

(a) Each year ( 1 - 0.28)(2000) = $1440 is contributed, and the after-tax rate of re
turn is (1 - 0.28)(0.08) = 5.76%: 

F = $1440(F/A 5.76%~ 30) 

(1 + 0.0576)30 
- 1 

= 1440 0.0576 = $109~148. 

(b) Each year $1440 is contributed. and the rate of return is 8%: 

F = 1440(FIA~ 8%, 30) 

(1 + 0.08)30 
- 1 

= 1440 0.08 = $163,128. 

(c) Each year $2000 is contributed~ and the rate of return is 8%: 

F = 2000(FIA. 8%~ 30) 

(1 + 0.08)30 
- 1 

= 2000 0.08 = $226,566. 

(d) Normalized amounts are 

(a) 48.2%, (b) 72.0%, and (c) 100.0%. 

The benefits of tax deferral are obviously very strong. 

Pension Amount. Given a pension fund of initial amount, P, earning an in
terest rate, i, compounded annually, how long will the fund last if equal annual with
drawals of wo/o of Pare made starting at the end of year 1? 

Obviously, w must be larger than i, or the fund would last forever. The calcula
tion can be made as follows: 
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End of Year 

Amount 
Left in 

Pension 
Fund 

Assuming 
i = 5%, 

w = 10% 

0 
1 
2 

3 

11 

p = $1 
0.9500 
0.8975 

0.8424 

0.1144 

0.0201 

Calculation -------------=: 
P(l + i) - wP 
f P(l + i) - wPJ(l + .. 

1) -1cP 
= P(l + i)2 - wP(l . . ) 
- . , Tl - ll'P 
- P(I ~,1)· - wP[(I + i) + I] 

[P(l + z)· - wP[(l + i) + l]](l .._ .) 
= P(I + ·)J , . · 1 - 1cP 
- ~ l - wP[(l + i)· + (1 + i)J - u·P 
- P(l + i)· - wP[(l +ii+ (l + i) + l] 

P(l +it - wP[(l + i)n-1 + (l + ·)n-~ . ·. . 
I ,. ... - (l ~ 1) ,. 1] 

P(I + i)u - wP[(l + i)12 + (1 + i)11 + ... + (I ~ i) .._ I] 

P(l + i)1-1 - wP[(l + i)u +(I + i)I~ + ... + (l + i) + 1] 

*Last year in which 10% of P can be withdrawn. 

As .shown, the general equation for the amount remaining in the pension fund 
after a withdrawal at the end of period n is 

P,, = P(l + i)n - wP[(l + w-1 + (1 + nn-2 + · .. + (1 + i) + lJ. (16.17) 

The sum within brackets can be found by adding one to the sum of the first ( n - 1) fu-
ture worth terms in the Appendix. The pension fund will last slightly more than 14 years 
if i = 5 and w = 10%. For convenience, Table 16.9 is developed using equation 16.17. 

TABLE 16.9 NUMBER OF FULL YEARS A PENSION FUND WILL LAST 

Annual Effective Interest. i, on Fund(%) 

Annual 
Withdrawal, 

6 7 8 9 IO 
w(%)of P 3 4 5 

9 9 10 11 
15 7 7 8 8 

13 
10 11 11 

9 9 14 8 8 13 15 
11 12 

9 10 18 13 8 9 14 16 
11 11 12 

25 12 9 10 16 19 
13 l~ 

11 12 26 OC· 11 10 17 20 
13 14 15 

00 oc 10 12 22 28 
14 16 18 

00 x 
9 13 30 00 

20 23 x X' 
8 15 17 00 

·00 

25 33 00 00 

7 18 21 ()J 
00 

6 23 28 36 -
.., 

' 
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Example 16-26. 

Charlotte and Dick are both 60 years old and married. Their joint life expectancy is 26 
years, and they have $50,000 in an IRA earning 6%. If they want to deplete the account 
in 26 years, how much must they withdraw each year? 

Solution: From Table 16.9. with i = 6%, they can withdraw between 7 and 8% of the 
initial amount every year. By interpolation. 

or 

8 % - ( 26 - 23) ( 1 % ) = 7. 7 % 
33 - 23 

0.077($50.000) = $3850 yearly. 

16.E.4 Risk-Return Tradeoff 

Table 16.10 shows the tradeoff of investment risk and return for some common in
vestment options. Risk of loss of investment principal generally decreases down
ward in the table, with progressively safer and safer investments. On the other hand, 
percentage return possible on an investment also decreases downward. 

Investments giving low returns with high reliability causes another type of 
risk: that earnings will not keep up with inflation. For example, insured bank sav
ings accounts in 2003 commonly provided a return of less than 1 % , while inflation 
was near 2 % . If an investment does not grow considerably faster than inflation, it 
will not achieve such long-range goals as providing adequate retirement income. 

Portfolio Allocation. Every investor must decide on the level of risk that 
can be tolerated in his or her portfolio of investments. Generally the younger the in
vestoL the greater risk that can be tolerated. This is primarily due to the dilution of 
risk over time. For example, over a one-year period, a single stock may experience 
considerable growth or decline due to such short-term factors as the weather, poor 
management, economic recession or recovery, military conflict, and so on. But gen
erally, over the long run, if the company is basically sound, one would expect the 
price of the stock to appreciate at a level about equal to the general stock market. 
Therefore, if an investor is young, more of the portfolio can be devoted to growth
type investments. The closer the investor gets to calling upon (liquidating) the in
vestment portfolio--such as at retirement-the less risk can be tolerated. In retirement 
itself, maximum emphasis must be placed upon stability and income, while still 
leaving a portion of the portfolio dedicated to growth (especially in the early years 
of retirement). 
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TABLE 1610 
. TRADEOFF OF I 

Type of Investment NVESTMENT RISI( AN 

Spccufafi 
(h' Ve 

tgh risk, high return) 

Growth 

Growth/Income 

Income 

Stability 

(low risk, low return) 

0 RETURN 
Invc srcnenr 0 . Pl1on 

•State 1011 . en es •F . 
Utures !rad· 

I 0 . Ing 
prions trad· 

I c Jng 
ollectibles 

• Preciou s illelals 
•Junk bonds 

: Foreign Slacks. bonds 

SmaH-capilalization s1 k 
•Md. oc ·s 

c JUm-ca · I' 
• Lar . pita ization stocks 
• ~e-cap1taliza1ion srocks 

Equny mutual funds 
• Home purchase 

• Real estate invesim 
1 B en! trusts 

Jue-chip stocks 
• Utility stocks 

• Municipal bonds 

• Corporate bonds 

• Bond mutual funds 

• U.S. Treasury bonds 

• U.S. Treasury notes 

• Cash value !if e insurance 
• FL<ed annuities 

• U.S. Savings Bonds 

• Money market accoun1s 

• U.S. Treasury bills 

• Insured bank savings accounts 

•Cash 

Table 16 11 r . . Stock Index. ists histoncal stock prices as measured by the Standard & Poor"s 500 

Example 16-27. 

?n July 1, 1991 a person retires. Thirty years previously. this person purchased $10,000 
10 an S&P 500 Stock Index fund. Neglecting management charges and dividend returns. 

475 



476 Engineering Economics Ill: Depreciation, Taxes, Inflation Chap. 16 

TABLE 16.11 HISTORICAL STOCK PRICES (S&P 500 STOCK INDEX, AVERAGE OF DAILY 
PRICES) 

Year Price Index Year Price Index Year Price Index 

1959 57.38 

1960 55.85 1975 86.16 1990 334.59 

1961 66.27 1976 102.01 1991 376.18 

1962 62.38 1977 98.20 1992 415.74 

1963 69.87 1978 96.02 1993 451.41 

1964 81.37 1979 103.01 1994 460.42 

1965 88.17 1980 118.78 1995 541.72 

1966 85.26 1981 128.05 1996 670.50 

1967 91.93 1982 119.71 1997 873.43 

1968 98.70 1983 160.41 1998 1085.50 

1969 97.84 1984 160.46 1999 1327.33 

1970 83.22 1985 186.84 2000 1427.22 

1971 98.29 1986 236.34 2001 1194.18 

1972 109.20 1987 286.83 2002 993.94 

1973 107.43 1988 265.79 

1974 82.85 1989 322.84 

Source: U.S. Council of Economic Advisers. 

(a} how much should be in the retirement account? and (b) what compound annual in
terest does this represent? 

Solution: 

(a) Use the ratio of indices for 1961and1991 (both represent stock price at the mid
point of the year): 

(b) 

(
376.18) 

10,000 66.27 = $56,765. 

F = P(FIP, i, 30) 

376.18 = 66.27(FIP, i, 30) 

5.6765 = (FIP, i, 30). 

By interpolation in the Appendix, 

i = 5.95%. 
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this. For all common stocks ;es~mcnt of dividends. would b 
for the 1961-1991 period was n12t 44e New York Stock Exch c considcrablv more than 

· % (En J angc. the tot· J • ge and Hecht 1994 a annual return 
16.E.6 Bonds · ). 

There are basically three types of bond . US 
d · h · s. · governm 

A bon ts not mg more than a certificate th .t . ent, municipal, and corporat 
a certain rate of interest (usually in equ 1 a p~omises to pay the owner (or bearc;).· 
. d h f' a semiannual 

ume an t en a mal lump-sum amount on the bond' pay~ents) over a period of 
payment is for the face value or par valu f h s matunty date. The lump-sum 

. , e, o t e bond II . 
$1000. For new bond issues the face value . II · usua Y some multiple of ' is usua y the h . 
tion is the zero coupon bond, as explained later). pure ase pnce (an excep-

U.S. government bonds are by far the most · k f . 
. . · · · ns - ree m terms of default (l f 
1mt1al capital mvestment). The full faith and credit of th US] oss 0 

h. d h 'f' Th e · · reasury stands be-m eac certI 1cate. ese bonds also have the advant f b · . age o emg exempt from 
sta.te and local mcome tax ( altho~gh federal income tax must still be paid) and of 
bemg generally nonc~llable; that 1s, they cannot be paid off before their maturity 
date (or very close to it). The bearer, therefore, does not have to be concerned with 
finding another investment sometime in the near future. 

There are currently several varieties of U.S. Treasuries: Treasury bills have matu
rities of 4, 13, or 26 weeks; Treasury notes have maturities of 2 to 10 years; and 
Treasury bonds have maturities greater than 10 years. Government agencies also issue 
bonds from time to time. All these instruments are traded in financial markets. Three 
other government bonds are exclusively bought from, and sold back to, the U.S. gov
ernment at fixed prices: Series EE and HH Savings Bonds, a~d infla~ion or I-bonds. 

Table 16-12 lists historical annual interest rates associated with government 
and other types of bonds, as well as mortgages and loans. Hig.h~r interest is usually 
associated with a higher risk of default and with longer maturities. . . 

d · · f ti er time This Also evident is that interest rates have fluctuate sigm ican. Y ov · 
. h h sing intermediate to long-term 

is another source of risk, especially w en pure a b d holder has 1~ sell a 
notes and bonds (say, 5 to 30 years). If, for some reasohn, ae r1.osnen s1·nce the bond was 

T · t rest rates av 
bond before it matures, and prevai mg m e . Id for less than its face value. 
purchased, the bond will be discounted, that is, so 

Example 16-28 h 9 •ears left to maturity. It 
. h f value $10 000 as ) b . . 

A 20-year 6 % government bond wit ace b d a~d other investments are nngmg 
' h mparable on s is sold on the open market w en co 

12%. 
. ? . 

. f the discounted pnce. f return. given 
(a) What is a fair estimate o h bond what was the rate o 

h bearer held t e ' 
(b) For the 11 years that t e . . (a)? 

the estimate of sale pnce JO • 
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TABLE 16.12 HISTORICAL INTEREST RATES 

3-5 Year 
3 Month U.S. 10 Year High- New-

U.S. Treasury U.S. Grade AAA Bank Home 
Treasury Notes/ Treasury Municipal Corporate Prime Mortgage 

Year Bills Bonds Bonds Bonds Bonds Rate Rate 

1959 3.41 4.33 4.08 3.95 4.38 5.77 

1960 2.93 3.99 4.02 3.73 4.41 6.16 
1961 2.38 3.60 3.90 3.46 4.35 5.78 
1962 2.78 3.57 3.95 3.18 4.33 5.60 
1963 3.16 3.72 4.00 3.23 4.26 5.47 
1964 3.55 4.06 4.15 3.22 4.40 5.45 

1965 3.95 4.22 4.21 3.27 4.49 5.46 

1966 4.88 5.16 4.65 3.82 5.13 6.29 

1967 4.32 5.07 4.85 3.98 5.51 6.55 

1968 5.34 5.59 5.26 4.51 6.18 7.13 

1969 6.68 6.85 6.12 5.81 7.03 8.19 

1970 6.46 7.37 6.58 6.51 8.04 9.05 

1971 4.35 5.77 5.74 5.70 7.39 7.78 

1972 4.07 5.85 5.63 5.27 7.21 7.53 

1973 7.04 6.92 6.30 5.18 7.44 8.03 7.95 

1974 7.89 7.82 7.56 6.09 8.57 10.81 8.92 

1975 5.84 7.49 7.99 6.89 8.83 7.86 9.01 

1976 4.99 6.77 7.61 6.49 8.43 6.84 8.99 

1977 5.27 6.69 7.42 5.56 8.02 6.83 9.01 

1978 7.22 8.29 8.41 5.90 8.73 9.06 9.54 

1979 10.D4 9.71 9.44 6.39 9.63 12.67 10.77 

1980 11.51 11.55 11.46 8.51 11.94 15.27 12.65 

1981 14.03 14.44 13.91 11.23 14.17 18.87 14.70 

1982 10.69 12.92 13.00 11.57 13.79 14.86 15.14 

1983 8.63 10.45 11.10 9.47 12.04 10.79 12.57 

1984 9.58 11.89 12.44 10.15 12.71 12.04 12.38 

1985 7.48 9.64 10.62 8.18 11.37 9.93 11.55 

1986 5.98 7.06 7.68 7.38 9.02 8.33 10.17 

1987 5.82 7.68 8.39 7.73 9.38 8.21 9.31 

1988 6.69 8.26 8.85 7.76 9.71 9.32 9.19 

1989 8.12 8.55 8.49 7.24 9.26 10.87 10.13 

1990 7.51 8.26 8.55 7.25 9.32 10.01 10.05 

1991 5.42 6.82 7.86 6.89 8.77 8.46 9.32 

1992 3.45 5.30 7.01 6.41 8.14 6.25 8.24 

1993 3.02 4.44 5.87 5.63 7.22 6.00 7.20 

1994 4.29 6.27 7.09 6.19 7.96 7.15 7.49 

(cont.) 
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TABLE 16.12 (cont.) 

3-5 Year 
3 Month U.S. 

U.S. Treasury 
Treasury Notes/ 

Year Bills Bonds ---1995 5.51 6.25 

1996 5.02 5.99 

1997 5.07 6.10 

1998 4.81 5.14 

1999 4.66 5.49 

2000 5.85 6.22 

2001 3.45 4.09 

2002 1.62 3.10 

lOYear 
U.S. 

High-

Treasury 
Grade 

Municipal 
Bonds Bonds 

6.57 

6.44 5.75 
6.35 5.55 
5.26 5.12 
5.65 5.43 

6.03 5.77 
5.02 5.19 
4.61 5.05 

AAA 
Corporate 

Bonds 

7.59 
7.37 
7.26 
6.53 
7.0i 

7.62 
7.08 
6.49 

Bank 

8.83 
8.27 
8.44 
8.35 
8.00 

9.23 
6.91 
4.67 

479 

~ew

Home 
Mortgage 

Rate 

7.87 

7.80 

7.71 

7.07 

7.0-t 

7.52 

7.00 

6.43 
Source: U.S. Council of Economic Advisers. 

Solution: 

(a) A new purchaser will be willing to pay a price that will make the rate of return 
over the remaining 9 years equal to 12%. For simplicity, assume the semiannual 
interest payments are received at the end of a year. 

(b) 

A=600 t SI0.000 

! 
t t t 1'__..t__.t11=9 

p 

p = $600(P/A, 12%! 9) + $10.000(PIF, 12%. 9) 

= 600(5.328250) + 10,000(0.360610) 

= $6803. 

t $6803 

A=600 j 
~t __ t ~t -+- t 11=11 

r 
$10.000 

·• 11 + 6803(Pf f. i*, 11). 
$10,000 = 600(P/A.1 ·, ) 

. '*::: 3.6%. 
d · terpolauon, 1 

By trial and error an m 
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Conclusion: Significant interest rate loss will occur if a bond holder is forced to 
sell at a time when interest rates have risen significantly. Conversely, selling a high-yield 
bond during a period of low rates will result in a gain. 

Municipal bonds, or municipals, are bonds issued by state agencies, cities, coun
ties, school districts, water or wastewater districts, and other units of local government. 
The bonds can be used for the construction of roads, sewers, water systems, government 
housing, airports. schools, and so on. Interest on municipals is generally exempt from 
federal income tax, and is sometimes exempt from state and local income tax, espe
cially if the buyer resides in the state of issuance. This feature makes municipals par
ticularly attractive to individuals in higher income tax brackets. For example, a 
"triple-exempt'' bond offering a 6% return to a person in a combined incremental tax 
bracket of 36% would be equivalent to 9.38% taxable: (1 - 0.36)(9.38) = 6.0. 

General obligation municipal bonds are backed by the taxing power of the issu
ing local government. Re,•enue bonds are backed only by the income of the project in 
question. through water and/or sewer charges, for example. As such, revenue bonds 
carry a risk premium (higher interest rate yield) as opposed to general obligation 
bonds. Most municipal bonds are rated by investment firms such as Moody's or Stan
dard & Poor~s. and such ratings should be seriously considered by potential investors. 

The price of municipals is often quoted in terms of yield, maturity, and coupon 
interest rate. The investment firm in charge of issuing the municipal must then com
pute the actual sale price, as in Example 16-29. 

Example 16-29. 

A municipal bond has a 5.4% coupon rate, seven-year maturity, and a yield to maturity 
of 5.8%. It is sold in units of $1000 face value. What is the sale price? 

Solution: Annual interest payments are $54 and face value is received at maturity: 

P = $54(PIA, 5.8%, 7) + lOOO(P!F, 5.8%, 7) 

( 
(1.058) 7 

- 1) 
= 54 1 + 10oo(i.058r1 

0.058(1.058) 

= $977.51. 

Some U.S. Treasury bonds and municipal bonds are issued as zero coupon 
bonds. This means that no semiannual interest payments are paid. Rather, the pur
chase price is heavily discounted from face value to provide the desired yield to ma
turity. The resulting small initial investment is attractive to individual investors, 
especially at intermediate maturities for college expenses. The Series EE Savings 
Bond is a zero coupon bond. 

Example 16-30. 

A zero coupon 15-year bond has a 10% yield to maturity. If the face value is $10,000, 
what is the purchase price? 
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Solution: Draw the cash flow d' 
1agram: 

P==? 

SIOJXXJ 

11:::)5 

p ::: $10,000(P!F, 10%. lS) 

::: 10.000(0.239392) 

::: $2393.92. 
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Corporate bonds are also rated by inve t . 
ings should be of great value to individual . s ment service companies and the rat-
(BB/Ba or below) have been dubbed "J'unk ibnvesdt~~s. Bdonds with the lowest ratings 
· · on s an off er very hi h · t 

yields. As seen m Table 16.12 even th h' h g merest rate 
. Id , e ig est-rated corporate bonds generallv 

have y1e s above U.S. Treasury bonds or hioh-grad · · 1 .... . • 
. . o e mumc1pa s. However. mterest 
is not generally tax-deductible on corporate bonds. · 

CHAPTER SUMMARY 

This chapter places engineering economics in the context of corporate and personal 
financial planning. Depreciation, taxes, and inflation significantly affect the standard 
engineering economics calculations discussed in Chapters 14 and 15. In addition. the 
IRS Code must be considered in any corporate or personal financial plan. Because 
this code is complex and undergoes continuous modification, the topics and exam
ples in this chapter should be considered only as a starting point for more detailed 
investigation, planning, and analysis. 

EXERCISES 

16.1. 

16.2. 

16.3. 

16.4. 

16.5. 

. . . . . b d eciated over eight years using straight-
An asset with 1mhal cost of $20,~0 is .to e ep~2000 What is the annual depreciation 
line depreciation. Salvage value 1s esttrnated at · 
charge and schedule of book value? k 1 e for Exercise 16.1. 

. . d schedule of boo va u 
Compute the SOYD depreciation an ) d hedule of book value for 

( · h itch to SL an sc 
Compute the DOB depreciation wit sw 
Exercise 16.1. . . h SL) and schedule of book value if the 

. . ( ~th sw1tc to d 
Compute the DDB depreciation ' . . eriod is six years, an 
initial cost of an asset is $100.000. depreciauon p 

(a) salvage is high: S = $20,000; 

(b) salvage is low; S = 0. barges and tugs for $~.000.000 on 
. River purchases new e current and tuture years. 

A barge company on the Ohio . tion amounts for th 
August 28. Find the allowable deprecia 
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16.6. Derive the MACRS depreciation schedule for. 1~-year personal property (150% DB 
method). showing where to switch to SL deprec1at1on. Assume a $100 depreciable asset. 

16.7. On July 7. 1990. an engineering company purchased a s~le for a branc~ o~fice. Total cost 
was $500.000. of which $100,000 was for land. Delermme the deprec1at10n period and 
amounts allowed. 

16.8. On October 8. 1994, an engineer purchases a two-apartment housing unit for rental in
come and as an investment. Total cost was $300,000, of which $75,000 was for land. De
termine the depreciation period and amounts allowed. 

16.9. An engineering company has published a software program and related instruction 
manual for wastewater treatment plant design. It expects to sell 1000 copies at $500 
each before extensive revisions will be necessary. If development and publishing costs 
are $300.000 and 200 copies are sold the first year, what is the allowable depreciation? 

16.10. A photocopier rated at 1.000.000 copies is purchased by an engineering company for 
$10.000. In the third year of use. the digital counter shows that 150,000 copies were 
made. What is allowable depreciation for the third year, assuming that the units of pro
duction depreciation method has been elected? 

16.11. For $10.000.000. a major energy company has purchased oil extraction rights in a certain 
land tract. Originally. an estimate of 1,000,000 barrels total production was made, but in 
September 2002. this was raised by 200,000 barrels. By the beginning of 2002, 400,000 
barrels had been extracted and $3.500,000 cost depletion had been taken. In 2002 an ad
ditional 100.000 barrels were removed. What is the allowable cost depletion for 2002? 

16.U. For $800.000, a manufacturer purchased rights to extract clay and shale for making 
sewer pipe. In a certain year. gross income is $3,000,000 and taxable income is $300.000. 
What is the allowable depletion amount using percentage depletion? 

16.13. For a certain year. an engineering company has a total income of $5,000.000, expenses 
of $4.000.000, capital gains of $100.000, capital losses of $200,000, and depreciation and 
depletion allowances of $50,000 and $30,000, respectively. What is the firm ·s taxable in
come and tax payment? 

16.14. Susan is a self-employed environmental consultant and receives $40,000 in business in
come. Interest on several savings accounts totals $600, and stock dividends are $300. Sale 
of stock results in a $1000 short-term capital gain, and taxable refund of state and local 
taxes were $100. This year she contributed $4000 to her company's retirement plan. which 
is tax deferred. One-half of her Social Security tax payment is $3800, and she made pay
ments of $2400 for self-employment health insurance premiums. Susan is single and 
makes mortgage interest payments of $7500, pays state and local income taxes of $25~ 
and property taxes of $1500. Miscellaneous deductions total $900, and charitable contri
butions are $800. Medical and dental expenses do not exceed 7.5% of AGL Determine 
Susan·s (a) gross income, (b) adjusted gross income. (c) taxable income. and (d) tax owed. 

16.15. Compute the combined incremental tax rate if a person is in the 30% federal tax 
bracket and state and local taxes total 8%. 

16.16. A profitable corporation is in the 39% combined incremental tax bracket. On the fol
lowing investment (see table). calculate the 

(a) before-tax rate of return, 

(b) after-tax rate of return, and 

(c) rate of return when depreciation and taxes are included (straight line, N == 4. S == O). 
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Year Cash Flow 

0 $-20.000 

3,000 

2 6,000 
3 9.000 

4 12,000 

16.17. The CPI was 22.4 in 1947 and 179.9 in 2002, an approximate factor of 8 increase. Use 
the rule of 72 to estimate the annual compound rate of inflation for this period. Check 
by finding the exact value using the single-payment compound amount formula. 

16.18. If the inflation rate is 6%, find the nominal and real rates of return for the investment 
shown (see table). Depreciation is straight line over five years, with salvage equal to 
$200 at the end of year 5. A combined marginal tax rate of 39% applies. After the nom
inal rate of return is found, use the equational relationship between nominal and real 
rate of return to find the latter. 

Year Actual Cash Flow 

0 $-1000 
300 

2 350 
3 400 
4 450 
5 500 

200 
(salvage value) 

16.19. A five-year U.S. Treasury note is purchased for $10,000 and pays 7% interest ($700) 
each year for five years. At the end of year 5. in addition to the interest. the $10.000 
original payment is returned. Inflation is expected to be 3% per year for the five-year 
period. Neglecting taxes, what is the nominal and real rate of return on the note? 

16.20. An engineer is single with income of $80,000 and holds a first mortgage on his home 
with $50,000 principal outstanding. Fair market value of the home is $140,000. A home 
equity loan of $100,000 is taken out to start a business. What is the loan amount for 
which an interest deduction can be taken? 

16.21. A young engineer purchases a ''starter home .. on which a $50.000 mortgage is obtained 
at 9% interest compounded monthly. It is a 30-year, fixed-rate mortgage. 

(a) What is the monthly mortgage payment? 

(b) What is the division of the payment between interest and principal for the first four 
months if a windfall payment of $20,000 is made in month 3? 
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16.22.* 

16.23. 

16.24. 
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An individual takes out a car loan for $10,000 repayable in five annual installment 
10% compound interest, with an option to pay off the loan early with no penalty cha:g:~ 

(a) What is the payment required to pay off the loan at the end of year 3 after tw o an-
nual installments have been made? Assume the payment must be equivalent to th 
last three normal annual payments at 10% interest. e 

(b) Develop a table showing the total payment, interest .payment, principal payment 
and principal outstanding for each year under the five-year payment plan and ~ 
similar table for the three-year payment plan. 

(c) If the individual earns 5% interest in a savings account, and starts with $20,000 in the 
account, what will be in the account at the end of year 5 under the two payment plans? 
What is the savings for paying off the loan early, expressed in end of year 5 dollars? 

(d) What would be the savings over the two payment plans at the end of year 5 if cash 
had been paid for the car initially? 

A young engineer earns $50,000 gross income, of which $35,000 is take-home. A car pay
ment of $210 per month is made and is expected to continue at this rate for at least five 
vears. For average-sized two-bedroom homes in this geographic area, annual costs are 
~stimated as foll~ws: heating~ $600; electricity, $800; water, $400; phone, $500; insurance, 
$280: maintenance and repairs, $300; and property tax $1800. Estimate the maximum af
fordable house for this individual if the mortgage interest rate is 8 % compounded 
monthly over 30 years, assuming a 10% down payment. 

At age 60. an individual who is now 25 years old wants to have accumulated a $200,000 
retirement account. If the person expects to remain in the 27% incremental tax bracket, 
and the available pension funds are assumed to earn 9% interest, what amount would 
have to be contributed each year from this individual's annual income under the fol
lowing pension plans: 

(a) tax on contributions and accumulations; 

(b) tax on contributions but not accumulations; 

(c) tax-deferred contributions and accumulations. 

What are the final amounts, normalized in percentage terms? 

16.25. At age 60, male life expectancy is 18.2 years. At the same age, female life expectancy is 
21.7 years. If married. the joint life expectancy of two 60-year-olds is 26.0 years. If a pen
sion fund earns 7% and is to be depleted at the end of the life expectancy, what is ~he 
percentage reduction in annual pension amount for taking a "joint survivor" pension 
payout. as opposed to a '·single life" payout if: 

(a) the pension is held by the male; 

(b) the pension is held by the female. 

16.26. * An investor plans to supplement retirement income with stock dividends and does not 
want the total dividend amount to vary greatly year to year. Initially, assume th~t the~~ 
a~e. only two stocks lo choose from and that each costs $100 per share. The van~nce , 
dividend payments from stock 1 is $25 per share while the variance for stock 2 is onl) 
$9. Dividend payments for the two stocks are u~correlated. A total of $10,000 is 10 be 
invested. To minimize variance of total stock dividends 

' 
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(a) How much of each stock should be purchased? (Hint: Develop a small mathemati
cal programming model and solve by trial and error.) 

(b) Write a generalized (multistock) mathematical programming model. What tech
nique would you use to solve this larger model? 

16.27. For the decade of the 1980s, it has often been quipped that it was impossible to lose 
money in the stock market. What was the annual rate of price appreciation for the S&P 
500 Stock Index from mid-1979 to mid-1989? 

16.28. * Use the stock index data in Table 16.11 to illustrate the observation that risk declines 
with longer-held investments. Risk in this case can be measured by the spread (vari
ance) in annual rate of return in stock price appreciation. Form 1-, 5-, 10-. 15-, 20-, and 
25-year pairs of stock prices, and plot annual effective rates of price appreciation versus 
time, with time as the x axis. 

16.29. A $10,000, 30-year U.S. Treasury bond was purchased in 1980 at 11 %, and placed on the 
market in 1993 when comparable instruments were bringing only 6%. 

(a) What is a fair estimate of sale price? 

(b) For the 13-year period that the bond was held, what was the rate of return to the 
bond holder, given the sale price found in (a)? 

16.30. A municipal bond has a 7.1 % coupon rate, 12-year maturity, and a yield to maturity of 
7.5%. Par value is $5000. What is the sale price? 

16.31. A zero coupon IO-year note has a 6% yield to maturity. If the face value is $5000. what 
is the purchase price? 

16.32. A zero coupon $10.000 bond has five years left to maturity and must be placed on the 
murket by a bond holder when prevailing yields to maturity for 5-year bonds of similar 
quaJity are 5%. Whal is a fair estimate of the sale price of the bond? 
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Compound Interest Tables Appendix 

Arithmetic 
-r---

0.25% Single Payment Uniform Series 
Gradient Series 0.253 

Capital Compound --Compound 
Amount Present Worth Present Worth Rcco\'cry Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
ll FIP PIF PIA AIP FIA A/F PIG 

11 

-
1 1.002 500 0.997 506 0.997 506 1.002 500 1.000000 1.000 000 0.000 000 1 
2 1.005 006 0.995 019 I.992 525 0.501876 2.002 500 0.499 376 0.995 019 2 
3 1.007 519 0.992 537 2.985 062 0.335 001 3.007 506 0.332 501 2.980 093 3 
4 1.010 038 0.990062 3.975 124 0.251 564 4.015 025 0.249 064 5.950 280 4 
5 1.012 563 0.987 593 4.962 718 0.201502 5.025 063 0.199 002 9.900 653 5 

6 1.015 094 0.985 130 5.947 848 0.168 128 6.037 625 0.165 628 14.826 305 6 
7 1.017 632 0.982 674 6.930 522 0.144 289 7.052 719 0.141 789 20.722 347 7 

8 1.020 176 0.980 223 7.910 745 0.126 410 8.070 351 0.123 910 27.583 909 8 

9 1.022 726 0.977 779 8.888 524 0.112 505 9.090 527 0.110 005 35.406 138 9 

10 1.025 283 0.975 340 9.863 864 0.101380 10.113 253 0.098 880 44.184 201 10 

11 1.027 846 0.972 908 10.836 772 0.092 278 11.138 536 0.089 778 53.913 282 11 
12 1.030 416 0.970 482 11.807 254 0.084 694 12.166 383 0.082 194 64.588 583 12 

13 1.032 992 0.968 062 12.775 316 O.Q78 276 13.196 799 0.075 776 76.205 323 13 

14 1.035 574 0.965 648 13.740 963 0.072 775 14.229 791 0.070 275 88.758 742 14 

15 1.038 163 0.963 239 14.704 203 0.068 008 15.265 365 0.065 508 102.244 095 15 

16 1.040 759 0.960 837 15.665 040 0.063 836 16.303 529 0.061 336 116.656 656 16 

17 I.o.t3 361 0.958 441 16.623 481 0.060 156 17.344 287 0.057 656 131.991 716 17 

18 1.045 969 0.956 051 17.579 533 0.056 884 18.387 648 0.054 384 148.244 586 18 

19 1.048 584 0.953 667 18.533 200 0.053 957 19.433 617 0.051 457 165.410 592 19 

20 1.051 206 0.951 289 19.484 488 0.051 323 20.482 201 0.048 823 183.485 079 20 

21 1.053 834 0.948 916 20.433 405 0.048 939 21.533 407 0.046 439 202.463 409 21 
...,., 

1.056 468 0.946 550 21.379 955 0.046 773 22.587 240 0.044 273 222.340 961 22 --
23 1.059109 0.944190 22.324145 0.044 795 23.643 708 0.042 295 243.113 133 23 

24 1.061 757 0.941 835 23.265 980 0.042 981 24.702 818 0.040 481 264.775 340 24 

2'i 1.064411 0.939 486 24.205 466 0.041 313 25.764 575 0.038 813 287.323 012 25 

26 1.067 072 0.937 143 25.142 609 0.039 773 26.828 986 0.037 273 310.751 599 26 

27 1.069 740 0.934 806 26.077 416 O.D38 347 27.896 059 0.035 847 335.056 566 27 

28 1.072 414 0.932 475 27.009 891 0.037 023 28.965 799 0.034 523 360.233 399 28 

29 1.075 096 0.930 150 27.940 041 O.D35 791 30.038 213 0.033 291 386.277 596 29 

30 1.077 783 0.927 830 28.867 871 0.034 641 31.113 309 0.032 141 413.184 675 30 

31 1.080 478 0.925 517 29.793 388 0.033 564 32.191 092 0.031 064 440.950 171 31 

32 1.083 179 0.923 209 30.716 596 0.032 556 33.271 570 0.030 056 469.569 635 32 

33 1.085 887 0.920 906 31.637 503 0.Q31 608 34.354 749 0.029 108 499.038 635 33 

34 1.088 602 0.918 610 32.556 112 0.030 716 35.440 636 0.028 216 529.352 756 34 
35 1.091 323 0.916 319 33.472 431 0.029 875 36.529 237 0.027 375 560.507 599 35 

(cont.) 
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(conl.) 

0.25% Single Payment Uniform Series Arithmetic 
0.25% 

Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) {PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

36 1.094 051 0.914 034 34.386465 0.029 081 37.620 560 0.026 581 592.498 783 36 
37 1.096 787 0.911 754 35.298 220 0.028330 38.714 612 0.025 830 625.321 943 37 

38 1.099 528 0.909 481 36.207700 0.027 618 39.811 398 0.025 118 658.972 731 38 

39 1.102 277 0.907 213 37.114 913 0.026 943 40.910 927 0.024 443 693.446 814 39 

40 1.105 033 0.904 950 38.019 863 0.026 302 42.013 204 0.023 802 728.739 878 40 

41 1.107 796 0.902 694 38.922 557 0.025 692 43.118 237 0.023 192 764.847 622 41 

42 1.110 565 0.900443 39.822 999 0.025111 44.226 033 0.022 611 801.765 765 42 

43 1.113 341 0.898 197 40.721196 0.024 557 45.336 598 0.022 057 839.490 039 43 

44 1.116125 0.895 957 41.617 154 0.024 029 46.449 939 0.021 529 878.016 195 44 

45 1.118 915 0.893 723 42.510 876 0.023 523 47.566 064 0.021 023 917.339 999 45 

46 1.121 712 0.891494 43.402 370 0.023 040 48.684 979 0.020 540 957.457 232 46 

47 1.124 517 0.889 271 44.291 641 0.022 578 49.806 692 0.020 078 998.363 693 47 

48 1.127 328 0.887053 45.178 695 0.022 134 50.931 208 0.019 634 1 040.055 196 48 

49 1.130146 0.884 841 46.063 536 0.021 709 52.058 536 0.019 209 1 082.527 572 49 

50 1.132 972 0.882 635 46.946170 0.021 301 53.188 683 O.ot8 801 1 125.776 666 50 

60 1.161617 0.860 869 55.652 358 0.017 969 64.646 713 0.015 469 1 600.084 536 60 

70 1.190 986 0.839 640 64.143 853 0.015 590 76.394 437 0.013 090 2 147.611 092 70 

72 1.196 948 0.835 458 65.816 858 0.015 194 78.779 387 0.012 694 2 265.556 855 72 

80 1.221 098 0.818 935 72.425 952 0.013 807 88.439 181 0.011 307 2 764.456 812 80 

84 1.233 355 0.810 797 75.681 321 0.013 213 93.341 920 0.010 713 3 029.759 228 84 

90 1.251 971 0.798 740 80.503 816 0.012 422 100.788 454 0.009 922 3 446.869 973 90 

96 1.270 868 0.786 863 85.254 603 0.011 730 108.347 387 0.009 230 3 886.283 161 96 

100 1.283 625 0.779 044 88.382 483 0.011 314 113.449 955 0.008 814 4 191.241 729 100 

108 1.309 523 0.763 637 94.545 300 0.010 577 123.809 259 0.008 077 4 829.012 470 108 

120 1.349 354 0.741 096 103.561 753 0.009 656 139.741419 0.007 156 5 852.111 603 120 

240 1.820 755 0.549 223 180.310 914 0.005 546 328.301 998 0.003 046 19 398. 985 224 240 

360 2.456 842 0.407 027 237.189 382 0.004 216 582.736 885 0.001 716 36 263. 929 943 360 

480 3.315 149 0.301 646 279.341 764 0.003 580 926.059 501 0.001 080 53 820.752 482 480 

00 00 0 400.000000 0.002 500 00 0 160 000.000 000 x 
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r--

O.S0% Single Payment Unifonn Series Arithmetic 
Gradient Series 0.50% 

Compound -Compound Capital 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA AIP FIA AIF PIG 

" -
1 1.005 ()()(} 0.995 025 0.995 025 1.005 000 1.000000 1.000 000 0.000 000 1 

2 1.010 025 0.990075 1.985 099 0.503 753 2.005 000 0.498 753 0.990075 2 

3 1.015 075 0.985149 2.970 248 0.336 672 3.015 025 0.331 672 2.960 372 3 
4 1.020151 0.980 248 3.950496 0.253133 4.030100 0.248133 5.901115 4 
5 1.025 251 0.975 371 4.925 866 0.203 010 5.050 251 0.198 010 9.802 597 5 

6 1.030 378 0.970 518 5.896 384 0.169 595 6.075 502 0.164 595 14.655 188 6 
7 1.035 529 0.965 690 6.862 074 0.145 729 7.105 879 0.140 729 20.449 325 7 
8 1.040 707 0.960885 7.822 959 0.127 829 8.141409 0.122 829 27.175 522 8 

9 1.045 911 0.956105 8.779064 0.113 907 9.182116 0.108 907 34.824 359 9 

10 1.051 140 0.951 348 9.730 412 0.102 771 10.228 026 0.097 771 43.386 491 10 

11 1.056 396 0.946 615 10.677 027 0.093 659 11.279167 0.088 659 52.852 639 11 
12 1.061 678 0.941 905 11.618 932 0.086 066 12.335 562 0.081066 63.213 598 12 

13 1.066 986 0.937 219 12.556 151 0.079 642 13.397 240 0.074 642 74.460 229 13 

14 1.072 321 0.932 556 13.488 708 0.074136 14.464 226 0.069136 86.583 463 14 

15 1.077 683 0.927 917 14.416 625 0.069 364 15.536 548 0.064 364 99.574 299 15 

16 1.083 071 0.923 300 15.339 925 0.065 189 16.614 230 0.060189 113.423 805 16 

17 1.088487 0.918 707 16.258 632 0.061 506 17.697 301 0.056 506 128.123 114 17 

18 1.093 929 0.914136 17.172 768 0.058232 18.785 788 0.053 232 143.663 429 18 

19 1.099 399 0.909 588 18.082 356 0.055 303 19.879 717 0.050 303 160.036 017 19 

20 1.104 896 0.905 063 18.987 419 0.052 666 20.979 115 0.047 666 177.232 212 20 

21 1.110 420 0.900 560 19.887 979 0.050 282 22.084 011 0.045 282 195.243 414 21 

22 1.115 972 0.896 080 20.784 059 0.048114 23.194 431 0.043 114 214.061 088 22 

23 1.121 552 0.891 622 21.675 681 0.046135 24.310 403 0.041135 233.676 763 23 

24 1.127 160 0.887 186 22.562 866 0.044 321 25.431 955 0.039 321 254.082 034 24 

25 1.132 796 0.882 772 23.445 638 0.042 652 26.559 115 0.037 652 275.268 557 25 

26 1.138 460 0.878 380 24.324 018 0.041112 27.691 911 0.036112 297.228 055 26 

27 1.144 152 0.874010 25.198 028 0.039 686 28.830 370 0.034 686 319.952 311 27 

28 1.149 873 0.869 662 26.067 689 0.038 362 29.974 522 0.033 362 343.433 173 28 

29 1.155 622 0.865 335 26.933 024 0.037 129 31.124 395 0.032129 367.662 550 29 

30 1.161400 0.861 030 27.794 054 0.035 979 32.280 017 0.030 979 392.632 412 30 

31 1.167 207 0.856 746 28.650 800 0.034 903 33.441 417 0.029 903 418.334 792 31 

32 1.173 043 0.852484 29.503 284 0.033 895 34.608 624 0.028 895 444.761 783 32 

33 1.178 908 0.848242 30.351 526 0.032 947 35.781 667 0.027 947 471.905 539 33 

34 1.184 803 0.844 022 31.195 548 0.032 056 36.960 575 0.027 056 499.758 273 34 

35 1.190 727 0.839 823 32.035 371 0.031 215 38.145 378 0.026 215 528.312 260 35 -
(co11t.) 
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(cont.) 

0.50% Single Payment Uniform Series 
Arithmetic 

0.50% 
Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

36 1.196 681 0.835 645 32.871 016 0.030422 39.336 105 0.025 422 557.559 832 36 

37 1.202 664 0.831487 33.702504 0.029 671 40.532 785 0.024 671 587.493 382 37 

38 1.208 677 0.827 351 34.529854 0.028 960 41.735 449 0.023 960 618.105 359 38 

39 1.214 721 0.823 235 35.353 089 0.028 286 42.944 127 0.023 286 649.388 272 39 

40 1.220 794 0.819139 36.172 228 0.027 646 44.158 847 0.022 646 681.334 687 40 

41 1.226 898 0.815 064 36.987 291 0.027036 45.379 642 0.022 036 713.937 229 41 

42 1.233 033 0.811 009 37.798 300 0.026456 46.606 540 0.021 456 747.188 578 42 

43 1.239198 0.806 974 38.605 274 0.025 903 47.839 572 0.020 903 781.081 470 43 

44 1.245 394 0.802 959 39.408 232 0.025 375 49.078 770 0.020 375 815.608 700 44 

45 1.251 621 0.798 964 40.207196 0.024 871 50.324 164 0.019 871 850.763 117 45 

46 1.257 879 0.794 989 41.002 185 0.024 389 51.575 785 0.019 389 886.537 625 46 

47 1.264 168 0.791 034 41.793 219 0.023 927 52.833 664 0.018 927 922.925 185 47 

48 1.270 489 0.787 098 42.580 318 0.023 485 54.097 832 O.D18 485 959.918 810 48 

49 1.276 842 0.783 182 43.363 500 0.023 061 55.368 321 0.018 061 997.511 570 49 

50 1.283 226 0.779 286 44.142 786 0.022 654 56.645 163 0.017 654 1 035.696 587 50 

60 1.348 850 0.741 372 51.725 561 0.019 333 69.770 031 0.014 333 1 448.645 795 60 

70 1.417 831 C.7'JS 303 58.939 418 0.016 967 83.566 105 0.011 967 1 913.642 742 70 

72 1.432 044 0.698 302 
j 

60.339 514 0.016 573 86.408 856 0.011 573 2 012.347 790 72 

80 1.490 339 0.670 988 65.802 305 0.015 197 98.067 714 0.010 197 2 424.645 508 80 

84 1.520 370 0.{•57 735 68.453 042 0.014 609 104.073 927 0.009 609 2 640.664 052 84 

90 1.566 555 0.638 344 72.331300 0.013 825 113.310 936 0.008 825 2 976.076 879 90 

96 1.614 143 0.619 524 76.095 218 0.013 141 122.828 542 0.008 141 3 324.184 603 96 

100 1.646 668 0.607 287 78.542 645 0.012 732 129.333 698 0.007 732 3 562.793 430 100 

108 1.713 699 0.583 533 83.293 424 0.012 006 142.739 900 0.007 006 4 054.374 734 108 

120 1.819 397 0549 633 90.073 453 0.011 102 163.879 347 0.006 102 4 823.505 065 120 

240 3.310 204 0.302 096 139.580 772 0.007 164 462.040 895 0.002 164 13 415.539 540 240 

360 6.022 575 0.166 042 166.791 614 0.005 996 1 004.515 042 0.000 996 21403.304060 360 

480 10.957 454 0.091 262 181.747 584 0.005 502 1 991.490 734 0.000 502 27 588.357 289 480 

00 00 0 200.000 000 0.005 000 00 0 40 000.000 000 ex' 
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r--

0.75% Single Payment Uniform Series Arithmetic 
Gradient Series 0.75% 

Capital Compound -Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

--n FIP PIF PIA AIP FIA AIF PIG 11 

-
1 1.007 500 0.992 556 0.992 556 1.007 500 1.000000 1.000 ()()() 0.000 000 1 
2 1.015 056 0.985 167 1.977 723 0.505 632 2.007 500 0.498132 0.985167 2 
3 1.022 669 0.977 833 2.955 556 0.338 346 3.022 556 0.330 846 2.940834 3 
4 1.030 339 0.970 554 3.926110 0.254 705 4.045 225 0.247 205 5.852 496 4 
5 1.038 067 0.963 329 4.889 440 0.204 522 5.075 565 0.197 022 9.705 813 5 

6 1.045 852 0.956158 5.845 598 0.171 069 6.113 631 0.163 569 14.486 603 6 
7 1.053 696 0.949 040 6.794 638 0.147175 7.159484 0.139 675 20.180 844 7 
8 1.061 599 0.941 975 7.736 613 0.129 256 8.213180 0.121 756 26.774 672 8 
9 1.069 561 0.934 963 8.671 576 0.115 319 9.274 779 0.107 819 34.254 378 9 

10 1.077 583 0.928 003 9.599 580 0.104171 10.344 339 0.096 671 42.606 406 10 

11 1.085 664 0.921095 10.520 675 0.095 051 11.421 922 0.087 551 51.817 355 11 
12 1.093 807 0.914 238 11.434 913 0.087 451 12.507 586 0.079 951 61.873 975 12 

13 1.102 010 0.907 432 12.342 345 0.081022 13.601393 0.073 522 72.763 164 13 

14 1.110 276 0.900 677 13243 022 0.075 511 14.703 404 0.068 011 84.471 969 14 

15 1.118 603 0.893 973 14.136 995 0.070736 15.813 679 0.063 236 96.987 585 15 

16 1.126 992 0.887 318 15.024 313 0.066 559 16.932 282 0.059 059 110.297 350 16 
17 1.135 445 0.880 712 15.905 025 0.062 873 18.059 274 0.055 373 124.388 747 17 

18 1.143 960 0.874156 16.779181 0.059 598 19.194 718 0.052 098 139.249 401 18 

19 1.152 540 0.867 649 17.646 830 0.056 667 20.338 679 0.049167 154.867 079 19 

20 1.161184 0.861190 18.508 020 0.054 031 21.491219 0.046 531 171.229 686 20 

21 1.169 893 0.854 779 19.362 799 0.051 645 22.652403 0.044145 188.325 267 21 

22 1.178 667 0.848 416 20.211215 0.049 477 23.822 296 0.041 977 206.142 000 22 

23 1.187 507 0.842 100 21.053 315 0.047 498 25.000 963 0.039 998 224.668 203 23 
24 1.196 414 0.835 831 21.889146 0.045 685 26.188471 0,038185 243.892 326 24 

25 1.205 387 0.829 609 22.718 755 0.044 016 27.384 884 0.036 516 263.802 950 25 

26 1.214 427 0.823 434 23.542 189 0.042477 28.590 271 0.034 977 284.388 789 26 

27 1.223 535 0.817 304 24.359 493 0.041 052 29.804 698 0.033 552 305.638 688 27 

28 1.232 712 0.811 220 25.170 713 0.039 729 31.028 233 0.032 229 327.541 619 28 

29 1.241 957 0.805 181 25.975 893 0.038497 32.260 945 0.030 997 350.086 681 29 

30 1.251 272 0.799 187 26.775 080 0.037 348 33.502 902 0.029 848 373.263 101 30 

31 1.260 656 0.793 238 27.568 318 0.036 274 34.754174 0.028 774 397.060 230 31 

32 1.270 111 0.787 333 28.355 650 0.035 266 36.014 830 0.027 766 421.467 541 32 

33 1.279 637 0.781472 29.137 122 0.034 320 37.284 941 0.026 820 446.474 632 33 

34 1.289 234 0.775 654 29.912 776 0.033 431 38.564 578 0.025 931 472.071 220 34 

35 1.298 904 0.769 880 30.682 656 0.032 592 39.853 813 0.025 092 498.247142 35 

(cont.) 
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(cont.) 

0.75% Single Payment Uniform Series 
Arithmetic 

0.75% 
Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

36 1.308 645 0.764149 31.446 805 0.031800 41.152 716 0.024 300 524.992 356 36 

37 1.318 460 0.758461 32.205 266 0.031 051 42.461 361 0.023 551 552.296 934 37 

38 1.328 349 0.752 814 32.958 080 0.030342 43.779 822 0.022 842 580.151 067 38 

39 1.338 311 0.747 210 33.705 290 0.029 669 45.108170 0.022 169 608.545 059 39 

40 1.348 349 0.741 648 34.446 938 0.029 030 46.446482 0.021 530 637.469 330 40 

41 1.358 461 0.736 127 35.183 065 0.028423 47.794 830 0.020 923 666.914 410 41 

42 1.368 650 0.730 647 35.913 713 0.027 845 49.153 291 0.020 345 696.870 943 42 

43 1.378 915 0.725 208 36.638 921 0.027 293 50.521 941 0.019 793 727.329 683 43 

44 1.389 256 0.719 810 37.358 730 0.026 768 51.900 856 0.019 268 758.281 493 44 

45 1.399 676 0.714 451 38.073 181 0.026 265 53.290 112 0.018 765 789.717 343 45 

46 1.410 173 0.709133 38.782 314 0.025 785 54.689 788 0.018 285 821.628 312 46 

47 1.420 750 0.703 854 39.486168 0.025 325 56.099 961 0.017 825 854.005 584 47 

48 1.431405 0.698 614 40.184 782 0.024 885 57.520 711 0.017 385 886.840 449 48 

49 1.442 141 0.693 414 40.878 195 0.024 463 58.952 116 0.016 963 920.124 298 49 

50 1.452 957 0.688 252 41.566 447 0.024 058 60.394 257 0.016 558 953.848 629 50 

60 1.565 681 0.638 700 48.173 374 0.020 758 75.424 137 0.013 258 1 313.518 881 60 

70 1.687 151 0.592 715 54.304 622 O.Ql8 415 91.620 073 0.010 915 1 708.606 494 70 

72 1.712 553 0.583 92~ 55.476 849 0.018 026 95.007 028 0.010 526 1 791.246 287 72 

80 1.818 044 0.550042 59.994 440 0.016 668 109.072 531 0.009 168 2 132.147 226 80 

84 1.873 202 0.533 845 62.153 965 0.016 089 116.426 928 0.008 589 2 308.128 298 84 

90 1.959 092 0.510440 65.274 609 0.015 320 127.878 995 0.007 820 2 577.996 051 90 

96 2.048 921 0.488 062 68.258 439 0.014 650 139.856 164 0.007 150 2 853. 935 242 96 
100 2.111 084 0.473 690 70.114 623 0.014 250 148.144 512 0.006 750 3 040.745 301 100 
108 2.241124 0.446 20~ 73.8~9 382 0.013 543 165.483 223 0.006 043 3 419. 904 09 3 108 
120 2.451 357 0.407 937 78.941 693 0.012 668 193.514 277 0.005 168 3 998.562 143 120 

240 6.009 152 0.166 413 111.144 954 0.008 997 667.886 870 0.001 497 9494.116170 240 
360 14.730 576 0.067 886 124.281 866 0.008 046 1 830.743 483 0.000 546 13 312.387 067 360 
480 36.109 902 0.027 693 129.640 902 0.007 714 4 681.320 273 0.000 214 15 513.086 567 480 

00 00 0 133.333 333 0.007 500 00 0 17 777.777 778 x 



494 
Compound Interest Tables Appendix 

- ---Unifonn Series Arithmetic 
10.k Single Payment Gradient Series 1% 

Capital Compound --Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-FIA AIF 
11 FIP PIF PIA A/P PIG n 

-
1 1.010 000 0.990 099 0.990099 1.010 000 1.000 000 1.000 000 0.000 000 I 

2 1.020 100 0.980 296 1.970 395 0.507 512 2.010 000 0.497 512 0.980 296 2 
3 1.030 301 0.970 590 2.940 985 0.340022 3.030100 0.330 022 2.921 476 3 
4 1.040 604 0.960980 3.901 966 0.256 281 4.060401 0.246 281 5.804 417 4 

5 1.051 010 0.951466 4.853 431 0.206040 5.101 005 0.196 040 9.610 280 5 

6 1.061 520 0.942 045 5.795 476 0.172 548 6.152 015 0.162 548 14.320 506 6 

7 1.072 135 0.932 718 6.72$195 0.148 62$ 7.213 535 0.138 628 19.916 815 7 

8 1.082 857 0.923 483 7.651 678 0.130 690 8.285 671 0.120 690 26.381197 8 

9 1.093 685 0.914 340 8.566 018 0.116 740 9.368 527 0.106 740 33.695 916 9 

10 1.104 622 0.905 2$7 9.471305 0.105 582 10.462 213 0.095 582 41.843 498 10 

11 1.115 668 0.896 324 10.367 628 0.096 454 11.566 835 0.086 454 50.806 736 11 

12 1.126 825 0.887 449 11.255 077 0.088 849 12.682 503 0.078 849 60.568 677 12 

13 1.138 093 0.878 663 12.133 740 0.082 415 13.809 328 0.072 415 71.112 628 13 

14 1.149 474 0.869 963 13.003 703 0.076 901 14.947 421 0.066 901 82.422147 14 

15 1.160 969 0.861349 13.865 053 0.072124 16.096 896 0.062124 94.481 039 15 

16 1.172 579 0.852 821 14.717 874 0.067 945 17.257 864 0.057 945 107.273 358 16 

17 1.184 304 0.844 377 15.562 251 0.064 258 18.430443 0.054 258 120.783 398 17 

18 1.196 147 0.836 017 16.398 269 0.060982 19.614 748 0.050 982 134.995 693 18 

19 1.208 109 0.827 740 17.226 008 0.058 052 20.810 895 0.048 052 149.895 011 19 

20 1.220190 0.819 544 18.045 553 0.055 415 22.019 004 0.045 415 165.466 356 20 

21 1.232 392 0.811 430 18.856 983 0.053 031 23.239 194 0.043 031 181.694 959 21 

22 1.244 716 0.803 396 19.660 379 0.050 864 24.471586 0.040 864 198.566 280 22 
'J"" __, 1.2..t:..7 163 0.795 442 20.455 821 0.048 886 25.716 302 O.Q38 886 216.065 999 23 
24 1.269 735 0.787 566 21.243 387 0.047 073 26.973 465 0.037 073 234.180 020 24 

25 1.282 432 0.779 768 22.023156 0.045 407 28.243 200 0.035 407 252.894 463 25 

26 1.295 256 0.772 048 22.795 204 0.043 869 29.525 631 0.033 869 272.195 662 26 

27 1.308 209 0.764404 23.559 608 0.042 446 30.820 888 0.032 446 292.070 164 27 

28 1.321 291 0.756 836 24.316 443 0.041124 32.129 097 0.031124 312.504 724 28 

29 1.334 504 0.749 342 25.065 785 0.039 895 33.450 388 0.029 895 333.486 304 29 

30 1.347 849 0.741 923 25.807 708 0,038 748 34.784 892 O.Q28 748 355.002 069 30 

31 1.361 327 0.734 577 26.542 2$5 0.037 676 36.132 740 0.027 676 377.039 383 31 

32 1.374 941 0.727 304 27.269 589 0.036 671 37.494 068 0.026 671 399.585 810 32 

33 1.388 690 0.720103 27.989 693 O.Q35 727 38.869 009 0.025 727 422.629109 33 

34 1.402 577 0.712 973 28.702 666 0.034 840 40.257 699 0.024 840 446.157 229 34 
35 1.416 603 0.705 914 29.408 580 0.034 004 41.660 276 0.024 004 470.158 312 35 ---(cont.) 



Appendix Compound Interest Tables 495 

(cont.) 

-
1% Uniform Series Uniform Series Arithmetic 

1% 
Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

" FIP PIF PIA NP FIA AIF PIG n 

36 1.430 769 0.698 925 30.107 505 0.033 214 43.076 878 0.023 214 494.620 685 36 

37 1.445 076 0.692 005 30.799 510 0.032 468 44.507 647 0.022468 519.532 861 37 

38 1.459 527 0.685153 31.484 663 0.031 761 45.952 724 0.021 761 544.883 536 38 

39 1.474123 0.678 370 32.163 033 0.031 092 47.412 251 0.021 092 570.661 584 39 

40 1.488 864 0.671 653 32.834 686 0.030456 48.886 373 0.020 456 596.856 056 40 

41 1.503 752 0.665 003 33.499 689 0.029 851 50.375 237 0.019 851 623.456 180 41 

42 1.518 790 0.658 419 34.158108 0.029 276 51.878 989 0.019 276 650.451 356 42 

43 1.533 978 0.651 900 34.810 008 0.028 727 53.397 779 0.018 727 677.831 153 43 

44 1.549 318 0.645 445 35.455 454 0.028 204 54.931 757 O.Dl8 204 705.585 308 44 

45 1.564 811 0.639 055 36.094 508 0.027 705 56.481 075 0.017 705 733.703 724 45 

46 1.580 459 0.632 728 36.727 236 0.027 228 58.045 885 0.017 228 762.176 468 46 

47 1.596 263 0.626 463 37.353 699 0.026 771 59.626 344 0.016 771 790.993 766 47 

48 1.612 226 0.620 260 37.973 959 0.026 334 61.222 608 0.016 334 820.146 005 48 

49 1.628 348 0.614 119 38.588 079 0.025 915 62.834 834 0.015 915 849.623 727 49 

50 1.644 632 0.608 039 39.196118 0.025 513 64.463 182 0.015 513 879.417 630 50 

60 1.816 697 0.550 450 44.955 038 0.022 244 81.669 670 0.012 244 1 192.806 145 60 

70 2.006 763 0.498 315 50.168 514 0.019 933 100.676 337 0.009 933 1 528.647 439 70 

72 2.047 099 0.488 496 51.150 391 0.019 550 104.709 931 0.009 550 1 597 .867 334 72 

80 2.216 715 0.451 118 54.888 206 0.018 219 121.671 522 0.008 219 1879.877099 80 

84 2.306 723 0.433 515 56.648 453 0.017 653 130.672 274 0.007 653 2 023.315 308 84 

90 2.448 633 0.408 391 59.160 881 0.016 903 144.863 267 0.006 903 2 240.567 482 90 

96 2.599 273 0.384 723 61.527 703 0.016 253 159.927 293 0.006 253 2 459.429 786 96 

100 2.704 814 0.369 711 63.028 879 0.015 866 170.481 383 0.005 866 2 605.775 753 100 

108 2.928 926 0.341422 65.857 790 0.015 184 192.892 579 0.005 184 2 898.420 284 108 

120 3.300 387 0.302 995 69.700 522 0.014 347 230.038 689 0.004 347 3 334.114 847 120 

240 10.892 554 0.091806 90.819 416 0.011 011 989.255 365 0.001 011 6 878.601 558 240 

360 35.949 641 0.027 817 97.218 331 0.010 286 3 494.964 133 0.000 286 8 720.432 296 360 

480 118.647 725 0.008 428 99.157 169 0.010 085 11 764.772 510 0.000 085 9 511.157 926 480 

00 00 0 100.000 000 0.010 000 00 0 10 000.000 000 '.)Q 



496 Compound Interest Tables Appendix 

r--

Single Payment Uniform Series Arithmetic 
1.25% Gradient Series l.25% 

Capital Compound -Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA AIP FIA AIF PIG 

" -
1 1.012 500 0.987 654 0.987 654 1.012 500 1.000 000 1.000 000 0.000000 1 
2 1.025 156 0.975 461 1.963 115 0.509 394 2.012 500 0.496 894 0.975 461 2 
3 1.037 971 0.963418 2.926 534 0.341 701 3.037 656 0.329 201 2.902 298 3 
4 1.050 945 0.951524 3.878058 0.257 861 4.075 627 0.245 361 5.756 871 4 
5 1.064082 0.939777 4.817 835 0.207 562 5.126 572 0.195 062 9.515 979 5 

6 1.077 383 0.928175 5.746010 0.174 034 6.190 654 0.161534 14.156 853 6 
7 1.090 850 0.916 716 6.662 726 0.150 089 7.268 038 0.137 589 19.657149 7 
8 1.104 486 0.905 398 7.568124 0.132 133 8.358 888 0.119 633 25.994 938 8 
9 1.118 292 0.894 221 8.462 345 0.118171 9.463 374 0.105 671 33.148 703 9 

10 1.132 271 0.883 181 9.345 526 0.107 003 10.581 666 0.094 503 41.097 332 10 

11 1.146 424 0.872 277 10.217 803 0.097 868 11.713 937 0.085 368 49.820106 11 
12 1.160 755 0.861 509 11.079 312 0.090258 12.860 361 0.077 758 59.296 701 12 
13 1.175 264 0.850 873 11.930 185 0.083 821 14.021116 0.071321 69.507 173 13 
14 1.189 955 0.840 368 12.770 553 0.078 305 15.196 380 0.065 805 80.431 958 14 
15 1.204 829 0.829 993 13.600 546 0.073 526 16.386 335 0.061 026 92.051 863 15 

16 1.219 890 0.819 746 14.420 292 0.069 347 17.591 164 0.056 847 104.348 058 16 
17 1.235 138 0.809 626 15.229 918 0.065 660 18.811 053 0.053160 117.302 074 17 
18 1.250 577 0.799 631 16.029 549 0.062 385 20.046192 0.049 885 130.895 795 18 

19 1.266 210 0.789 759 16.819 308 0.059 455 21.296 769 0.046 955 145.111 451 19 
20 1.282 037 0.780009 17.599 316 0.056 820 22.562 979 0.044 320 159.931 613 20 

21 1.298 063 0.770 379 18.369 695 0.054437 23.845 016 0.041937 175.339 190 21 

22 1.314 288 0.760 868 19.130 563 0.052 272 25.143 078 0.039 772 191.317 417 22 

23 1.330 717 0.751 475 19.882 037 0.050 297 26.457 367 0.037 797 207.84S' 857 23 

24 1.347 351 0.742197 20.624 235 0.048 487 27.788 084 0.035 987 224.920 389 24 

25 1.364193 0.733 034 21.357 269 0.046 822 29.135 435 0.034 322 242.513 209 25 

26 1.381 245 0.723 984 22.081 253 0.045 287 30.499 628 0.032 787 260.612 817 26 

27 1.398511 0.715 046 22.796 299 0.043 867 31.880 873 0.031 367 279.204 020 27 

28 1.415 992 0.706 219 23.502 518 0.042 549 33.279 384 0.030 049 298.271 920 28 

29 1.433 692 0.697 500 24.200 018 0.041 322 34.695 377 0.028 822 317.801 914 29 

30 1.451 613 0.688 889 24.888 906 0.040179 36.129 069 0.027 679 337.779 685 30 

31 1.469 759 0.680 384 25.569 290 0.039109 37.580 682 0.026 609 358.191 202 31 

32 1.488131 0.671 984 26.241274 O.Q38 108 39.050 441 0.025 608 379.022 708 32 

33 1.506 732 0.663 688 26.904 962 0.037 168 40.538 571 0.024 668 400.260 723 33 

34 1.525 566 0.655 494 27.560456 0.036 284 42.045 303 0.023 784 421.892 035 34 
35 1.544 636 0.647 402 28.207 858 0.035 451 43.570 870 0.022 951 443.903 695 35 -

(cont.) 



Appendix Compound Interest Tables 497 

(cont.) 

1.25% Single Payment Uniform Series 
Arithmetic 

1.25% 
Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

,, FIP PIF PIA AIP FIA AIF PIG n 

36 1.563 944 0.639409 28.847267 0.034 665 45.115 505 0.022 165 466.283 015 36 

37 1.583 493 0.631515 29.478 783 0.033 923 46.679 449 0.021423 489.017 563 37 

38 1.603 287 0.623 719 30.102 501 0.033 220 48.262 942 0.020 720 512.095 156 38 

39 1.623 328 0.616 019 30.718520 0.032 554 49.866 229 0.020054 535.503 860 39 

40 1.643 619 0.608 413 31.326 933 0.031 921 51.489 557 0.019 421 559.231 980 40 

41 1.664 165 0.600 902 31.927 835 0.031 321 53.133 177 0.018 821 583.268 062 41 

42 1.684 967 0.593 484 32.521319 0.030 749 54.797 341 O.ot8 249 607.600 886 42 

43 1.706 029 0.586157 33.107 475 0.030 205 56.482 308 0.017 705 632.219 462 43 

44 1.727 354 0.578 920 33.686 395 0.029 686 58.188 337 0.017186 657.113 024 44 

45 1.748 946 0.571 773 34.258168 0.029190 59.915 691 0.016 690 682.271 032 45 

46 1.770 808 0.564 714 34.822 882 0.028 717 61.664 637 0.016 217 707.683 160 46 

47 1.792 943 0.557 742 35.380 624 0.028 264 63.435 445 0.015 764 733.339 301 47 

48 1.815 355 0.550 856 35.931481 0.027 831 65.228 388 0.015 331 759.229 556 48 

49 1.838 047 0.544 056 36.475 537 0.027 416 67.043 743 0.014 916 785.344 234 49 

50 1.861 022 0.537 339 37.012 876 0.027 018 68.881 790 0.014 518 811.673 848 50 

60 2.107181 0.474 568 42.034 592 0.023 790 88.574 508 0.011 290 1084.842851 60 

70 2.385 900 0.419129 46.469 676 0.021 519 110.871 998 0.009 019 1 370.451 343 70 

72 2.445 920 0.408 844 47.292474 0.021 145 115.673 621 0.008 645 1 428.456 095 72 

80 2.701485 0.370 167 50.386 657 0.019 847 136.118 795 0.007 347 1 661.865 129 80 

84 2.839113 0.352 223 51.822 185 0.019 297 147.129 040 0.006 797 1 778.838 393 84 

90 3.058 813 0.326 924 53.846 060 0.018 571 164.705 008 0.006 071 1 953.830 260 90 

96 3.295 513 0.303 443 55.724 570 0.017 945 183.641 059 0.005 445 2 127.524 375 96 

100 3.463 404 0.288 733 56.901 339 0.017 574 197.072 342 0.005 074 2 242.241 085 100 

108 3.825 282 0.261419 59.086 509 0.016 924 226.022 551 0.004 424 2 468.263 607 108 

120 4.440 213 0.225 214 61.982 847 0.016 133 275.217 058 0.003 633 2 796.569 449 120 

240 19.715 494 0.050 722 75.942 278 0.013 168 1 497.239 481 0.000 668 5 101.528 827 240 

360 87.540 995 0.011423 79.086 142 0.012 644 6 923.279 611 0.000 144 5 997.902 675 360 

480 388.700 685 0.002 573 79.794 186 0.012 532 31 016.054 774 0.000 032 6 284.744 222 480 

00 00 0 80.000 000 0.012 500 00 0 6 400.000 000 00 



498 Compound Interest Tables Appendix 

-
Single Payment Unifonn Series Arithmetic 

1.50% Gradient Series 1.50% 

-Compound Compound Capital 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
II FIP PIF PIA AIP FIA AIF PIG n 

-
1 1.015 ()()() 0.985 222 0.985 222 1.015 ()()() l.000 ()()() 1.000 000 0.000 000 1 
2 1.030 225 0.970662 1.955 883 0.511 278 2.015 000 0.496 278 0.970 662 2 
3 1.045 678 0.956 317 2.912 200 0.343 383 3.045 225 0.328 383 2.883 296 3 
4 1.061364 0.942184 3.854 385 0.259445 4.090 903 0.244 445 5.709 848 4 
5 1.077 284 0.928260 4.782 645 0.209089 5.152 267 0.194 089 9.422 890 5 

6 1.093 443 0.914 542 5.697 187 0.175 525 6.229 551 0.160 525 13.995 601 6 
7 1.109 845 0.90102i 6.598 214 0.151 556 7.322 994 0.136 556 19.401 761 7 
8 1.126 493 0.887 711 7.485 925 0.133 584 8.432 839 0.118 584 25.615 739 8 
9 1.143 390 0.874 592 8.360 517 0.119 610 9.559 332 0.104 610 32.612 477 9 

10 1.160 541 0.861 667 9.222185 0.108434 10.702 722 0.093 434 40.367 482 10 

11 1.177 949 0.848 933 10.071118 0.099 294 11.863 262 0.084 294 48.856 815 11 
12 1.195 618 0.836 387 10.907 505 0.091 680 13.041211 0.076 680 58.057 076 12 
13 1.213 552 0.824 027 11.731532 0.085 240 14.236 830 0.070 240 67.945 400 13 
14 1.231 756 0.811 849 12.543 382 0.079 723 15.450 382 0.064 723 78.499 441 14 
15 1.250 232 0.799 852 13.343 233 0.074 944 16.682138 0.059 944 89.697 362 15 

16 1.268 986 0.788 031 14.131 264 0.070 765 17.932 370 0.055 765 101.517 828 16 

17 1.288 020 0.776 385 14.907 649 0.067 080 19.201 355 0.052 080 113.939 992 17 

18 1.307 341 0.764 912 15.672 561 0.063 806 20.489 376 0.048 806 126.943 489 18 

19 1.326 951 0.753 607 16.426168 0.060 878 21.796 716 0.045 878 140.508 423 19 

20 1.346 855 0.742470 17.168 639 0.058 246 23.123 667 0.043 246 154.615 361 20 

21 1.367 058 0.731498 17.900 137 0.055 865 24.470 522 0.040 865 169.245 320 21 

22 1.387 564 0.720 688 18.620 824 0.053 703 25.837 580 0.038 703 184.379 761 22 

23 1.408 377 0.710 037 19.330 861 0.051 731 27.225144 0.036 731 200.000 576 23 

24 1.429 503 0.699 544 20.030405 0.049 924 28.633 521 0.034 924 216.090 087 24 

25 1.450 945 0.689 206 20.719 611 0.048 263 30.063 024 0.033 263 232.631 027 25 

26 1.472 710 0.679 021 21.398 632 0.046 732 31.513 969 0.031 732 249.606 540 26 

27 1.494 800 0.668 986 22.067 617 0.045 315 32.986 678 0.030 315 267.000 169 27 

28 1.517 222 0.659 099 22.726 717 0.044001 34.481479 0.029 001 284.795 849 28 

29 1.539 981 0.649 359 23.376 076 0.042 779 35.998 701 0.027 779 302.977 897 29 

30 1.563 080 0.639 762 24.015 838 0.041 639 37.538 681 0.026 639 321.531 007 30 

31 1.586 526 0.630 308 24.646146 0.040 574 39.101 762 0.025 574 340.440242 31 

32 1.610 324 0.620 993 25.267139 0.039 577 40.688 288 0.024 577 359.691 022 32 

33 1.634 479 0.611 816 25.878 954 O.Q38 641 42.298 612 0.023 641 379.269 124 33 

34 1.658 996 0.602 774 26.481 728 0.037 762 43.933 092 0.022 762 399.160 668 34 

35 1.683 881 0.593 866 27.075 595 0.036 934 45.592 088 0.021 934 419.352 115 35 

(cont.) 



Appendix Compound Interest Tables 499 

(cont.) 

1.50% Uniform Series Uniform Series Arithmetic 
1.50% 

Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

II FIP PIF PIA AIP FIA AIF PIG n 

36 1.709140 0.585 090 27.660684 0.036152 47.275 969 0.021 152 439.830 256 36 
37 1.734 777 0.576 443 28.237 127 0.035 414 48.985109 0.020 414 460.582 207 37 
38 1.760 798 0.567 924 28.805 052 0.034 716 50.719 885 0.019 716 481.595 403 38 
39 1.787 210 0.559 531 29.364 583 0.034 055 52.480 684 0.019 055 502.857 591 39 
40 1.814 018 0.551 262 29.915 845 0.033427 54.267 894 0.018 427 524.356 822 40 

41 1.841 229 0.543 116 30.458 961 0.032 831 56.081 912 0.017 831 546.081 445 41 

42 1.868 847 0.535 089 30.994 050 0.032 264 57.923 141 0.017 264 568.020 105 42 

43 1.896 880 0.527182 31.521 232 0.031 725 59.791 988 0.016 725 590.161 729 43 

44 1.925 333 0.519 391 32.040 622 0.031 210 61.688 868 0.016 210 612.495 527 44 

45 1.954 213 0.511 715 32.552 337 0.030720 63.614 201 O.Q15 720 635.010 985 45 

46 1.983 526 0.504 153 33.056 490 0.030 251 65.568 414 0.015 251 657.697 854 46 

47 2.013 279 0.496 702 33.553192 0.029 803 67.551 940 0.014 803 680.546 152 47 

48 2.043 478 0.489 362 34.042 554 0.029 375 69.565 219 0.014 375 703.546 151 48 

49 2.074130 0.482 130 34.524 683 0.028 965 71.608 698 0.013 965 726.688 379 49 

50 2.105 242 0.475 005 34.999 688 0.028 572 73.682 828 0.013 572 749.963 609 50 

60 2.443 2:0 0 409 296 39.380 269 0.025 393 96.214 652 0.010 393 988.167 392 60 

70 2.835 45ti 0.352 677 43.154 872 0.023 172 122.363 753 0.008 172 1 231.165 816 70 

72 2.921 158 0.34'.2 330 43.844 667 0.022 808 128.077 197 0.007 808 1 279.793 793 72 

80 3.290 663 0.303 890 46.407 323 0.021548 152.710 852 0.006 548 1 473.074 112 80 

84 3.492 590 0.286 321 47.578 633 0.021 018 166.172 636 0.006 018 1568.514041 84 

90 3.818 949 0.261852 49.209 855 0.020 321 187.929 900 0.005 321 1 709.543 875 90 

96 4.175 804 0.239 475 50.701675 0.019 723 211.720 235 0.004 723 1 847.472 533 96 

100 4.432 046 0.225 629 51.624 704 0.019 371 228.803 043 0.004 371 1 937.450 611 100 

108 4.992 667 0.200294 53.313 749 0.018 757 266.177 771 0.003 757 2 112.134 789 108 

120 5.969 323 0.167 523 55.498 454 0.018 019 331.288 191 0.003 019 2 359.711 434 120 

240 35.632 816 0.028064 64.795 732 0.015 433 2 308.854 370 0.000 433 3 870.691 174 240 

360 212.703 781 0.004 701 66.353 242 O.Q15 071 14 113.585 393 0.000 071 4 310.716 476 360 

480 1269.697544 0.000 788 66.614 161 O.ot5 012 84 579.836 287 0.()00 012 4 415.741 196 480 

00 00 0 66.666 667 0.015 000 00 0 4 444.444 444 x 



500 Compound Interest Tables Appendix 

-~ 
2% Single Payment Unifonn Series Arithmetic 

Gradient Series 2% 

Capital Compound -Compound 
Amount Present Worth Present Worth Reco\'cry Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA AIP FIA AIF PIG II 

-
1 1.020 000 0.980 392 0.980 392 1.020 000 1.000 000 1.000 000 0.000 000 1 
2 1.040400 0.961169 1.941 561 0.515 050 2.020000 0.495 050 0.961169 2 
3 1.061 208 0.942 322 2.883 883 0.346 755 3.060400 0.326 755 2.845 813 3 
4 1.082 432 0.923 845 3.807 729 0.262 624 4.121 608 0.242 624 5.617 350 4 

5 1.104 081 0.905 731 4.713 460 0.212158 5.204 040 0.192 158 9.240 273 5 

6 1.126 162 0.887 971 5.601 431 0.178 526 6.308 121 0.158 526 13.680130 6 
7 1.148 686 0.870 560 6.471 991 0.154 512 7.434 283 0.134 512 18.903 491 7 
8 1.171 659 0.853 490 7.325 481 0.136 510 8.582 969 0.116 510 24.877 924 8 

9 1.195 093 0.836 755 8.162 237 0.122 515 9.754 628 0.102 515 31.571 966 9 

10 1.218 994 0.820 348 8.982 585 0.111327 10.949 721 0.091327 38.955 100 10 

11 1.243 374 0.804 263 9.786 848 0.102 178 12.168 715 0.082178 46.997 731 11 

12 1.268 242 0.788 493 10.575 341 0.094 560 13.412 090 0.074 560 55.671156 12 

13 1.293 607 0.773 033 11.348 374 0.088118 14.680 332 0.068 118 64.947 546 13 

14 1.319 479 0.757 875 12.106 249 0.082 602 15.973 938 0.062 602 74.799 921 14 

15 1.345 868 0.743 015 12.849 264 0.077 825 17.293 417 0.057 825 85.202 128 15 

16 1.372 786 0.728 446 13.577 709 0.073 650 18.639 285 0.053 650 96.128 815 16 

17 1.400 241 0.714 163 14.291 872 0.069 970 20.012 071 0.049 970 107.555 416 17 

18 1.428 246 0.700 159 14.992 031 0.066 702 21.412 312 0.046 702 119.458 125 18 

19 1.456811 0.686 431 15.678 462 0.063 782 22.840 559 0.043 782 131.813 879 19 

20 1.485 947 0.672 971 16.351 433 0.061 157 24.297 370 0.041157 144.600 334 20 

21 1.515 666 0.659 776 17.011209 0.058 785 25.783 317 O.Q38 785 157.795 850 21 

22 1.545 980 0.646 839 17.658 048 0.056 631 27.298 984 0.036 631 171.379 470 22 

23 1.576 899 0.634 156 18.292 204 0.054 668 28.844 963 0.034 668 185.330 900 23 

24 1.608 437 0.621 721 18.913 926 0.052 871 30.421862 0.032 871 199.630 495 24 

25 1.640 606 0.609 531 19.523 456 0.051 220 32.030 300 0.031 220 214.259 236 25 

26 1.673 418 0.597 579 20.121 036 0.049 699 33.670 906 0.029 699 229.198 718 26 

27 1.706 886 0.585 862 20.706 898 0.048 293 35.344 324 0.028 293 244.431 131 27 

28 1.741 024 0.574 375 21.281 272 0.046 990 37.051 210 0.026 990 259.939 244 28 

29 1.775 845 0.563 112 21.844 385 0.045 778 38.792 235 0.025 778 275.706 388 29 

30 1.811 362 0.552 071 22.396 456 0.044 650 40.568 079 0.024 650 291.716 444 30 

31 1.847 589 0.541 246 22.937 702 0.043 596 42.379 441 0.023 596 307.953 823 31 

32 1.884 541 0.530 633 23.468 335 0.042 611 44.227 030 0.022 611 324.403 456 32 

33 1.922 231 0.520 229 23.988 564 0.041 687 46.111 570 0.021 687 341.050 775 33 

34 1.960 676 0.510 028 24.498 592 0.040 819 48.033 802 0.020 819 357.881 704 34 

35 1.999 890 0.500 028 24.998 619 0.040 002 49.994 478 0.020 002 374.882 643 35 

(co11t.) 



Appendix Compound Interest Tables 501 

(cont.) 

2% Single Payment Uniform Series 
Arithmetic 

2% 
Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

" FIP PIF PIA AIP FIA NF PIG n 

36 2.039 887 0.490 223 25.488 842 0.039233 51.994 367 0.019 233 392.040 453 36 

37 2.080 685 0.480 611 25.969 453 0.038 507 54.034 255 0.018 507 409.342 447 37 

38 2.122 299 0.471 187 26.440 641 0.037 821 56.114 940 0.017 821 426.776 373 38 

39 2.164 745 0.461 948 26.902 589 0.037171 58.237 238 0.017171 444.330 405 39 

40 2.208 040 0.452 890 27.355 479 0.036 556 60.401983 0.016 556 461.993 132 40 

41 2.252 200 0.444 010 27.799 489 0.035 972 62.610 023 0.015 972 479.753 540 41 

42 2.297 244 0.435 304 28.234 794 0.035 417 64.862 223 0.015 417 497.601 009 42 

43 2.343189 0.426 769 28.661 562 0.034 890 67.159 468 0.014 890 515.525 297 43 

44 2.390 053 0.418 401 29.079 963 0.034 388 69.502 657 0.014 388 533.516 529 44 

45 2.437 854 0.410 197 29.490160 0.033 910 71.892 710 0.013 910 551.565 188 45 

46 2.486 611 0.402 154 29.892 314 0.033 453 74.330 564 0.013 453 569.662 106 46 

47 2.536 344 0.394 268 30.286 582 0.033 018 76.817176 0.013 018 587.798 450 47 

48 2.587 070 0.386 538 30.673 120 0.032 602 79.353 519 0.012 602 605.965 718 48 
49 2.638 812 0.378 958 31.052 078 0.032 204 81.940 590 0.012 204 624.155 723 49 

50 2.691588 0.371 528 31.423 606 0.031 823 84.579 401 O.Qll 823 642.360 589 50 

60 3.281 031 0.304 782 34.760 887 0.028 768 114.051 539 0.008 768 823.697 534 60 

70 3.999 558 0.250 028 37.498 619 0.026 668 149.977 911 0.006 668 999.834 315 70 

72 4.161140 0.240 319 37.984 063 0.026 327 158.057 019 0.006 327 1 034.055 703 72 

80 4.875 439 0.205 110 39.744 514 0.025 161 193.771 958 0.005 161 1 166.786 767 80 

84 5.277 332 0.189 490 40.525 516 0.024 676 213.866 607 0.004 676 1 230.419 116 84 

90 5.943 133 0.168 261 41.586 929 0.024 046 247.156 656 0.004 046 1 322.170 082 90 

96 6.692 933 0.149 411 42.529 434 0.023 513 284.646 659 0.003 513 1 409.297 343 96 

100 7.244 646 0.138 033 43.098 352 0.023 203 312.232 306 0.003 203 1 464.752 746 100 

108 8.488 258 0.117810 44.109 510 0.022 671 374.412 879 0.002 671 1569.302514 108 

120 10.765 163 0.092 892 45.355 389 0.022 048 488.258152 0.002 048 1 710.416 045 120 

240 115.888 735 0.008 629 49.568 552 0.020 174 5 744.436 758 0.000 174 2 374.879 987 240 

360 1 247.561 128 0.000 802 49.959 922 0.020 016 62 328.056 387 0.000 016 2 483.567 939 360 

480 13 430.198 935 0.000 074 49.996 277 0.020 001 671 459.946 767 0.000 001 2 498.026 835 480 

00 00 0 50.000 000 0.020 000 00 0 2 500.000 000 'X 



502 Compound Interest Tables Appendix 

Uniform Series 
Arithmetic 

3% Single Payment Gradient Series 3% 

-Compound Compound Capital 

Amount Present Worth Present Worth Reco"ery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA AIP FIA NF PIG 

" -
1 1.030000 0.970 874 0.970874 1.030 000 1.000 000 1.000000 0.000000 1 
2 1.060900 0.942 596 1.913 470 0.522 611 2.030 000 0.492 611 0.942 596 2 
3 1.092 727 0.915142 2.828 611 0.353 530 3.090 900 0.323 530 2.772 879 3 
4 1.125 509 0.888487 3.717 098 0.269027 4.183 627 0.239 027 5.438 340 4 
5 1.159 274 0.862 609 4.579 707 0.218 355 5.309136 0.188 355 8.888 776 5 

6 1.194 052 0.837 484 5.417191 0.184 598 6.468 410 0.154 598 13.076197 6 
7 1.229 874 0.813092 6.230 283 0.160 506 7.662 462 0.130 506 17.954 746 7 
8 1.266 770 0.789 409 7.019 692 0.142 456 8.892 336 0.112 456 23.480 611 8 
9 1.304 773 0.766417 7.786109 0.128 434 10.159 106 0.098 434 29.611944 9 

10 1.343 916 0.744 094 8.530 203 0.117 231 11.463 879 0.087 231 36.308 790 10 

11 1.384 234 0.722 421 9.252 624 0.108 077 12.807 796 O.D78 077 43.533 002 11 
12 1.425 761 0.701 380 9.954 004 0.100462 14.192 030 0.070462 51.248 181 12 
13 1.468 534 0.680 951 10.634 955 0.094030 15.617 790 0.064 030 59.419 597 13 
14 1.512 590 0.661118 11.296 073 0.088 526 17.086 324 0.058 526 68.014129 14 

15 1.557 967 0.641862 11.937 935 0.083 767 18.598 914 0.053 767 77.000196 15 

16 1.604 706 0.623 167 12.561 102 0.079 611 20.156 881 0.049 611 86.347 700 16 
17 1.652 848 0.605 016 13.166 118 0.075 953 21.761 588 0.045 953 96.027 963 17 
18 1.702 433 0.587 395 13.753 513 0.072 709 23.414 435 0.042 709 106.013 671 18 
19 1.753 506 0.570286 14.323 799 0.069 814 25.116 868 0.039 814 116.278 820 19 
20 1.806111 0.553 676 14.877 475 0.067 216 26.870 374 0.037 216 126.798 659 20 

21 1.860 295 0.537 549 15.415 024 0.064 872 28.676 486 0.034 872 137.549 645 21 
22 1.916 103 0.521 893 15.936 917 0.062 747 30.536 780 0.032 747 148.509 387 22 
23 1.973 587 0.506 692 16.443 608 0.060 814 32.452 884 0.030 814 159.656 6~.16 23 
24 2.032 794 0.491 934 16.935 542 0.059 047 34.426470 0.029 047 170.971 082 24 
25 2.093 778 0.477 606 17.413 148 0.057 428 36.459 264 0.027 428 182.433 615 25 

26 2.156 591 0.463 695 17.876 842 0.055 938 38.553 042 0.025 938 194.025 984 26 
27 2.221 289 0.450 189 18.327 031 0.054 564 40.709 634 0.024 564 205.730 899 27 
28 2.287 928 0.437 077 18.764108 0.053 293 42.930 923 0.023 293 217.531 971 28 
29 2.356 566 0.424 346 19.188 455 0.052 115 45.218 850 0.022 115 229.413 669 29 

30 2.427 262 0.411 987 19.600 441 0.051 019 47.575 416 0.021 019 241.361 285 30 

31 2.500 080 0.399 987 20.000428 0.049 999 50.002 678 0.019 999 253.360 900 31 

32 2.575 083 0.388 337 20.388 766 0.049 047 52.502 759 0.019 047 265.399 348 32 
33 2.652 335 0.377 026 20.765 792 0.048156 55.077 841 O.D18156 277.464 188 33 

34 2.731 905 0.366 045 21.131 837 0.047 322 57.730 177 0.017 322 289.543 669 34 
35 2.813 862 0.355 383 21.487 220 0.046 539 60.462 082 O.Q16 539 301.626 705 35 -

(co11t.) 



Appendix Compound Interest Tables 503 

(cont.) 
-

3% Single Payment Uniform Series 
Arithmetic 

3% 
Gradient Series 

-
Compound Capital Compound 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

II FIP PIF PIA NP FIA NF PIG n 

36 2.898 278 0.345 032 21.832 252 0.045 804 63.275 944 0.015 804 313.702840 36 

37 2.985 227 0.334 983 22.167 235 0.045112 66.174 223 O.Q15 112 325.762 226 37 

38 3.074 783 0.325 226 22.492 462 0.044459 69.159 449 0.014459 337.795 593 38 

39 3.167 027 0.315 754 22.808 215 0.043 844 72.234 233 0.013 844 349.794 228 39 

40 3.262 038 0.306 557 23.114 772 0.043 262 75.401 260 0.013 262 361.749 945 40 

41 3.359899 0.297 628 23.412400 0.042 712 78.663 298 0.012 712 373.655 065 41 

42 3.460 696 0.288 959 23.701359 0.042 192 82.023196 0.012192 385.502 393 42 

43 3.564 517 0.280543 23.981 902 0.041698 85.483 892 O.ot 1 698 397.285 196 43 

44 3.671452 0.272 372 24.254 274 0.041 230 89.048409 0.011230 408.997 183 44 

45 3.781596 0.264 439 24.518 713 0.040 785 92.719 861 0.010 785 420.632 482 45 

46 3.895 044 0.256 737 24.775 449 0.040 363 96.501457 0.010 363 432.185 626 46 

47 4.011895 0.249 259 25.024 708 0.039 961 100396 501 0.009 961 443.651529 47 

48 4.132 252 0.241 999 25.266 707 0.039 578 104.408 396 0.009 578 455.025 473 48 

49 4.256 219 0.234 950 25.501 657 0.039 213 108.540 648 0.009 213 466.303 087 49 

50 4.383 906 0.228 107 25.729 764 0.038 865 112.796 867 0.008 865 477.480 334 50 

60 5.891603 0.169 7~3 27.675 564 0.036 133 163.053 437 0.006 133 583.052 609 60 

70 7.917 822 0.126 2'1 ~ i 29.123 421 O.Q3.t 337 230.594 064 0.00.f 337 676.086 873 70 

72 8.400 017 0.119047 29.365 088 0.034 054 246.667 242 0.00.f 054 693.122 552 72 

80 10.640 891 r.o;_; 9"/7 30.200 763 0.033 112 321.363 019 0.003 112 756.086 524 80 

84 l l.976 416 1 .. il".~ .t<J?' 30.550 086 0.032 733 365.880 536 0.002 733 784.543 373 84 

90 14.300 467 0.069 928 31.002 407 0.032 256 443.348 904 0.002 256 823.630 214 90 

96 17.075 506 O.i:58 ~,_;3 31.381 219 0.031 866 535.850 186 0.001866 858.637 702 96 

100 19.218 632 0 052 033 31.598 905 0.031 647 607.287 733 0.001647 879.854 045 100 

108 24.345 588 0.()-tl 075 31.964 160 0.031 285 778.186 267 0.001 285 917.601260 108 

120 34.710 987 0.028 809 32.Ji3 023 0.030 890 l 123.699 571 0.000 890 963.863 .t66 120 

240 1 204.852 628 0.000 830 33.305 667 0.030 025 40 128.420 931 0.000 025 1 103.549 098 240 

00 00 0 33.33J333 0.030000 00 0 1111.111111 00 



504 Compound Interest Tables Appendix 

-----Uniform Series Arithmetic 
4% Single Payment Gradient Series 4% 

-Compound Capital Compound 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-n FIP PIF PIA AIP FIA NF PIG II 

-
1 1.040 ()()() 0.961538 0.961538 1.040 000 1.000 000 1.000 000 0.000000 1 
2 1.081 600 0.924 556 1.886 095 0.530196 2.040000 0.490196 0.924 556 2 
3 1.124 864 0.888 996 2.775 091 0.360349 3.121 600 0.320 349 2.702 549 3 
4 1.169 859 0.854 804 3.629 895 0.275 490 4.246464 0.235 490 5.266 962 4 
5 1.216 653 0.821 927 4.451822 0.224 627 5.416 323 0.184 627 8.554 670 5 

6 1.265 319 0.790 315 5.242 137 0.190 762 6.632 975 0.150 762 12.506 243 6 
7 1.315 932 0.759 918 6.002 055 0.166 610 7.898 294 0.126 610 17.065 749 7 
8 1368 569 0.730 690 6.732 745 0.148 528 9.214 226 0.108 528 22.180 581 8 
9 1.423 312 0.702 587 7.435 332 0.134 493 10.582 795 0.094 493 27.801 275 9 

10 1.480 244 0.675 564 8.110 896 0.123 291 12.006107 0.083 291 33.881 352 IO 

11 1.539 454 0.649 581 8.760477 0.114 149 13.486 351 0.074 149 40.377 162 11 
12 1.601 032 0.624 597 9.385 074 0.106 552 15.025 805 0.066 552 47.247 729 12 

13 1.665 074 0.600574 9.985 648 0.100144 16.626 838 0.060144 54.454 618 13 
14 1.731 676 0.577 475 10.563123 0.094 669 18.291911 0.054 669 61.961 794 14 

15 1.800 944 0.555 265 11.118 387 0.089 941 20.023 588 0.049 941 69.735 497 15 

16 1.872 981 0.533 908 11.652 296 0.085 820 21.824 531 0.045 820 77.744 120 16 

17 1.947 900 0.513 373 12.165 669 0.082 199 23.697 512 0.042199 85.958 o~i2 17 

18 2.025 817 0.493 628 12.659 297 0.o78 993 25.645 413 0.038 993 94.349 770 18 

19 2.106 849 0.474 642 13.133 939 0.076139 27.671 229 0.036139 102.893 334 19 

20 2.191 123 0.456 387 13.590 326 0.073 582 29.778 079 0.033 582 111.564 686 20 

21 2.278 768 0.438 834 14.029160 0.071280 31.969 202 0.031 280 120.~41 J58 21 

22 2.369 919 0.421 955 14.451 115 0.069199 34.247 970 0.029 199 129.202 421 22 

23 2.464 716 0.405 726 14.856 842 0.067 309 36.617 889 0.027 309 138.128 400 23 

24 2.563 304 0.390 121 15.246 963 0.065 587 39.082 604 0.025 587 147.101 194 24 

25 2.665 836 0.375117 15.622 080 0.064 012 41.645 908 0.024 012 156.103 997 25 

26 2.772 470 0.360 689 15.982 769 0.062 567 44.311 745 0.022 567 165.121 228 26 

27 2.883 369 0.346 817 16.329 586 0.061239 47.084 214 0.021 239 174.138 459 27 

28 2.998 703 0.333 477 16.663 063 0.060013 49.967 583 0.020 013 183.142 351 28 

29 3.118 651 0.320 651 16.983 715 0.058 880 52.966 286 0.018 880 192.120 590 29 

30 3.243 398 0.308 319 17.292 033 0.057 830 56.084 938 0.017 830 201.061 832 30 

31 3.373 133 0.296460 17.588 494 0.056 855 59.328 335 0.016 855 209.955 639 31 

32 3.508 059 0.285 058 17.873 551 0.055 949 62.701469 O.D15 949 218.792 435 32 

33 3.648 381 0.274 094 18.147 646 0.055 104 66.209 527 O.D15 104 227.563 449 33 

34 3.794 316 0.263 552 18.411198 0.054 315 69.857 909 0.014 315 236.260 668 34 
35 3.946 089 0.253 415 18.664 613 0.053 577 73.652 225 0.013 577 244.876 794 35 

--
(cont.) 



Appendix Compound Interest Tables 505 

(cont.) 

-
4% Single Payment Uniform Series 

Arithmetic 4% 
Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

" FIP PIF PIA AIP FIA AIF PIG n 

36 4.103 933 0.243 669 18.908 282 0.052 887 77.598 314 0.012 887 253.405 199 36 

37 4.268 090 0.234 297 19.142 579 0.052 240 81.702 246 0.012 240 261.839 886 37 

38 4.438 813 0.225 285 19.367 864 0.051 632 85.970 336 0.011 632 270.175 447 38 

39 4.616 366 0.216 621 19.584 485 0.051 061 90.409150 0.011 061 278.407 030 39 

40 4.801 021 0.208 289 19.792 774 0.050 523 95.025 516 0.010 523 286.530 302 40 

41 4.993 061 0.200 278 19.993 052 0.050 017 99.826 536 0.010 017 294.541 420 41 

42 5.192 784 0.192 575 20.185 627 0.049 540 104.819 598 0.009 540 302.436 992 42 

43 5.400495 0.185 168 20.370 795 0.049 090 110.012 382 0.009 090 310.214 056 43 

44 5.616 515 0.178 046 20.548 841 0.048 665 115.412 877 0.008 665 317.870 049 44 

45 5.841176 0.171198 20.720 040 0.048 262 121.029 392 0.008 262 325.402 779 45 

46 6.074 823 0.164 614 20.884 654 0.047 882 126.870 568 0.007 882 332.810 403 46 

47 6.317 816 0.158 283 21.042 936 0.047 522 132.945 390 0.007 522 340.091400 47 

48 6.570 528 0.152 195 21.195 131 0.047 181 139.263 206 0.007 181 347.244 554 48 

49 6.833 349 0.146 341 21.341472 0.046 857 145.833 734 0.006 857 354.268 928 49 

50 7.106 683 0.140 713 21.482 185 0.046 550 152.667 084 0.006 550 361.163 846 50 

60 10.519 627 0.095 060 22.623 ~oo 0.044 202 237.990 685 0.004 202 422.996 648 60 

70 15.571618 0.064 219 23.394 515 0.042 745 364.290 459 0.002 745 472.478 923 70 

72 16.842 262 0.059 374 23.515 639 0.042 525 396.056 560 0.002 525 481.016 968 72 

80 23.049 799 0.043 384 23.915 392 C.041 814 551.244 977 0.001 814 511.116144 80 

84 26.965 005 0.0:\7 OS5 24.072 872 0.041 541 649.125 119 0.001 541 523.943 092 84 

90 34.119 333 0.029 309 

I 

24.167 278 0.041 208 827.983 334 0.001 208 540.736 923 90 

96 43.171 841 0.023 163 24.<120 919 O.L40 949 1 054.296 034 0.000 949 554.931 180 96 

100 50.504 948 0.019 800 24.504 999 0.040 808 1 237.623 705 0.000 808 563.124 875 100 
108 69.119 509 0.014 468 24.638 308 0.040 587 1 702.987 724 0.000 587 576.894 913 108 
120 110.662 561 0.009 036 2074088 0.040 365 2 741.564 020 0.000 365 592.242 761 120 

240 12 246.202 364 0.000 082 24.997 959 0.040 003 306 130.059 094 0.000 003 624.459 016 240 

00 00 0 25.000 000 0.040 000 00 0 625.000 000 ·X) 



506 Compound Interest Tables Appendix 

Single Payment Unifonn Series Arithmetic 
5% Gradient Series 5% 

Compound -Compound Capital 

Amount Present Worth Present Wonh Reco\'cry Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA A/P FIA AIF PIG n 

-
1 1.050000 0.952 381 0.952 381 1.050 ()()(} 1.000 000 1.000000 0.000000 1 
2 1.102 500 0.907 029 1.859 410 0.537 805 2.050000 0.487 805 0.907 029 2 
3 1.157 625 0.863 838 2.723 248 0.367 209 3.152 500 0.317 209 2.634 705 3 
4 1.215 506 0.822 702 3.545 951 0.282012 4.310125 0.232 012 5.102 812 4 
5 1.276 282 0.783 526 4.329477 0.230975 5.525 631 0.180 975 8.236 917 5 

6 1.340 096 0.746 215 5.075 692 0.197 017 6.801 913 0.147 017 11.967 994 6 
7 1.407 100 0.710 681 5.786 373 0.172 820 8.142 008 0.122 820 16.232 082 7 
8 1.477 455 0.676 839 6.463 213 0.154 722 9.549109 0.104 722 20.969 957 8 
9 1.551 328 0.644 609 7.107 822 0.140 690 11.026 564 0.090 690 26.126 829 9 

10 1.628895 0.613 913 7.721 735 0.129 505 12.577 893 0.079 505 31.652 048 10 

11 1.710 339 0_~84 679 8.306 414 0.120 389 14.206 787 0.070 389 37.498 841 11 
12 1.795 856 0.556837 8.863 252 0.112825 15.917 127 0.062 825 43.624 052 12 
13 1.885 649 0.530 321 9.393 573 0.106 456 17.712 983 0.056 456 49.987 909 13 
14 1.979 932 0.505 068 9.898 641 0.101 024 19.598 632 0.051024 56.553 792 14 
15 2.078 928 0.481 017 10.379 658 0.096 342 21.578 564 0.046 342 63.288 031 15 

16 2.182 875 0.458112 10.837 770 0.092 270 23.657 492 0.042 270 70.159 704 16 
17 2.292 018 0.436 297 11.274 066 0.088 699 25.840 366 O.Q38 699 77.140 451 17 
18 2.406 619 0.415 521 11.689 587 0.085 546 28.132 385 0.035 546 84.204 302 18 
19 2.526 950 0.395 734 12.085 321 0.082 745 30.539 004 0.032 745 91.327 514 19 
20 2.653 298 0.376 889 12.462 210 0.080 243 33.065 954 0.030 243 98.488 414 20 

21 2.785 963 0.358 942 12.821153 0.077 996 35.719 252 0.027 996 105.667 261 21 
22 2.925 261 0.341 850 13.163 003 0.075 971 38.505 214 0.025 971 112.846 108 22 
23 3.071524 0.325 571 13.488 574 0.074137 41.430 475 0.024137 120.008 677 23 

24 3.225100 0.310 068 13.798 642 0.072 471 44.501999 0.022 471 127.140 239 24 

25 3.386 355 0.295 303 14.093 945 0.070 952 47.727 099 0.020 952 134.227 505 25 

26 3.555 673 0.281 241 14.375185 0.069 564 51.113 454 0.019 564 141.258 524 26 

27 3.733456 0.267 848 14.643 034 0.068 292 54.669 126 O.Q18 292 148.222 580 27 

28 3.920 129 0.255 094 14.898127 0.067123 58.402 583 0.017123 155.110 108 28 

29 4.116136 0.242 946 15.141 074 0.066 046 62.322 712 0.016 046 161.912 605 29 

30 4.321 942 0.231 377 15.372 451 0.065 051 66.438 848 O.Q15 051 168.622 551 30 

31 4.538 039 0.220 359 15.592 811 0.064132 70.760 790 0.014 132 175.233 336 31 

32 4.764 941 0.209 866 15.802 677 0.063 280 75.298 829 0.013 280 181.739 187 32 

33 5.003189 0.199 873 16.002 549 0.062490 80.063 771 0.012 490 188.135 108 33 

34 5.253 348 0.190 355 16.192 904 0.061 755 85.066 959 O.Ql 1 755 194.416 816 34 

35 5.516 015 0.181 290 16.374194 0.061 072 90.320 307 0.011072 200.580 686 35 -
(cont.) 



Appendix Compound Interest Tables 507 

(cont.) 

-
5% Single Payment Uniform Series Arithmetic 

5% 
Gradient Series 

-
Compound Capital Compound 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

36 5.791816 0.172 657 16.546 852 0.060434 95.836 323 0.010434 206.623 696 36 

37 6.081407 0.164 436 16.711 287 0.059 840 101.628139 0.009 840 212.543 378 37 

38 6.385 477 0.156 605 16.867 893 0.059 284 107.709 546 0.009 284 218.337 777 38 

39 6.704 751 0.149148 17.017 041 0.058 765 114.095 023 0.008 765 224.005 400 39 

40 7.039 989 0.142 046 17.159 086 0.058 278 120.799 774 0.008 278 229.545 181 40 

41 7.391988 0.135 282 17.294 368 0.057 822 127.839 763 0.007 822 234.956 445 41 

42 7.761588 0.128 840 17.423 208 0.057 395 135.231 751 0.007 395 240.238 870 42 

43 8.149 667 0.122 704 17.545 912 0.056 993 142.993 339 0.006 993 245.392 455 43 

44 8.557150 0.116 861 17.662 773 0.056 616 151.143 006 0.006 616 250.417 492 44 

45 8.985 008 0.111297 17.774 070 0.056 262 159.700 156 0.006 262 255.314 538 45 

46 9.434 258 0.105 997 17.880 066 0.055 928 168.685 164 0.005 928 260.084 389 46 

47 9.905 971 0.100 949 17.981 016 0.055 614 178.119 422 0.005 614 264.728 053 47 

48 10.401270 0.096142 18.077158 0.055 318 188.025 393 0.005 318 269.246 732 48 

49 10.921333 0.091564 18.168 722 0.055 040 198.426 663 0.005 040 273.641800 49 

50 11.467 400 0.087 204 18.255 925 0.054 777 209.347 996 0.004 777 277.914 782 50 

60 18.679186 0.053 536 18.929 290 0.052 828 353.583 718 0.002 828 314.343 162 60 

70 30.426 426 0032 866 19.342 677 0.051 699 588.528 511 0.001699 340.840 898 70 

72 33.545 134 0.029 811 19.403 788 0.051 536 650.902 683 0.001536 345.148 528 72 

80 49.561441 0.020177 19.596 460 0.051 030 971.228 821 0.001 030 359.646 048 80 

84 60.242 241 0.016 600 19.668 007 O.iJ50 844 1184.844 828 0.000 844 365.472 732 84 

90 80.730 365 0.012 387 19.752 262 0.050 6'27 1 594.607 301 0.000 627 372.748 792 90 
96 108.186 410 0.009 243 19.815 134 0.050 466 2 143.728 205 0.000 466 378.555 532 96 

100 131.501 258 0.007 604 19.847 910 0.050 383 2 610.025 157 0.000 383 381.749 224 100 
108 194.287 249 0.005 147 19.897 060 0.050 259 3 865.744 985 0.000 259 386.823 634 108 
120 348.911 986 0.002 866 19.942 679 0.050 144 6 958.239 713 0.000144 391.975 054 120 

00 00 0 20.000 000 0.050 000 00 0 400 00 



508 Compound Interest Tables Appendix 

-
6% Single Payment Uniform Series Arithmetic 

Gradient Series 6% 

-
Compound Capital Compound 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

1 1.060000 0.943 396 0.943 396 1.060 000 1.000000 1.000 000 0.000000 1 
2 1.123 600 0.889 996 1.833 393 0.545 437 2.060 000 0.485 437 0.889 996 2 
3 1.191 016 0.839 619 2.673 012 0.374 110 3.183 600 0.314 110 2.569 235 3 
4 1.262 477 0.792 094 3.465106 0.288 591 4.374 616 0.228 591 4.945 516 4 
5 1.338 226 0.747 258 4.212 364 0.237 396 5.637 093 0.177 396 7.934 549 5 

6 1.418 519 0.704 961 4.917 324 0.203 363 6.975 319 0.143 363 11.459 351 6 
7 1.503 630 0.665 057 5.582 381 0.179 135 8.393 838 0.119135 15.449 694 7 
8 1.593 848 0.627 412 6.209 794 0.161 036 9.897 468 0.101 036 19.841 581 8 
9 1.689 479 0.591 898 6.801692 0.147 022 11.491 316 0.087 022 24.576 768 9 

10 1.790 848 0.558 395 7.360 087 0.135 868 13.180 795 0.075 868 29.602 321 10 

11 1.898 299 0.526 788 7.886 875 0.126 793 14.971 643 0.066 793 34.870197 11 
12 2.012 196 0.496 969 8.383 844 0.119 277 16.869 941 0.059 277 40.336 860 12 
13 2.132 928 0.468 839 8.852 683 0.112 960 18.882138 0.052 960 45.962 928 13 

14 2.260 904 0.442 301 9.294 984 0.107 585 21.015 066 0.047 585 51.712 840 14 
15 2.396 558 0.417 265 9.712249 0.102 963 23.275 970 0.042 963 57.554 551 15 

16 2.540 352 0.393 646 10.105 895 0.098 952 25.672 528 0.038 952 63.459 246 16 
17 2.692 773 0.371364 10.477 260 0.095 445 28.212 880 0.035 445 69.401 076 17 
18 2.854 339 0.350 344 10.827 603 0.092 357 30.905 653 0.032 357 75.356 921 18 
19 3.025 600 0.330 513 11.158 116 0.089 621 33.759 992 0.029 621 81.306 155 19 
20 3.207 135 0.311 805 11.469 921 0.087 185 36.785 591 0.027185 87.230 445 20 

21 3.399 564 0.294 155 11.764 077 0.085 005 39.992 727 0.025 005 93.113 553 21 

22 3.603 537 0.277 505 12.041582 0.083 046 43.392 290 0.023 046 98.941 160 22 

23 3.819 750 0.261 797 12.303 379 0.081278 46.995 828 0.021 278 104.700 700 23 

24 4.048 935 0.246 979 12.550 358 0.079 679 50.815 577 0.019 679 110.381 206 24 

25 4.291 871 0.232 999 12.783 356 0.078 227 54.864 512 O.Q18 227 115.973 173 25 

26 4.549 383 0.219 810 13.003 166 0.076 904 59.156 383 0.016 904 121.468 424 26 

27 4.822 346 0.207 368 13.210 534 O.Q75 697 63.705 766 O.ot5 697 126.859 991 27 

28 5.111687 0.195 630 13.406 164 0.074 593 68.528112 0.014 593 132.142 005 28 

29 5.418 388 0.184 557 13.590 721 0.073 580 73.639 798 0.013 580 137.309 593 29 

30 5.743 491 0.174 110 13.764 831 0.072 649 79.058 186 0.012 649 142.358 787 30 

31 6.088101 0.164 255 13.929 086 0.071 792 84.801 677 0.011 792 147.286 432 31 

32 6.453 387 0.154 957 14.084 043 0.071 002 90.889 778 0.011 002 152.090 112 32 

33 6.840 590 0.146 186 14.230 230 0.070 273 97.343 165 0.010 273 156.768 071 33 

34 7.251 025 0.137 912 14.368141 0.069 598 104.183 755 0.009 598 161.319 151 34 
35 7.686 087 0.130105 14.498 246 0.068 974 111.434 780 0.008 974 165.742 729 35 

-
(cont.) 



Appendix Compound Interest Tables 509 

(cont.) 

Single Payment Uniform Series 
Arithmetic 

6% 6% Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

36 8.147 252 0.122 741 14.620 987 0.068 395 119.120 867 0.008 395 170.038 656 36 

37 8.636 087 0.115 793 14.736 780 0.067 857 127.268 119 0.007 857 174.207 210 37 

38 9.154 252 0.109 239 14.846 019 0.067 358 135.904 206 0.007 358 178.249 048 38 

39 9.703 507 0.103 056 14.949 075 0.066 894 145.058 458 0.006 894 182.165 157 39 

40 10.285 718 0.097 222 15.046 297 0.066 462 154.761 966 0.006 462 185.956 823 40 

41 10.902 861 0.091 719 15.138 016 0.066 059 165.047 684 0.006 059 189.625 585 41 

42 11.557 033 0.086 527 15.224 543 0.065 683 175.950 545 0.005 683 193.173 208 42 

43 12.250455 0.081 630 15.306173 0.065 333 187.507 577 0.005 333 196.601 652 43 

44 12.985 482 0.077 009 15.383 182 0.065 006 199.758 032 0.005 006 199.913 043 44 

45 13.764 611 0.072 650 15.455 832 0.064 700 212.743 514 0.004 700 203.109 646 45 

46 14.590487 0.068 538 15.524 370 0.064 415 226.508 125 0.004 415 206.193 847 46 

47 15.465 917 0.064 658 15.589 028 0.064 148 241.098 612 0.004148 209.168 129 47 
48 16.393 872 0.060 998 15.650 027 0.063 898 256.564 529 0.003 898 212.035 054 48 
49 17.377 504 0.057 546 15.707 572 0.063 664 272.958 401 0.003 664 214.797 246 49 
50 18.420 154 0.054 288 15.761 861 0.063 444 290.335 905 0.003 444 217.457 376 50 

60 32.987 691 0.030 314 16.'61428 0.061 876 533.128 181 0.001 876 239.042 791 60 
70 59.075 930 0.016 927 16.3~11544 0.061 033 967.932 170 0.001 033 253.327 135 70 
72 66.377 715 0.015 065 16Al5 578 0.060 918 1 089.628 586 0.000 918 255.514 616 72 
80 105.795 993 0.009 452 16.509 131 0.060 573 1 746.599 891 0.000 573 262.549 308 80 
84 133.565 004 0.007 487 16.541 883 0.060 453 2 209.416 737 0.000 453 265.216 270 84 

90 189.464 511 0.005 27'?- 16.578 699 0.060 318 3 141.075 187 0.000 318 268.394 607 90 
96 268.759 030 0.003 721 16.60-+ 653 0.060 224 4 462.650 505 0.000 224 270.790 932 96 

100 339.302 084 0.002 947 16.617 546 0.060 177 5 638.368 059 0.000 177 272.047 060 100 
108 540.795 972 0.001 849 16.635 848 0.060 111 8 996.599 542 0.000 111 273.935 704 108 
120 1 088.187 748 0.000 919 16.651 351 0.060 055 18 119.795 797 0.000 055 275.684 593 120 

00 00 0 16.666 667 0.060 000 00 0 277.777 778 00 



510 Compound Interest Tables Appendix 

-
7% Single Payment Uniform Series Arithmetic 

Gradient Series 7% 

-
Compound Capital Compound 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n F/P PIF PIA AIP FIA AIF PIG 

" -
1 1.070000 0.934 579 0.934 579 1.070 000 1.000000 1.000 000 0.000000 1 
2 1.144 900 0.873 439 1.808 018 0.553 092 2.070000 0.483 092 0.873 439 2 
3 1.225 043 0.816 298 2.624 316 0.381 052 3.214 900 0.311 052 2.506 034 3 
4 1.310 796 0.762 895 3.387 211 0.295 228 4.439 943 0.225 228 4.794 720 4 
5 1.402 552 0.712 986 4.100 197 0.243 891 5.750 739 0.173 891 7.646 665 5 

6 1.500 730 0.666 342 4.766 540 0.209 796 7.153 291 0.139 796 10.978 376 6 
7 1.605 781 0.622 750 5.389 289 0.185 553 8.654 021 0.115 553 14.714 874 7 
8 1.718186 0.582 009 5.971 299 0.167 468 10.259 803 0.097 468 18.788 938 8 
9 1.838 459 0.543 934 6.515 232 0.153 486 11.977 989 0.083 486 23.140 408 9 

10 1.967 151 0.508 349 7.023 582 0.142 378 13.816 448 0.072 378 27.715 552 10 

11 2.104 852 0.475 093 7.498674 0.133 357 15.783 599 0.063 357 32.466 480 11 

12 2.252192 0.444 012 7.942 686 0.125 902 17.888 451 0.055 902 37.350 611 12 
13 2.409 845 0.414 964 8.357 651 0.119 651 20.140 643 0.049 651 42.330 185 13 
14 2.578 534 0.387 817 8.745 468 0.114 345 22.550488 0.044 345 47.371809 14 

15 2.759 032 0.362446 9.107 914 0.109 795 25.129 022 0.039 795 52.446 053 15 

16 2.952 164 0.338 735 9.446 649 0.105 858 27.888054 0.035 858 57.527 072 16 

17 3.158 815 0.316 574 9.763 223 0.102 425 30.840 217 0.032 425 62.592 262 17 

18 3.379 932 0.295 864 10.059 087 0.099 413 33.999 033 0.029 413 67.621 949 18 

19 3.616 528 0.276 508 10.335 595 0.096 753 37.378 965 0.026 753 72.599 099 19 

20 3.869 684 0.258 419 10.594 014 0.094 393 40.995 492 0.024 393 77.509 060 20 

21 4.140 562 0.241 513 10.835 527 0.092 289 44.865 177 0.022 289 82.339 322 21 

22 4.430 402 0.225 713 11.061 240 0.090406 49.005 739 0.020406 87.079 298 22 

23 4.740 530 0.210 947 11.272 187 0.088 714 53.436141 0.018 714 91.720129 23 

24 5.072 367 0.197 147 11.469 334 0.087189 58.176 671 0.017189 96.254 502 24 

25 5.427 433 0.184 249 11.653 583 0.085 811 63.249 038 0.015 811 100.676 482 25 

26 5.807 353 0.172 195 11.825 779 0.084 561 68.676 470 0.014 561 104.981 369 26 

27 6.213 868 0.160 930 11.986 709 0.083 426 74.483 823 0.013 426 109.165 559 27 

28 6.648 838 0.150 402 12.137 111 0.082 392 80.697 691 0.012 392 113.226 419 28 

29 7.114 257 0.140 563 12.277 674 0.081449 87.346 529 0.011449 117.162 177 29 

30 7.612 255 0.131 367 12.409 041 0.080 586 94.460 786 0.010 586 120.971 824 30 

31 8.145 113 0.122 773 12.531 814 0.079 797 102.073 041 0.009 797 124.655 014 31 

32 8.715 271 0.114 741 12.646 555 0.079 073 110.218154 0.009 073 128.211 989 32 

33 9.325 340 0.107 235 12.753 790 O.Q78 408 118.933 425 0.008 408 131.643 499 33 

34 9.978114 0.100 219 12.854 009 0.077 797 128.258 765 0.007 797 134.950 738 34 

35 10.676 581 0.093 663 12.947 672 0.077 234 138.236 878 0.007 234 138.135 278 35 

-
(cont.) 



Appendix Compound Interest Tables 511 

(cont.) 

Single Payment Uniform Series 
Arithmetic 7% 7% Gradient Series 

Compound Capita] Compound 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA NF PIG n 

36 11.423 942 0.087 535 13.035 208 0.076 715 148.913 460 0.006 715 141.199 019 36 

37 12.223 618 0.081809 13.117 017 0.076 237 160.337 402 0.006 237 144.144 137 37 

38 13.079 271 0.076 457 13.193 473 0.075 795 172.561 020 0.005 795 146.973 041 38 

39 13.994 820 0.071455 13.264 928 O.o75 387 185.640 292 0.005 387 149.688 331 39 

40 14.974 458 0.066 780 13.331 709 0.075 009 199.635 112 0.005 009 152.292 766 40 

41 16.022 670 0.062 412 13.394120 0.074 660 214.609 570 0.004 660 154.789 229 41 

42 17.144 257 0.058 329 13.452 449 0.074 336 230.632 240 0.004 336 157.180 700 42 

43 18.344 355 0.054 513 13.506 962 0.074 036 247.776 496 0.004 036 159.470 233 43 

44 19.628460 0.050 946 13.557 908 0.073 758 266.120 851 0.003 758 161.660 929 44 

45 21.002452 0.047 613 13.605 522 0.073 500 285.749 311 0.003 500 163.755 923 45 

46 22.472 623 0.044499 13.650 020 0.073 260 306.751 763 0.003 260 165.758 359 46 

47 24.045 707 0.041587 13.691 608 0.073 037 329.224 386 0.003 037 167.671 383 47 

48 25.728 907 O.Q38 867 13.730 474 0.072 831 353.270 093 0.002 831 169.498 122 48 

49 27.529 930 0.036 324 13.766 799 0.072 639 378.999 000 0.002 639 171.241 679 49 

50 29.457 025 0.033 948 13.800 746 0.072 460 406.528 929 0.002 460 172.905 119 50 

60 57.946 427 0.017 257 14.039181 0.071 229 813.520 383 0.001 229 185.767 743 60 

70 113.989 392 0.008 773 14.1:>0 389 0.070 :520 l 614.134 174 0.000 620 193.518 530 70 

72 130.506 455 0.007 662 1-t.i 76 '251 0.0"/0 541 1 850.092 216 0.000 541 194.636 483 72 

80 224.234 388 0.004 460 14.222 ')05 0.070 314 3 1 ~9.062 680 0.000 314 198.074 799 80 

84 293.925 541 0.003 402 14.237 111 0.070 239 4 184.650 579 0.000 239 199.304 635 84 

90 441.102 980 0.002 267 J.:.253 328 0.070159 6 287. i85 427 0.000 159 200.704 199 90 
96 661.976 630 0.001 511 14.:264 134 0.070 106 9 44}.52} 288 0.000 106 201.701 624 96 

100 867.716 326 0.001152 M.269 251 0.070 081 12 381.661 794 0.000 081 202.200 081 100 
108 1 490.898 199 0.000 671 14.276 132 0.070 047 21284.259980 0.000 047 202.909 897 108 
120 3 357. 788 383 0.000 298 14.281460 0.070 021 47 954.119 756 0.000 021 203.510 314 120 

00 00 0 14.285 714 0.070 000 00 0 204.081 633 00 



512 Compound Interest Tables Appendix 

-
8% Single Payment Uniform Series Arithmetic 

Gradient Series 8% 

-Compound Capital Compound 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA AIP FIA AIF PIG n 

-
1 1.080000 0.925 926 0.925 926 1.080 ()()() 1.000 ()()() 1.000000 0.000000 1 
2 1.166 400 0.857 339 1.783 265 0.560 769 2.080 000 0.480769 0.857 339 2 
3 1.259 712 0.793 832 2.577 097 0.388 034 3.246 400 0.308 034 2.445 003 3 
4 1.360489 0.735 030 3.312 127 0.301921 4.506112 0.221 921 4.650 093 4 
5 1.469 328 0.680 583 3.992 710 0.250 456 5.866 601 0.170 456 7.372 426 5 

6 1.586 874 0.630170 4.622 880 0.216 315 7.335 929 0.136 315 10.523 274 6 
7 1.713 824 0.583 490 5.206 370 0.192 072 8.922 803 0.112 072 14.024 216 7 
8 1.850 930 0.540 269 5.746 639 0.174 015 10.636 628 0.094 015 17.806 098 8 
9 1.999 005 0.500 249 6.246 888 0.160 080 12.487 558 0.080 080 21.808 090 9 

10 2.158 925 0.463 193 6.710 081 0.149 029 14.486 562 0.069 029 25.976 831 10 

11 2.331 639 0.428 883 7.138 964 0.140 076 16.645 487 0.060076 30.265 660 11 
12 2518170 0.397 114 7.536 078 0.132 695 18.977126 0.052 695 34.633 911 12 
13 2.719 624 0.367 698 7.903 776 0.126 522 21.495 297 0.046 522 39.046 287 13 
14 2.937194 0.340 461 8.244 237 0.121 297 24.214 920 0.041297 43.472 280 14 
15 3.172 169 0.315 242 8.559 479 0.116 830 27.152 114 0.036 830 47.885 664 15 

16 3.425 943 0.291 890 8.851 369 0.112 977 30.324 283 0.032 977 52.264 021 16 
17 3.700 018 0.270269 9.121 638 0.109 629 33.750 226 0.029 629 56.588 324 17 
18 3.996 019 0.250 249 9.371 887 0.106 702 37.450 244 0.026 702 60.842 558 18 
19 4.315 701 0.231 712 9.603 599 0.104128 41.446 263 0.024128 65.013 375 19 
20 4.660 957 0.214 548 9.818 147 0.101 852 45.761964 0.021 852 69.089 791 20 

21 5.033 834 0.198 656 10.016 803 0.099 832 50.422 921 0.019 832 73.062 906 21 

22 5.436 540 0.183 941 10.200 744 0.098 032 55.456 755 0.018 032 76.925 656 22 

23 5.871464 0.170 315 10.371 059 0.096 422 60.893 296 0.016 422 80.672 59~ 23 

24 6.341181 0.157 699 10.528 758 0.094 978 66.764 759 0.014 978 84.299 677 24 

25 6.848 475 0.146 018 10.674 776 0.093 679 73.105 940 0.013 679 87.804 107 25 

26 7.396 353 0.135 202 10.809 978 0.092 507 79.954 415 0.012 507 91.184 151 26 

27 7.988 061 0.125 187 10.935 165 0.091448 87.350 768 0.011448 94.439 008 27 

28 8.627 106 0.115 914 11.051 078 0.090489 95.338 830 0.010 489 97.568 679 28 

29 9.317 275 0.107 328 11.158 406 0.089 619 103.965 936 0.009 619 100.573 849 29 

30 10.062 657 0.099 377 11.257 783 0.088 827 113.283 211 0.008 827 103.455 792 30 

31 10.867 669 0.092 016 11.349 799 0.088107 123.345 868 0.008107 106.216 274 31 

32 11.737 083 0.085 200 11.434 999 0.087 451 134.213 537 0.007 451 108.857 475 32 

33 12.676 050 0.078 889 11.513 888 0.086 852 145.950 620 0.006 852 111.381 921 33 

34 13.690134 0.073 045 11.586 934 0.086 304 158.626 670 0.006 304 113.792 416 34 

35 14.785 344 0.067 635 11.654 568 0.085 803 172.316 804 0.005 803 116.091 990 35 
-

(cont.) 
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(cont.) 

8% Single Payment Uniform Series Arithmetic 
8% 

Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

II FIP PIF PIA AIP FIA NF PIG n 

36 15.968172 0.062 625 11.717 193 0.085 345 187.102 148 0.005 345 118.283 850 36 

37 17.245 626 0.057 986 11.775 179 0.084 924 203.070320 0.004 924 120.371 336 37 

38 18.625 276 0.053 690 11.828 869 0.084 539 220.315 945 0.004 539 122.357 884 38 

39 20.115 298 0.049 713 11.878 582 0.084185 238.941221 0.004185 124.246 994 39 

40 21.724 521 0.046 031 11.924 613 0.083 860 259.056 519 0.003 860 126.042 200 40 

41 23.462 483 0.042 621 11.967 235 0.083 561 280.781040 0.003 561 127.747 049 41 

42 25.339482 0.039 464 12.006 699 0.083 287 304.243 523 0.003 287 129.365 078 42 

43 27.366 640 0.036 541 12.043 240 0.083 034 329.583 005 0.003 034 130.899 793 43 

44 29.555 972 0.033 834 12.077 074 0.082 802 356.949 646 0.002 802 132.354 660 44 

45 31.920 449 0.031328 12.108 402 0.082 587 386.505 617 0.002587 133.733 086 45 

46 34.474 085 0.029 007 12.137 409 0.082390 418.426 067 0.002 390 135.038 415 46 

47 37.232 012 0.026 859 12.164 267 0.082 208 452.900 152 0.002 208 136.273 911 47 

48 40.210 573 0.024 869 12.189136 0.082040 490.132164 0.002 040 137.442 758 48 

49 43.427 419 0.023 027 12.212 163 0.081886 530.342 737 0.001886 138.548 050 49 

50 46.901 613 0.021321 12.233 485 0.081 743 573.770156 0.001 743 139.592 790 50 

60 101.257 064 0.009 876 12.376 552 0.080 798 1 253.213 296 0.000 798 147.300007 60 

70 218.606406 0.004 574 12.442 820 0.080 368 2 720.080 074 0.000 368 151.532 618 70 

72 254.982 512 0.003 922 12.450 977 0.080 315 3 174.781 398 0.000 315 152.107 559 72 

80 471.954 834 0.002119 12.473 514 0.080170 5 886.935 428 0.000 170 153.800 083 80 

84 642.089 342 0.001557 12.480 532 0.080 125 8 013.616 770 0.000125 154.371367 84 

90 1 018.915 089 0.000 981 12.487 732 0.080079 12 723.938 616 0.000 079 154.992 535 90 

96 1616.890192 0.000 618 12.492 269 0.080 050 20 198.627 405 0.000 050 155.411 198 96 

100 2 199.761 256 0.000 455 12.494 318 0.080 036 27 484.515 704 0.000 036 155.610 726 100 

108 4 071.604 565 0.000246 12.496 930 0.080 020 50 882.557 060 0.000 020 155.880 060 108 

120 10 252.992 943 0.000 098 12.498 781 0.080 008 128 149.911 781 0.000 008 156.088 462 120 

00 00 0 12.500 000 0.080 000 00 0 156.250 000 00 



514 Compound Interest Tables Appendix 

-
Singlc Payment Unifonn Series Arithmetic 

9% Gradient Series 9% 

-Compound Compound Capital 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA A!P FIA AIF PIG II 

-
1 1.090 000 0.917 431 0.917 431 1.090000 1.000 000 1.000000 0.000 000 1 
2 1.188 100 0.841680 1.759111 0.568469 2.090000 0.478 469 0.841680 2 
3 1.295 029 0.772183 2.531295 0.395 055 3.278100 0.305 055 2.386 047 3 
4 1.411 582 0.708425 3.239 720 0.308 669 4.573129 0.218 669 4.511 323 4 
5 1.538 624 0.649 931 3.889 651 0.257 092 5.984 711 0.167 092 7.111 048 5 

6 1.677 100 0.5%267 4.485 919 0.222 920 7.523 335 0.132 920 10.092 385 6 
7 1.828 039 0.547 034 5.032 953 0.198 691 9.200435 0.108 691 13.374 590 7 
8 1.992 563 0.501866 5.534 819 0.180 674 11.028 474 0.090 674 16.887 654 8 
9 2.171 893 0.460428 5.995 247 0.166 799 13.021036 0.076 799 20.571 076 9 

10 2.367 364 0.422 411 6.417 658 0.155 820 15.192 930 0.065 820 24.372 774 10 

11 2.580 426 0.387 533 6.805191 0.146 947 17.560 293 0.056 947 28.248102 11 
12 2.812 665 0.355 535 7.160 725 0.139 651 20.140 720 0.049 651 32.158 984 12 
13 3.065 805 0.326179 7.486 904 0.133 567 22.953 385 0.043 567 36.073 128 13 
14 3.341 727 0.299 246 7.786150 0.128 433 26.019189 0.038 433 39.963 332 14 
15 3.642 482 0.274 538 8.060 688 0.124 059 29.360 916 0.034059 43.806 865 15 

16 3.970 306 0.251 870 8.312 558 0.120 300 33.003 399 0.030 300 47.584 911 16 
17 4.327 633 0.231 073 8.543 631 0.117 046 36.973 705 0.027 046 51.282 082 17 
18 4.717120 0.211 994 8.755 625 0.114 212 41.301 338 0.024 212 54.885 975 18 
19 5.141 661 0.194 490 8.950115 0.111 730 46.018458 0.021 730 58.386 789 19 
20 5.604 411 0.178431 9.128 546 0.109 546 51.160120 0.019 546 61.776 976 20 

21 6.108 808 0.163 698 9.292 244 0.107 617 56.764 530 0.017 617 65.050 938 21 
22 6.658 600 0.150182 9.442 425 0.105 905 62.873 338 O.Ql5 905 68.204 754 22 
23 7.257 874 0.137 781 9.580 207 0.104 382 69.531 939 0.014 382 71.235 944 23 
24 7.911 083 0.126 405 9.706 612 0.103 023 76.789 813 0.013 023 74.143 258 24 

25 8.623 081 0.115 968 9.822 580 0.101806 84.700 896 0.011806 76.926 486 25 

26 9.399158 0.106 393 9.928 972 0.100 715 93.323 977 0.010715 79.586 298 26 

27 10.245 082 0.097 608 10.026 580 0.099 735 102.723 135 0.009 735 82.124101 27 

28 11.167 140 0.089 548 10.116128 0.098 852 112.968 217 0.008 852 84.541 910 28 

29 12.172 182 0.082155 10.198 283 0.098 056 124.135 356 0.008 056 86.842 237 29 

30 13.267 678 O.D75 371 10.273 654 0.097 336 136.307 539 0.007 336 89.028 000 30 

31 14.461 770 0.069 148 10.342 802 0.096 686 149.575 217 0.006 686 91.102 434 31 

32 15.763 329 0.063 438 10.406 240 0.096 096 164.036 987 0.006 096 93.069 024 32 

33 17.182 028 0.058 200 10.464441 0.095 562 179.800 315 0.005 562 94.931435 33 

34 18.728 411 0.053 395 10.517 835 0.095 077 196.982 344 0.005 077 96.693 464 34 

35 20.413 968 0.048 986 10.566 821 0.094 636 215.710 755 0.004 636 98.358 990 35 

-
(cont.) 
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(cont.) 

9% Single Payment Uniform Series 
Arithmetic 

9% 
Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

" FIP PIF PIA NP FIA NF PIG n 

36 22.251 225 0.044 941 10.611 763 0.094 235 236.124 723 0.004 235 99.931 937 36 

37 24.253 835 0.041231 10.652 993 0.093 870 258.375 948 0.003 870 101.416 239 37 

38 26.436 680 0.037 826 10.690 820 0.093 538 282.629 783 0.003 538 102.815 809 38 

39 28.815 982 0.034 703 10.725 523 0.093 236 309.066 463 0.003 236 104.134 522 39 

40 31.409 420 0.031 838 10.757 360 0.092 960 337.882 445 0.002 960 105.376 188 40 

41 34.236 268 0.029 209 10.786 569 0.092 708 369.291 865 0.002 708 106.544 539 41 

42 37.317 532 0.026 797 10.813 366 0.092478 403.528133 0.002478 107.643 219 42 

43 40.676110 0.024 584 10.837 950 0.092 268 440.845 665 0.002 268 108.675 766 43 

44 44.336 960 0.022 555 10.860 505 0.092 077 481.521 775 0.002 077 109.645 611 44 

45 48.327 286 0.020 692 10.881197 0.091 902 525.858 734 0.001902 110.556 070 45 

46 52.676 742 O.Q18 984 10.900 181 0.091 742 574.186 021 0.001 742 111.410 337 46 

47 57.417 649 0.017 416 10.917 597 0.091595 626.862 762 0.001595 112.211 484 47 

48 62.585 237 0.015 978 10.933 575 0.091461 684.280 411 0.001461 112.962 460 48 

49 68.217 908 0.014 659 10.948 234 0.091339 746.865 648 0.001339 113.666 088 49 

50 74.357 520 0.013 449 10.961 683 0.091227 815.083 556 0.001227 114.325 066 50 

60 176.031292 0.005 681 11.047 991 0.090 514 1 944.792 133 0.000 514 118.968 250 60 

70 416.730 086 0.002 400 11.0&4 449 0.090 216 4 619.223 180 0.000 216 121.294 156 70 

72 495.117 015 0.002 020 11.088 670 0.090182 5 490.189 060 0.000 182 121.591 662 72 
80 986.551 668 0.001 014 1i.099849 0.090 091 10 950.574 090 0.000 091 122.430 644 80 

84 1 392.598 192 0.000 71L 11.103 132 0.')90 065 15 462.202 134 0.000 065 122.697 928 84 

90 2 335.526 582 0.000 428 11.106 354 0.090 039 25 939.184 247 0.000 039 122.975 761 90 

96 3 916.911 890 0.000255 ! 11.108 274 0.090 023 43 510.132 110 0.000 023 123.152 948 96 

100 5 529.040 792 0.000181 11.109102 0.090 016 61 422.675 465 0.000 016 123.233 502 100 

108 11 016.960 126 0.000 091 11.110 103 0.090 008 122 399.556 957 0.000 008 123336 661 108 

120 30 987.015 749 0.000 032 11.110 753 0.090 003 344 289.063 880 0.000 003 123.409 777 120 

00 00 0 11.111111 0.090 000 co 0 123.456 790 00 



516 Compound Interest Tables Appendix 

-
Single Payment Uniform Series Arithmetic 

10% Gradient Series 10% 

-
Compound Compound Capital 

Amount Present Worlh Present Worth Recovery Amount Sinkinp, Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF} (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
II FIP PIF PIA AIP FIA AIF PIG 

" -
1 1.100 000 0.909091 0.909091 1.100 000 1.000 000 1.000 000 0.000 000 1 
2 1.210 000 0.826446 1.735 537 0.576190 2.100 000 0.476190 0.826 446 2 
3 1.331 000 0.751 315 2.486 8.4'2 0.402 115 3.310 000 0.302 115 2.329 076 3 
4 1.464 100 0.683 013 3.169 865 0.315471 4.641000 0.215 471 4.378 116 4 
5 1.610 510 0.620 921 3.790787 0.263 797 6.105 100 0.163 797 6.861 802 5 

6 1.771 561 0564474 4355 261 0.229 607 7.715 610 0.129 607 9.684 171 6 
7 1.94R 717 0.513 158 4.868 419 0.205 405 9.487 171 0.105 405 12.763 120 7 
8 2.143 589 0.466 507 5.334 926 0.187 444 11.435 888 0.087 444 16.028 672 8 
9 2.357 948 0.424 098 5.759 024 0.173 641 13.579 477 0.073 641 19.421 453 9 

10 2.593 742 0.385 543 6.144 567 0.162 745 15.937 425 0.062 745 22.891 342 10 

11 2.853 117 0.350494 6.495 061 0.153 963 18.531 167 0.053 963 26.396 281 11 
12 3.138 428 0318 631 6.813 692 0.146 763 21.384 284 0.046 763 29.901 220 12 
13 3.452 271 0.289 664 7.103 356 0.140 779 24.522 712 0.040 779 33.377 193 13 
14 3.797 498 0.263 331 7.366 687 0.135 746 27.974 983 0.035 746 36.800 499 14 
15 4.177 248 0.239 392 7.606 080 0.131 474 31.772 482 0.031 474 40.151 9~8 15 

16 4.594 973 0217 629 7.823 709 0.127 817 35.949 730 0.027 817 43.416 425 16 

17 5.054 470 0.197 845 8.021553 0.124 664 40.544 703 0.024 664 46.581 9J9 17 

18 5559 917 0.179 859 8.201 412 0.121 930 45.599173 0.021 930 49.639 5:N 18 
19 6.115 909 0.163 508 8.364 920 0.119 547 51.159 090 0.019 547 52.582 681 19 

20 6.727 500 0.148 644 8.513 564 0.117 460 57.274 999 0.017 460 55.406 912 20 

21 7.400 250 0.135 131 8.648 694 0.115 624 64.002 499 0.015 624 58.109 523 21 

22 8.140 275 0.122 846 8.n1540 0.114 005 71.402 749 0.014 005 60.689 28K 22 

23 8.954 302 0.111 678 8.883 218 0.112 572 79.543 024 0.012 572 63.14(l 20~ 23 

24 9.849 733 0.101 526 8.984 744 0.111 300 88.497 327 O.ot 1 300 65.481 :!ll7 24 

25 10.834 706 0.092 296 9.077 040 0.110 168 98.347 059 0.010 168 67.6%4lll 2.~ 

26 11.918177 0.083 905 9.160 945 0.109 159 109.181 765 0.009 159 69.794 OJI 26 

27 13.109 994 0.076278 9.237 223 0.108 258 121.099 942 0.008 258 71.777 257 27 

28 14.420 994 0.069 343 9.306 567 0.107 451 134.209 936 0.007 451 73.649 5~7 28 

29 15.863 093 0.063 039 9.369 606 0.106 728 148.630 930 0.006 728 75.414 (,31 29 

30 17.449 402 0.057 309 9.426 914 0.106 079 164.494 023 0.006 079 77.076 579 30 

31 19.194 342 0.052 099 9.479 013 0.105 496 181.943 425 0.005 496 78.639 539 31 

32 21.113 777 0.047 362 9.526 376 0.104 972 201.137 767 0.004 972 80.107 775 32 

33 23.225154 0.043 057 9.569 432 0.104 499 222.251 544 0.004 499 81.485 591 33 

34 25.547 670 0.039143 9.608 575 0.104 074 245.476 699 0.004 074 82.777 294 34 

35 28.102 437 O.o35 584 9.644 159 0.103 690 271.024 368 0.003 690 83.987 154 35 

-
(cont.) 
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(colll.) 

10% Single Payment Uniform Serie~ Arithmclic 
10% 

Orndient Serie'\ 

Compound Cnpital Compound 
Amount Present Worlh Present Worlh Recovery Amount Sinkinlt Fund Present Worth 
Fnctor Fnctor Factor Fnetor Factor Fae I or Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

" FIP PIF PIA AIP FIA AIF PIG " 
36 30.912 681 0.032 349 9.676 508 0.103 343 299.126 805 0.003 343 85.119 375 36 

37 34.003 949 0.029 408 9.705 917 0.103 030 330.039 486 0.<.)03 030 86.178 076 J7 

38 37.404 343 0.026 735 9.732 651 0.102 747 364.043 434 0.002 747 87.167 2M J8 

39 41.144 778 0.024 304 9.756 956 0.102 491 401.447 778 0.002 491 88.090 834 39 

40 45.259 2.4i6 0.022 095 9.779 051 0.102 259 442.592 556 0.002 259 8K952 5J6 40 

41 49.785 181 0.020 086 9.799 137 0.102 050 487.851 811 0.002 050 89.755 988 41 

42 54.763 699 O.ot8 260 9.817 397 0.101 860 537.636 992 0.001 860 90.504 659 42 

43 60.240069 0.016 600 9.833 998 0.101 688 592.400 692 0.001 688 91.::?0I 869 43 

44 66.264 076 0,015 091 9.849 089 CUOI 532 652.640 761 0.001 532 91.850 788 44 

45 72.890484 0.013 719 9.862 808 0.101 391 718.904 837 0.llOI 391 92.454 43] 45 

46 80.179 532 0.012 472 9.875 280 0.101 263 791.795 321 0.001 263 93.015 674 46 

47 88.197 485 0.lH I 33~ 9.886 618 0.101 147 871.974 853 0.001 147 93.537 2JI 47 

48 97.017 2J4 0.010 307 9.896 926 0.101041 960.172 338 0.001 041 94.021 681 48 

49 106.71S 957 n.009 .HO 9.906 296 0.100 946 1057.189572 0.000 l)4(l 94.471 460 49 

50 117.390 ~:U o.oos 519 9.914 814 0.100 859 1 163.908 529 0.000 859 94.888 869 50 

60 30.i.481 6i0 ('.O<l:' ~~ 9.%7 157 0.100 JJO 3 034.816 395 0.000 330 97.701 01 l 60 

70 789.746 l})7 U.001 2Mi 

I 

1l.C)1{7 338 0.100 127 7 887.469 568 0.000 127 98.987 017 70 

72 95551)3 s1:: r c::t t)..lt, 9.··S9 53.'i 0.100 105 9 545.938 177 !l.000 105 99.141 895 72 

80 2 048.-100 21:. 0.011()488 

I 

9.lf9.'.'1 l lS 0.100049 20 474.002 146 O.O<Xl ()4l) 99.560 63.' so 
84 2 99l),()(i2 -~4 0.000.U.3 lJ,l}l)fl 6ti6 0.100 o:n 2l) 980.627 542 o.ooo o.n 99.686 561) 84 

90 5 31.3.022 f\12 0.00.l l~S ll.•lllS 118 0.100 019 53 120.226 118 0.000 019 99.811 78J QO 

96 9 412.343 tlS l 0.l~OO lU~i 9.'198 93S 0.100011 94113.436513 0.000 011 94.887 J82 96 

100 13 780.612 .'40 0.000 073 l},l)9l) :!74 0.100 007 137 796.123 398 ll.000 007 l19.920 178 100 

108 29 53lJ.96fl 407 0.000 034 9 lllJ9 l'bl 0.100 om 295 389.664 066 0.000 003 99.%0054 108 

120 92 709.068 Sl8 ll.000011 9.9ll9 892 0.100 001 927 080.688 178 0.000 lX)l 99.985 978 120 

00 00 0 10.000 000 P.100 000 ,'() 0 100.000 000 ·~' 



518 Compound Interest Tables Appendix 

-
11% Single Payment Uniform Series Arithmetic 

Gradient Series 11% 

-Capital Compound Compound 
Amount Present Worth Present Worth RecO\'ery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA A/P FIA AIF PIG n 

1 1.110 000 0.900 901 0.900 901 1.110 000 1.000000 1.000 000 0.000 000 1 
2 1.232100 0.811 622 1.712 523 0.583 934 2.110000 0.473 934 0.811 622 2 
3 1.367 631 0.731191 2.443 715 0.409 213 3.342100 0.299 213 2.274005 3 
4 1.518 070 0.658 731 3.102 446 0.322326 4.709 731 0.212 326 4.250198 4 
5 1.685 058 0.593 451 3.695 897 0.270570 6.227 801 0.160 570 6.624 003 5 

6 1.870415 0.534 641 4.230 538 0.236 377 7.912 860 0.126 377 9.297 208 6 
7 2.076160 0.481658 4.712 196 0.212 215 9.783 274 0.102 215 12.187 158 7 
8 2.304 538 0.433 926 5.146123 0.194 321 11.859 434 0.084 321 15.224 644 8 
9 2.558 037 0.390 925 5.537 048 0.180 602 14.163 972 0.070 602 18.352 042 9 

10 2.839 421 0352184 5.889 232 0.169 801 16.722 009 0.059 801 21.521 702 10 

11 3.151 757 0.317 283 6.206 515 0.161121 19.561430 0.051121 24.694 535 11 
12 3.498 451 0.285 841 6.492 356 0.154 027 22.713187 0.044 027 27.838 784 12 
13 3.883 280 0.257 514 6.749 870 0.148151 26.211 638 0.038151 30.928 955 13 
14 4310441 0.231 995 6.981865 0.143 228 30.094 918 0.033 228 33.944 888 14 
15 4.784 589 0.209 004 7.190870 0.139 065 34.405 359 0.029 065 36.870 949 15 

16 5.310 894 0.188 292 7.379162 0.135 517 39.189 948 0.025 517 39.695 332 16 
17 5.895 093 0.169 633 7548 794 0.132471 44.500843 0.022 471 42.409 454 17 
18 6.543 553 0.152 822 7.701 617 0.129 843 50.395 936 0.019 843 45.007 431 18 

19 7.263 344 0.137 678 7.839 294 0.127 563 56.939488 0.017 563 47.485 628 19 

20 8.062 312 0.124 034 7.963 328 0.125 576 64.202 832 O.Q15 576 49.842 273 20 

21 8.949166 0.111 742 8.075 070 0.123 838 72.265144 0.013 838 52.077 118 21 

22 9.933 574 0.100 669 8.175 739 0.122 313 81.214 309 0.012 313 54.191 160 22 

23 11.026 267 0.090 693 8.266 432 0.120 971 91.147 884 0.010 971 56.186 396 23 

24 12239157 0.081 705 8.348137 0.119 787 102.174151 0.009 787 58.065 610 24 

25 13.585 464 0.073 608 8.421 745 0.118 740 114.413 307 0.008 740 59.832 204 25 

26 15.079 865 0.066 314 8.488 058 0.117813 127.998 771 0.007 813 61.490 044 26 

27 16.738 650 0.059 742 8.547 800 0.116 989 143.078 636 0.006 989 63.043 336 27 

28 18.579 901 0.053 822 8.601 622 0.116257 159.817 286 0.006 257 64.496 519 28 

29 20.623 691 0.048 488 8.650 110 0.115 605 178.397187 0.005 605 65.854 181 29 

30 22.892 297 0.043 683 8.693 793 0.115 025 199.020 878 0.005 025 67.120 982 30 

31 25.410449 0.039 354 8.733146 0.114 506 221.913174 0.004 506 68.301 599 31 

32 28.205 599 0.035 454 8.768 600 0.114 043 247.323 624 0.004 043 69.400 672 32 

33 31.308 214 0.031 940 8.800 541 0.113 629 275.529 222 0.003 629 70.422 768 33 

34 34.752 118 0.028 775 8.829 316 0.113 259 306.837 437 0.003 259 71.372 350 34 
35 38.574 851 0.025 924 8.855 240 0.112 927 341.589 555 0.002 927 72.253 753 35 

-
(cont.) 



Appendix Compound Interest Tables 519 

(cont.) 

11% Single Payment Uniform Series Arithmetic 
11% 

Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA A/F PIG n 

36 42.818 085 0.023 355 8.878 594 0.112 630 380.164 406 0.002630 73.071165 36 
37 47.528 074 0.021040 8.899 635 0.112 364 422.982490 0.002 364 73.828 612 37 
38 52.756162 0.018 955 8.918 590 0.112125 470.510 564 0.002 125 74.529 952 38 
39 58.559 340 0.017 077 8.935 666 0.111 911 523.266 726 0.001 911 75.178 866 39 
40 65.000867 0.015 384 8.951051 0.111 719 581.826 066 0.001 719 75.778 858 40 

41 72.150 963 0.013 860 8.964 911 0.111 546 646.826 934 0.001546 76.333 251 41 
42 80.087 569 0.012486 8.977 397 0.111391 718.977 896 0.001391 76.845191 42 
43 88.897 201 0.011249 8.988 646 0.111 251 799.065 465 0.001251 77.317 647 43 
44 98.675 893 0.010134 8.998 780 0.111126 887.962 666 0.001126 77.753 417 44 

45 109.530 242 0.009130 9.007 910 0.111 014 986.638 559 0.001014 78.155 133 45 

46 121.578 568 0.008 225 9.016135 0.110 912 1096.168801 0.000 912 78.525 264 46 

47 134.952 211 0.007 410 9.023 545 0.110 821 1217.747369 0.000821 78.866125 47 

48 149.796 954 0.006 676 9.030 221 0.110 739 1 352.699 580 0.000 739 79.179 883 48 

49 166.274 619 0.006 014 9.036 235 0.110 666 1 502.496 533 0.000 666 79.468 562 49 

50 184.564 827 0.005 418 9.041653 0.110 599 1 668.771152 0.000599 79.734 051 50 

60 524.057 242 0.001908 9.073 562 0.110 210 4 755.065 839 0.000 210 81.446 096 60 

70 1488.019 132 0.000 672 9.084 800 0.110 074 13 518.355 744 0.000074 82.161430 70 

72 1 833.388 372 0.000 545 9.085 951 0.110 060 16 658.076 112 0.000 060 82.242 536 72 

80 4 225.112 750 0.000 237 9.088 757 0.110 026 38 401.025 004 0.000 026 82.452 937 80 

84 6 414.018 {H5 0.000156 9.089 492 0.110 017 58 300.169 504 0.000 017 82.512 686 84 

90 11 996.873 812 0.000 083 9.090 151 0.110 009 109 053.398 293 0.000 009 82.569 540 90 

96 22 439.127 359 0.000 045 9.090 504 0.110 005 203 982.975 989 0.000005 82.602 052 96 

100 34 064.175 270 0.000 029 9.090 642 0.110 003 309 665.229 724 0.000003 82.615 514 100 

108 78 502.178 503 0.000 013 9.090 793 0.110 001 713 647.077 302 0.000 001 82.631 068 108 

00 00 0 9.090 909 0.110 000 00 0 82.644 628 00 



520 Compound Interest Tables Appendix 

-
ll% Single Payment Uniform Series Arithmetic 

Gradient Series 12% 

-
Compound Capital Compound 

Amount Present Wonh Present Wonh Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA A/P FIA AIF PIG 

" -
1 1.120 ()()() 0.892 857 0.892 857 1.120 000 1.000000 1.000000 0.000 000 1 
2 1.254 400 0.797194 1.690 051 0.591698 2.120 000 0.471698 0.797 194 2 
3 1.404 928 0.711 780 2.401831 0.416 349 3.374 400 0.296 349 2.220 754 3 
4 1.573 519 0.635 518 3.037 349 0.329 234 4.779 328 0.209 234 4.127 309 4 
5 1.762 342 0.567 427 3.604 776 0.277 410 6.352 847 0.157 410 6.397 016 5 

6 1.973 823 0.506 631 4.111407 0.243 226 8.115 189 0.123 226 8.930172 6 
7 2.210681 0.452 349 4.563 757 0.219 118 10.089 012 0.099118 11.644 267 7 
8 2.475 963 0.403 883 4.967 640 0.201303 12.299 693 0.081303 14.471450 8 
9 2.773 079 0.360 610 5328250 0.187 679 14.775 656 0.067 679 17.356 330 9 

10 3.105 848 0.321973 5.650 223 0.176 984 17.548 735 0.056 984 20.254 089 10 

11 3.478 550 0.287 476 5.937 699 0.168 415 20.654 583 0.048 415 23.128 850 11 
12 3.895 976 0.256 675 6.194 374 0.161437 24.133 133 0.041437 25.952 276 12 
13 4.363 493 0.229174 6.423 548 0.155 677 28.029109 0.035 677 28.702 366 13 
14 4.887 112 0.204 620 6.628168 0.150 871 32.392 602 0.030 871 31.362 424 14 
15 5.473 566 0.182 696 6.810864 0.146 824 37.279 715 0.026 824 33.920 171 15 

16 6.130 394 0.163122 6.973 986 0.143 390 42.753 280 0.023 390 36.366 996 16 
17 6.866 041 0.145 644 7.119 630 0.140457 48.883 674 0.020 457 38.697 306 17 
18 7.689 966 0.130 040 7.249 670 0.137 937 55.749 715 0.017 937 40.907 979 18 
19 8.612 762 0.116107 7.365 777 0.135 763 63.439 681 0.015 763 42.997 901 19 

20 9.646 293 0.103 667 7.469 444 0.133 879 72.052442 0.013 879 44.967 569 20 

21 10.803 848 0.092 560 7.562 003 0.132 240 81.698 736 0.012 240 46.818 762 21 

22 12.100 310 0.082 643 7.644 646 0.130 811 92.502 584 0.010 811 48.554 254 22 

23 13.552 347 0.073 788 7.718434 0.129 560 104.602 894 0.009 560 50.177 589 23 

24 15.178 629 0.065 882 7.784 316 0.128 463 118.155 241 0.008 463 51.692 878 24 

25 17.000 064 0.058 823 7.843139 0.127 500 133.333 870 0.007 500 53.104 637 25 

26 19.040 072 0.052 521 7.895 660 0.126 652 150.333 934 0.006 652 54.417 657 26 

27 21.324 881 0.046 894 7.942 554 0.125 904 169.374 007 0.005 904 55.636 890 27 

28 23.883 866 0.041 869 7.984423 0.125 244 190.698 887 0.005 244 56.767 361 28 

29 26.749 930 0.037 383 8.021 806 0.124 660 214.582 754 0.004 660 57.814 092 29 

30 29.959 922 0.033 378 8.055 184 0.124144 241.332 684 0.004144 58.782 052 30 

31 33.555 113 0.029 802 8.084 986 0.123 686 271.292 606 0.003 686 59.676 104 31 

32 37.581 726 0.026 609 8.111 594 0.123 280 304.847 719 0.003 280 60.500 973 32 

33 42.091 533 0.023 758 8.135 352 0.122 920 342.429 446 0.002 920 61.261 221 33 

34 47.142 517 0.021 212 8.156 564 0.122 601 384.520 979 0.002 601 61.961 226 34 

35 52.799 620 0.018 940 8.175 504 0.122 317 431.663 496 0.002 317 62.605 170 35 
-

(cont.) 



Appendix Compound Interest Tables 521 

(cont.) 

12% Single Payment Uniform Series Arithmetic 
Gradient Series 

U% 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

36 59.135 574 0.016 910 8.192414 0.122 064 484.463 116 0.002 064 63.197 030 36 
37 66.231843 0.015 098 8.207 513 0.121 840 543.598 690 0.001 840 63.740 575 37 
38 74.179 664 0.013 481 8.220 993 0.121 640 609.830 533 0.001640 64.239 364 38 
39 83.081 224 0.012 036 8.233 030 0.121462 684.010197 0.001462 64.696 748 39 
40 93.050 970 0.010 747 8.243 777 0.121 304 767.091420 0.001304 65.115 873 40 

41 104.217 087 0.009 595 8.253 372 0.121163 860.142 391 0.001 163 65.499 687 41 
42 116.723137 0.008 567 8.261 939 0.121 037 964.359 478 0.001 037 65.850 946 42 
43 130.729 914 0.007 649 8.269 589 0.120 925 1 081.082 615 0.000 925 66.172 219 43 
44 146.417 503 0.006 830 8.276 418 0.120 825 1 211.812 529 0.000 825 66.465 900 44 
45 163.987 604 0.006 098 8.282 516 0.120 736 1 358.230 032 0.000 736 66.734 212 45 

46 183.666 116 0.005 445 8.287 961 0.120 657 1 522.217 636 0.000 657 66.979 222 46 
47 205.706 050 0.004 861 8.292 822 0.120 586 1705.883752 0.000 586 67.202 842 47 

48 230.390 776 0.004 340 8.297 163 0.120 523 1 911.589 803 0.000 523 67.406 844 48 

49 258.037 669 0.003 875 8.301 038 0.120 467 2 141.980 579 0.000 467 67.592 863 49 

50 289.002190 0.003 460 8.304 498 0.120417 2 400.018 249 0.000 417 67.762 412 50 

60 897.596 933 0.001 114 8.324 049 0.120 134 7 471.641 112 0.000 134 68.810 034 60 

70 2 787. 799 828 0.000 359 8.330 344 0.120 043 23 223.331 897 0.000 043 69.210 289 70 

72 3 497.016 104 0.000 286 8.330 950 0.120 034 29 133.467 532 0.000 034 69.253 011 72 

80 8 658.483 100 O.OOll 115 8.332 371 0.120 014 72 145.692 501 0.000 014 69.359 428 80 

84 13 624.290 786 0.000 073 8.332 722 0.120 009 113 527.423 218 0.000 009 69.387 969 84 

90 26 891.934 223 0.000037 8.333 023 0.120 004 224 091.118 528 0.000 004 69.413 973 90 

96 53 079.909 819 0.000 019 8.333176 0.120 002 442 324.248 488 0.()()() 002 69.428 065 96 

100 83 522.265 727 0.000 012 8.333 234 0.120 001 696 010.547 721 0.000001 69.433 636 100 

00 'XJ 0 8.333 333 0.120 000 00 0 69.444444 :x> 



522 Compound Interest Tables Appendix 

---
Single Payment Uniform Series Arithmetic 

130,4 Gradient Series 13% 

Compound -Compound Capital 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA AIP FIA AIF PIG 11 

-
1 1.130 000 0.884 956 0.884 956 1.130 000 1.000 000 1.000 000 0.000000 1 
2 1.276 900 0.783147 1.668102 0.599484 2.130000 0.469 484 0.783147 2 
3 1.442 897 0.693050 2.361153 0.423 522 3.406900 0.293 522 2.169 247 3 
4 1.630474 0.613 319 2.974471 0.336194 4.849 797 0.206194 4.009 203 4 
5 1.842435 0.542 760 3.517 231 0.284315 6.480 271 0.154 315 6.180 243 5 

6 2.081952 0.480 319 3.997 550 0.250 153 8.322 706 0.120 153 8.581 836 6 
7 2.352 605 0.425 061 4.422 610 0.226111 10.404 658 0.096 111 11.132199 7 
8 2.658444 0.376160 4.798 770 0.208 387 12.757 263 0.078 387 13.765 318 8 
9 3.004042 0.332 885 5.131655 0.194 869 15.415 707 0.064 869 16.428 397 9 

10 3394 567 0.294 588 5.426 243 0.184 290 18.419 749 0.054 290 19.079 692 10 

11 3.835 861 0.260 698 5.686 941 0.175 841 21.814 317 0.045 841 21.686 669 11 
12 4.334523 0.230 706 5.917 647 0.168 986 25.650178 0.038 986 24.224434 12 
13 4.898011 0.204165 6.121 812 0.163 350 29.984 701 0.033 350 26.674 408 13 
14 5.534 753 0.180 677 6.302488 0.158 667 34.882 712 0.028 667 29.023 203 14 
15 6.254 270 0.159 891 6.462 379 0.154 742 40.417 464 0.024 742 31.261 673 15 

16 7.067 326 0.141 496 6.603 875 0.151426 46.671 735 0.021426 33.384 117 16 
17 7.986078 0.125 218 6.729 093 0.148 608 53.739 060 0.018 608 35.387 604 17 
18 9.024 268 0.110 812 6.839 905 0.146 201 61.725 138 0.016 201 37.271 413 18 
19 10.197 423 0.098064 6.937 969 0.144 134 70.749 406 0.014 134 39.036 565 19 
20 11.523 088 0.086 782 7.024 752 0.142 354 80.946 829 0.012 354 40.68:' 421) 20 

21 13.021 089 0.076 798 7.101 550 0.140 814 92.469 917 0.010 814 42.221 398 21 
22 14.713 831 0.067 963 7.169 513 0.139 479 105.491 006 0.009 479 43.648 627 22 
23 16.626 629 0.060144 7.229 658 0.138 319 120.204 837 0.008 319 44.971 SO) 23 
24 18.788 091 0.053 225 7.2B2 883 0.137 308 136.831465 0.007 308 46.195 985 24 

25 21230 542 0.047102 7.329 985 0.136 426 155.619 556 0.006 426 47.326 432 25 

26 23.990 513 0.041683 7.371 668 0.135 655 176.850 098 0.005 655 48.368 511 26 

27 27.109 279 0.036 888 7.408 556 0.134 979 200.840 611 0.004 979 49.327 592 27 

28 30.633 486 0.032 644 7.441200 0.134 387 227.949 890 0.004 387 50.208 98(J 28 

29 34.615 839 0.028 889 7.470 088 0.133 867 258.583 376 0.003 867 51.017 858 29 

30 39.115 898 0.025 565 7.495 653 0.133 411 293.199 215 0.003 411 51.759 245 30 

31 44.200 965 0.022 624 7.518 277 0.133 009 332.315 113 0.003 009 52.437 963 31 

32 49.947 090 0.020 021 7.538 299 0.132 656 376.516 078 0.002 656 53.058 620 32 

33 56.440212 0.017 718 7.556 016 0.132 345 426.463 168 0.002 345 53.625 592 33 

34 63.777 439 0.015 680 7.571 696 0.132 071 482.903 380 0.002 071 54.143 016 34 

35 72.068 506 O.ot3 876 7.585 572 0.131 829 546.680 819 0.001 829 54.614 789 35 

-
(cont.) 



Appendix Compound Interest Tables 523 

(cont.) 

13% Single Payment Uniform Series Arithmetic 
Gradient Series 13% 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP P/F PIA AIP FIA AIF PIG n 

36 81.437 412 0.012 279 7.597 851 0.131 616 618.749 325 0.001 616 55.044 567 36 
37 92.024 276 0.010 867 7.608 718 0.131428 700.186 738 0.001428 55.435 768 37 
38 103.987 432 0.009 617 7.618 334 0.131 262 792.211 014 0.001 262 55.791 581 38 
39 117.505 798 0.008510 7.626 844 0.131116 896.198 445 0.001 116 56.114 969 39 
40 132.781552 0.007 531 7.634 376 0.130 986 1013.704243 0.000 986 56.408 684 40 

41 150.043153 0.006 665 7.641040 0.130 872 1146.485 795 0.000 872 56.675 274 41 
42 169.548 763 0.005 898 7.646 938 0.130 771 1 296.528 948 0.000 771 56.917 093 42 
43 191.590 103 0.005 219 7.652 158 0.130 682 1466.077712 0.000 682 57.136 311 43 
44 216.496 816 0.004 619 7.656 777 0.130 603 1 657.667 814 0.000 603 57.334 928 44 

45 244.641402 0.004088 7.660 864 0.130 534 1 874.164 630 0.000534 57.514 783 45 

46 276.444 784 0.003 617 7.664 482 0.130472 2 118.806 032 0.000472 57.677 564 46 

47 312.382 606 0.003 201 7.667 683 0.130417 2 395.250 816 0.000417 57.824 820 47 

48 352.992 345 0.002 833 7.670 516 0.130 369 2 707.633 422 0.000 369 57.957 967 48 

49 398.881 350 0.002 507 7.673 023 0.130 327 3 060.625 767 0.000 327 58.078 303 49 

50 JSC.735 925 0.002 219 7.675 242 0.130 289 3 459.507 117 0.000 289 58.187 015 50 

60 1 530.053 473 0.000 654 7.687 280 0.130 085 11761.949792 0.000 085 58.831 276 60 

70 5 193 869 o2~ 1J.OOO 193 7.690 827 0.130 025 39 945.150 956 0.000 025 59.056 533 70 

72 6 6~2.052 1:'3 U.000 151 7.691 148 0.130 020 51 008.093 256 0.000 020 59.079 165 72 

80 17 6~0.940 454 0.000 057 7.691 871 0.130 007 135 614.926 571 0.000007 59.133 338 80 

84 28 746.7~3 13~1 0.000 035 7.692 040 0.130 005 221 121.408 693 0.000 005 59.147 062 84 

90 59 840_.: 1 5 520 J.000 017 7.692 179 0.130 002 460 372.427 073 0.000 002 59.159 041 90 

96 124 603.505 533 0.000 008 7.692 246 0.130 001 958 481.504 103 0.000 001 59.165 196 96 

00 C\J 0 7.692 308 0.130 000 00 0 59.171 598 00 



524 Compound Interest Tables Appendix 

-
Single Payment Uniform Series Arithmetic 

1•% Gradient Series 14% 

-Compound Compound Capital 
Amount Present Worth Present \\i'orth Recovery A.mount Sinking Fund Present Wonh 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (P'\\'F) (CRF) (CAF) (SFF) (PWF) 

-
n FlP PlF PIA AIP FIA AIF PIG n 

-
.1 1.140000 0.877193 o.sn 193 1.140000 1.000000 1.000 000 0.000000 1 
2 1.299 600 0.769468 1.646 661 0.607 290 2.140 000 0.467 290 0.769 468 2 
3 1.481544 0.674 972 2.321632 0.430731 3.439 600 0.290 731 2.119 411 3 
4 1.688 960 0592080 2.913 712 0.343 205 4.921144 0.203 205 3.895 651 4 
5 1.925 415 0.519 369 3.433 081 0.291284 6.610104 0.151 284 5.973126 5 

6 2.194 9i3 0.455 587 3.~668 0.257157 8535 519 0.117 157 8.251 059 6 
7 2.502 269 o_·w9 637 4288305 0.233192 10.730 491 0.093192 10.648 883 7 
8 2852586 0.350 559 4.638864 0.215 570 13.232 760 0.075 570 13.102 796 8 
9 3.251 949 0.307 508 4.946 372 0.202168 16.085 347 0.062168 15.562 860 9 

10 3.707 :?.21 0.269 744 5.216116 0.191 714 19.337 295 0.051 714 17.990 554 10 

11 4.226 232 0.236 617 5.452 733 0.183 394 23.044 516 0.043 394 20.356 728 11 
12 4.817 905 0.207 559 5.660292 0.176 669 27.270 749 0.036 669 22.639 878 12 
l~ 5.492411 0.182 069 5.842 362 0.171164 32.088 654 0.031164 24.824 710 13 

14 6.161349 0.159 710 6.002 072 0.166 609 37581065 0.026 609 26.900 940 14 
15 7.137 938 0.1400% 6.142168 0.162 809 43.842414 0.022 809 28.862 291 15 

16 8.137 249 0.122 892 6.265 060 0.159 615 50.980 352 0.019 615 30.705 666 16 
17 9276464 0.107 800 6.372 859 0.156 915 59.117 601 0.016 915 32.430 461 17 
18 10.575 169 0.094 561 6.467 420 0.154 621 68.394 066 0.014 621 34.038 000 18 
19 12.055 693 0.082 948 6.550 369 0.152 663 78.969 235 0.012 663 35.531071 19 
20 13.743 490 0.072 762 6.623131 0.150 986 91.024 928 0.010 986 36.913 544 20 

21 15.667 578 0.063 826 6.686 957 0.149 545 104.768 418 0.009 545 38.190 065 21 

22 li.861 039 0.055 988 6.742 944 0.148 303 120.435 996 0.008 303 39.365 808 22 

23 20.361 585 0.049 112 6.792 056 0.147 231 138.297 035 0.007 231 40.446 274 23 
24 23.212 207 0.043 081 6.835 137 0.146 303 158.658 620 0.006 303 41.437 132 24 

25 26.461 916 0.037 790 6.872 927 0.145 498 181.870 827 0.005 498 42.344 096 25 

26 30.166 584 0.033 149 6.906 077 0.144 800 208.332 743 0.004 800 43.172 828 26 

27 34.389 906 0.029 078 6.935155 0.144 193 238.499 327 0.004193 43.928 864 27 

28 39.204493 0.025 507 6.960 662 0.143 664 272.889 233 0.003 664 44.617 560 28 

29 44.693 122 0.022 375 6.983 037 0.143 204 312.093 725 0.003 204 45.244 055 29 

30 50.950159 0.019 627 7.002 664 0.142 803 356.786 847 0.002 803 45.813 238 30 

31 58.083181 0.017 217 7.019 881 0.142 453 407.737 006 0.002 453 46.329 739 31 

32 66.214 826 O.Dl5102 7.034 983 0.142 147 465.820186 0.002147 46.797 912 32 

33 75.484 902 0.013 248 7.048 231 0.141 880 532.035 012 0.001880 47.221 838 33 

34 86.052 788 O.Dll 621 7.059 852 0.141 646 607.519 914 0.001646 47.605 324 34 
35 98.100178 0.010194 7.070045 0.141442 693.572 702 0.001442 47.951 908 35 -

(cont.) 



Appendix Compound Interest Tables 525 

(cont.) 

14% Single Payment Uniform Series Arithmetic ., ... 
Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Wonb 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

36 111.834 203 0.008942 7.078 987 0.141 263 791.672 881 O.CXH 263 48.264 871 36 
37 127.490992 0.007 844 7.086 831 0.141107 903.507 084 0.001107 48547 244 37 
38 145.339 731 0.006880 7.093 711 0.140 970 1 030.998 076 0.000970 48.801820 38 
39 165.687 293 0.006 035 7.099747 0.140 850 1176337 806 0.000 850 49.031168 39 
40 188.883 514 0.005 294 7.105 041 0.140 745 1 342.025 099 0.000745 49.237 6-$4 40 

41 215.327 206 0.004 644 7.109 685 0.140 653 1 530.908 613 0.000653 49.423408 41 
42 245.473 015 0.004074 7.113 759 0.140 573 1 746.235 819 0.000573 49.590433 42 
43 279.839 237 0.003 573 7.117 332 0.140 502 1991.708833 0.000 502 49.740 519 43 
44 319.016 730 0.003135 7.120 467 0.140440 2 271.548 070 0.000440 49.875 308 44 

45 363.679 072 0.002 750 7.123 217 0.140 386 2 590.564 800 0.000386 49.996294 45 

46 414.594142 0.002 412 7.125 629 0.140 338 2 954.243 872 0.000 338 50.104834 46 
47 472.637 322 0.002116 7.127 744 0.140 297 3 368.838 014 0.000297 50.202 160 47 

48 538.806 547 0.001856 7.129 600 0.140 260 3 841.475 336 0.000 260 50.289 390 48 

49 614.239 464 0.001628 7.131228 0.140228 4 380.281 883 0.000228 50367 535 49 
50 700.232 988 0.001428 7.132 656 0.140 200 4 994.521 346 0.000200 50.437 512 50 

60 2 595.918 660 0.000 385 7.140 106 0.140 054 18 535.133 283 0.000054 50.835 660 60 

70 9 623.644 985 0.000104 7.142115 0.140 015 68 733.178 463 0.000015 50.963151 70 

72 12 506.889 02.2 0.000080 7.142 286 0.140 011 89 327.778 731 0.000 011 50.975 209 72 

80 35 676.98~ 807 0.000028 7.142 657 0.140 004 254 828.441 480 0.000 004 51.002 961 80 

84 60 257.000 902 0.000 017 7.142 739 0.140 002 430 400.006 439 0.000002 51.009 604 84 

90 132 262.467 37~ 0.000 008 7.142 803 0.140 001 944 724. 766 995 0.000001 51.015 162 90 

00 00 0 7.142 857 0.140000 00 0 51.020408 00 



526 Compound Interest Tables Appendix 

-
15% Single Payment Uniform Series Arithmetic 

Gradient Series 15% 

-
Compound Capital Compound 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA AIP FIA AIF PIG n 

-
1 1.150 ()()() 0.869 565 0.869 565 1.150 ()()() 1.000 000 1.000 ()()() 0.000 ()()() 1 
2 1.322 500 0.756144 1.625 709 0.615 116 2.150 ()()() 0.465 116 0.756144 2 
3 1.520 875 0.657 516 2283225 0.437 977 3.472 500 0.287 977 2.071176 3 
4 1.749 006 0.571 753 2.854 978 0.350265 4.993 375 0.200 265 3.786 436 4 
5 2.011 357 0.497177 3.352 155 0.298 316 6.742 381 0.148 316 5.775 143 5 

6 2.313 061 0.432 328 3.784 483 0.264 237 8.753 738 0.114 237 7.936 781 6 
7 2.660 020 0.375 937 4.160 420 0.240 360 11.066 799 0.090 360 10.192 403 7 
8 3.059 023 0.326 902 4.487 322 0.222 850 13.726 819 0.072 850 12.480 715 8 
9 3.517 876 0.284 262 4.771584 0.209 574 16.785 842 0.059 574 14.754 815 9 

10 4.045 558 0.247 185 5.018 769 0.199 252 20.303 718 0.049 252 16.979 477 10 

11 4.652 391 0.214 943 5.233 712 0.191 069 24.349 276 0.041 069 19.128 909 11 
12 5.350 250 0.186 907 5.420 619 0.184 481 29.001667 0.034481 21.184 888 12 
13 6.152 788 0.162 528 5.583147 0.179 110 34.351917 0.029 110 23.135 223 13 
14 7.075 706 0.141 329 5.724 476 0.174 688 40.504 705 0.024 688 24.972 496 14 
15 8.137 062 0.122 894 5.847 370 0.171 017 47.580411 0.021 017 26.693 019 15 

16 9.357 621 0.106 865 5.954 235 0.167 948 55.717 472 0.017 948 28.295 990 16 
17 10.761264 0.092 926 6.047 161 0.165 367 65.075 093 0.015 367 29.782 805 17 
18 12.375 454 0.080 805 6.127 966 0.163 186 75.836 357 0.013186 31.156 492 18 
19 14.231 772 0.070 265 6.198 231 0.161 336 88.211811 0.011 336 32.421 267 19 
20 16.366 537 0.061100 6.259 331 0.159 761 102.443 583 0.009 761 33.582 173 20 

21 18.821 518 0.053 131 6.312 462 0.158 417 118.810 120 0.008 417 34.644 786 21 
22 21.644 746 0.046 201 6.358 663 0.157 266 137.631 638 0.007 266 35.614 999 22 
23 24.891458 0.040 174 6.398 837 0.156 278 159.276 384 0.006 278 36.498 836 23 
24 28.625176 0.034 934 6.433 771 0.155 430 184.167 841 0.005 430 37.302 324 24 
25 32.918 953 0.030 378 6.464 149 0.154 699 212.793 017 0.004 699 38.031 388 25 

26 37.856 796 0.026 415 6.490 564 0.154 070 245.711 970 0.004 070 38.691 771 26 
27 43.535 315 0.022 970 6.513 534 0.153 526 283.568 766 0.003 526 39.288 987 27 
28 50.065 612 0.019 974 6.533 508 0.153 057 327.104 080 0.003 057 39.828 280 28 

29 57.575 454 0.017 369 6.550 877 0.152 651 377.169 693 0.002 651 40.314 598 29 
30 66.211 772 0.015 103 6.565 980 0.152 300 434.745146 0.002 300 40.752 587 30 

31 76.143 538 0.013133 6.579 113 0.151 996 500.956 918 0.001 996 41.146 579 31 

32 87.565 068 0.011 420 6.590 533 0.151 733 577.100 456 0.001 733 41.500 602 32 

33 100.699 829 0.009 931 6.600463 0.151 505 664.665 524 0.001505 41.818 378 33 

34 115.804 803 0.008 635 6.609 099 0.151 307 765.365 353 0.001307 42.103 340 34 

35 133.175 523 0.007 509 6.616 607 0.151135 881.170156 0.001135 42.358 642 35 

-
(cont.) 



Appendix Compound Interest Tables 527 

(cont.) 

15% Single Payment Uniform Series Arithmetic 
Gradient Series 15% 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

" FIP PIF PIA AIP FIA AIF PIG n 

36 153.151852 0.006 529 6.623137 0.150 986 1014.345680 0.000 986 42.587174 36 
37 176.124 630 0.005 678 6.628 815 0.150 857 1 167 .497 532 0.000 857 42.791 574 37 
38 202.543 324 0.004 937 6.633 752 0.150 744 1 343.622 161 0.000744 42.974 251 38 
39 232.924 823 0.004 293 6.638 045 0.150 647 1 546.165 485 0.000647 43.137 394 39 
40 267.863 546 0.003 733 6.641 778 0.150 562 1 779.090 308 0.000562 43.282 991 40 

41 308.043 078 0.003 246 6.645 025 0.150 489 2 046.953 854 0.000489 43.412 843 41 
42 354.249 540 0.002 823 6.647 848 0.150 425 2 354.996 933 0.000 425 43.528 580 42 
43 407.386 971 0.002455 6.650 302 0.150 369 2 709.246 473 0.000 369 43.631 676 43 

44 468.495 017 0.002134 6.652 437 0.150 321 3 116.633 443 0.000 321 43.723 460 44 

45 538.769 269 0.001 856 6.654 293 0.150 279 3 585.128 460 0.000 279 43.805127 45 

46 619.584 659 0.001614 6.655 907 0.150 242 4 123.897 729 0.000242 43.877 757 46 

47 712.522 358 0.001403 6.657 310 0.150 211 4 743.482 388 0.000 211 43.942 316 47 

48 819.400 712 0.001220 6.658 531 0.150183 5 456.004 746 0.000183 43.999 675 48 

49 942.310 819 0.001 061 6.659 592 0.150159 6 275.405 458 0.000159 44.050 614 49 

50 1 083.657 442 0.000 923 6.660 515 0.150139 7 217.716 277 0.000 139 44.095 831 50 

60 4 3E:~.99S 746 0.000 228 6.665146 0.150 034 29 219.991 638 0.000 034 44.343 066 60 

70 17 735.720 039 0.000 056 6.666 291 0.150 008 118 231.466 926 0.000 008 44.415 626 70 

72 23 455.489 751 0.000043 6.666 382 0.150 006 156 363.265 009 0.000006 44.422 085 72 

80 71 750.879 401 0.000 014 6.666 574 0.150 002 478 332.529 343 0.000002 44.436 392 80 

84 125 492.736 "16 0.000 008 6.666 614 0.150 001 836 611.576 774 0.000001 44.439 628 84 

00 00 0 6.666 667 0.150 000 00 0 44.444444 00 



528 Compound Interest Tables Appendix 

-
16% Single Payment Uniform Series Arithmetic 

Gradient Series 16% 

-
Compound Capital Compound 

Amount Present Worth Present Worth Rcco\'ery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA AIP FIA AIF PIG 

" -
1 1.160 000 0.862069 0.862 069 1.160 000 1.000 000 1.000 000 0.000000 1 
2 1.345 600 0.743 163 1.605 232 0.622 963 2.160000 0.462 963 0.743163 2 
3 1.560 896 0.640 658 2.245 890 0.445 258 3.505 600 0.285 258 2.024 478 3 
4 1.810 639 0.552 291 2.798181 0.357 375 5.066496 0.197 375 3.681 352 4 
5 2.100 342 0.476113 3.274 294 0.305 409 6.877135 0.145 409 5.585 804 5 

6 2.436 396 0.410 442 3.684 736 0.271390 8.977 477 0.111 390 7.638 015 6 
7 2.826 220 0.353 830 4.038 565 0.247 613 11.413 873 0.087 613 9.760 992 7 
8 3.278415 0.305 025 4.343 591 0.230 224 14.240 093 0.070 224 11.896 170 8 
9 3.802 961 0.262 953 4.606 544 0.217 082 17.518 508 0.057 082 13.999 794 9 

10 4.411435 0.226 684 4.833 227 0.206 901 21.321469 0.046 901 16.039 947 10 

11 5.117 265 0.195 417 5.028644 0.198 861 25.732 904 0.038 861 17.994116 11 
12 5.936 027 0.168463 5.197107 0.192 415 30.850169 0.032 415 19.847 207 12 
13 6.885 791 0.145 227 5.342 334 0.187 184 36.786196 0.027184 4.000 000 13 
14 7.987 518 0.125 195 5.467 529 0.182 898 43.671987 0.022 898 23.217 465 14 
15 9.265 521 0.107 927 5.575 456 0.179 358 51.659 505 0.019 358 24.728 443 15 

16 10.748004 0.093 041 5.668 497 0.176 414 60.925 026 0.016 414 26.124 051 16 
17 12.467 685 0.080 207 5.748 704 0.173 952 71.673 030 0.013 952 27.407 369 17 
18 14.462 514 0.069144 5.817 848 0.171885 84.140 715 0.011 885 28.582 822 18 
19 16.776 517 0.059 607 5.877 455 0.170142 98.603 230 0.010142 29.655 750 19 
20 19.460 759 0.051 385 5.928 841 0.168 667 115.379 747 0.008 667 30.632 074 20 

21 22.574 481 0.044 298 5.973 139 0.167 416 134.840 506 0.007 416 31.518 030 21 
22 26.186 398 0.038 188 6.011 326 0.166 353 157.414 987 0.006 353 32.319 973 22 
23 30.376 222 0.032 920 6.044 247 0.165 447 183.601 385 0.005 447 33.044 224 23 
24 35.236 417 0.028 380 6.072 627 0.164 673 213.977 607 0.004 673 33.696 957 24 
25 40.874 244 0.024 465 6.097 092 0.164 013 249.214 024 0.004 013 34.284 124 25 

26 47.414123 0.021 091 6.118183 0.163 447 290.088 267 0.003 447 34.811 393 26 
27 55.000 382 O.otS 182 6.136 364 0.162 963 337.502 390 0.002 963 35.284117 27 

28 63.800444 O.ot5 674 6.152 038 0.162 548 392.502 773 0.002 548 35.707 312 28 
29 74.008 515 0.013 512 6.165 550 0.162 192 456.303 216 0.002192 36.085 647 29 
30 85.849 877 0.011 648 6.177 198 0.161886 530.311 731 0.001 886 36.423 446 30 

31 99.585 857 0.010 042 6.187 240 0.161 623 616.161 608 0.001623 36.724 693 31 

32 115.519 594 0.008 657 6.195 897 0.161 397 715.747 465 0.001397 36.993 046 32 

33 134.002 729 0.007 463 6.203 359 0.161 203 831.267 059 0.001203 37.231847 33 
34 155.443 166 0.006433 6.209 792 0.161 036 965.269 789 0.001 036 37.444143 34 
35 180.314 073 0.005 546 6.215 338 0.160 892 1120.712 955 0.000 892 37.632 703 35 

-
(cont.) 



Appendix Compound Interest Tables 529 

(cont.) 

16% Single Payment Uniform Series Arithmetic 
Gradient Series 16% 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

" FIP PIF PIA AIP FIA AIF PIG n 

36 209.164 324 0.004 781 6.220119 0.160 769 1 301.027 028 0.000 769 37.800 036 36 
37 242.630 616 0.004121 6.224 241 0.160 662 1 510.191 352 0.000 662 37.948 409 37 
38 281.451515 0.003 553 6.227 794 0.160 571 1 752.821 968 0.000 571 38.079 871 38 
39 326.483 757 0.003 063 6.230 857 0.160 492 2 034.273 483 0.000492 38.196 262 39 
40 378.721158 0.002 640 6.233 497 0.160 424 2 360.757 241 0.000424 38.299 241 40 

41 439.316 544 0.002 276 6.235 773 0.160 365 2 739.478 399 0.000 365 38.390 291 41 
42 509.607191 0.001962 6.237 736 0.160 315 3 178.794 943 0.000 315 38.470 745 42 
43 591.144 341 0.001692 6.239 427 0.160 271 3 688.402 134 0.000 271 38.541 794 43 
44 685.727 436 0.001458 6.240 886 0.160 234 4 279.546 475 0.000234 38.604 501 44 

45 795.443 826 0.001257 6.242143 0.160 201 4 965.273 911 0.000 201 38.659 816 45 

46 922.714 838 0.001 084 6.243 227 0.160174 5 760.717 737 0.000174 38.708 585 46 

47 1 070.349 212 0.000 934 6.244161 0.160 150 6 683.432 575 0.000150 38.751562 47 

48 1 241.605 086 0.000 805 6.244 966 0.160129 7 753.781 787 0.000129 38.789 416 48 

49 1 440.261 900 0.000 694 6.245 661 0.160 lll 8 995.386 873 0.000 111 38.822 743 49 

50 1670.703804 0.000 599 6.246 259 0.160 096 10 435.648 773 0.000096 38.852072 50 

60 7 370.201 365 0.000136 6.249152 0.160 022 46 057 .508 533 0.000 022 39.006 319 60 

70 32 513.164 839 0.000 031 6.249 808 0.160 005 203 201.030 246 0.000 005 39.047 842 70 

72 43 749.714 608 0.000023 6.249 857 0.160 004 273 429.466 299 0.000004 39.051321 72 

80 143 429.715 890 0.000 007 6.249 956 0.160 001 896 429.474 315 0.000 001 39.058 742 80 

00 00 0 6.250 000 0.160000 00 0 39.062 500 00 



530 Compound Interest Tables Appendix 

-
17% Single Payment Uniform Series Arithmetic 

Gradient Series 17% 

-
Compound C.apital Compound 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-

" FIP PIF PIA AIP FIA AIF PIG 
" 

1 1.170 000 0.854 701 0.854 701 1.170 000 1.000000 1.000 {)()() 0.000000 1 
2 1.368 900 0.730 514 1.585 214 0.630 829 2.170000 0.460 829 0.730 514 2 
3 1.601613 0.624 371 2.209 585 0.452 574 3.538 900 0.282 574 1.979 255 3 
4 1.873 887 0.533 650 2.743 235 0.364533 5.140 513 0.194 533 3.580 205 4 
5 2.192448 0.456111 3.199 346 0.312 564 7.014400 0.142 564 5.404 649 5 

6 2.565164 0.389 839 3.589185 0.278 615 9.206 848 0.108 615 7.353 842 6 
7 3.001242 0.333195 3.922 380 0.254 947 11.772 012 0.084 947 9.353 015 7 
8 3.511453 0.284 782 4207163 0.237 690 14.773 255 0.067 690 11.346 491 8 
9 4.108400 0243404 4.450 566 0.224 691 18.284 708 0.054 691 13.293 721 9 

10 4.806 828 0208037 4.658 604 0.214 657 22.393 108 0.044 657 15.166 058 10 

11 5.623 989 O.ln 810 4.836413 0.206 765 27.199 937 0.036 765 16.944155 11 
12 6580067 0.151 974 4.988387 0.200466 32.823 926 0.030466 18.615 870 12 
13 7.698 679 0.129 892 5.118 280 0.195 378 39.403 993 0.025 378 20.174 579 13 
14 9.007 454 0.111 019 5.229299 0.191230 47.102 672 0.021230 21.617 828 14 
15 10.538 721 0.094 888 5.324187 0.187 822 56.110 126 0.017 822 22.946 263 15 

16 12.330 304 0.081101 5.405 288 0.185 004 66.648 848 0.015 004 24.162 778 16 
17 14.426456 0.069 317 5.474 605 0.182 662 78.979 152 0.012 662 25.271 851 17 
18 16.878 953 0.059 245 5.533 851 0.180 706 93.405 608 0.010 706 26.279 023 18 
19 19.i48 375 0.050 63i 5584488 0.179 067 110.284 561 0.009 067 27.190490 19 
20 23.105 599 0.043 280 5.627 767 0.177 690 130.032 936 0.007 690 28.012 80.::! 20 

21 27.033 551 0.036 991 5.664 758 0.176 530 153.138 535 0.006 530 28.752 6'.!.~ 21 
22 31.629 255 0.031616 5.696 375 0.175 550 180.172 086 0.005 550 29.416 565 22 

23 37.006 228 0.027 022 5.723 39i 0.174 721 211.801 341 0.004 721 30.011 Ot10 23 
24 43.29i 287 0.023 096 5.746493 0.174 019 248.807 569 0.004 019 30.542 271 24 

25 50.657 826 0.019 740 5.766 234 0.173 423 292.104 856 0.003 423 31.016 OJ:, ~5 

26 59.269 656 0.016 872 5.783106 0.172 917 342.762 681 0.002 917 31.437 839 26 

27 69.345 497 0.014 421 5.797 526 0.172 487 402.032 337 0.002 487 31.812 n:. 27 

28 81.134 232 0.012 325 5.809 851 0.172 121 471.377 835 0.002 121 32.145 555 28 

29 94.927 051 0.010 534 5.820 386 0.171 810 552.512 066 0.001 810 32.440 518 29 

30 111.064 650 0.009 004 5.829 390 0.171 545 647.439118 0.001 545 32.701 627 30 

31 129.945 641 0.007 696 5.837 085 0.171 318 758.503 768 0.001 318 32.932 493 31 

32 152.036 399 0.006 577 5.843 663 0.171126 888.449 408 0.001 126 33.136 392 32 

33 lTI.882 587 0.005 622 5.849 284 0.170 961 I 040.485 808 0.000 961 33.316 286 33 

34 208.122 627 0.004 805 5.854 089 0.170 821 1 218.368 395 0.000 821 33.474 846 34 

35 243.503 474 0.004107 5.858196 0.170 701 I 426.491 022 0.000 701 33.614 474 35 

(cont.) 



Appendix Compound Interest Tables 531 

(cont.) 

17% Single Payment Uniform Series Arithmetic 
Gradient Series 17% 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA NF PIG n 

36 284.899 064 0.003510 5.861 706 0.170 599 1 669.994 496 0.000 599 33.737 325 36 
37 333.331 905 0.003 000 5.864 706 0.170 512 1 954.893 560 0.000 512 33.845 325 37 
38 389.998 329 0.002564 5.867 270 0.170437 2 288.225 465 0.000437 33.940198 38 
39 456.298 045 0.002192 5.869 461 0.170 373 2 678.223 794 0.000 373 34.023 477 39 
40 533.868 713 0.001873 5.871335 0.170 319 3 134.521 839 0.000 319 34.096 528 40 

41 624.626 394 0.001601 5.872 936 0.170 273 3 668.390 552 0.000273 34.160 567 41 

42 730.812 881 0.001368 5.874 304 0.170 233 4 293.016 946 0.000233 34.216 668 42 

43 855.051 071 0.001170 5.875 473 0.170199 5 023.829 827 0.000199 34.265 788 43 

44 1 000.409 753 0.001000 5.876 473 0.170170 5 878.880 897 0.000170 34.308 771 44 

45 1170.479 411 0.000 854 5.877 327 0.170 145 6 879.290 650 0.000 145 34.346 362 45 

46 1369.4-60 910 0.000730 5.878 058 0.170 124 8 049.770 061 0.000 124 34.379 222 46 

47 1 602.269 265 0.000624 5.878 682 0.170 106 9 419.230 971 0.000 106 34.407 931 47 

48 1 S7-L655 040 0.000 533 5.879 215 0.170 091 11021.500236 0.000 091 34.433 002 48 

49 2 193.346 397 0.000 456 5.879 671 0.170 078 12 896.155 276 0.000078 34.454 887 49 

50 2 566.2 ~s 284 0.000 390 5.880 061 0.170 066 15 089.501 673 0.000066 34.473 981 50 

60 12 335.356 482 Q.:)L'O OSl 5.881 876 0.170 014 72 555.038 129 0.000 014 34.570 659 60 

70 59 293.941 729 0.000 017 5.882 254 0.170 003 348 782.010 169 0.000003 34.594 548 70 

72 81 167.476 832 0.000 01~ 5.882 280 0.170 002 477 449.863 720 0.000 002 34.596 432 72 

:x ~ 0 5.882 353 0.170 000 00 0 34.602 076 00 



532 Compound Interest Tables Appendix 

-
18% Single Payment Uniform Series Arithmetic 

Gradient Series 18% 

-
Compound Capital Compound 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 
-

1 1.180 ()()() 0.847 458 0.847 458 1.180 ()()() 1.000000 1.000000 0.000000 1 
2 1.392400 0.718184 1.565 642 0.638 716 2.180 000 0.458 716 0.718184 2 
3 1.643 032 0.608 631 2.174 273 0.459 924 3.572400 0.279 924 1.935 446 3 
4 1.938 778 0.515 789 2.690062 0.371 739 5.215 432 0.191 739 3.482 813 4 
5 2.287 758 0.437109 3.127171 0.319 778 7.154 210 0.139 778 5.231250 5 

6 2.699 554 0.370432 3.497 603 0.285 910 9.441968 0.105 910 7.083 407 6 
7 3.185 474 0.313 925 3.811528 0.262 362 12.141522 0.082 362 8.966 958 7 
8 3.758 859 0.266 038 4.077 566 0.245 244 15.326 996 0.065 244 10.829 225 8 
9 4.435 454 0.225 456 4.303 022 0.232 395 19.085 855 0.052 395 12.632 873 9 

10 5.233 836 0.191 064 4.494086 0.222 515 23.521309 0.042 515 14.352 453 10 

11 6.175 926 0.161 919 4.656005 0.214 776 28.755144 0.034 776 15.971 644 11 
12 7.287 593 0.137 220 4.793 225 0.208 628 34.931070 0.028 628 17.481 059 12 
13 8.599 359 0.116 288 4.909 513 0.203 686 42.218 663 0.023 686 18.876 511 13 
14 10.147 244 0.098 549 5.008062 0.199 678 50.818 022 0.019 678 20.157 647 14 

15 11.973 748 0.083 516 5.091 578 0.196 403 60.965 266 0.016 403 21.326 872 15 

16 14.129 023 0.070 776 5.162 354 0.193 710 72.939 014 0.013 710 22.388 517 16 

17 16.672 247 0.059 980 5.222 334 0.191485 87.068036 0.011485 23.348195 17 

18 19.673 251 0.050830 5.273164 0.189 639 103.740 283 0.009 639 24.212 313 18 

19 23.214 436 0.043 077 5.316 241 0.188103 123.413 534 0.008103 24.987 692 19 

20 27.393 035 0.036 506 5.352 746 0.186 820 146.627 970 0.006 820 25.681 299 20 

21 32.323 781 0.030 937 5.383 683 0.185 746 174.021005 0.005 746 26.300 039 21 

22 38.142 061 0.026 218 5.409 901 0.184 846 206.344 785 0.004 846 26.850 612 22 

23 45.007 632 0.022 218 5.432120 0.184 090 244.486 847 0.004 090 27.339 418 23 

24 53.109 006 0.018 829 5.450 949 0.183 454 289.494479 0.003 454 27.772 490 24 

25 62.668 627 0.015 957 5.466 906 0.182 919 342.603 486 0.002 919 28.155 456 25 

26 73.948 980 0.013 523 5.480 429 0.182 467 405.272113 0.002 467 28.493 527 26 

27 87259 797 0.011460 5.491 889 0.182 087 479.221 093 0.002 087 28.791 488 27 

28 102.966 560 0.009 712 5.501 601 0.181 765 566.480 890 0.()()1 765 29.053 709 28 

29 121.500 541 0.008 230 5.509 831 0.181494 669.447 450 0.001494 29.284 161 29 

30 143.370 638 0.006 975 5.516 806 0.181 264 790.947 991 0.001264 29.486 434 30 

31 169.177 353 0.005 911 5.522 717 0.181 070 934.318 630 0.001 070 29.663 763 31 

32 199.629 277 0.005 009 5.527 726 0.180 906 1 103.495 983 0.000 906 29.819 050 32 

33 235.562 547 0.004 245 5.531 971 0.180 767 1 303.125 260 0.000 767 29.954 895 33 

34 277.963 805 0.003 598 5.535 569 0.180 650 1 538.687 807 0.000 650 30.073 616 34 

35 327.997 290 0.003 049 5.538 618 0.180 550 1 816.651 612 0.000 550 30.177 275 35 
-

(collf.) 



Appendix Compound Interest Tables 533 

(cont.) 

18% Single Payment Uniform Series Arithmetic 
Gradient Series 

18% 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA A!F PIG n 

36 387.036 802 0.002 584 5.541201 0.180 466 2144.648 902 0.000466 30.267 706 36 
37 456.703427 0.002190 5.543 391 0.180 395 2 531.685 705 0.000 395 30.346 532 37 
38 538.910044 0.001856 5.545 247 0.180335 2 988.389 132 0.000 335 30.415189 38 
39 635.913 852 0.001573 5.546 819 0.180 284 3 527.299 175 0.000284 30.474 945 39 
40 750.378 345 0.001333 5.548152 0.180 240 4 163.213 027 0.000 240 30.526 919 40 

41 885.446447 0.001129 5.549 281 0.180204 4 913.591 372 0.000 204 30.572 094 41 

42 1 044.826 807 0.000957 5.550238 0.180 172 5 799.037 819 0.000 172 30.611 335 42 

43 1 232.895 633 0.000 811 5.551049 0.180146 6 843.864 626 0.000 146 30.645 401 43 

44 1454.816 847 0.000 687 5.551 737 0.180124 8 076.760 259 0.000 124 30.674 958 44 

45 1 716.683 879 0.000 583 5.552 319 0.180105 9 531.577 105 0.000105 30.700 589 45 

46 2 025.686 977 0.000494 5.552 813 0.180 089 11 248.260 984 0.000089 30.722 804 46 

47 2 390.310 633 0.000 418 5.553 231 0.180 075 13 273.947 961 0.000 075 30.742 048 47 

48 2 820.566 547 0.000355 5.553 586 0.180 064 15 664.258 594 0.000064 30.758 711 48 

49 3 328.268 525 0.000 300 5.553 886 0.180 054 18 484.825 141 0.000054 30.773 133 49 

50 3 927 .356 860 0.000 255 5.554141 0.180 046 21 813.093 666 0.000 046 30.785 610 50 

60 20 555. B9 966 0.000 049 5.555 285 0.180 009 114 189.666 478 0.000009 30.846 479 60 

70 107 582.222 368 a.coo 009 5.555 504 0.180 002 597 673.457 599 0.000 002 30.860 296 70 

72 149 797.486 425 0.000 007 5.555 518 0.180 001 832 202.702 361 0.000 001 30.861 321 72 

00 00 0 5.555 556 0.180 000 00 0 30.864198 00 



534 Compound Interest Tables Appendix 

-
Uo/o Single Payment Unifonn Series Arithmetic 

Gradient Series 19% 

-Compound Compound Capital 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA AIP FIA AIF PIG n 

-
1 1.190000 0.840 336 0.840336 1.190 000 1.000 ()()() 1.000 000 0.000000 1 
2 1.416100 0.706165 1.546 501 0.646 621 2.190 000 0.456 621 0.706165 2 
3 1.685159 0.593 416 2.139 917 0.467 308 3.606100 0.277 308 1.892 996 3 
4 2.005 339 0.498669 2.638 586 0.378 991 5.291259 0.188 991 3.389 003 4 
5 2.386 354 0.419 049 3.057 635 0.327 050 7.296 598 0.137 050 5.065 200 5 

6 2.839 761 0.352142 3.409 777 0.293 274 9.682 952 0.103 274 6.825 912 6 
7 3.379 315 0.295 918 3.705 695 0.269 855 12.522 713 0.079 855 8.601419 7 
8 4.021 385 0.248 671 3.954366 0.252 885 15.902 028 0.062 885 10.342 113 8 
9 4.785 449 0.208 967 4.163 332 0.240192 19.923 413 0.050192 12.013 848 9 

10 5.694 684 0.175 602 4.338 935 0.230471 24.708 862 0.040 471 13.594 269 10 

11 6.776 674 0.147 565 4.486 500 0.222 891 30.403 546 0.032 891 15.069 919 11 

12 8.064 242 0.124 004 4.610 504 0.216 896 37.180 220 0.026 896 16.433 966 12 
13 9.596 448 0.104 205 4.714 709 0.212 102 45.244461 0.022 102 17.684 428 13 
14 11.419 773 0.087 567 4.802 277 0.208 235 54.840 909 O.Q18 235 18.822 805 14 
15 13.589 530 0.073 586 4.875 863 0.205 092 66.260 682 0.015 092 19.853 010 15 

16 16.171540 0.061837 4.937 700 0.202 523 79.850 211 0.012 523 20.780 565 16 
17 19244133 0.051964 4.989 664 0.200414 96.021 751 0.010 414 21.611 987 17 
18 22.900518 0.043 667 5.033 331 0.198 676 115.265 884 0.008 676 22.354 329 18 
19 27.251 616 0.036 695 5.070 026 0.197 238 138.166 402 0.007 238 23.014 840 19 
20 32.429423 0.030 836 5.100 862 0.196 045 165.418 018 0.006 045 23.600 728 20 

21 38.591 014 0.025 913 5.126 775 0.195 054 197.847 442 0.005 054 24.118 983 21 
22 45.923 307 0.021 775 5.148 550 0.194 229 236.438456 0.004 229 24.576 267 22 
23 54.648735 0.018 299 5.166 849 0.193 542 282.361 762 0.003 542 24.978 8•8 23 
24 65.031994 0.015 377 5.182 226 0.192 967 337.010 497 0.002 967 25.332 510 24 
25 77.388 073 0.012 922 5.195 148 0.192 487 402.042 491 0.002 487 25.642 636 25 

26 92.091807 0.010 859 5.206 007 0.192 086 479.430 565 0.002 086 25.914 104 26 
27 109.589 251 0.009125 5.215132 0.191 750 571.522 372 0.001 750 26.151 353 27 

28 130.411 208 0.007 668 5.222 800 0.191 468 681.111 623 0.001468 26.358 391 28 
29 155.189 338 0.006 444 5.229 243 0.191 232 811.522 831 0.001232 26.538 816 29 
30 184.675 312 0.005 415 5.234 658 0.191 034 966.712169 0.001 034 26.695 848 30 

31 219.763 621 0.004 550 5.239 209 0.190 869 1 151.387 481 0.000 869 26.832 358 31 
32 261.518 710 0.003 824 5.243 033 0.190 729 1 371.151 103 0.000 729 26.950 897 32 
33 311.207 264 0.003 213 5.246 246 0.190 612 1 632.669 812 0.000 612 27.053 722 33 
34 370.336 645 0.002 700 5.248 946 0.190 514 1 943.877 077 0.000 514 27.142 830 34 
35 440.700 607 0.002 269 5.251 215 0.190 432 2 314.213 721 0.000 432 27.219 980 35 

-
(co/If.) 



Appendix Compound Interest Tables 535 

(cont.) 

19% Single Payment Uniform Series Arithmetic 
19% 

Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

II FIP PIF PIA AIP FIA AIF PIG n 

36 524.433 722 0.001 907 5.253 122 0.190 363 2 754.914 328 0.000 363 27.286 719 36 

37 624.076130 0.001 602 5.254 724 0.190 305 3 279.348 051 0.000 305 27.344404 37 

38 742.650594 0.001347 5.256 071 0.190 256 3 903.424 180 0.000 256 27.394 225 38 

39 883.754 207 0.001132 5.257202 0.190 215 4 646.074 775 0.000 215 27.437 224 39 

40 1 051.667 507 0.000 951 5.258153 0.190 181 5 529.828 982 0.000181 27.474 308 40 

41 1 251.484 333 0.000799 5.258 952 0.190 152 6 581.496 488 0.000 152 27.506 270 41 

42 1 489.266 356 0.000 671 5.259 624 0.190 128 7 832.980 821 0.000 128 27.533 800 42 

43 1 772.226 964 0.000564 5.260188 0.190 107 9 322.247 177 0.()()() 107 27.557 499 43 

44 2 108.950 087 0.000474 5.260 662 0.190 090 11 094.474 141 0.000090 27.577 888 44 

45 2 509 .650 603 0.000 398 5.261 061 0.190 076 13 203.424 228 0.000076 27.595 421 45 

46 2 986.484 218 0.000 335 5.261396 0.190 064 15 713.074 831 0.000 064 27.610 489 46 

47 3 553.916 219 0.000 281 5.261677 0.190 053 18 699.559 049 0.000 053 27.623 432 47 

48 4 229.160 301 0.000 236 5.261 913 0.190 045 22 253.475 268 0.000045 27.634 545 48 

49 5 032. 700 758 11000 199 5.262 112 0.190 038 26 482.635 569 0.000 038 27.644 083 49 

50 5 988.913 902 0.000 167 5.262 279 0.190 032 31 515.336 327 0.000 032 27.652 265 50 

60 34 104.970 919 C..0000.N 5.263 004 0.190 006 179 494.583 786 0.000 006 27.690 759 60 

00 00 0 5.263 158 0.190 000 00 0 27.700 831 00 



536 Compound Interest Tables Appendix 

-
20% Single Payment Uniform Series Arithmetic 

Gradient Series 20% 

-
Compound Compound Capital 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG 
" -

1 1.200000 0.833 333 0.833 333 1.200000 1.000 000 1.000 000 0.000000 1 
2 1.440 {)()() 0.694444 1.527 778 0.654 545 2.200 000 0.454 545 0.694 444 2 
3 1.728 000 0.578 704 2.106 481 0.474 725 3.640 000 0.274 725 1.851 852 3 
4 2.073 600 0.482 253 2.588 735 0.386 289 5.368 000 0.186 289 3.298 611 4 
5 2.488 320 0.401878 2.990 612 0.334380 7.441600 0.134 380 4.906121 5 

6 2.985 984 0.334 898 3.325 510 0.300706 9.929 920 0.100 706 6.580 611 6 
7 3.583181 0.279 082 3.604 592 0.277 424 12.915 904 0.077 424 8.255101 7 
8 4.299 817 0.232 568 3.837160 0.260 609 16.499 085 0.060 609 9.883 077 8 
9 5.159 780 0.193 807 4.030 967 0.248079 20.798 902 0.048 079 11.433 531 9 

10 6.191 736 0.161 506 4.192472 0.238 523 25.958 682 0.038 523 12.887 081 10 

11 7.430 084 0.134 588 4.327 060 0.231104 32.150 419 0.031 104 14.232 961 11 
12 8.916100 0.112157 4.439 217 0.225 265 39.580 502 0.025 265 15.466 684 12 

13 10.699 321 0.093464 4.532 681 0.220620 48.496 603 0.020 620 16.588 251 13 
14 12.839185 0.077 887 4.610 567 0.216 893 59.195 923 0.016 893 17.600 776 14 

15 15.407 022 0.064 905 4.675 473 0.213 882 72.035108 0.013 882 18.509 453 15 

16 18.488426 0.054 088 4.729 561 0.211436 87.442129 0.011436 19.320 771 16 

17 22.186111 0.045 073 4.774 634 0.209 440 105.930 555 0.009 440 20.041 943 17 

18 26.623 333 0.037 561 4.812 195 0.207 805 128.116 666 0.007 805 20.680481 18 

19 31.948 000 0.031301 4.843 496 0.206462 154.740 000 0.006 462 21.243 896 19 

20 38.337 600 0.026 084 4.869 580 0.205 357 186.688 000 0.005 357 21.739 493 20 

21 46.005120 0.021 737 4.891316 0.204 444 225.025 600 0.004444 22.174 228 21 

22 55.206144 0.018114 4.909430 0.203 690 271.030 719 0.003 690 22.554 620 22 

23 66.247 373 0.015 095 4.924 525 0.203 065 326.236 863 0.003 065 22.886 709 23 

24 79.496 847 0.012 579 4.937104 0.202 548 392.484 236 0.002 548 23.176 028 24 

25 95.396 217 0.010 483 4.947 587 0.202119 471.981 083 0.002119 23.427 611 25 

26 114.475 460 0.008 735 4.956 323 0.201 762 567.377 300 0.001 762 23.645 9% 26 

27 137.370 552 0.007 280 4.963 602 0.201467 681.852 760 0.001467 23.835 2(l7 27 

28 164.844 662 0.006 066 4.969 668 0.201221 819.223 312 0.001 221 23.999 058 28 

29 197.813 595 0.005 055 4.974 724 0.201 016 984.067 974 0.001 016 24.140 605 29 

30 237.376 314 0.004 213 4.978 936 0.200 846 1 181.881 569 0.000 846 24.262 774 30 

31 284.851577 0.003 511 4.982 447 0.200705 1419.257883 0.000 705 24.368 092 31 

32 341.821 892 0.002 926 4.985 372 0.200 587 1 704.109 459 0.000 587 24.458 782 32 

33 410.186 270 0.002 438 4.987 810 0.200489 2 045.931 351 0.000489 24.536 796 33 

34 492.223 524 0.002 032 4.989 842 0.200 407 2 456.117 621 0.000407 24.603 839 34 

35 590.668 229 0.001 693 4.991535 0.200 339 2 948.341 146 0.000 339 24.661 400 35 
-

(cont.) 



Appendix Compound Interest Tables 537 

(cont.) 

20% Single Payment Uniform Series Arithmetic 
20% 

Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

36 708.801875 0.001411 4.992 946 0.200283 3 539.009 375 0.000283 24.710 780 36 

37 850.562 250 0.001176 4.994122 0.200235 4 247.811 250 0.000235 24.753104 37 

38 1 020.674 700 0.000980 4.995101 0.200196 5 098.373 500 0.000196 24.789 355 38 

39 1 224.809 640 0.000 816 4.995 918 0.200 163 6119.048 200 0.000163 24.820 380 39 

40 1 469.771 568 0.000680 4.996 598 0.200136 7 343.857 840 0.000136 24.846 915 40 

41 1763.725882 0.000567 4.997165 0.200113 8 813.629 408 0.000113 24.869 594 41 

42 2 116.471 058 0.000472 4.997 638 0.200095 10 577.355 289 0.000095 24.888 966 42 

43 2 539.765 269 0.000 394 4.998 031 0.200 079 12 693.826 347 0.000 079 24.905 503 43 

44 3 047.718 323 0.000328 4.998 359 0.200 066 15 233.591 617 0.000066 24.919 612 44 

45 3 657.261 988 0.000273 4.998 633 0.200 055 18 281.309 940 0.000 055 24.931643 45 

46 4 388.714 386 0.000 228 4.998 861 0.200 046 21 938.571 928 0.000046 24.941896 46 

47 s 266.457 263 0.000 190 4.999 051 0.200038 26 327.286 314 0.000 038 24.950 631 47 

48 6 319.748 715 0.000158 4.999 209 0.200 032 31 593.743 576 0.000 032 24.958 068 48 

49 7 583.69~ 458 0.000132 4.999 341 0.200 026 37 913.492 292 0.000 026 24.964 397 49 

50 9 100.438 150 0.000110 4.999 451 0.200 022 45 497.190 750 0.000 022 24.969 782 50 

60 56 347.514 353 0.000 018 4.999 911 0.200004 281 732.571 766 0.000004 24.994 232 60 

00 00 0 5.000 000 0.200000 00 0 25.000000 00 



538 Compound Interest Tables Appendix 

-
25% Single Payment Unif onn Series Arithmetic 

Gradient Series 25% 

-
Capital Compound Compound 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

1 1.2.~0 000 0.800000 0.800 000 1.250 000 1.000 000 1.000 000 0.000000 1 
2 1.562 500 0.640000 1.440 000 0.694 444 2.250000 0.444444 0.640 000 2 
3 1.953125 0.512000 1.952 000 0.512 295 3.812 500 0.262 295 1.664 000 3 
4 2.441406 0.409600 2.361 600 0.423 442 5.765 625 0.173 442 2.892 800 4 
5 3.051 758 0.327 680 2.689 280 0.371847 8.207 031 0.121 847 4.203 520 5 

6 3.814 697 0.262144 2.951 424 0.338 819 11.258 789 0.088 819 5.514 240 6 

7 4.768 372 0.209 715 3.161139 0.316 342 15.073 486 0.066 342 6.772 531 7 

8 5.960 464 0.167 772 3.328 911 0.300399 19.841 858 0.050 399 7.946 936 8 

9 7.450 581 0.134 218 3.463129 0.288 756 25.802 322 0.038 756 9.020 678 9 

10 9.313 226 0.107 374 3.570 503 0.280073 33.252 903 0.030 073 9.987 046 10 

11 11.641 532 0.085 899 3.656403 0.273 493 42.566 129 0.023 493 10.846 039 11 
12 14.551 915 0.068 719 3.725122 0.268448 54.207 661 O.Ql8 448 11.601 953 12 

13 18.189 894 0.054 976 3.780 098 0.264 543 68.759 576 0.014 543 12.261 660 13 

14 22.737 368 0.043 980 3.824 078 0.261501 86.949 470 0.011501 12.833 407 14 

15 28.421 709 O.D35 184 3.859 263 0.259117 109.686 838 0.009 117 13.325 988 15 

16 35.527137 0.028147 3.887 410 0.257 241 138.108 547 0.007 241 13.748 200 16 

17 44.408 921 0.022 518 3.909 928 0.255 759 173.635 684 0.005 759 14.108 488 17 

18 55.511 151 O.Ql8 014 3.927 942 0.254 586 218.044 605 0.004 586 14.414 733 18 

19 69.388 939 0.014 412 3.942 354 0.253 656 273.555 756 0.003 656 14.674 140 19 

20 86.736174 0.011 529 3.953 883 0.252 916 342.944 695 0.002 916 14.893 195 20 

21 108.420 217 0.009 223 3.963107 0.252 327 429.680 869 0.002 327 15.077 663 21 

22 135.525 272 0.007 379 3.970 485 0.251858 538.101 086 0.001 858 15.232 615 22 

23 169.406 589 0.005 903 3.976 388 0.251485 673.626 358 0.001485 15.362 481 23 

24 211.758 237 0.004 722 3.981111 0.251186 843.032 947 0.001186 15.471 095 24 

25 264.697 796 0.003 778 3.984 888 0.250 948 1 054.791 184 0.000 948 15.561 764 25 

26 330.872 245 0.003 022 3.987 911 0.250758 1319.488980 0.000 758 15.637 322 26 

27 413.590 306 0.002418 3.990 329 0.250 606 1 650.361 225 0.000 606 15.700 186 27 

28 516.987 883 0.001 934 3.992 263 0.250485 2 063.951 531 0.000 485 15.752 412 28 

29 646.234 854 0.001547 3.993 810 0.250 387 2 580.939 414 0.000 387 15.795 740 29 

30 807.793 567 0.001 238 3.995 048 0.250 310 3 227.174 268 0.000 310 15.831 640 30 

31 1 009.741 959 0.000 990 3.996 039 0.250248 4 034.967 835 0.000248 15.861 351 31 

32 1 262.177 448 0.000 792 3.996 831 0.250198 5 044. 709 793 0.000198 15.885 911 32 

33 1 577.721 810 0.000 634 3.997 465 0.250 159 6 306.887 242 0.000 159 15.906 194 33 

34 1 972.152 263 0.000 507 3.997 972 0.250127 7 884.609 052 0.000127 15.922 927 34 

35 2 465.190 329 0.000406 3.998 377 0.250101 9 856.761 315 0.000101 15.936 719 35 
-

(cont.) 



Appendix Compound Interest Tables 539 

(cont.) 

25% Single Payment Uniform Series Arithmetic 
25% Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

" FIP PIF PIA AIP FIA AIF PIG n 

36 3 081.487 911 0.000325 3.998 702 0.250 081 12 321.951 644 0.000 081 15.948 077 36 

37 3 851.859 889 0.000 260 3.998 962 0.250065 15 403.439 555 0.000 065 15.957 423 37 

38 4 814.824 861 0.000 208 3.999 169 0.250 052 19 255.299 444 0.()00 052 15.965 108 38 

39 6 018.531 076 0.000166 3.999 335 0.250042 24 070.124 305 0.000 042 15.971 422 39 

40 7 523.163 845 0.000133 3.999 468 0.250033 30 088.655 381 0.000033 15.976 606 40 

41 9 403.954 807 0.000106 3.999 575 0.250 027 37611.819226 0.000027 15.980 859 41 

42 11 754.943 508 0.000085 3.999 660 0.250 021 47 015.774 033 0.000 021 15.984 347 42 

43 14 693.679 385 0.000 068 3.999 728 0.250 017 58 770.717 541 0.000 017 15.987 205 43 

44 18 367.099 232 0.000 054 3.999 782 0.250 014 73 464.396 926 0.000 014 15.989 547 44 

45 22 958.874 039 0.000 044 3.999 826 0.250011 91 831.496 158 0.000 011 15.991463 45 

46 28 698.592 549 0.000 035 3.999 861 0.250 009 114790.370197 0.000009 15.993 031 46 

47 35 873.240 687 0.000 028 3.999 888 0.250007 143 488.962 747 0.000 007 15.994 313 47 

48 44 &:tl .550 858 0.000 022 3.999 911 0.250006 179 362.203 434 0.000 006 15.995 361 48 

49 56 051.938 !)73 0.000 018 3.999 929 0.250004 224 203.754 292 0.000 004 15.996 218 49 

50 70 064.923 216 0.000 014 3.999 943 0.250004 280 255.692 865 0.000 004 15.996 917 50 

00 00 0 4.000000 0.250000 00 0 16.000 000 00 



540 Compound Interest Tables Appendix 

-
30% Single Payment Uniform Series Arithmetic 

Gradient Series 30% 

-
Compound Capital Compound 

A.mount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

1 1.300000 0.769231 0.769 231 1.300000 1.000 000 1.000 000 0.000000 1 
2 1.690000 0.591 716 1.360 947 0.734 783 2.300 000 0.434 783 0.591 716 2 
3 2.197 ()()() 0.455166 1.816 113 0.550 627 3.990 000 0.250 627 1.502 048 3 
4 2.856100 0350128 2.166 241 0.461 629 6.187 000 0.161 629 2.552 432 4 
5 3.712 930 0.269 329 2.435 570 0.410582 9.043 100 0.110 582 3.629 748 5 

6 4.826 809 0.207176 2.642 746 0.378 394 12.756 030 0.078 394 4.665 629 6 
7 6.274 852 0.159 366 2.802112 0.356 874 17.582 839 0.056 874 5.621827 7 
8 8.157 307 0.122 589 2.924 702 0.341 915 23.857 691 0.041 915 6.479 953 8 
9 10.604499 0.094 300 3.019001 0.331235 32.014 998 0.031235 7.234 350 9 
10 13.785 849 0.072 538 3.091539 0.323 463 42.619 497 0.023 463 7.887 193 10 

11 17.921 604 0.055 799 3.147 338 0.317 729 56.405 346 0.017 729 8.445179 11 
12 23.298 085 0.042 922 3.190 260 0.313 454 74.326 950 0.013 454 8.917 321 12 

13 30.287 511 0.033 017 3.223 277 0.310 243 97.625 036 0.010 243 9.313 524 13 
14 39.373 764 0.025 398 3.248 675 0.307 818 127.912 546 0.007 818 9.643 693 14 

15 51.185 893 0.019 537 3.268 211 0.305 978 167.286 310 0.005 978 9.917 206 15 

16 66.541 661 0.015 028 3.283 239 0.304 577 218.472 203 0.004 577 10.142 628 16 

17 86.504159 0.011560 3.294 800 0.303 509 285.013 864 0.003 509 10.327 591 17 

18 112.455 407 0.008 892 3.303 692 0.302 692 371.518 023 0.002 692 10.478 762 18 

19 146.192 029 0.006 840 3.310 532 0.302 066 483.973 430 0.002 066 10.601 887 19 

20 190.049 638 0.005 262 3.315 794 0.301 587 630.165 459 0.001587 10.701861 20 

21 247.064 529 0.004 048 3.319 842 0.301 219 820.215 097 0.001219 10.782 812 21 

22 321.183 888 0.003 113 3.322 955 0.300 937 1 067.279 626 0.000 937 10.848 195 22 

23 417.539 054 0.002 395 3.325 350 0.300 720 1 388.463 514 0.000720 10.900 885 23 

24 542.800 770 0.001 842 3.327192 0.300 554 1 806.002 568 0.000 554 10.943 257 I 24 

25 705.641001 0.001 417 3.328 609 0.300 426 2 348.803 338 0.000 426 10.977 269 
I 

25 

26 917.333 302 0.001 090 3.329 700 0.300 327 3 054.444 340 0.000 327 11.004 522 26 

27 1 192.533 293 0.000 839 3.330 538 0.300252 3 971.777 642 0.000 252 11.026 324 27 

28 1 550.293 280 0.000 645 3.331 183 0.300194 5 164.310 934 0.000194 11.043 740 28 

29 2 015.381 264 0.000 496 3.331 679 0.300149 6 714.604 214 0.000149 11.057 633 29 

30 2 619.995 644 0.000 382 3.332 061 0.300115 8 729.985 479 0.000115 11.068 702 30 

31 3 405.994 337 0.000 294 3.332 355 0.300 088 11 349.981122 0.000 088 11.077 510 31 

32 4 427.792 638 0.000 226 3.332 581 0.300 068 14 755.975 459 0.000 068 11.084 511 32 

33 5 756.130 429 0.000174 3.332 754 0.300 052 19183.768 097 0.000 052 11.090 071 33 

34 7 482.969 558 0.000134 3.332 888 0.300 040 24 939 .898 526 0.000 040 11.094 481 34 

35 9 727 .860 425 0.000103 3.332 991 0.300 031 32 422.868 084 0.000 031 11.097 976 35 
-

(cont.) 



Appendix Compound Interest Tables 541 

(cont.) 

30% Single Payment Uniform Series Arithmetic 
30% Gradient Series 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

II FIP PIF PIA A/P FIA AIF PIG n 

36 12 646.218 553 0.000079 3.333 070 0.300 024 42 150.728 509 0.000 024 11.100 743 36 

37 16 440.084119 0.000 061 3.333 131 0.300 018 54 796.947 062 0.000018 11.102 933 37 

38 21372.109354 0.000047 3.333177 0.300 014 71 237.031 180 0.000 014 11.104 664 38 

39 27 783.742 160 0.000036 3.333 213 0.300 011 92 609.140 534 0.()00 011 11.106 032 39 

40 36 118.864 808 0.000 028 3.333 241 0.300008 120 392.882 695 0.000 008 11.107112 40 

41 46 954.524 251 0.000 021 3.333 262 0.300 006 156 511.747 503 0.000006 11.107 964 41 

42 61 040.881 526 0.000 016 3.333 279 0.300 005 203 466.271 754 0.000005 11.108 636 42 

43 79 353.145 984 0.000 013 3.333 291 0.300 004 264 507.153 281 0.000 004 11.109 165 43 

44 103 159.089 779 0.000 010 3.333 301 0.300003 343 860.299 265 0.000003 11.109 582 44 

45 134 106.816 713 0.000 007 3.333 308 0.300 002 447 019.389 044 0.000002 11.109 910 45 

00 oc 0 3.333 333 0.300 000 00 0 11.111111 00 



542 Compound Interest Tables Appendix 

-
35% Single Payment Uniform Series Arithmetic 

Gradient Series 35% 

-
Compound Capital Compound 

Amount Present Wonh Present Worth Recovery Amount Sinking Fund Present Worth 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG II 

-
1 1.350000 0.740741 0.740 741 1.350 000 1.000000 1.000000 0.000000 1 
2 1.822 500 0.548 697 1.289 438 0.775 532 2.350000 0.425 532 0.548 697 2 
3 2.460 375 0.406 442 1.695 880 0.589 664 4.172 500 0.239 664 1.361 581 3 
4 3.321506 0.301068 1.996 948 0.500 764 6.632 875 0.150 764 2.264 786 4 
5 4.484033 0.223 014 2.219 961 0.450458 9.954 381 0.100458 3.156 840 5 

6 6.053445 0.165 195 2.385157 0.419 260 14.438 415 0.069 260 3.982 816 6 
7 8.172 151 0.122 367 2.507 523 0.398 800 20.491 860 0.048 800 4.717017 7 
8 11.032 404 0.090 642 2.598165 0.384 887 28.664 011 0.034 887 5.351 511 8 
9 14.893 745 0.067142 2.665 308 0.375191 39.696 415 0.025 191 5.888 649 9 

10 20.106 556 0.049 735 2.715 043 0.368 318 54.590160 O.ot8 318 6.336 264 10 

11 27.143 850 0.036 841 2.751884 0.363 387 74.696 715 0.013 387 6.704 672 11 
12 36.644198 0.027 289 2.779173 0.359 819 101.840 566 0.009 819 7.004 856 12 
13 49.469 667 0.020 214 2.799 387 0.357 221 138.484 764 0.007 221 7.247 429 13 
14 66.784 051 0.014 974 2.814 361 0.355 320 187.954 431 0.005 320 7.442 086 14 
15 90.158 469 0.011 092 2.825 453 0.353 926 254.738 482 0.003 926 7.597 368 15 

16 121.713 933 0.008 216 2.833 669 0.352 899 344.896 951 0.002 899 7.720 608 16 
17 164.313 809 0.006 086 2.839 755 0.352 143 466.610 884 0.002143 7.817 983 17 
18 221.823 643 0.004 508 2.844263 0.351 585 630.924 694 0.001585 7.894 620 18 

19 299.461 918 0.003 339 2.847 602 0.351173 852.748 336 0.001173 7.954 728 19 
20 404.273 589 0.002 474 2.850076 0.350 868 1 152.210 254 0.000 868 8.001 726 20 

21 545.769 345 0.001 832 2.851 908 0.350 642 1 556.483 843 0.000 642 8.038 371 21 

22 736.788 616 0.001357 2.853 265 0.350476 2 102.253 188 0.000476 8.066 873 22 

23 994.664 631 0.001005 2.854 270 0.350 352 2 839.041 804 0.000 352 8.088 991 23 

24 1342.797252 0.000 745 2.855 015 0.350 261 3 833.706 435 0.000 261 8.106 120 24 

25 1 812.776 291 0.000 552 2.855 567 0.350193 5 176.503 687 0.000193 8.119 359 25 

26 2 447.247 992 0.000 409 2.855 975 0.350 143 6 989.279 978 0.000143 8.129 575 26 

27 3 303.784 789 0.000 303 2.856 278 0.350 106 9 436.527 970 0.000106 8.137 445 27 

28 4 460.109 466 0.000 224 2.856 502 0.350 078 12 740.312 759 0.000 078 8.143 498 28 

29 6 021.147 779 0.000166 2.856 668 0.350 058 17 200.422 225 0.000 058 8.148 149 29 

30 8 128.549 501 0.000123 2.856 791 0.350 043 23 221.570 004 0.000 043 8.151 716 30 

31 10 973.541 827 0.000 091 2.856 882 0.350 032 31350.119505 0.000 032 8.154 450 31 

32 14 814.281 466 0.000 068 2.856 950 0.350 024 42 323.661 332 0.000 024 8.156 543 32 

33 19 999.279 979 0.000 050 2.857 000 0.350 018 57 137.942 798 0.000 018 8.158 143 33 

34 26 999 .027 972 0.000 037 2.857 037 0.350 013 77 137.222 778 0.000 013 8.159 365 34 

35 36 448.687 763 0.000 027 2.857 064 0.350010 104136.250 750 0.000 010 8.160 298 35 

36 49 205.728 479 0.000 020 2.857 085 0.350 007 140 584.938 513 0.000 007 8.161 009 36 

37 66 427.733 447 0.000 015 2.857100 0.350 005 189 790.666 992 0.000 005 8.161 551 37 

38 89 677.440 154 0.000 011 2.857 111 0.350 004 256 218.400 440 0.000 004 8.161 964 38 

39 121 064.544 208 0.000 008 2.857 119 0.350 003 345 895.840 593 0.000 003 8.162 277 39 

40 163 437.134 680 0.000 006 2.857125 0.350 002 466 960.384 801 0.000 002 8.162 516 40 

00 00 0 2.857.143 0.350 000 00 0 8.163 265 00 

-



Appendix Compound Interest Tables 543 

40% Single Payment Uniform Series Arithmetic 
Gradient Series 40% 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Wonh 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

1 1.400000 0.714 286 0.714 286 1.400 ()()() 1.000 000 1.000 000 0.000000 1 

2 1.960 000 0.510 204 1.224 490 0.816 667 2.400000 0.416 667 0.510 204 2 

3 2.744000 0.364 431 1.588 921 0.629 358 4.360000 0.229 358 1.239 067 3 

4 3.841600 0.260308 1.849 229 0.540 766 7.104 000 0.140 766 2.019 992 4 

5 5.378 240 0.185 934 2.035164 0.491 361 10.945 600 0.091 361 2.763 729 5 

6 7.529 536 0.132 810 2.167 974 0.461 260 16.323 840 0.061260 3.427 781 6 

7 10.541 350 0.094 865 2.262 839 0.441 923 23.853 376 0.041 923 3.996 968 7 

8 14.757 891 0.067 760 2.330 599 0.429 074 34.394 726 0.029 074 4.471 291 8 

9 20.661 047 0.048400 2.378 999 0.420 345 49.152 617 0.020 345 4.858 493 9 

10 28.925 465 0.034572 2.413 571 0.414 324 69.813 664 0.014 324 5.169 637 10 

11 40.495 652 0.024 694 2.438 265 D.410128 98.739129 0.010128 5.416 577 11 

12 56.693 912 0.017 639 2.455 904 0.407182 139.234 781 0.007 182 5.610 602 12 

13 79.371477 0.012 599 2.468 503 0.405104 195.928 693 0.005104 5.761 789 13 

14 111.120 068 0.008 999 2.477 502 0.403 632 275.300 171 0.003 632 5.878 780 14 

15 155.568 096 0.006428 2.483 930 0.402 588 386.420 239 0.002 588 5.968 773 15 

16 217.795 334 0.004 591 2.488 521 0.401845 541.988 334 0.001845 6.037 645 16 

17 304.913 467 0.003 280 2.491801 0.401316 759.783 668 0.001 316 6.090 119 17 

18 426.878 854 0.002 343 2.494144 0.400939 1 064.697 136 0.000 939 6.129 943 18 

19 597.630 396 0.001 673 2.495 817 0.400 670 1 491.575 990 0.000 670 6.160 061 19 

20 836.682 554 0.001195 2.497 012 0.400479 2 089.206 386 0.000479 6.182 770 20 

21 1 171.355 576 0.000 854 2.497 866 0.400 342 2 925.888 940 0.000 342 6.199 844 21 

22 1 639.897 806 0.000 610 2.498 476 0.400244 4 097.244 516 0.000244 6.212 650 22 

23 2 ::95.856 929 0.000 436 2.498 911 0.400174 5 737.142 322 0.000174 6.222 233 23 

24 3 214.199 700 0.000 311 2.499 222 0.400 124 8 032. 999 251 0.000 124 6.229 388 24 

25 4 499.879 581 0.000 222 2.499444 0.400089 11247.198951 0.000 089 6.234 722 25 

26 6 299.831 413 0.000159 2.499 603 0.400064 15 747 .078 532 0.000 064 6.238 690 26 

27 8 819.763 978 0.000113 2.499 717 0.400 045 22 046.909 945 0.000 045 6.241638 27 

28 12 347.669 569 0.000 081 2.499 798 0.400 032 30 866.673 923 0.000032 6.243 825 28 

29 17 286.737 397 0.000 058 2.499 855 0.400 023 43 214.343 492 0.000 023 6.245 444 29 

30 24 201.432 355 0.000 041 2.499 897 0.400 017 60 501.080 889 0.000 017 6.246 643 30 

31 33 882.005 298 0.000 030 2.499 926 0.400 012 84 702.513 244 0.000 012 6.247 528 31 

32 47 434.807 417 0.000 021 2.499 947 0.400008 118 584.518 542 0.000 008 6.248182 32 

33 66 408.730 383 0.000 015 2.499 962 0.400 006 166 019.325 959 0.000006 6.248 664 33 

34 92 972.222 537 0.000 011 2.499 973 0.400004 232 428.056 342 0.000004 6.249 019 34 

130161.111552 0.000008 2.499 981 0.400 003 325 400.278 879 0.000 003 6.249 280 35 

35 

2.500000 0.400000 00 0 6.250 000 00 

00 00 0 



544 Compound Interest Tables Appendix 

-
45% Single Payment Uniform Series Arithmetic 

Gradient Series 45% 

-
Capital Compound Compound 

Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Worth 

Factor Factor Factor Factor Factor Factor Factor 

(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

-
n FIP PIF PIA AIP FIA AIF PIG II 

1 1.450 000 0.689 655 0.689 655 1.450 000 1.000 000 1.000 000 0.000000 1 
2 2.102 500 0.475 624 1.165 279 0.858163 2.450 000 0.408163 0.475 624 2 
3 3.048625 0.328 017 1.493 296 0.669 660 4.552 500 0.219 660 1.131 658 3 
4 4.420506 0.226 218 1.719 515 0.581559 7.601125 0.131 559 1.810 313 4 
5 6.409 734 0.156 013 1.875 527 0.533183 12.021 631 0.083183 2.434 364 5 

6 9.294114 0.107 595 1.983122 0.504 255 18.431365 0.054 255 2.972 339 6 
7 13.476466 0.074 203 2.057 326 0.486 068 27.725 480 0.036 068 3.417 559 7 
8 19540 876 0.051175 2.108 500 0.474 271 41.201 946 0.024 271 3.775 783 8 
9 28.334 269 0.035 293 2.143 793 0.466 463 60.742 821 0.016 463 4.058126 9 

10 41.084 691 0.024 340 2.168133 0.461226 89.077 091 0.011226 4.277186 10 

11 59.572 802 0.016 786 2.184 920 0.457 683 130.161 781 0.007 683 4.445 048 11 
12 86.380 562 0.011577 2.196 496 0.455 271 189.734 583 0.005 271 4.572 391 12 
13 125.251 815 0.007 984 2.204480 0.453 622 276.115145 0.003 622 4.668198 13 

14 181.615 132 0.005 506 2.209 986 0.452 491 401.366 961 0.002491 4.739 778 14 
15 263.341 942 0.003 797 2.213 784 0.451 715 582.982 093 0.001 715 4.792 941 15 

16 381.845 816 0.002 619 2216 403 0.451182 846.324035 0.001182 4.832 224 16 
17 553.676433 0.001806 2218 209 0.450 814 1 228.169 850 0.000 814 4.861122 17 
18 802.830827 0.001246 2.219 454 0.450 561 1 781.846 283 0.000 561 4.882 297 18 

19 1 164.104 699 0.000 859 2.220 313 0.450 387 2 584.677 110 0.000 387 4.897 759 19 
20 1 687.951 814 0.000 592 2.220 906 0.450 267 3 748.781 809 0.000 267 4.909 016 20 

21 2 447.530 131 0.000409 2.221314 0.450184 5 436.733 623 0.000184 4.917187 21 

22 3 548.918 689 0.000282 2.221596 0.450 127 7 884.263 754 0.000127 4.923104 22 

23 5 145.932 100 0.000194 2.221 790 0.450 087 11433.182443 0.000 087 4.927 380 23 

24 7 461.601 544 0.000134 2.221 924 0.450 060 16 579.114 543 0.000 060 4.930 462 24 

25 10 819.322 239 0.000 092 2.222 017 0.450042 24 040.716 087 0.000 042 4.932 680 25 

26 15 688.017 247 0.000 064 2.222 081 0.450 029 34 860.038 326 0.000 029 4.934 274 26 

27 22 747.625 008 0.000 044 2.222125 0.450 020 50 548.055 573 0.000 020 4.935 417 27 

28 32 984.056 262 0.000030 2.222155 0.450 014 73 295.680 581 0.000 014 4.936 235 28 

29 47 826.881 579 0.000 021 2.222176 0.450 009 106 279.736 843 0.000 009 4.936 821 29 

30 69 348.978 290 0.000 014 2.222 190 0.450 006 154 106.618 422 0.000 006 4.937 239 30 

31 100 556.018 521 0.000010 2.222 200 0.450 004 223 455.596 712 0.000004 4.937 537 31 

32 145 806.226 855 0.000 007 2.222 207 0.450 003 324 011.615 233 0.000 003 4.937 750 32 

33 211419.028 939 0.000 005 2.222 212 0.450 002 469 817.842 088 0.000 002 4.937 901 33 

34 306 557.591 962 0.000 003 2.222 215 0.450 001 681 236.871 027 0.000 001 4.938 009 34 

35 444 508.508 345 0.000 002 2.222 217 0.450 001 987 794.462 989 0.000 001 4.938 086 35 

00 00 0 2.222222 0.450 000 00 0 4.938 272 00 

-



Appendix Compound Interest Tables 545 

SO% Single Payment Uniform Series Arithmetic 
Gradient Series 50% 

Compound Capital Compound 
Amount Present Worth Present Worth Recovery Amount Sinking Fund Present Wonh 
Factor Factor Factor Factor Factor Factor Factor 
(CAF) (PWF) (PWF) (CRF) (CAF) (SFF) (PWF) 

n FIP PIF PIA AIP FIA AIF PIG n 

1 1.500 000 0.666 667 0.666 667 1.500000 1.000 ()()() 1.000000 0.000000 1 

2 2.250000 0.444 444 1.111111 0.900 000 2.500 ()()() 0.400 ()()() 0.444444 2 

3 3.375 000 0.296 296 1.407 407 0.710 526 4.750 000 0.210 526 1.037 037 3 

4 5.062500 0.197 531 1.604 938 0.623 077 8.125 000 0.123 077 1.629 630 4 

5 7.593 750 0.131 687 1.736 626 0.575 829 13.187 500 O.D75 829 2.156 379 5 

6 11.390 625 0.087 791 1.824 417 0.548120 20.781250 0.048120 2.595 336 6 

7 17.085 938 0.058 528 1.882 945 0.531083 32.171875 0.031083 2.946 502 7 

8 25.628 906 0.039 018 1.921 963 0.520 301 49.257 813 0.020 301 3.219 631 8 

9 38.443 359 0.026 012 1.947 975 0.513 354 74.886 719 0.013 354 3.427 730 9 

10 57.665 039 0.017 342 1.965 317 0.508824 113.330 078 0.008 824 3.583 803 10 

11 86.497 559 0.011561 1.976 878 0.505 848 170.995 117 0.005 848 3.699413 11 

12 129.746 338 0.007 707 1.984 585 0.503 884 257.492 676 0.003 884 3.784194 12 

13 194.619 507 0.005138 1.989 724 0.502 582 387.239 014 0.002 582 3.845 853 13 

14 291.929 260 0.003 425 1.993149 0.501 719 581.858 521 0.001 719 3.890 384 14 

15 437.893 b90 0.002 284 1.995 433 0.501144 873.787 781 0.001144 3.922 356 15 

16 656.840 836 0.001522 1.996 955 0.500 762 1 311.681 671 0.000762 3.945 192 16 

17 985.261253 0.001 015 1.997 970 0.500 508 1 968.522 507 0.000508 3.961432 17 

18 1 477.891 880 0.000 677 1.998 647 0.500 339 2 953.783 760 0.000339 3.972 934 18 

19 2 216.837 820 0.000451 1.999 098 0.500 226 4 431.675 640 0.000 226 3.981054 19 

20 3 325.256 730 0.000 301 1.999 399 0.500150 6 648.513 460 0.000150 3.986 768 20 

21 4 987.885 095 0.000200 1.999 599 0.500100 9 973.770 190 0.000100 3.990 778 21 

22 7 481.827 643 0.000 134 1.999 733 0.500 067 14 961.655 285 0.000067 3.993 584 22 

23 11 222.741 464 0.000 089 1.999 822 0.500045 22 443.482 928 0.000045 3.995 545 23 

24 16 834.112196 0.000059 1.999 881 0.500030 33 666.224 392 0.000030 3.996 911 24 

25 25 251.168 294 0.000040 1.999 921 0.500 020 50 500.336 588 0.000 020 3.997 861 25 

26 37 876.752 441 0.000 026 1.999 947 0.500 013 75 751.504 882 0.000 013 3.998 522 26 

27 56 8i5.128 662 0.000 018 1.999 965 0.500009 113 628.257 323 0.000009 3.998 979 27 

28 85 222.692 992 0.000 012 1.999 977 0.500006 170 443.385 985 0.000 006 3.999 296 28 

29 127 834.039 489 0.000008 1.999 984 0.500 004 255 666.078 977 0.000 004 3.999 515 29 

30 191751.059233 0.000005 l.999 990 0.500003 383 500.118 466 0.000 003 3.999 666 30 

0 2.000000 0.500000 00 0 4.000000 00 

00 00 



I Index 

I 
I 

A 

Activity analysis problem, 24-27, 28--30 
Adjacent extreme point solutions, 80--83 
Air pollution, 37-38 
Airport location, 371 
Alternate optimal LP solutions, 50-51 
Ambulance siting 

formulation. 195-198 
problem description, 197-198 

problem. 202 
Amortization, 446 
Annuities, 467-474 
Aqueduct sizing, 369-370 
Arrow diagram 

arrow format, 211-214 
dummy activities, 212-213 
foundation construction, 213-214 
history, 211 
node numbering, 213 
nodes, 211-212 
time-scaled, 231-232 

Augmented constraint set, 78 

546 

B 

Backward induction 
decision theory, 248 
dynamic programming, 337 

Bar chart, 210-211, 222-225 
Basis, 79 
Bellman, Richard, 334 
Benefit, 350 
Benefit-cost ratio, 414 
Best compromise solution, 62, 124 
Binding constraints, 76, 98, 100-101 
Bonds 

corporate,477-479,481 
coupon interest rate, 480 
discounted, 477 
face value, 477-481 
general obligation bonds, 480 
historical interest rates, 478-479 
maturity, 480 
municipal, 477-481 
noncallable, 477 
revenue bonds, 480 



Index 

U.S. government, 477-481 
yield,480 

zero coupon, 477, 480-481 
Branch and Bound, 176-184 

applied to general integer 
programming, 183-184 

applied to mixed integer 
programming, 181-183 

applied to multiobjective integer 
programming, 190-193 

applied to zero-one programming, 
176-181 

Breakeven analysis, 422-423 
Building design, 32-33 
Bus driver crew scheduling, 314-319 

c 

Calculus with substitution, 351-356 
Capacity expansion, 259-260, 346-350, 426 
Capitalized cost, 390--392 
Charnes, l .. be, 3 
Class scheduHng (problem). 40 
Classical optimization, 351-352 
Compactness of the feasible region, 76 
Compound interest, 379-385 
Computer simulation of a reservoir, 

274-280 
Concrete beam design, 360--364, 375 
Constraint equations, 15-16, 17, 25 
Constraint method for solving multi-

objective programs, 133-138 
Construction grant program of EPA 

(problem). 205 
C·Jnsl.iuction job scheduling as LP, 72 
Conv\!x and concave programming, 

296-299 
Convexity of ~he feasible region. 75 
Corner points. See Extreme points 

Cost. 350 
Cost indices 

Building Cost Index, 457-458 
Civil Works Construction Cost 

Index,459-460 
Consumer Price Index. 456-457 

Crew scheduling, 314-319 
Critical path method 

activity compression, 214-216 

547 

activity cost-duration curve, 210. 2l4-216 
activity crash time, 215-216 
activity normal time, 215 
activity schedule, 210-211. 217-222 
arrow diagram, 211-217 
bar chart, 210-211. 222-225 
cash flow forecast. 234 
common bar chart, 222-223 
critical path, 216-217 
critical time, 217 
float time, 219-222 
flow chart, 210-211 
forward pass/backward pass, 217-218 
Gantt chart, 210-211. 222-223 
mathematical programming models, 

235-236 
modified bar chart, 210--211, 223-225 
precedence diagram, 210 
progress curves, 210--211, 232-235 
project compression, 210--211, 230--231 
project control, 210, 233, 236 
project planning, 210--211, 236 
resource leveling, 210--211. 225-230 
S-curves, 232-235 
uses, 236 

Critical point, 345 

D 

Dantzig, George, 8 
Decision theory 

absence of probabilities, 253-257 
Bayesian, 241. 250 
conditional probabilities, 247, 249-250 
expected monetary value of 

information. 251-252 
expected monetary value of perfect 

information. 252-253 
expected value criterion, 242-244 
experimentation, 246-253 
foundation design, 248-251 
game of chance, 248-251 
joint probabilities, 248-249 
marginal probabilities, 247. 250 
posterior probabilities, 250 
risk defined, 241 
state of nature, 246-247 
subjective probabilities, 241 
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uncertainty defined, 241-242 
utility function, 244-245 

Decision tree 
analyzing. 246-248 
building, 246-248 
general, 246-253 
simple. 242-246 

Decision variables, 18 
Delivery problem, 208 
Demand curve, 351 
Depletion 

cost, 446-447 
percentage.447-448 

Depreciation. 433-446 
accelerated cost recovery system, 440 
alternative depreciation system, 440 
book value, 434 
computer software. 445 
declining balance. 437-439 
general depreciation system, 440 
intangible personal property. 445 
modified accelerated cost recovery 

system. 440-445 
personal property, 434. 440-445 
real property. 434. 440-445 
salvage value, 434, 437-439 
straight-line. 434-435 
surn-of-the-years'-digits, 436-437 
units of production, 445 

Deviations from a target interval, 299-300 
Discount rate. 350 
Dominance, 254 
Dual variables 

Lagrange multipliers. 357. 364 
Dynamic programming, 334-342 

computational efficiency, 342 
principle of optimality. 334 
recycling center example. 334-342 

E 

Economies of scale, 346-347 
Electric generating plant. 263 
Empty container distribution problem, 

323-327 
Engineering economics. See also Bonds; 

Depreciation; Inflation; Taxes 
analysis period. 407-409, 412-414 
annual cash flow analysis, 411-414 
arithmetic gradient series, 386-388 
benefit-cost ratio, 414 
breakeven analysis, 422-423 

Index 

capitalized cost, 390-392 
cash flow diagram, 378 
cash flow table, 378 
compound interest, 379-382 
continuous compounding, 383-385, 

389-390 
cost-benefit plot, 404-406 
defined,377 
effective interest, 382-385 
end-of-period convention, 378 
equivalence, 379, 381-382 
future worth, 379-381 
geometric gradient series, 388-389 
incremental analysis. 414-421 
internal rate of return, 416-421 
market value, 408-409 
minimum attractive rate of return, 

417-421 
mortgage interest, 464-467 
net benefit criterion, 403-406 
nominal interest, 382-383 
nominal rate of return, 461-464 
opportunity cost, 407 
payback period, 421-422 
present value, 407 
present worth, 379-381, 407-411 
principal, 378, 464-467 
principle of superposition, 382 
project scale, 403-405 
real rate of return, 461-464 
rule of 72, 382 
salvage value, 408, 448 
sensitivity analysis. 422-423 
simple interest, 378-379 
single payment compound amount. 

379-381 
single payment present worth. 379-381 
sunk costs, 407 
uniform series, 386-390 
viewpoint, 378 

Enumeration, 184-186 
Extreme points of the feasible 

region, 55, 76-77 

F 

Feasible region of LP, 45-47 
Free variables, 313-314 
Functions 

strictly concave, 344 
strictly convex, 344 



Index 

G 

Gantt chart, 210-211, 222-223 
Gap points, 139 
Gradient search, 364-367 

stepsize, 364--365 

Graphical LP solution procedure, 44-51 

H 

Hessian matrix, 345-346 
Heuristics, 187-190 
Highway grading problem, 30-32 
Highway system upgrading (problem), 207 
Home finance 

affordability, 467-469 
home acquisition loan, 464 
home equity loan, 465 
mortgage interest, 464-467 
mortgage rates, 478-479 

Hurwicz criterion, 255 
Hydropower modeling, 301-303 

I 

Infeasible LP solutions, 51, 91-92 
Inflation 

Building Cost Index, 457-458 
Civil Works Construction Cost Index, 

459-460 
Construction Cost Index, 457, 458, 460 
Consumer Price Index, 456-457 
deflation, 460-461 
nominal rate of return, 462-463 
rate of inflation, 460 
real rate of return, 461-463 

Integer programming, 35-36, 170-209 
branch and bound, 176-184 
enumeration, 184-186 
heuristics, 187-190 
rounding, 172 

Interceptor sewers, 346-350 
Intersection (problems), 330-332 
Investments 

portfolio allocation, 474 
risk-return tradeoff, 474-475 

Irrigation, 350-351 
Irrigation targets, hitting, 290-299 
Iterative approximation, 302-303 

K 

Knapsack problem, 187-190 

L 

Lagrange multipliers, 356-364 
Lagrangian function, 357 
Laplace criterion, 254-255 

549 

Leanest effective expedition (problem), 208 
Least squares, 269-274 
Liebniz, Baron von Gottfried Wilhelm, 68 
Linear program 

activity analysis model, 24-27 
adjacent extreme points, 80-83 
alternate optimal solutions, 50 
basic feasible solutions, 79-80 
classification of, 4 
constraints, 17 
comer point solutions. 55, 76-77 
decision variables, 15, 45 
extreme points, 55, 76-77 
feasibility and feasible 

solutions, 45 
graphical solution procedure, 43-57 
hidden variables. 65-67 
infeasible LP solutions, 51 
model form, 24 
multiple objectives for. 60--62, 121-140 
nonlinear approximation, 55 
nonnegativity restrictions. 46-47 
objective function. 25 
optimality and optimal solutions, 45 
pseudomodel for, 44-46 
ratio constraints, 57-60 
right-hand side, 25 
simplex algorithm for solving. 8, 75-107 
slack/surplus variables, 84 
solution types. 49-51 
unbounded solutions, 51 
unique optimal LP solutions. 49 

Linear programming applications 
(descriptions of) 

agriculture, 14 
air quality management, 13 
civil infrastructure, 14-15 
construction. 14-15 
distribution, warehousing and siting. 

10-11 
education systems. 11 
electric utility applications. 13 
emergency systems, 12 
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forestry, 14 
manufacturing. refining, 

processing, 11 
personnel scheduling and assignment.12 
sales, 13 
solid wastes management, 11 
telecommunications, 13 
water quality management, 13-14 
waler resources.13-14 

Local maxima, local minima. 364, 367 
Location set covering problem, formation. 

196-198 

M 

Manning equation. 351 
Marginal benefit. 350-351, 404 
Marginal cost. 350-351. 404 
Mathematical programming 

components of. 6 
description of, 6 
types. 5-6 

Maxima. 342-343 
Maxirnax criterion. 255 
Maximin criterion. 255 
Maximum deviation. minimizing. 292-293 
Maximum harmonious point, 202 
Minima. 342-343 
Minimax regret criterion. 256-257 
Mining problem. 201 
Mixed integer programming.174-175 
Model building 

applications of. 10-15 
history of. 8--10 
introduction to. 1-7 
rules for.15-16 
terminology for. 2-6 

Model classification 
descriptive vs. prescriptive, 2-3 
optimization vs. simulation, 2-6 
stochastic vs. deterministic. 3-4 
table of two-way classification, 4 

Mortgage 
home acquisition loan. 464 
home equity. 465 
home equity loan, 465 
interest, 465, 467 

Multiobjective optimization, 121-139 
best compromise solution, 62, 124 
constraint method, 133-138 
dealing with alternate optima, 132 

Index 

dominance, 122 
feasible region in objective space, 127 
gap point solutions, 139 

N 

generating techniques, 128-137 
grand objective function, 130-131 
graphical interpretation, 125-128 
noninferiority, noninferior solutions, 122 
northeast comer rule, 127 
Pareto optimality, 122 
payoff table, 134-135 
selecting a solution method, 138-139 
weighting method for solving, 129-132 

Net benefit criterion, 350-351, 403-406, 
411-412 

Network models, 153-155 
Newton, Sir Isaac, 8 
Noninferior solutions in objective space, 

122 
Nonlinear programming 

calculus with substitution, 351-356 
dynamic programming, 334-342 
gradientsearch,364-367 
iterative approximation, 302-303 
Lagrange multipliers, 356-364 
piecewise approximation, 296-299 
unconstrained, 345-351 

Northeast corner rule, 127 

0 

Objective function, 46-50 
Open channel flow, 352-355 
Opportunity cost, 407 
Original-destination flow, 

estimation of, 319-323 

p 

Pareto optimality, 122 
Pavement thickness, 371 
Payback period, 421-422 
Payoff matrix, 254-255 
Pension 

amount, 472-474 
Individual Retirement Account, 471 
plans, 469-474 



Index 

portfolio allocation, 474-475 
retirement accounts, 469-474 
risk-return tradeoff, 474-475 

Personal financial planning, 464-481. See 
also Bonds; Home finance· 
Pension; Stocks; Taxes ' 

Personnel selection problem, 165 
Piecewise approximation of nonlinear 

functions, 296--299 
Pilot buying fuel (problem), 328-330 
Pivot element, pivot column, pivot row, 

108 
Plant location problem, formulation, 

198-200 
Present worth, 348-349 
Pricing, 351 
Profit maximization, 372 
Pseudomodel, 45-46 

R 

Range (fluctuation), minimizing, 286--290 
Rate of return 

after-tax, 454-456 
before-tax, 454-456 
internal, 416-421 
minimum attractive, 417-419 
nominal, 461-464 
real, 461-464 

Recursive programming, 286, 303-304, 332 
Reduced cost, 86, 104-105 
Regression (linear), 269-274 
Regret 

defined,256 
matrix, 256-257 

Reservoir systems management, 284-306 
absolute deviations from a target, 

290--292 
basic model, 287-288 
hitting an irrigation target, 292-293 
maximum deviation from a target, 

292-293 
minimizing fluctuation (range), 288-290 
problem, 281-282 
sizing, 350--351 
squared deviations for target, 294-299 
system management, 274-280 

Retirement planning 
401(k),403(b),470 
def erred compensation plans, 470 
defined benefit pensions, 469 

551 

defined contribution pensions. 469-470 
earned income, 471 

employee stock ownership plans. 470 
Individual Retirement Arrangements, 

469,471 
Keogh plan, 470 
pension amount, 472-474 
private retirement savings, 471-472 
profit sharing, 470 
rollover, 470 
Roth IRA, 471 
simplified employee pension plan. 470 
Social Security, 469 
subsidized thrift, 470 
tax-deductible contribution, 471 
traditional IRA, 471 
vesting, 470 

Risk 
decision making under, 241-253 
defined, 241 
risk-return tradeoff, 474-475 
subjective probabilities, 241 

Road maintenance depots, siting 
(problem), 203 

s 

Saddle point, 342-343 
School systems planning (problems). 41 
Sensitivity analysis. 96--107 

analytical interpretation.103--107 
degenerate solutions, 111 
dual price, 100 
graphical interpretation, 98-103 
objective function.101-103, 106--107 
right-hand side, 97-99, 105 
shadow price, 99 

Shared recycling. 62-64 
Sheet metal forming. 358-360 
Shortest path problem, 148-153 

relation to transshipment and 
transportation, 159-160 

Simple interest, 378-379 
Simplex algorithm. 75-112 

all-slack basis, 84 
basic representation. 85 
description. 83 
identifying alternate optima. 9~91 
identifying infeasible solutions. 91-92 
identifying unbounded solutions. 90 
phase I. 84-92 
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phase n. 84, 92-96 
pivot, 87. 108 
properties of the feasible region, 75-83 
reduced cost, 86, 104-105 
sensitivity analysis. 96-107 
tableau method, 107-111 

Simplex tableau, 109 
Simulation modeling, 5 
Simulation of water reservoir, 274-280 
Siting road maintenance depots (problem). 

203 
Slack/surplus variables, 84-85 
Social Security, 469 
Solid waste 

management (problems), 41. 203-205 
transfer station location. 375-376 

Special protection. 38-39 
Square deviations. minimizing. 294-299 
Staged optimization. See Dynamic 

programming 
Statistics (least squares), 269-274 
Stocks 

portfolio allocation. 474-475. 484-485 
risk-return tradeoff. 474-475 
S&P 500 Stock Index. 476 

Stream.flow targets. 299-301 
Sum of absolute deviations. minimizing. 

290-292.311-314 
Sunk costs. 407 
Systems analysis, 1-22 

T 

Tank design. 355-356 
Taxes 

adjusted gross income. 450-453 
capital gains. 448. 452 
capital losses. 448. 452 
combined incremental tax rate. 454 
corporate income tax. 448-449 
effect on rate of return, 454-456 
grossincome.448-453 
individual income tax. 449-453 
itemized deductions. 451-453 
taxable income, 449-453 

Terminal selection problem, 194-196 
Total benefit, 350 

Total cost, 350 
Tradeoff surface, 61 
Transportation problem, 154-155 

Index 

empty container distribution, 323-327 
relation to transshipment and shortest 

path, 159-160 
Traveling salesman, 161-163 

subtour breaking constraints, 162-163 

u 

Unbounded LP solutions, 50, 51, 90 
Uncertainty 

decision making under, 253-257 
defined, 241-242 

Unconstrained optimization, 345-351 
Unimodularity, 153 
Unique optimal LP solutions, 49-50, 90-92 
Utility 

v 

function. 245, 259 
matrix. 254-255 

Vertical alignment of a highway, 308-314 
constraints on rate of change of grade, 312 
grade constraints, 311-312 
problem, 330 

w 

Wastewater treatment plants, 259-260. 
346-350 

Water resources models, 33, 34, 268, 283, 
284-306 

Water supply alternatives in Beijing 
(problem), 205-207 

Weighting method for solving multiobjective 
programs, 129-132 

Well field 
design, 262-263 
location, 371-372 

Wetted perimeter, 353 
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