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Matrices

1.1 Basic Concepts

Definition 1 A matrix is a rectangular array of elements arranged in horizontal
rows and vertical columns. Thus, [

1 3 5
2 0 −1

]
, (1)

⎡
⎣4 1 1

3 2 1
0 4 2

⎤
⎦, (2)

and ⎡
⎣

√
2

π

19.5

⎤
⎦ (3)

are all examples of a matrix.
The matrix given in (1) has two rows and three columns; it is said to have order

(or size) 2 × 3 (read two by three). By convention, the row index is always given
first. The matrix in (2) has order 3 × 3, while that in (3) has order 3 × 1. The entries
of a matrix are called elements.

In general, a matrix A (matrices will always be designated by uppercase
boldface letters) of order p × n is given by

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

...

ap1 ap2 ap3 · · · apn

⎤
⎥⎥⎥⎥⎥⎦, (4)
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2 Chapter 1 Matrices

which is often abbreviated to [aij]p × n or just [aij]. In this notation, aij represents
the general element of the matrix and appears in the ith row and the jth column.
The subscript i, which represents the row, can have any value 1 through p, while
the subscript j, which represents the column, runs 1 through n. Thus, if i = 2 and
j = 3, aij becomes a23 and designates the element in the second row and third
column. If i = 1 and j = 5, aij becomes a15 and signifies the element in the first
row, fifth column. Note again that the row index is always given before the column
index.

Any element having its row index equal to its column index is a diagonal
element. Thus, the diagonal elements of a matrix are the elements in the 1−1
position, 2−2 position, 3−3 position, and so on, for as many elements of this type
that exist. Matrix (1) has 1 and 0 as its diagonal elements, while matrix (2) has 4,
2, and 2 as its diagonal elements.

If the matrix has as many rows as columns, p = n, it is called a square matrix;
in general it is written as

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎥⎥⎦. (5)

In this case, the elements a11, a22, a33, . . . , ann lie on and form the main (or
principal) diagonal.

It should be noted that the elements of a matrix need not be numbers; they
can be, and quite often arise physically as, functions, operators or, as we shall see
later, matrices themselves. Hence,

[∫ 1

0
(t2 + 1)dt t2

√
3t 2

]
,

[
sin θ cos θ

− cos θ sin θ

]
,

and

⎡
⎢⎢⎢⎣

x2 x

ex d

dx
ln x

5 x + 2

⎤
⎥⎥⎥⎦

are good examples of matrices. Finally, it must be noted that a matrix is an
entity unto itself; it is not a number. If the reader is familiar with determinants,
he will undoubtedly recognize the similarity in form between the two. Warn-
ing: the similarity ends there. Whereas a determinant (see Chapter 5) can be
evaluated to yield a number, a matrix cannot. A matrix is a rectangular array,
period.
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Problems 1.1

1. Determine the orders of the following matrices:

A =

⎡
⎢⎢⎣

3 1 −2 4 7
2 5 −6 5 7
0 3 1 2 0

−3 −5 2 2 2

⎤
⎥⎥⎦, B =

⎡
⎣1 2 3

0 0 0
4 3 2

⎤
⎦,

C =
⎡
⎣ 1 2 3 4

5 6 −7 8
10 11 12 12

⎤
⎦, D =

⎡
⎢⎢⎣

3 t t2 0
t − 2 t4 6t 5
t + 2 3t 1 2

2t − 3 −5t2 2t5 3t2

⎤
⎥⎥⎦,

E =

⎡
⎢⎢⎣

1
2

1
3

1
4

2
3

3
5

−5
6

⎤
⎥⎥⎦, F =

⎡
⎢⎢⎢⎢⎣

1
5

10
0

−4

⎤
⎥⎥⎥⎥⎦, G =

⎡
⎢⎢⎣

√
313 −505
2π 18

46.3 1.043
2
√

5 −√
5

⎤
⎥⎥⎦,

H =
[

0 0
0 0

]
, J = [1 5 −30].

2. Find, if they exist, the elements in the 1−3 and the 2−1 positions for each of
the matrices defined in Problem 1.

3. Find, if they exist, a23, a32, b31, b32, c11, d22, e13, g22, g23, and h32 for the
matrices defined in Problem 1.

4. Construct the 2 × 2 matrix A having aij = (−1)i + j .

5. Construct the 3 × 3 matrix A having aij = i/j.

6. Construct the n × n matrix B having bij = n − i − j. What will this matrix be
when specialized to the 3 × 3 case?

7. Construct the 2 × 4 matrix C having

cij =
{

i when i = 1,

j when i = 2.

8. Construct the 3 × 4 matrix D having

dij =
⎧⎨
⎩

i + j when i > j,

0 when i = j,

i − j when i < j.

9. Express the following times as matrices: (a) A quarter after nine in the morn-
ing. (b) Noon. (c) One thirty in the afternoon. (d) A quarter after nine in the
evening.

10. Express the following dates as matrices:

(a) July 4, 1776 (b) December 7, 1941
(c) April 23, 1809 (d) October 31, 1688
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11. A gasoline station currently has in inventory 950 gallons of regular unleaded
gasoline, 1253 gallons of premium, and 98 gallons of super. Express this
inventory as a matrix.

12. Store 1 of a three store chain has 3 refrigerators, 5 stoves, 3 washing machines,
and 4 dryers in stock. Store 2 has in stock no refrigerators, 2 stoves, 9 washing
machines, and 5 dryers, while store 3 has in stock 4 refrigerators, 2 stoves, and
no washing machines or dryers. Present the inventory of the entire chain as a
matrix.

13. The number of damaged items delivered by the SleepTight Mattress Company
from its various plants during the past year is given by the matrix⎡

⎣80 12 16
50 40 16
90 10 50

⎤
⎦.

The rows pertain to its three plants in Michigan,Texas, and Utah. The columns
pertain to its regular model, its firm model, and its extra-firm model, respec-
tively. The company’s goal for next year to is to reduce by 10% the number
of damaged regular mattresses shipped by each plant, to reduce by 20% the
number of damaged firm mattresses shipped by its Texas plant, to reduce by
30% the number of damaged extra-firm mattresses shipped by its Utah plant,
and to keep all other entries the same as last year. What will next year’s matrix
be if all goals are realized?

14. A person purchased 100 shares of AT&T at $27 per share, 150 shares of
Exxon at $45 per share, 50 shares of IBM at $116 per share, and 500 shares of
PanAm at $2 per share. The current price of each stock is $29, $41, $116, and
$3, respectively. Represent in a matrix all the relevant information regarding
this person’s portfolio.

15. On January 1, a person buys three certificates of deposit from different insti-
tutions, all maturing in one year. The first is for $1000 at 7%, the second is
for $2000 at 7.5%, and the third is for $3000 at 7.25%. All interest rates are
effective on an annual basis.

(a) Represent in a matrix all the relevant information regarding this person’s
holdings.

(b) What will the matrix be one year later if each certificate of deposit is
renewed for the current face amount and accrued interest at rates one
half a percent higher than the present?

16. (Markov Chains, see Chapter 9) A finite Markov chain is a set of objects,
a set of consecutive time periods, and a finite set of different states such
that

(i) during any given time period, each object is in only state (although
different objects can be in different states), and
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(ii) the probability that an object will move from one state to another state
(or remain in the same state) over a time period depends only on the
beginning and ending states.

A Markov chain can be represented by a matrix P = [pij

]
where pij represents

the probability of an object moving from state i to state j in one time period.
Such a matrix is called a transition matrix.

Construct a transition matrix for the following Markov chain: Census fig-
ures show a population shift away from a large mid-western metropolitan
city to its suburbs. Each year, 5% of all families living in the city move to
the suburbs while during the same time period only 1% of those living in the
suburbs move into the city. Hint: Take state 1 to represent families living in
the city, state 2 to represent families living in the suburbs, and one time period
to equal a year.

17. Construct a transition matrix for the following Markov chain: Every four
years, voters in a New England town elect a new mayor because a town
ordinance prohibits mayors from succeeding themselves. Past data indicate
that a Democratic mayor is succeeded by another Democrat 30% of the time
and by a Republican 70% of the time. A Republican mayor, however, is
succeeded by another Republican 60% of the time and by a Democrat 40%
of the time. Hint:Take state 1 to represent a Republican mayor in office, state
2 to represent a Democratic mayor in office, and one time period to be four
years.

18. Construct a transition matrix for the following Markov chain: The apple
harvest in New York orchards is classified as poor, average, or good. His-
torical data indicates that if the harvest is poor one year then there is a 40%
chance of having a good harvest the next year, a 50% chance of having an aver-
age harvest, and a 10% chance of having another poor harvest. If a harvest
is average one year, the chance of a poor, average, or good harvest the next
year is 20%, 60%, and 20%, respectively. If a harvest is good, then the chance
of a poor, average, or good harvest the next year is 25%, 65%, and 10%,
respectively. Hint: Take state 1 to be a poor harvest, state 2 to be an average
harvest, state 3 to be a good harvest, and one time period to equal one year.

19. Construct a transition matrix for the following Markov chain. Brand X and
brandY control the majority of the soap powder market in a particular region,
and each has promoted its own product extensively. As a result of past adver-
tising campaigns, it is known that over a two year period of time 10% of
brand Y customers change to brand X and 25% of all other customers change
to brand X. Furthermore, 15% of brand X customers change to brand Y and
30% of all other customers change to brand Y. The major brands also lose cus-
tomers to smaller competitors, with 5% of brand X customers switching to a
minor brand during a two year time period and 2% of brandY customers doing
likewise. All other customers remain loyal to their past brand of soap powder.
Hint:Take state 1 to be a brand X customer, state 2 a brand Y customer, state
3 another brand customer, and one time period to be two years.
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1.2 Operations

The simplest relationship between two matrices is equality. Intuitively one feels
that two matrices should be equal if their corresponding elements are equal. This
is the case, providing the matrices are of the same order.

Definition 1 Two matrices A = [aij]p×n and B = [bij]p×n are equal if they have
the same order and if aij = bij (i = 1, 2, 3, . . . , p; j = 1, 2, 3, . . . , n). Thus, the
equality [

5x + 2y

x − 3y

]
=
[

7
1

]
implies that 5x + 2y = 7 and x − 3y = 1.

The intuitive definition for matrix addition is also the correct one.

Definition 2 If A = [aij] and B = [bij] are both of order p × n, then A + B is
a p × n matrix C = [cij] where cij = aij + bij (i = 1, 2, 3, . . . , p; j = 1, 2, 3, . . . , n).
Thus,

⎡
⎣ 5 1

7 3
−2 −1

⎤
⎦+

⎡
⎣−6 3

2 −1
4 1

⎤
⎦ =

⎡
⎣ 5 + (−6)

7 + 2
(−2) + 4

1 + 3
3 + (−1)

(−1) + 1

⎤
⎦ =

⎡
⎣−1 4

9 2
2 0

⎤
⎦

and [
t2 5
3t 0

]
+
[

1 −6
t −t

]
=
[
t2 + 1 −1

4t −t

]
;

but the matrices ⎡
⎣ 5 0

−1 0
2 1

⎤
⎦ and

[−6 2
1 1

]

cannot be added since they are not of the same order.

It is not difficult to show that the addition of matrices is both commutative and
associative: that is, if A, B, C represent matrices of the same order, then

(A1) A + B = B + A,

(A2) A + (B + C) = (A + B) + C.

We define a zero matrix 0 to be a matrix consisting of only zero elements. Zero
matrices of every order exist, and when one has the same order as another matrix
A, we then have the additional property

(A3) A + 0 = A.



1.2 Operations 7

Subtraction of matrices is defined in a manner analogous to addition: the
orders of the matrices involved must be identical and the operation is performed
elementwise.

Thus, [
5 1

−3 2

]
−
[

6 −1
4 −1

]
=
[−1 2
−7 3

]
.

Another simple operation is that of multiplying a scalar times a matrix. Intu-
ition guides one to perform the operation elementwise, and once again intuition
is correct. Thus, for example,

7
[

1 2
−3 4

]
=
[

7 14
−21 28

]
and t

[
1 0
3 2

]
=
[

t 0
3t 2t

]
.

Definition 3 If A = [aij] is a p × n matrix and if λ is a scalar, then λA is a p × n

matrix B = [bij] where bij = λaij(i = 1, 2, 3, . . . , p; j = 1, 2, 3, . . . , n).

Example 1 Find 5A − 1
2 B if

A =
[

4 1
0 3

]
and B =

[
6 −20

18 8

]

Solution

5A − 1
2 B = 5

[
4 1
0 3

]
− 1

2

[
6 −20

18 8

]

=
[

20 5
0 15

]
−
[

3 −10
9 4

]
=
[

17 15
−9 11

]
. �

It is not difficult to show that if λ1 and λ2 are scalars, and if A and B are matrices
of identical order, then

(S1) λ1A = Aλ1,

(S2) λ1(A + B) = λ1A + λ1B,

(S3) (λ1 + λ2)A = λ1A + λ2A,

(S4) λ1(λ2A) = (λ1λ2)A.

The reader is cautioned that there is no such operation as matrix division. We
will, however, define a somewhat analogous operation, namely matrix inversion, in
Chapter 3.
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Problems 1.2

In Problems 1 through 26, let

A =
[

1 2
3 4

]
, B =

[
5 6
7 8

]
, C =

[−1 0
3 −3

]
,

D =

⎡
⎢⎢⎣

3 1
−1 2

3 −2
2 6

⎤
⎥⎥⎦, E =

⎡
⎢⎢⎣

−2 2
0 −2
5 −3
5 1

⎤
⎥⎥⎦, F =

⎡
⎢⎢⎣

0 1
−1 0

0 0
2 2

⎤
⎥⎥⎦.

1. Find 2A. 2. Find −5A. 3. Find 3D.

4. Find 10E. 5. Find −F. 6. Find A + B.

7. Find C + A. 8. Find D + E. 9. Find D + F.

10. Find A + D. 11. Find A − B. 12. Find C − A.

13. Find D − E. 14. Find D − F. 15. Find 2A + 3B.

16. Find 3A − 2C. 17. Find 0.1A + 0.2C. 18. Find −2E + F.

19. Find X if A + X = B. 20. Find Y if 2B + Y = C.

21. Find X if 3D − X = E. 22. Find Y if E − 2Y = F.

23. Find R if 4A + 5R = 10C. 24. Find S if 3F − 2S = D.

25. Verify directly that (A + B) + C = A + (B + C).

26. Verify directly that λ(A + B) = λA + λB.

27. Find 6A − θB if

A =
[
θ2 2θ − 1
4 1/θ

]
and B =

[
θ2 − 1 6

3/θ θ3 + 2θ + 1

]
.

28. Prove Property (A1). 29. Prove Property (A3).

30. Prove Property (S2). 31. Prove Property (S3).

32. (a) Mr. Jones owns 200 shares of IBM and 150 shares of AT&T. Determine a
portfolio matrix that reflects Mr. Jones’ holdings.

(b) Over the next year, Mr. Jones triples his holdings in each company. What
is his new portfolio matrix?

(c) The following year Mr. Jones lists changes in his portfolio as
[−50 100

]
.

What is his new portfolio matrix?
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33. The inventory of an appliance store can be given by a 1 × 4 matrix in which
the first entry represents the number of television sets, the second entry the
number of air conditioners, the third entry the number of refrigerators, and
the fourth entry the number of dishwashers.

(a) Determine the inventory given on January 1 by
[
15 2 8 6

]
.

(b) January sales are given by
[
4 0 2 3

]
. What is the inventory matrix on

February 1?

(c) February sales are given by
[
5 0 3 3

]
, and new stock added in

February is given by
[
3 2 7 8

]
. What is the inventory matrix on

March 1?

34. The daily gasoline supply of a local service station is given by a 1 × 3 matrix
in which the first entry represents gallons of regular, the second entry gallons
of premium, and the third entry gallons of super.

(a) Determine the supply of gasoline at the close of business on Monday
given by

[
14,000 8,000 6,000

]
.

(b) Tuesday’s sales are given by
[
3,500 2,000 1,500

]
. What is the inventory

matrix at day’s end?

(c) Wednesday’s sales are given by
[
5,000 1,500 1,200

]
. In addition, the

station received a delivery of 30,000 gallons of regular, 10,000 gallons of
premium, but no super. What is the inventory at day’s end?

35. On a recent shopping trip Mary purchased 6 oranges, a dozen grapefruits,
8 apples, and 3 lemons. John purchased 9 oranges, 2 grapefruits, and 6
apples. Express each of their purchases as 1 × 4 matrices. What is the physical
significance of the sum of these matrices?

1.3 Matrix Multiplication

Matrix multiplication is the first operation we encounter where our intuition fails.
First, two matrices are not multiplied together elementwise. Secondly, it is not
always possible to multiply matrices of the same order while it is possible to mul-
tiply certain matrices of different orders. Thirdly, if A and B are two matrices for
which multiplication is defined, it is generally not the case that AB = BA; that is,
matrix multiplication is not a commutative operation. There are other properties
of matrix multiplication, besides the three mentioned that defy our intuition, and
we shall illustrate them shortly. We begin by determining which matrices can be
multiplied.

Rule 1 The product of two matrices AB is defined if the number of columns
of A equals the number of rows of B.
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Thus, if A and B are given by

A =
[

6 1 0
−1 2 1

]
and B =

⎡
⎣−1 0 1 0

3 2 −2 1
4 1 1 0

⎤
⎦, (6)

then the product AB is defined since A has three columns and B has three rows.
The product BA, however, is not defined since B has four columns while A
has only two rows.

When the product is written AB, A is said to premultiply B while B is said to
postmultiply A.

Rule 2 If the product AB is defined, then the resultant matrix will have the same
number of rows as A and the same number of columns as B.

Thus, the product AB, where A and B are given in (6), will have two rows and
four columns since A has two rows and B has four columns.

An easy method of remembering these two rules is the following: write the
orders of the matrices on paper in the sequence in which the multiplication is to
be carried out; that is, if AB is to be found where A has order 2 × 3 and B has
order 3 × 4, write

(2 × 3)(3 × 4) (7)

If the two adjacent numbers (indicated in (7) by the curved arrow) are both equal
(in the case they are both three), the multiplication is defined. The order of the
product matrix is obtained by canceling the adjacent numbers and using the two
remaining numbers. Thus in (7), we cancel the adjacent 3’s and are left with 2 × 4,
which in this case, is the order of AB.

As a further example, consider the case where A is 4 × 3 matrix while B is
a 3 × 5 matrix. The product AB is defined since, in the notation (4 × 3)(3 × 5),
the adjacent numbers denoted by the curved arrow are equal. The product will
be a 4 × 5 matrix. The product BA however is not defined since in the notation
(3 × 5)(4 × 3) the adjacent numbers are not equal. In general, one may sche-
matically state the method as

(k × n)(n × p) = (k × p).

Rule 3 If the product AB = C is defined, where C is denoted by [cij], then the
element cij is obtained by multiplying the elements in ith row of A by the corre-
sponding elements in the jth column of B and adding. Thus, if A has order k × n,
and B has order n × p, and⎡

⎢⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

ak1 ak2 · · · akn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

b11 b12 · · · b1p

b21 b22 · · · b2p

...
...

...

bn1 bn2 · · · bnp

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

c11 c12 · · · c1p

c21 c22 · · · c2p

...
...

...

ck1 ck2 · · · ckp

⎤
⎥⎥⎥⎥⎦,



1.3 Matrix Multiplication 11

then c11 is obtained by multiplying the elements in the first row of A by the
corresponding elements in the first column of B and adding; hence,

c11 = a11b11 + a12b21 + · · · + a1nbn1.

The element c12 is found by multiplying the elements in the first row of A by the
corresponding elements in the second column of B and adding; hence.

c12 = a11b12 + a12b22 + · · · + a1nbn2.

The element ckp is obtained by multiplying the elements in the kth row of A by
the corresponding elements in the pth column of B and adding; hence,

ckp = ak1b1p + ak2b2p + · · · + aknbnp.

Example 1 Find AB and BA if

A =
[

1 2 3
4 5 6

]
and B =

⎡
⎣−7 −8

9 10
0 −11

⎤
⎦.

Solution

AB =
[

1 2 3
4 5 6

]⎡⎣−7 −8
9 10
0 −11

⎤
⎦

=
[

1(−7) + 2(9) + 3(0) 1(−8) + 2(10) + 3(−11)

4(−7) + 5(9) + 6(0) 4(−8) + 5(10) + 6(−11)

]

=
[ −7 + 18 + 0 −8 + 20 − 33
−28 + 45 + 0 −32 + 50 − 66

]
=
[

11 −21
17 −48

]
,

BA =
⎡
⎣−7 −8

9 10
0 −11

⎤
⎦[1 2 3

4 5 6

]

=
⎡
⎣(−7)1 + (−8)4

9(1) + 10(4)

0(1) + (−11)4

(−7)2 + (−8)5
9(2) + 10(5)

0(2) + (−11)5

(−7)3 + (−8)6
9(3) + 10(6)

0(3) + (−11)6

⎤
⎦

=
⎡
⎣−7 − 32 −14 − 40 −21 − 48

9 + 40 18 + 50 27 + 60
0 − 44 0 − 55 0 − 66

⎤
⎦ =

⎡
⎣−39 −54 −69

49 68 87
−44 −55 −66

⎤
⎦. �

The preceding three rules can be incorporated into the following formal
definition:
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Definition 1 If A = [aij] is a k × n matrix and B = [bij] is an n × p matrix,
then the product AB is defined to be a k × p matrix C = [cij] where
cij =∑n

l=1 ailblj = ai1b1j + ai2b2j + · · · + ainbnj(i = 1, 2, . . . , k; j = 1, 2, . . . , p).

Example 2 Find AB if

A =
⎡
⎣ 2 1

−1 0
3 1

⎤
⎦ and B =

[
3 1 5 −1
4 −2 1 0

]
.

Solution

AB =
⎡
⎣ 2 1

−1 0
3 1

⎤
⎦[3 1 5 −1

4 −2 1 0

]

=
⎡
⎣ 2(3) + 1(4) 2(1) + 1(−2) 2(5) + 1(1) 2(−1) + 1(0)

−1(3) + 0(4) −1(1) + 0(−2) −1(5) + 0(1) −1(−1) + 0(0)

3(3) + 1(4) 3(1) + 1(−2) 3(5) + 1(1) 3(−1) + 1(0)

⎤
⎦

=
⎡
⎣ 10 0 11 −2

−3 −1 −5 1
13 1 16 −3

⎤
⎦.

Note that in this example the product BA is not defined. �

Example 3 Find AB and BA if

A =
[

2 1
−1 3

]
and B =

[
4 0
1 2

]
.

Solution

AB =
[

2 1
−1 3

] [
4 0
1 2

]
=
[

2(4) + 1(1) 2(0) + 1(2)

−1(4) + 3(1) −1(0) + 3(2)

]
=
[

9 2
−1 6

]
;

BA =
[

4 0
1 2

] [
2 1

−1 3

]
=
[

4(2) + 0(−1) 4(1) + 0(3)

1(2) + 2(−1) 1(1) + 2(3)

]
=
[

8 4
0 7

]
.

This, therefore, is an example where both products AB and BA are defined but
unequal. �

Example 4 Find AB and BA if

A =
[

3 1
0 4

]
and B =

[
1 1
0 2

]
.
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Solution

AB =
[

3 1
0 4

] [
1 1
0 2

]
=
[

3 5
0 8

]
,

BA =
[

1 1
0 2

] [
3 1
0 4

]
=
[

3 5
0 8

]
.

This, therefore, is an example where both products AB and BA are defined and
equal. �

In general, it can be shown that matrix multiplication has the following
properties:

(M1) A(BC) = (AB)C (Associative Law)
(M2) A(B + C) = AB + AC (Left Distributive Law)
(M3) (B + C)A = BA + CA (Right Distributive Law)

providing that the matrices A, B, C have the correct order so that the above
multiplications and additions are defined. The one basic property that matrix
multiplication does not possess is commutativity; that is, in general, AB does not
equal BA (see Example 3). We hasten to add, however, that while matrices in
general do not commute, it may very well be the case that, given two particular
matrices, they do commute as can be seen from Example 4.

Commutativity is not the only property that matrix multiplication lacks. We
know from our experiences with real numbers that if the product xy = 0, then
either x = 0 or y = 0 or both are zero. Matrices do not possess this property as the
following example shows:

Example 5 Find AB if

A =
[

4 2
2 1

]
and B =

[
3 −4

−6 8

]
.

Solution

AB =
[

4 2
2 1

] [
3 −4

−6 8

]
=
[

4(3) + 2(−6) 4(−4) + 2(8)

2(3) + 1(−6) 2(−4) + 1(8)

]

=
[

0 0
0 0

]
.

Thus, even though neither A nor B is zero, their product is zero. �
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One final “unfortunate” property of matrix multiplication is that the equation
AB = AC does not imply B = C.

Example 6 Find AB and AC if

A =
[

4 2
2 1

]
, B =

[
1 1
2 1

]
, C =

[
2 2
0 −1

]
.

Solution

AB =
[

4 2
2 1

] [
1 1
2 1

]
=
[

4(1) + 2(2) 4(1) + 2(1)

2(1) + 1(2) 2(1) + 1(1)

]
=
[

8 6
4 3

]
;

AC =
[

4 2
2 1

] [
2 2
0 −1

]
=
[

4(2) + 2(0) 4(2) + 2(−1)

2(2) + 1(0) 2(2) + 1(−1)

]
=
[

8 6
4 3

]
.

Thus, cancellation is not a valid operation in the matrix algebra. �

The reader has no doubt wondered why this seemingly complicated procedure
for matrix multiplication has been introduced when the more obvious methods
of multiplying matrices termwise could be used. The answer lies in systems of
simultaneous linear equations. Consider the set of simultaneous linear equations
given by

5x − 3y + 2z = 14,

x + y − 4z = −7,

7x − 3z = 1.

(8)

This system can easily be solved by the method of substitution. Matrix algebra,
however, will give us an entirely new method for obtaining the solution.

Consider the matrix equation

Ax = b (9)

where

A =
⎡
⎣5 −3 2

1 1 −4
7 0 −3

⎤
⎦, x =

⎡
⎣x

y

z

⎤
⎦, and b =

⎡
⎣ 14

−7
1

⎤
⎦.

Here A, called the coefficient matrix, is simply the matrix whose elements are the
coefficients of the unknowns x, y, z in (8). (Note that we have been very care-
ful to put all the x coefficients in the first column, all the y coefficients in the
second column, and all the z coefficients in the third column. The zero in the
(3, 2) entry appears because the y coefficient in the third equation of system (8)
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is zero.) x and b are obtained in the obvious manner. One note of warning: there
is a basic difference between the unknown matrix x in (9) and the unknown vari-
able x. The reader should be especially careful not to confuse their respective
identities.

Now using our definition of matrix multiplication, we have that

Ax =
⎡
⎣5 −3 2

1 1 −4
7 0 −3

⎤
⎦
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣(5)(x) + (−3)(y) + (2)(z)

(1)(x) + (1)(y) + (−4)(z)

(7)(x) + (0)(y) + (−3)(z)

⎤
⎦

=
⎡
⎣5x − 3y + 2z

x + y − 4z

7x − 3z

⎤
⎦ =

⎡
⎣ 14

−7
1

⎤
⎦. (10)

Using the definition of matrix equality, we see that (10) is precisely system (8).
Thus (9) is an alternate way of representing the original system. It should come
as no surprise, therefore, that by redefining the matrices A, x, b, appropriately, we
can represent any system of simultaneous linear equations by the matrix equation
Ax = b.

Example 7 Put the following system into matrix form:

x − y + z + w = 5,

2x + y − z = 4,

3x + 2y + 2w = 0,

x − 2y + 3z + 4w = −1.

Solution Define

A =

⎡
⎢⎢⎣

1 −1 1 1
2 1 −1 0
3 2 0 2
1 −2 3 4

⎤
⎥⎥⎦, x =

⎡
⎢⎢⎣

x

y

z

w

⎤
⎥⎥⎦, b =

⎡
⎢⎢⎣

5
4
0

−1

⎤
⎥⎥⎦.

The original system is then equivalent to the matrix system Ax = b. �

Unfortunately, we are not yet in a position to solve systems that are in matrix
form Ax = b. One method of solution depends upon the operation of inversion,
and we must postpone a discussion of it until the inverse has been defined. For
the present, however, we hope that the reader will be content with the knowl-
edge that matrix multiplication, as we have defined it, does serve some useful
purpose.
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Problems 1.3

1. The order of A is 2 × 4, the order of B is 4 × 2, the order of C is 4 × 1, the
order of D is 1 × 2, and the order of E is 4 × 4. Find the orders of

(a) AB, (b) BA, (c) AC, (d) CA,
(e) CD, (f) AE, (g) EB, (h) EA,
(i) ABC, (j) DAE, (k) EBA, (l) EECD.

In Problems 2 through 19, let

A =
[

1 2
3 4

]
, B =

[
5 6
7 8

]
, C =

[−1 0 1
3 −2 1

]
,

D =
⎡
⎣ 1 1

−1 2
2 −2

⎤
⎦, E =

⎡
⎣−2 2 1

0 −2 −1
1 0 1

⎤
⎦, F =

⎡
⎣ 0 1 2

−1 −1 0
1 2 3

⎤
⎦,

X = [1 − 2], Y = [1 2 1].

2. Find AB. 3. Find BA. 4. Find AC.

5. Find BC. 6. Find CB. 7. Find XA.

8. Find XB. 9. Find XC. 10. Find AX.

11. Find CD. 12. Find DC. 13. Find YD.

14. Find YC. 15. Find DX. 16. Find XD.

17. Find EF. 18. Find FE. 19. Find YF.

20. Find AB if

A =
[

2 6
3 9

]
and B =

[
3 −6

−1 2

]
.

Note that AB = 0 but neither A nor B equals the zero matrix.

21. Find AB and CB if

A =
[

3 2
1 0

]
, B =

[
2 4
1 2

]
, C =

[
1 6
3 −4

]
.

Thus show that AB = CB but A �= C

22. Compute the product

[
1 2
3 4

] [
x

y

]
.
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23. Compute the product ⎡
⎣1 0 −1

3 1 1
1 3 0

⎤
⎦
⎡
⎣x

y

z

⎤
⎦.

24. Compute the product [
a11 a12
a21 a22

] [
x

y

]
.

25. Compute the product

[
b11 b12 b13
b21 b22 b23

]⎡⎣ 2
−1

3

⎤
⎦.

26. Evaluate the expression A2 − 4A − 5I for the matrix∗

A =
[

1 2
4 3

]
.

27. Evaluate the expression (A − I)(A + 2I) for the matrix∗

A =
[

3 5
−2 4

]
.

28. Evaluate the expression (I − A)(A2 − I) for the matrix∗

A =
⎡
⎣2 −1 1

3 −2 1
0 0 1

⎤
⎦.

29. Verify property (M1) for

A =
[

2 1
1 3

]
, B =

[
0 1

−1 4

]
, C =

[
5 1
2 1

]
.

30. Prove Property (M2).

31. Prove Property (M3).

32. Put the following system of equations into matrix form:

2x + 3y = 10,

4x − 5y = 11.

∗I is defined in Section 1.4
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33. Put the following system of equations into matrix form:

x + z + y = 2,

3z + 2x + y = 4,

y + x = 0.

34. Put the following system of equations into matrix form:

5x + 3y + 2z + 4w = 5,

x + y + w = 0,

3x + 2y + 2z = −3,

x + y + 2z + 3w = 4.

35. The price schedule for a Chicago to Los Angeles flight is given by P =
[200 350 500], where the matrix elements pertain, respectively, to coach
tickets, business-class tickets, and first-class tickets. The number of tickets
purchased in each category for a particular flight is given by

N =
⎡
⎣130

20
10

⎤
⎦.

Compute the products (a) PN, and (b) NP, and determine their significance.

36. The closing prices of a person’s portfolio during the past week are given by
the matrix

P =

⎡
⎢⎢⎣

40 40 1
2 40 7

8 41 41

3 1
4 3 5

8 3 1
2 4 3 7

8

10 9 3
4 10 1

8 10 9 5
8

⎤
⎥⎥⎦,

where the columns pertain to the days of the week, Monday through Friday,
and the rows pertain to the prices of Orchard Fruits, Lion Airways, and
Arrow Oil. The person’s holdings in each of these companies are given by
the matrix H = [100 500 400]. Compute the products (a) HP, and (b) PH,
and determine their significance.

37. The time requirements for a company to produce three products is given by
the matrix

T =
⎡
⎣0.2 0.5 0.4

1.2 2.3 0.7
0.8 3.1 1.2

⎤
⎦,

where the rows pertain to lamp bases, cabinets, and tables, respectively. The
columns pertain to the hours of labor required for cutting the wood, assem-
bling, and painting, respectively. The hourly wages of a carpenter to cut wood,
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of a craftsperson to assemble a product, and of a decorator to paint is given,
respectively, by the elements of the matrix

W =
⎡
⎣10.50

14.00
12.25

⎤
⎦.

Compute the product TW and determine its significance.

38. Continuing with the data given in the previous problem, assume further that
the number of items on order for lamp bases, cabinets, and tables, respectively,
is given by the matrix O = [1000 100 200]. Compute the product OTW,
and determine its significance.

39. The results of a flu epidemic at a college campus are collected in the matrix

F =
⎡
⎣0.20 0.20 0.15 0.15

0.10 0.30 0.30 0.40
0.70 0.50 0.55 0.45

⎤
⎦.

The elements denote percents converted to decimals. The columns pertain
to freshmen, sophomores, juniors, and seniors, respectively, while the rows
represent bedridden students, infected but ambulatory students, and well stu-
dents, respectively. The male–female composition of each class is given by the
matrix

C =

⎡
⎢⎢⎣

1050 950
1100 1050

360 500
860 1000

⎤
⎥⎥⎦.

Compute the product FC, and determine its significance.

1.4 Special Matrices

There are certain types of matrices that occur so frequently that it becomes advis-
able to discuss them separately. One such type is the transpose. Given a matrix A,
the transpose of A, denoted by AT and read A-transpose, is obtained by changing
all the rows of A into columns of AT while preserving the order; hence, the first
row of A becomes the first column of AT, while the second row of A becomes
the second column of AT, and the last row of A becomes the last column of AT.
Thus if

A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦, then AT =

⎡
⎣1 4 7

2 5 8
3 6 9

⎤
⎦
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and if

A =
[

1 2 3 4
5 6 7 8

]
, then AT =

⎡
⎢⎢⎣

1 5
2 6
3 7
4 8

⎤
⎥⎥⎦.

Definition 1 If A, denoted by [aij] is an n × p matrix, then the transpose of A,
denoted by AT = [aT

ij] is a p × n matrix where aT
ij = aji.

It can be shown that the transpose possesses the following properties:

(1) (AT)T = A,
(2) (λA)T = λAT where λ represents a scalar,
(3) (A + B)T = AT + BT,
(4) (A + B + C)T = AT + BT + CT,
(5) (AB)T = BTAT,
(6) (ABC)T = CTBTAT

Transposes of sums and products of more than three matrices are defined in the
obvious manner. We caution the reader to be alert to the ordering of properties (5)
and (6). In particular, one should be aware that the transpose of a product is not
the product of the transposes but rather the commuted product of the transposes.

Example 1 Find (AB)T and BTAT if

A =
[

3 0
4 1

]
and B =

[−1 2 1
3 −1 0

]
.

Solution

AB =
[−3 6 3
−1 7 4

]
, (AB)T =

⎡
⎣−3 −1

6 7
3 4

⎤
⎦;

BTAT =
⎡
⎣−1 3

2 −1
1 0

⎤
⎦[3 4

0 1

]
=
⎡
⎣−3 −1

6 7
3 4

⎤
⎦.

Note that (AB)T = BTAT but ATBT is not defined. �

A zero row in a matrix is a row containing only zeros, while a nonzero row is
one that contains at least one nonzero element. A matrix is in row-reduced form
if it satisfies four conditions:

(R1) All zero rows appear below nonzero rows when both types are present in
the matrix.

(R2) The first nonzero element in any nonzero row is unity.
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(R3) All elements directly below ( that is, in the same column but in succeeding
rows from) the first nonzero element of a nonzero row are zero.

(R4) The first nonzero element of any nonzero row appears in a later column
(further to the right) than the first nonzero element in any preceding row.

Such matrices are invaluable for solving sets of simultaneous linear equations and
developing efficient algorithms for performing important matrix operations. We
shall have much more to say on these matters in later chapters. Here we are simply
interested in recognizing when a given matrix is or is not in row-reduced form.

Example 2 Determine which of the following matrices are in row-reduced form:

A =

⎡
⎢⎢⎣

1 1 −2 4 7
0 0 −6 5 7
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦, B =

⎡
⎣1 2 3

0 0 0
0 0 1

⎤
⎦,

C =
⎡
⎣1 2 3 4

0 0 1 2
0 1 0 5

⎤
⎦, D =

⎡
⎣−1 −2 3 3

0 0 1 −3
0 0 1 0

⎤
⎦.

Solution Matrix A is not in row-reduced form because the first nonzero element
of the second row is not unity. This violates (R2). If a23 had been unity instead of
−6, then the matrix would be in row-reduced form. Matrix B is not in row-reduced
form because the second row is a zero row and it appears before the third row
which is a nonzero row. This violates (R1). If the second and third rows had been
interchanged, then the matrix would be in row-reduced form. Matrix C is not in
row-reduced form because the first nonzero element in row two appears in a later
column, column 3, than the first nonzero element of row three. This violates (R4).
If the second and third rows had been interchanged, then the matrix would be in
row-reduced form. Matrix D is not in row-reduced form because the first nonzero
element in row two appears in the third column, and everything below d23 is not
zero. This violates (R3). Had the 3–3 element been zero instead of unity, then the
matrix would be in row-reduced form. �

For the remainder of this section, we concern ourselves with square matrices;
that is, matrices having the same number of rows as columns. A diagonal matrix is
a square matrix all of whose elements are zero except possibly those on the main
diagonal. (Recall that the main diagonal consists of all the diagonal elements
a11, a22, a33, and so on.) Thus,

[
5 0
0 −1

]
and

⎡
⎣3 0 0

0 3 0
0 0 3

⎤
⎦
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are both diagonal matrices of order 2 × 2 and 3 × 3 respectively. The zero matrix
is the special diagonal matrix having all the elements on the main diagonal equal
to zero.

An identity matrix is a diagonal matrix worthy of special consideration. Des-
ignated by I, an identity is defined to be a diagonal matrix having all diagonal
elements equal to one. Thus,

[
1 0
0 1

]
and

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

are the 2 × 2 and 4 × 4 identities respectively. The identity is perhaps the most
important matrix of all. If the identity is of the appropriate order so that the
following multiplication can be carried out, then for any arbitrary matrix A,

AI = A and IA = A.

A symmetric matrix is a matrix that is equal to its transpose while a skew symmetric
matrix is a matrix that is equal to the negative of its transpose. Thus, a matrix A
is symmetric if A = AT while it is skew symmetric if A = −AT. Examples of each
are respectively ⎡

⎣1 2 3
2 4 5
3 5 6

⎤
⎦ and

⎡
⎣ 0 2 −3

−2 0 1
3 −1 0

⎤
⎦.

A matrix A = [aij] is called lower triangular if aij = 0 for j > i (that is, if all the
elements above the main diagonal are zero) and upper triangular if aij = 0 for i > j

(that is, if all the elements below the main diagonal are zero).
Examples of lower and upper triangular matrices are, respectively,⎡

⎢⎢⎣
5 0 0 0

−1 2 0 0
0 1 3 0
2 1 4 1

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

−1 2 4 1
0 1 3 −1
0 0 2 5
0 0 0 5

⎤
⎥⎥⎦.

Theorem 1 The product of two lower (upper) triangular matrices is also lower
(upper) triangular.

Proof. Let A and B both be n × n lower triangular matrices. Set C = AB. We
need to show that C is lower triangular, or equivalently, that cij = 0 when i < j.
Now,

cij =
n∑

k=1

aikbkj =
j−1∑
k=1

aikbkj +
n∑

k=j

aikbkj.



1.4 Special Matrices 23

We are given that aik = 0 when i < k, and bkj = 0 when k < j, because both A and
B are lower triangular. Thus,

j−1∑
k=1

aikbkj =
j−1∑
k=1

aik(0) = 0

because k is always less than j. Furthermore, if we restrict i < j, then

n∑
k=j

aikbkj =
n∑

k=j

(0)bkj = 0

because k ≥ j > i. Therefore, cij = 0 when i < j.

Finally, we define positive integral powers of a matrix in the obvious manner:
A2 = AA, A3 = AAA and, in general, if n is a positive integer,

An = AA . . . A.︸ ︷︷ ︸
n times

Thus, if

A =
[

1 −2
1 3

]
, then A2 =

[
1 −2
1 3

] [
1 −2
1 3

]
=
[−1 −8

4 7

]
.

It follows directly from Property 5 that

(A2)T = (AA)T = ATAT = (AT)2.

We can generalize this result to the following property for any integral posi-
tive power n:

(7) (An)T = (AT)n.

Problems 1.4

1. Verify that (A + B)T = AT + BT where

A =
⎡
⎣1 5 −1

2 1 3
0 7 −8

⎤
⎦ and B =

⎡
⎣ 6 1 3

2 0 −1
−1 −7 2

⎤
⎦.

2. Verify that (AB)T = BTAT, where

A =
⎡
⎣t t2

1 2t

1 0

⎤
⎦ and B =

[
3 t t + 1 0
t 2t t2 t3

]
.
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3. Simplify the following expressions:

(a) (ABT)T, (b) AT + (A + BT)T,
(c) (AT(B + CT))T, (d) ((AB)T + C)T,
(e) ((A + AT)(A − AT))T.

4. Find XTX and XXT when

X =
⎡
⎣2

3
4

⎤
⎦.

5. Find XTX and XXT when X = [1 −2 3 −4].
6. Find XTAX when

A =
[

2 3
3 4

]
and X =

[
x

y

]
.

7. Determine which, if any, of the following matrices are in row-reduced form:

A =

⎡
⎢⎢⎣

0 1 0 4 −7
0 0 0 1 2
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

1 1 0 4 −7
0 1 0 1 2
0 0 1 0 1
0 0 0 1 5

⎤
⎥⎥⎦,

C =

⎡
⎢⎢⎣

1 1 0 4 −7
0 1 0 1 2
0 0 0 0 1
0 0 0 1 −5

⎤
⎥⎥⎦, D =

⎡
⎢⎢⎣

0 1 0 4 −7
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎦,

E =
⎡
⎣2 2 2

0 2 2
0 0 2

⎤
⎦, F =

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦, G =

⎡
⎣1 2 3

0 0 1
1 0 0

⎤
⎦,

H =
⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦, J =

⎡
⎣0 1 1

1 0 2
0 0 0

⎤
⎦, K =

⎡
⎣1 0 2

0 −1 1
0 0 0

⎤
⎦,

L =
⎡
⎣2 0 0

0 2 0
0 0 0

⎤
⎦, M =

⎡
⎢⎣1 1

2
1
3

0 1 1
4

0 0 1

⎤
⎥⎦, N =

⎡
⎣1 0 0

0 0 1
0 0 0

⎤
⎦,

Q =
[

0 1
1 0

]
, R =

[
1 1
0 0

]
, S =

[
1 0
1 0

]
, T =

[
1 12
0 1

]
.

8. Determine which, if any, of the matrices in Problem 7 are upper triangular.

9. Must a square matrix in row-reduced form necessarily be upper triangular?
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10. Must an upper triangular matrix necessarily be in row-reduced form?

11. Can a matrix be both upper and lower triangular simultaneously?

12. Show that AB = BA, where

A =
⎡
⎣−1 0 0

0 3 0
0 0 1

⎤
⎦ and B =

⎡
⎣5 0 0

0 3 0
0 0 2

⎤
⎦.

13. Prove that if A and B are diagonal matrices of the same order, then AB = BA.

14. Does a 2 × 2 diagonal matrix commute with every other 2 × 2 matrix?

15. Compute the products AD and BD for the matrices

A =
⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦, B =

⎡
⎣0 1 2

3 4 5
6 7 8

⎤
⎦, D =

⎡
⎣2 0 0

0 3 0
0 0 −5

⎤
⎦.

What conclusions can you make about postmultiplying a square matrix by a
diagonal matrix?

16. Compute the products DA and DB for the matrices defined in Problem 15.
What conclusions can you make about premultiplying a square matrix by a
diagonal matrix?

17. Prove that if a 2 × 2 matrix A commutes with every 2 × 2 diagonal matrix, then
A must also be diagonal. Hint: Consider, in particular, the diagonal matrix

D =
[

1 0
0 0

]
.

18. Prove that if an n × n matrix A commutes with every n × n diagonal matrix,
then A must also be diagonal.

19. Compute D2 and D3 for the matrix D defined in Problem 15.

20. Find A3 if

A =
⎡
⎣1 0 0

0 2 0
0 0 3

⎤
⎦.

21. Using the results of Problems 19 and 20 as a guide, what can be said about Dn

if D is a diagonal matrix and n is a positive integer?

22. Prove that if D = [dij] is a diagonal matrix, then D2 = [d2
ij].
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23. Calculate D50 − 5D35 + 4I, where

D =
⎡
⎣0 0 0

0 1 0
0 0 −1

⎤
⎦.

24. A square matrix A is nilpotent if An = 0 for some positive integer n. If n is
the smallest positive integer for which An = 0 then A is nilpotent of index n.
Show that

A =
⎡
⎣−1 −1 −3

−5 −2 −6
2 1 3

⎤
⎦

is nilpotent of index 3.

25. Show that

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

is nilpotent. What is its index?

26. Prove that if A is a square matrix, then B = (A + AT)/2 is a symmetric matrix.

27. Prove that if A is a square matrix, then C = (A − AT)/2 is a skew symmetric
matrix.

28. Using the results of the preceding two problems, prove that any square matrix
can be written as the sum of a symmetric matrix and a skew-symmetric matrix.

29. Write the matrix A in Problem 1 as the sum of a symmetric matrix and skew-
symmetric matrix.

30. Write the matrix B in Problem 1 as the sum of a symmetric matrix and a
skew-symmetric matrix.

31. Prove that if A is any matrix, then AAT is symmetric.

32. Prove that the diagonal elements of a skew-symmetric matrix must be zero.

33. Prove that the transpose of an upper triangular matrix is lower triangular, and
vice versa.

34. If P = [pij] is a transition matrix for a Markov chain (see Problem 16 of Sec-
tion 1.1), then it can be shown with elementary probability theory that the
i − j element of P2 denotes the probability of an object moving from state i

to stage j over two time periods. More generally, the i − j element of Pn for
any positive integer n denotes the probability of an object moving from state
i to state j over n time periods.
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(a) Calculate P2 and P3 for the two-state transition matrix

P =
[

0.1 0.9
0.4 0.6

]
.

(b) Determine the probability of an object beginning in state 1 and ending in
state 1 after two time periods.

(c) Determine the probability of an object beginning in state 1 and ending in
state 2 after two time periods.

(d) Determine the probability of an object beginning in state 1 and ending in
state 2 after three time periods.

(e) Determine the probability of an object beginning in state 2 and ending in
state 2 after three time periods.

35. Consider a two-state Markov chain. List the number of ways an object in state
1 can end in state 1 after three time periods.

36. Consider the Markov chain described in Problem 16 of Section 1.1. Determine
(a) the probability that a family living in the city will find themselves in the
suburbs after two years, and (b) the probability that a family living in the
suburbs will find themselves living in the city after two years.

37. Consider the Markov chain described in Problem 17 of Section 1.1. Deter-
mine (a) the probability that there will be a Republican mayor eight years
after a Republican mayor serves, and (b) the probability that there will be a
Republican mayor 12 years after a Republican mayor serves.

38. Consider the Markov chain described in Problem 18 of Section 1.1. It is known
that this year the apple harvest was poor. Determine (a) the probability that
next year’s harvest will be poor, and (b) the probability that the harvest in
two years will be poor.

39. Consider the Markov chain described in Problem 19 of Section 1.1. Determine
(a) the probability that a brand X customer will be a brand X customer after
4 years, (b) after 6 years, and (c) the probability that a brand X customer will
be a brand Y customer after 4 years.

40. A graph consists of a set of nodes, which we shall designate by positive integers,
and a set of arcs that connect various pairs of nodes. An adjacency matrix M
associated with a particular graph is defined by

mij = number of distinct arcs connecting node i to node j

(a) Construct an adjacency matrix for the graph shown in Figure 1.1.

(b) Calculate M2, and note that the i − j element of M2 is the number of
paths consisting of two arcs that connect node i to node j.
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Figure 1.1

Figure 1.2

41. (a) Construct an adjacency matrix M for the graph shown in Figure 1.2.

(b) Calculate M2, and use that matrix to determine the number of paths
consisting of two arcs that connect node 1 to node 5.

(c) Calculate M3, and use that matrix to determine the number of paths
consisting of three arcs that connect node 2 to node 4.

Figure 1.3

42. Figure 1.3 depicts a road network linking various cities. A traveler in city 1
needs to drive to city 7 and would like to do so by passing through the least
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number of intermediate cities. Construct an adjacency matrix for this road
network. Consider powers of this matrix to solve the traveler’s problem.

1.5 Submatrices and Partitioning

Given any matrix A, a submatrix of A is a matrix obtained from A by the removal
of any number of rows or columns. Thus, if

A =

⎡
⎢⎢⎣

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

⎤
⎥⎥⎦, B =

[
10 12
14 16

]
, and C = [2 3 4], (11)

then B and C are both submatrices of A. Here B was obtained by removing from
A the first and second rows together with the first and third columns, while C was
obtained by removing from A the second, third, and fourth rows together with the
first column. By removing no rows and no columns from A, it follows that A is a
submatrix of itself.

A matrix is said to be partitioned if it is divided into submatrices by horizontal
and vertical lines between the rows and columns. By varying the choices of where
to put the horizontal and vertical lines, one can partition a matrix in many different
ways. Thus, ⎡

⎢⎢⎣
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

⎤
⎥⎥⎦

are examples of two different partitions of the matrix A given in (11).
If partitioning is carried out in a particularly judicious manner, it can be a great

help in matrix multiplication. Consider the case where the two matrices A and B
are to be multiplied together. If we partition both A and B into four submatrices,
respectively, so that

A =
[

C D
E F

]
and B =

[
G H
J K

]

where C through K represent submatrices, then the product AB may be obtained
by simply carrying out the multiplication as if the submatrices were themselves
elements. Thus,

AB =
[

CG + DJ CH + DK
EG + FJ EH + FK

]
, (12)

providing the partitioning was such that the indicated multiplications are defined.
It is not unusual to need products of matrices having thousands of rows and

thousands of columns. Problem 42 of Section 1.4 dealt with a road network con-
necting seven cities. A similar network for a state with connections between all



30 Chapter 1 Matrices

cities in the state would have a very large adjacency matrix associated with it, and
its square is then the product of two such matrices. If we expand the network
to include the entire United States, the associated matrix is huge, with one row
and one column for each city and town in the country. Thus, it is not difficult to
visualize large matrices that are too big to be stored in the internal memory of any
modern day computer. And yet the product of such matrices must be computed.

The solution procedure is partitioning. Large matrices are stored in external
memory on peripheral devices, such as disks, and then partitioned. Appropriate
submatrices are fetched from the peripheral devices as needed, computed, and the
results again stored on the peripheral devices. An example is the product given in
(12). If A and B are too large for the internal memory of a particular computer,
but C through K are not, then the partitioned product can be computed. First,
C and G are fetched from external memory and multiplied; the product is then
stored in external memory. Next, D and J are fetched and multiplied. Then, the
product CG is fetched and added to the product DJ. The result, which is the first
partition of AB, is then stored in external memory, and the process continues.

Example 1 Find AB if

A =
⎡
⎣3 1 2

1 4 −1
3 1 2

⎤
⎦ and B =

⎡
⎣ 1 3 2

−1 0 1
0 1 1

⎤
⎦.

Solution We first partition A and B in the following manner

A =
⎡
⎣3 1 2

1 4 −1
3 1 2

⎤
⎦ and B =

⎡
⎣ 1 3 2

−1 0 1
0 1 1

⎤
⎦;

then,

AB =

⎡
⎢⎢⎢⎣
[

3 1
1 4

] [
1 3

−1 0

]
+
[

2
−1

] [
0 1

] [
3 1
1 4

] [
2
1

]
+
[

2
−1

] [
1
]

[
3 1

] [ 1 3
−1 0

]
+ [2] [0 1

] [
3 1

] [2
1

]
+ [2] [1]

⎤
⎥⎥⎥⎦

=
⎡
⎢⎣
[

2 9
−3 3

]
+
[

0 2
0 −1

] [
7
6

]
+
[

2
−1

]
[
2 9

]+ [0 2
] [

7
]+ [2]

⎤
⎥⎦

=
⎡
⎣ 2 11 9

−3 2 5
2 11 9

⎤
⎦ =

⎡
⎣ 2 11 9

−3 2 5
2 11 9

⎤
⎦. �
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Example 2 Find AB if

A =

⎡
⎢⎢⎢⎢⎣

3 1 0
2 0 0
0 0 3
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎦ and B =

⎡
⎣ 2 1 0 0 0

−1 1 0 0 0
0 1 0 0 1

⎤
⎦.

Solution From the indicated partitions, we find that

AB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[
3 1
2 0

] [
2 1

−1 1

]
+
[

0
0

] [
0 1

] [
3 1
2 0

] [
0 0 0
0 0 0

]
+
[

0
0

] [
0 0 1

]
[

0 0
0 0

] [
2 1

−1 1

]
+
[

3
4

] [
0 1

] [
0 0
0 0

] [
0 0 0
0 0 0

]
+
[

3
1

] [
0 0 1

]
[
0 0

] [ 2 1
−1 1

]
+ [0] [0 1

] [
0 0

] [0 0 0
0 0 0

]
+ [0] [0 0 1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

AB =

⎡
⎢⎢⎢⎢⎢⎣

[
5 4
4 2

]
+
[

0 0
0 0

] [
0 0 0
0 0 0

]
+
[

0 0 0
0 0 0

]
[

0 0
0 0

]
+
[

0 3
0 1

] [
0 0 0
0 0 0

]
+
[

0 0 3
0 0 1

]
[
0 0

]+ [0 0
] [

0 0 0
]+ [0 0 0

]

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

5 4 0 0 0
4 2 0 0 0
0 3 0 0 3
0 1 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

5 4 0 0 0
4 2 0 0 0
0 3 0 0 3
0 1 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦.

Note that we partitioned in order to make maximum of the zero submatrices of
both A and B. �

A matrix A that can be partitioned into the form

A =

⎡
⎢⎢⎢⎢⎢⎣

A1
A2

A3 0
. . .

0 An

⎤
⎥⎥⎥⎥⎥⎦

is called block diagonal. Such matrices are particularly easy to multiply because
in partitioned form they act as diagonal matrices.
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Problems 1.5

1. Which of the following are submatrices of the given A and why?

A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦

(a)

[
1 3
7 9

]
(b)

[
1
]

(c)
[

1 2
8 9

]
(d)

[
4 6
7 9

]
.

2. Determine all possible submatrices of

A =
[
a b

c d

]
.

3. Given the matrices A and B (as shown), find AB using the partitionings
indicated:

A =
⎡
⎣1 −1 2

3 0 4
0 1 2

⎤
⎦, B =

⎡
⎣5 2 0 2

1 −1 3 1
0 1 1 4

⎤
⎦.

4. Partition the given matrices A and B and, using the results, find AB.

A =

⎡
⎢⎢⎣

4 1 0 0
2 2 0 0
0 0 1 0
0 0 1 2

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

3 2 0 0
−1 1 0 0

0 0 2 1
0 0 1 −1

⎤
⎥⎥⎦.

5. Compute A2 for the matrix A given in Problem 4 by partitioning A into block
diagonal form.

6. Compute B2 for the matrix B given in Problem 4 by partitioning B into block
diagonal form.

7. Use partitioning to compute A2 and A3 for

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 2 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦.

What is An for any positive integral power of n > 3?
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8. Use partitioning to compute A2 and A3 for

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 0 0 0
−1 0 0 0 0 0 0

0 0 2 −2 −4 0 0
0 0 −1 3 4 0 0
0 0 1 −2 −3 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

What is An for any positive integral power of n?

1.6 Vectors

Definition 1 A vector is a 1 × n or n × 1 matrix.

A 1 × n matrix is called a row vector while an n × 1 matrix is a column vector. The
elements are called the components of the vector while the number of components
in the vector, in this case n, is its dimension. Thus,⎡

⎣1
2
3

⎤
⎦

is an example of a 3-dimensional column vector, while[
t 2t −t 0

]
is an example of a 4-dimensional row vector.

The reader who is already familiar with vectors will notice that we have not
defined vectors as directed line segments. We have done this intentionally, first
because in more than three dimensions this geometric interpretation loses its sig-
nificance, and second, because in the general mathematical framework, vectors
are not directed line segments. However, the idea of representing a finite dimen-
sional vector by its components and hence as a matrix is one that is acceptable
to the scientist, engineer, and mathematician. Also, as a bonus, since a vector is
nothing more than a special matrix, we have already defined scalar multiplication,
vector addition, and vector equality.

A vector y (vectors will be designated by boldface lowercase letters) has asso-
ciated with it a nonnegative number called its magnitude or length designated
by ‖y‖.

Definition 2 If y = [y1 y2 . . . yn] then ‖y‖ = √(y1)2 + (y2)2 + · · · + (yn)2.
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Example 1 Find ‖y‖ if y = [ 1 2 3 4
]
.

Solution
∥∥y
∥∥ = √(1)2 + (2)2 + (3)2 + (4)2 = √

30. �

If z is a column vector, ‖z‖ is defined in a completely analogous manner.

Example 2 Find ‖z‖ if

z =
⎡
⎣−1

2
−3

⎤
⎦.

Solution ‖z‖ = √(−1)2 + (2)2 + (−3)2 = √
14. �

A vector is called a unit vector if its magnitude is equal to one. A nonzero
vector is said to be normalized if it is divided by its magnitude. Thus, a normalized
vector is also a unit vector.

Example 3 Normalize the vector [1 0 −3 2 −1].

Solution The magnitude of this vector is

√
(1)2 + (0)2 + (−3)2 + (2)2 + (−1)2 = √

15.

Hence, the normalized vector is[
1√
15

0
−3√

15

2√
15

−1√
15

]
. �

In passing, we note that when a general vector is written y = [y1y2 . . . yn] one of
the subscripts of each element of the matrix is deleted. This is done solely for the
sake of convenience. Since a row vector has only one row (a column vector has
only one column), it is redundant and unnecessary to exhibit the row subscript
(the column subscript).

Problems 1.6

1. Find p if 5x − 2y = b, where

x =
⎡
⎣1

3
0

⎤
⎦, y =

⎡
⎣2

p

1

⎤
⎦, and b =

⎡
⎣ 1

13
−2

⎤
⎦.
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2. Find x if 3x + 2y = b, where

y =

⎡
⎢⎢⎣

3
1
6
0

⎤
⎥⎥⎦ and b =

⎡
⎢⎢⎣

2
−1

4
1

⎤
⎥⎥⎦.

3. Find y if 2x − 5y = −b, where

x = [2 −1 3
]

and b = [1 0 −1
]
.

4. Using the vectors defined in Problem 2, calculate, if possible,

(a) yb, (b) ybT,

(c) yTb, (d) bTy.

5. Using the vectors defined in Problem 3, calculate, if possible,

(a) x + 2b, (b) xbT,

(c) xTb, (d) bTb.

6. Determine which of the following are unit vectors:

(a)
[
1 1

]
, (b)

[
1/2 1/2

]
, (c)

[
1/

√
2 −1/

√
2
]

(d)

⎡
⎣0

1
0

⎤
⎦, (e)

⎡
⎣1/2

1/3
1/6

⎤
⎦, (f)

⎡
⎣1/

√
3

1/
√

3
1/

√
3

⎤
⎦,

(g)
1
2

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦, (h)

1
6

⎡
⎢⎢⎣

1
5
3
1

⎤
⎥⎥⎦, (i)

1√
3

[−1 0 1 −1
]
.

7. Find ‖y‖ if

(a) y =[1 −1
]
, (b) y =[3 4

]
,

(c) y = [−1 −1 1
]
, (d) y = [ 1

2
1
2

1
2

]
,

(e) y = [2 1 −1 3
]
, (f) y = [0 −1 5 3 2

]
.

8. Find ‖x‖ if

(a) x =
[

1
−1

]
, (b) x =

[
1
2

]
, (c) x =

⎡
⎣1

1
1

⎤
⎦,
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(d) x =

⎡
⎢⎢⎣

1
−1

1
−1

⎤
⎥⎥⎦, (e) x =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦, (f) x =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦.

9. Find ‖y‖ if

(a) y = [2 1 −1 3
]
, (b) y = [0 −1 5 3 2

]
.

10. Prove that a normalized vector must be a unit vector.

11. Show that the matrix equation⎡
⎣ 1 1 −2

2 5 3
−1 3 1

⎤
⎦
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣−3

11
5

⎤
⎦

is equivalent to the vector equation

x

⎡
⎣ 1

2
−1

⎤
⎦+ y

⎡
⎣1

5
3

⎤
⎦+ z

⎡
⎣−2

3
1

⎤
⎦ =

⎡
⎣−3

11
5

⎤
⎦.

12. Convert the following system of equations into a vector equation:

2x + 3y = 10,

4x + 5y = 11.

13. Convert the following system of equations into a vector equation:

3x + 4y + 5z + 6w = 1,

y − 2z + 8w = 0,

−x + y + 2z − w = 0.

14. Using the definition of matrix multiplication, show that the jth column of
(AB) = A × (jth column of B).

15. Verify the result of Problem 14 by showing that the first column of the product
AB with

A =
[

1 2 3
4 5 6

]
and B =

⎡
⎣ 1 1

−1 0
2 −3

⎤
⎦

is

A

⎡
⎣ 1

−1
2

⎤
⎦,



1.7 The Geometry of Vectors 37

while the second column of the product is

A

⎡
⎣ 1

0
−3

⎤
⎦.

16. A distribution row vector d for an N-state Markov chain (see Problem 16 of
Section 1.1 and Problem 34 of Section 1.4) is an N-dimensional row vector
having as its components, one for each state, the probabilities that an object in
the system is in each of the respective states. Determine a distribution vector
for a three-state Markov chain if 50% of the objects are in state 1, 30% are in
state 2, and 20% are in state 3.

17. Let d(k) denote the distribution vector for a Markov chain after k time periods.
Thus, d(0) represents the initial distribution. It follows that

d(k) = d(0)Pk = P(k−1)P,

where P is the transition matrix and Pk is its kth power.

Consider the Markov chain described in Problem 16 of Section 1.1.

(a) Explain the physical significance of saying d(0) = [0.6 0.4].
(b) Find the distribution vectors d(1) and d(2).

18. Consider the Markov chain described in Problem 19 of Section 1.1.

(a) Explain the physical significance of saying d(0) = [0.4 0.5 0.1].
(b) Find the distribution vectors d(1) and d(2).

19. Consider the Markov chain described in Problem 17 of Section 1.1.
(a) Determine an initial distribution vector if the town currently has a Demo-
cratic mayor, and (b) show that the components of d(1) are the probabilities
that the next mayor will be a Republican and a Democrat, respectively.

20. Consider the Markov chain described in Problem 18 of Section 1.1.
(a) Determine an initial distribution vector if this year’s crop is known to
be poor. (b) Calculate d(2) and use it to determine the probability that the
harvest will be good in two years.

1.7 The Geometry of Vectors

Vector arithmetic can be described geometrically for two- and three-dimensional
vectors. For simplicity, we consider two dimensions here; the extension to three-
dimensional vectors is straightforward. For convenience, we restrict our examples
to row vectors, but note that all constructions are equally valid for column vectors.

A two dimensional vector v = [a b] is identified with the point (a, b) on the
plane, measured from the origin a units along the horizontal axis and then b
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Figure 1.4

units parallel to the vertical axis. We can then draw an arrow beginning at the
origin and ending at the point (a, b). This arrow or directed line segment, as
shown in Figure 1.4, represents the vector geometrically. It follows immediately
from Pythagoras’s theorem and Definition 2 of Section 1.6 that the length of the
directed line segment is the magnitude of the vector. The angle associated with a
vector, denoted by θ in Figure 1.4, is the angle from the positive horizontal axis to
the directed line segment measured in the counterclockwise direction.

Example 1 Graph the vectors v = [2 4] and u = [−1 1] and determine the
magnitude and angle of each.

Solution The vectors are drawn in Figure 1.5. Using Pythagoras’s theorem and
elementary trigonometry, we have, for v,

‖v‖ =
√

(2)2 + (4)2 = 4.47, tan θ = 4
2

= 2, and θ = 63.4◦.

For u, similar computations yield

‖u‖ =
√

(−1)2 + (1)2 = 1.14, tan θ = 1
−1

= −1, and θ = 135◦. �

To construct the sum of two vectors u + v geometrically, graph u normally,
translate v so that its initial point coincides with the terminal point of u, being
careful to preserve both the magnitude and direction of v, and then draw an arrow
from the origin to the terminal point of v after translation. This arrow geometrically
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Figure 1.5

Figure 1.6

represents the sum u + v. The process is depicted in Figure 1.6 for the two vectors
defined in Example 1.

To construct the difference of two vectors u − v geometrically, graph both u
and v normally and construct an arrow from the terminal point of v to the terminal
point of u. This arrow geometrically represents the difference u − v. The process
is depicted in Figure 1.7 for the two vectors defined in Example 1. To measure the
magnitude and direction of u − v, translate it so that its initial point is at the origin,
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Figure 1.7

being careful to preserve both its magnitude and direction, and then measure the
translated vector.

Both geometrical sums and differences involve translations of vectors. This
suggests that a vector is not altered by translating it to another position in the
plane providing both its magnitude and direction are preserved.

Many physical phenomena such as velocity and force are completely described
by their magnitudes and directions. For example, a velocity of 60 miles per
hour in the northwest direction is a complete description of that velocity, and
it is independent of where that velocity occurs. This independence is the ratio-
nale behind translating vectors geometrically. Geometrically, vectors having
the same magnitude and direction are called equivalent, and they are regarded
as being equal even though they may be located at different positions in the
plane.

A scalar multiplication ku is defined geometrically to be a vector having length
‖k‖ times the length of u with direction equal to u when k is positive, and opposite
to u when k is negative. Effectively, ku is an elongation of u by a factor of ‖k‖
when ‖k‖ is greater than unity, or a contraction of u by a factor of ‖k‖ when ‖k‖
is less than unity, followed by no rotation when k is positive, or a rotation of 180
degrees when k is negative.

Example 2 Find −2u and 1
2 v geometrically for the vectors defined in Example 1.

Solution To construct −2u, we double the length of u and then rotate the result-
ing vector by 180◦. To construct 1

2 v we halve the length of v and effect no rotation.
These constructions are illustrated in Figure 1.8. �
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Figure 1.8

Problems 1.7

In Problems 1 through 16, geometrically construct the indicated vector operations
for

u = [3 −1], v = [−2 5], w = [−4 −4],

x =
[

3
5

]
, and y =

[
0

−2

]
.

1. u + v. 2. u + w. 3. v + w. 4. x + y.

5. x − y. 6. y − x. 7. u − v. 8. w − u.

9. u − w. 10. 2x. 11. 3x. 12. −2x.

13. 1
2 u. 14. − 1

2 u. 15. 1
3 v. 16. − 1

4 w.

17. Determine the angle of u. 18. Determine the angle of v.

19. Determine the angle of w. 20. Determine the angle of x.

21. Determine the angle of y.

22. For arbitrary two-dimensional row vectors construct on the same graph u + v
and v + u.
(a) Show that u + v = v + u.
(b) Show that the sum is a diagonal of a parallelogram having u and v as two

of its sides.
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