Math 3200/5200

SOLUTIONS TO SIMPLEX PROBLEMS

1. The initial tableau is the following:

	x_1	x_2	x_3	x_4	x_5	
z	-1	-1	0	0	0	0
x_3	1*	0	1	0	0	5
x_4	1	1	0	1	0	6
x_5	$-\frac{1}{2}$	1	0	0	1	6

Entering x_1 and performing the min-ratio test yields that x_3 will leave the basis. And so, after one pivot, we get the following tableau:

	x_1	x_2	x_3	x_4	x_5	
z	0	-1	1	0	0	5
x_1	1	0	1	0	0	5
x_4	0	1*	-1	1	0	1
x_5	0	1	$\frac{1}{2}$	0	1	$\frac{17}{2}$

The corresponding solution now is $x = (5, 0, 0, 1, 17/2)^T$, the current value is z = 5. After one more pivot step (in which x_2 enters the basis and x_4 leaves), we get the following tableau:

	x_1	x_2	x_3	x_4	x_5	
z	0	0	0	1	0	6
x_1	1	0	1*	0	0	5
x_2	0	1	-1	1	0	1
x_5	0	0	$\frac{3}{2}$	-1	1	$\frac{15}{2}$

Since all coefficients in row 0 are nonnegative this tableau is an optimal one and we have found an optimal solution $x^* = (5, 1, 0, 0, 7.5)$ with optimal value $z^* = 6$. In terms of the original problem variables, the optimal solution is $(x_1, x_2) = (5, 1)$.

Looking at this last tableau a bit more carefully we see that there is a non-basic variable x_3 with an objective function coefficient 0 in row 0. This means that if we were to increase x_3 it would have no effect on the objective value, and we would get another solution with the same value as the current one! Now, if we perform the min-ratio test we see that there is a tie between x_1 and x_5 to leave the basis, the ratio for both is 5. This corresponds to the fact that both $x_1 = 0$ and $x_5 = 0$ (as well as $x_4 = 0$) intersect at the point x = (0, 6). We can break this tie arbitrarily; in this solution we choose x_1 to leave the basis and arrive at the following tableau:

	x_1	x_2	x_3	x_4	x_5	
z	0	0	0	1	0	6
x_3	1	0	1	0	0	5
x_2	1	1	0	1	0	5 6 0
x_5	$-\frac{3}{2}$	0	0	-1	1	0

Here we obtain another optimal solution $(x_1, x_2) = (0, 6)$ with the same optimal value 6. Then all the points on the line segment connecting (0, 6) and (5, 1) are feasible and their value is also 6 (the optimal value).

2. The starting tableau should look like this:

		x_2					
z	-2	-3	1	0	0	0	0
x_4	2	2*	-1	1	0	0	10
x_5	3	-2	1	0	1	0	10
x_6	2 3 1	-3	1	0	0	1	10

The corresponding basis is $\{4,5,6\}$, the basic feasible solution x=(0,0,0,10,10,10) with objective function value z=0. Now when we pivot, x_2 enters the basis and x_4 leaves:

	x_1	x_2	x_3	x_4	x_5	x_6	
z	1	0	$-\frac{1}{2}$	$\frac{3}{2}$	0	0	15
x_2	1	1	$-\frac{1}{2}$	$\frac{1}{2}$	0		5
x_5	5	0	0	1	1	0	5 20 25
x_6	4	0	$-\frac{1}{2}$ 0 $-\frac{1}{2}$	$\frac{3}{2}$	0	1	25

From here we see immediately that this problem is unbounded: z can be increased infinitely by increasing x_3 as much as we want while keeping x_1 and x_4 at zero.