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Real Inner Products and
Least-Square

10.1 Introduction

To any two vectors x and y of the same dimension having real components (as
distinct from complex components), we associate a scalar called the inner product,
denoted as 〈x, y〉, by multiplying together the corresponding elements of x and y,
and then summing the results. Students already familiar with the dot product of
two- and three-dimensional vectors will undoubtedly recognize the inner product
as an extension of the dot product to real vectors of all dimensions.

Example 1 Find 〈x, y〉 if

x =
⎡
⎣1

2
3

⎤
⎦ and y =

⎡
⎣ 4

−5
6

⎤
⎦.

Solution 〈x, y〉 = 1(4) + 2(−5) + 3(6) = 12. �

Example 2 Find 〈u, v〉 if u = [20 −4 30 10] and v = [10 −5 −8 −6].

Solution 〈u, v〉 = 20(10) + (−4)(−5) + 30(−8) + 10(−6) = −80. �

It follows immediately from the definition that the inner product of real vectors
satisfies the following properties:

(I1) 〈x, x〉 is positive if x �= 0; 〈x, x〉 = 0 if and only if x = 0.

(I2) 〈x, y〉 = 〈y, x〉.
(I3) 〈λx, y〉 = λ〈x, y〉, for any real scalar λ.
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316 Chapter 10 Real Inner Products and Least-Square

(I4) 〈x + z, y〉 = 〈x, y〉 + 〈z, y〉.
(I5) 〈0, y〉 = 0.

We will only prove (I1) here and leave the proofs of the other properties
as exercises for the students (see Problems 29 through 32). Let x =
[x1 x2 x3 · · · xn] be an n-dimensional row vector whose components
x1, x2, x3, . . . , xn are all real. Then,

〈x, x〉 = (x1)
2 + (x2)

2 + (x3)
2 + · · · + (xn)

2.

This sum of squares is zero if and only if x1 = x2 = x3 = · · · = xn = 0, which in
turn implies x = 0. If any one component is not zero, that is, if x is not the zero
vector, then the sum of squares must be positive.

The inner product of real vectors is related to the magnitude of a vector as
defined in Section 1.6. In particular,

‖x‖ = √〈x, x〉.

Example 3 Find the magnitude of x = [2 −3 −4].

Solution 〈x, x〉 = 2(2) + (−3)(−3) + (−4)(−4) = 29, so the magnitude of x is

‖x‖ = √
29. �

The concepts of a normalized vector and a unit vector are identical to the
definitions given in Section 1.6. A nonzero vector is normalized if it is divided by
its magnitude. A unit vector is a vector whose magnitude is unity. Thus, if x is any
nonzero vector, then (1/‖x‖) x is normalized. Furthermore,

〈 1
‖x‖x,

1
‖x‖x〉 = 1

‖x‖〈x,
1

‖x‖x〉 (Property I3)

= 1
‖x‖〈 1

‖x‖x, x〉 (Property I2)

=
(

1
‖x‖

)2

〈x, x〉 (Property I3)

=
(

1
‖x‖

)2

‖x‖2 = 1,

so a normalized vector is always a unit vector.
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Problems 10.1

In Problems 1 through 17, find (a) 〈x, y〉 and (b) 〈x, x〉 for the given vectors.

1. x =
[

1
2

]
and y =

[
3
4

]
.

2. x =
[

2
0

]
and y =

[
4

−5

]
.

3. x =
[−5

7

]
and y =

[
3

−5

]
.

4. x = [3 14] and y = [7 3].
5. x = [−2 −8] and y = [−4 −7].

6. x =
⎡
⎣2

0
1

⎤
⎦ and y =

⎡
⎣1

2
4

⎤
⎦.

7. x =
⎡
⎣−2

2
−4

⎤
⎦ and y =

⎡
⎣−4

3
−3

⎤
⎦.

8. x =
⎡
⎣−3

−2
5

⎤
⎦ and y =

⎡
⎣ 6

−4
−4

⎤
⎦.

9. x = [ 1
2

1
3

1
6

]
and y = [ 1

3
3
2 1

]
.

10. x = [1/
√

2 1/
√

3 1/
√

6
]

and y = [1/
√

3 3/
√

2 1
]
.

11. x = [ 1
3

1
3

1
3

]
and y = [ 1

4
1
2

1
8

]
.

12. x = [10 20 30] and y = [5 −7 3].

13. x =

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ and y =

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦.

14. x =

⎡
⎢⎢⎢⎢⎢⎣

1
2
1
2
1
2
1
2

⎤
⎥⎥⎥⎥⎥⎦ and y =

⎡
⎢⎢⎣

1
2
3

−4

⎤
⎥⎥⎦.

15. x =

⎡
⎢⎢⎣

3
5

−7
−8

⎤
⎥⎥⎦ and y =

⎡
⎢⎢⎣

4
−6
−9

8

⎤
⎥⎥⎦.
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16. x = [ 1
5

1
5

1
5

1
5

1
5

]
and y = [1 2 −3 4 −5

]
.

17. x = [1 1 1 1 1 1] and y = [−3 8 11 −4 7].
18. Normalize y as given in Problem 1.

19. Normalize y as given in Problem 2.

20. Normalize y as given in Problem 4.

21. Normalize y as given in Problem 7.

22. Normalize y as given in Problem 8.

23. Normalize y as given in Problem 11.

24. Normalize y as given in Problem 15.

25. Normalize y as given in Problem 16.

26. Normalize y as given in Problem 17.

27. Find x if 〈x, a〉b = c, where

a =
⎡
⎣ 1

3
−1

⎤
⎦, b =

⎡
⎣2

1
1

⎤
⎦, and c =

⎡
⎣ 3

0
−1

⎤
⎦.

28. Determine whether it is possible for two nonzero vectors to have an inner
product that is zero.

29. Prove Property I2.

30. Prove Property I3.

31. Prove Property I4.

32. Prove Property I5.

33. Prove that ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2.

34. Prove the parallelogram law:

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

35. Prove that, for any scalar λ,

0 ≤ ‖λx − y‖2 = λ2‖x‖2 − 2λ〈x, y〉 + ‖y‖2.

36. (Problem 35 continued) Take λ = 〈x, y〉/‖x‖2 and show that

0 ≤ −〈x, y〉2

‖x‖2 + ‖y‖2.
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From this, deduce that

〈x, y〉2 ≤ ‖x‖2‖y‖2,

and that

|〈x, y〉| ≤ ‖x‖ ‖y‖.

This last inequality is known as the Cauchy–Schwarz inequality.

37. Using the results of Problem 33 and the Cauchy–Schwarz inequality, show
that

‖x + y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2

= (‖x‖ + ‖y‖)2.

From this, deduce that

‖x + y‖ ≤ ‖x‖ + ‖y‖.

38. Determine whether there exists a relationship between 〈x, y〉 and xTy, when
both x and y are column vectors of identical dimension with real components.

39. Use the results of Problem 38 to prove that 〈Ax, y〉 = 〈x, ATy〉, when A, x,
and y are real matrices of dimensions n × n, n × 1, and n × 1, respectively.

40. A generalization of the inner product for n-dimensional column vectors with
real components is 〈x, y〉A = 〈Ax, Ay〉 for any real n × n nonsingular matrix
A. This definition reduces to the usual one when A = I.

Compute 〈x, y〉A for the vectors given in Problem 1 when

A =
[

2 3
1 −1

]
.

41. Compute 〈x, y〉A for the vectors given in Problem 6 when

A =
⎡
⎣1 1 0

1 0 1
0 1 1

⎤
⎦.

42. Redo Problem 41 with

A =
⎡
⎣1 −1 1

0 1 −1
1 1 1

⎤
⎦.
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10.2 Orthonormal Vectors

Definition 1 Two vectors x and y are orthogonal (or perpendicular) if 〈x, y〉 = 0.
Thus, given the vectors

x =
⎡
⎣1

1
1

⎤
⎦, y =

⎡
⎣−1

1
0

⎤
⎦, z =

⎡
⎣1

1
0

⎤
⎦,

we see that x is orthogonal to y and y is orthogonal to z since 〈x, y〉 = 〈y, z〉 = 0;
but the vectors x and z are not orthogonal since 〈x, z〉 = 1 + 1 �= 0. In particular,
as a direct consequence of Property (I5) of Section 10.1 we have that the zero
vector is orthogonal to every vector.

A set of vectors is called an orthogonal set if each vector in the set is orthogonal
to every other vector in the set. The set given above is not an orthogonal set since
z is not orthogonal to x whereas the set given by {x, y, z},

x =
⎡
⎣1

1
1

⎤
⎦, y =

⎡
⎣ 1

1
−2

⎤
⎦, z =

⎡
⎣ 1

−1
0

⎤
⎦,

is an orthogonal set because each vector is orthogonal to every other vector.

Definition 2 A set of vectors is orthonormal if it is an orthogonal set having the
property that every vector is a unit vector (a vector of magnitude 1).

The set of vectors ⎧⎨
⎩
⎡
⎣1/

√
2

1/
√

2
0

⎤
⎦,

⎡
⎣ 1/

√
2

−1/
√

2
0

⎤
⎦,

⎡
⎣0

0
1

⎤
⎦
⎫⎬
⎭

is an example of an orthonormal set.
Definition 2 can be simplified if we make use of the Kronecker delta, δij,

defined by

δij =
{

1 if i = j,

0 if i �= j.
(1)

A set of vectors {x1, x2, . . . , xn} is an orthonormal set if and only if〈
xi, xj

〉 = δij for all i and j, i, j = 1, 2, . . . , n. (2)

The importance of orthonormal sets is that they are almost equivalent to lin-
early independent sets. However, since orthonormal sets have associated with
them the additional structure of an inner product, they are often more conve-
nient. We devote the remaining portion of this section to showing the equivalence
of these two concepts. The utility of orthonormality will become self-evident in
later sections.
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Theorem 1 An orthonormal set of vectors is linearly independent.

Proof. Let {x1, x2, . . . , xn} be an orthonormal set and consider the vector
equation

c1x1 + c2x2 + · · · + cnxn = 0 (3)

where the cj’s (j = 1, 2, . . . , n) are constants. The set of vectors will be linearly
independent if the only constants that satisfy (3) are c1 = c2 = · · · = cn = 0. Take
the inner product of both sides of (3) with x1. Thus,

〈c1x1 + c2x2 + · · · + cnxn, x1〉 = 〈0, x1〉 .

Using properties (I3), (I4), and (I5) of Section 10.1, we have

c1〈x1, x1〉 + c2〈x2, x1〉 + · · · + cn〈xn, x1〉 = 0.

Finally, noting that 〈xi, x1〉 = δi1, we obtain c1 = 0. Now taking the inner prod-
uct of both sides of (3) with x2, x3, . . . , xn, successively, we obtain c2 = 0,

c3 = 0, . . . , cn = 0. Combining these results, we find that c1 = c2 = · · · cn = 0,
which implies the theorem.

Theorem 2 For every linearly independent set of vectors {x1, x2, . . . , xn}, there
exists an orthonormal set of vectors {q1, q2, . . . , qn} such that each qj(j =
1, 2, . . . , n) is a linear combination of x1, x2, . . . , xj .

Proof. First define new vectors y1, y2, . . . , yn by

y1 = x1

y2 = x2 − 〈x2, y1〉
〈y1, y1〉y1

y3 = x3 − 〈x3, y1〉
〈y1, y1〉y1 − 〈x3, y2〉

〈y2, y2〉y2

and, in general,

yj = xj −
j−1∑
k=1

〈xj, yk〉
〈yk, yk〉yk (j = 2, 3, . . . , n). (4)

Each yj is a linear combination of x1, x2, . . . , xj(j = 1, 2, . . . , n). Since the x’s are
linearly independent, and the coefficient of the xj term in (4) is unity, it follows
that yj is not the zero vector (see Problem 19). Furthermore, it can be shown that
the yj terms form an orthogonal set (see Problem 20), hence the only property
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that the yj terms lack in order to be the required set is that their magnitudes may
not be one. We remedy this situation by defining

qj = yj

‖yj‖ . (5)

The desired set is {q1, q2, . . . , qn}.
The process used to construct the qj terms is called the Gram–Schmidt

orthonormalization process.

Example 1 Use the Gram–Schmidt orthonormalization process to construct
an orthonormal set of vectors from the linearly independent set {x1, x2, x3},
where

x1 =
⎡
⎣1

1
0

⎤
⎦, x2 =

⎡
⎣0

1
1

⎤
⎦, x3 =

⎡
⎣1

0
1

⎤
⎦.

Solution

y1 = x1 =
⎡
⎣1

1
0

⎤
⎦.

Now 〈x2, y1〉 = 0(1) + 1(1) + 1(0) = 1, and 〈y1, y1〉 = 1(1) + 1(1) + 0(0) = 2;
hence,

y2 = x2 − 〈x2, y1〉
〈y1, y1〉y1 = x2 − 1

2
y1 =

⎡
⎣0

1
1

⎤
⎦− 1

2

⎡
⎣1

1
0

⎤
⎦ =

⎡
⎣−1/2

1/2
1

⎤
⎦.

Then,

〈x3, y1〉 = 1(1) + 0(1) + 1(0) = 1,

〈x3, y2〉 = 1(−1/2) + 0 (1/2) + 1(1) = 1/2,

〈y2, y2〉 = (−1/2)2 + (1/2)2 + (1)2 = 3/2,

so

y3 = x3 − 〈x3, y1〉
〈y1, y1〉y1 − 〈x3, y2〉

〈y2, y2〉y2 = x3 − 1
2

y1 − 1/2
3/2

y2

=
⎡
⎣1

0
1

⎤
⎦− 1

2

⎡
⎣1

1
0

⎤
⎦− 1

3

⎡
⎣−1/2

1/2
1

⎤
⎦ =

⎡
⎣ 2/3

−2/3
2/3

⎤
⎦.
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The vectors y1, y2, and y3 form an orthogonal set. To make this set orthonormal, we
note that 〈y1, y1〉 = 2, 〈y2, y2〉 = 3/2, and 〈y3, y3〉 = (2/3)(2/3) + (−2/3)(−2/3) +
(2/3)(2/3) = 4/3. Therefore,

‖y1‖ = √〈y1, y1〉 = √
2 ‖y2‖ = √〈y2, y2〉 = √3/2,

‖y3‖ = √〈y3, y3〉 = 2/
√

3,

and

q1 = y1

‖y1‖ = 1√
2

⎡
⎣1

1
0

⎤
⎦ =

⎡
⎣1/

√
2

1/
√

2
0

⎤
⎦,

q2 = y2

‖y2‖ = 1√
3/2

⎡
⎣−1/2

1/2
1

⎤
⎦ =

⎡
⎣−1/

√
6

1/
√

6
2/

√
6

⎤
⎦,

q3 = y3

‖y3‖ = 1

2/
√

3

⎡
⎣ 2/3

−2/3
2/3

⎤
⎦ =

⎡
⎣ 1/

√
3

−1/
√

3
1/

√
3

⎤
⎦. �

Example 2 Use the Gram–Schmidt orthonormalization process to construct an
orthonormal set of vectors from the linearly independent set {x1, x2, x3, x4}, where

x1 =

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦, x2 =

⎡
⎢⎢⎣

1
2
1
0

⎤
⎥⎥⎦, x3 =

⎡
⎢⎢⎣

0
1
2
1

⎤
⎥⎥⎦, x4 =

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦.

Solution

y1 = x1 =

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦,

〈y1, y1〉 = 1(1) + 1(1) + 0(0) + 1(1) = 3,

〈x2, y1〉 = 1(1) + 2(1) + 1(0) + 0(1) = 3,

y2 = x2 − 〈x2, y1〉
〈y1, y1〉y1 = x2 − 3

3
y1 =

⎡
⎢⎢⎣

0
1
1

−1

⎤
⎥⎥⎦;
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〈y2, y2〉 = 0(0) + 1(1) + 1(1) + (−1)(−1) = 3,

〈x3, y1〉 = 0(1) + 1(1) + 2(0) + 1(1) = 2,

〈x3, y2〉 = 0(0) + 1(1) + 2(1) + 1(−1) = 2,

y3 = x3 − 〈x3, y1〉
〈y1, y1〉y1 − 〈x3, y2〉

〈y2, y2〉y2

= x3 − 2
3

y1 − 2
3

y2 =

⎡
⎢⎢⎣

−2/3
−1/3

4/3
1

⎤
⎥⎥⎦;

〈y3, y3〉 =
(−2

3

)2

+
(−1

3

)2

+
(

4
3

)2

+ (1)2 = 10
3

,

〈x4, y1〉 = 1(1) + 0(1) + 1(0) + 1(1) = 2,

〈x4, y2〉 = 1(0) + 0(1) + 1(1) + 1(−1) = 0,

〈x4, y3〉 = 1
(−2

3

)
+ 0
(−1

3

)
+ 1
(

4
3

)
+ 1(1) = 5

3
,

y4 = x4 − 〈x4, y1〉
〈y1, y1〉y1 − 〈x4, y2〉

〈y2, y2〉y2 − 〈x4, y3〉
〈y3, y3〉y3

= x4 − 2
3

y1 − 0
3

y2 − 5/3
10/3

y3 =

⎡
⎢⎢⎣

2/3
−1/2

1/3
−1/6

⎤
⎥⎥⎦.

Then

〈y4, y4〉 = (2/3)(2/3) + (−1/2)(−1/2) + (1/3)(1/3) + (−1/6)(−1/6)

= 5/6,

and

q1 = 1√
3

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1/
√

3
1/

√
3

0
1/

√
3

⎤
⎥⎥⎦,

q2 = 1√
3

⎡
⎢⎢⎣

0
1
1

−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
1/

√
3

1/
√

3
−1/

√
3

⎤
⎥⎥⎦,
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q3 = 1√
10/3

⎡
⎢⎢⎣

−2/3
−1/3

4/3
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−2/
√

30
−1/

√
30

4/
√

30
3/

√
30

⎤
⎥⎥⎦,

q4 = 1√
5/6

⎡
⎢⎢⎣

2/3
−1/2

1/3
−1/6

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4/
√

30
−3/

√
30

2/
√

30
−1/

√
30

⎤
⎥⎥⎦. �

Problems 10.2

1. Determine which of the following vectors are orthogonal:

x =
[

1
2

]
, y =

[
2

−1

]
, z =

[−2
−1

]
, u =

[−4
2

]
, v =

[
3
6

]
.

2. Determine which of the following vectors are orthogonal:

x =
⎡
⎣1

1
2

⎤
⎦, y =

⎡
⎣1

1
1

⎤
⎦, z =

⎡
⎣ 1

1
−1

⎤
⎦, u =

⎡
⎣ 1

−1
0

⎤
⎦, v =

⎡
⎣−2

1
1

⎤
⎦.

3. Find x so that [
3
5

]
is orthogonal to

[
x

4

]
.

4. Find x so that ⎡
⎣−1

x

3

⎤
⎦ is orthogonal to

⎡
⎣1

2
3

⎤
⎦.

5. Find x so that [x x 2] is orthogonal to [1 3 − 1].

6. Find x and y so that [x y] is orthogonal to [1 3].

7. Find x and y so that

⎡
⎣x

y

1

⎤
⎦ is orthogonal to both

⎡
⎣1

2
3

⎤
⎦ and

⎡
⎣1

1
1

⎤
⎦.



326 Chapter 10 Real Inner Products and Least-Square

8. Find x, y, and z so that

⎡
⎣x

y

z

⎤
⎦ is orthogonal to both

⎡
⎣1

0
1

⎤
⎦ and

⎡
⎣1

1
2

⎤
⎦.

9. Redo Problem 8 with the additional stipulation that [x y z]ᵀ be a unit
vector.

In Problems 10 through 18, use the Gram–Schmidt orthonormalization process
to construct an orthonormal set from the given set of linearly independent vectors.

10. x1 =
[

1
2

]
, x2 =

[
2
1

]
. 11. x1 =

[
1
1

]
, x2 =

[
3
5

]
.

12. x1 =
[

3
−2

]
, x2 =

[
3
3

]
.

13. x1 =
⎡
⎣1

2
1

⎤
⎦, x2 =

⎡
⎣1

0
1

⎤
⎦, x3 =

⎡
⎣1

0
2

⎤
⎦.

14. x1 =
⎡
⎣2

1
0

⎤
⎦, x2 =

⎡
⎣0

1
1

⎤
⎦, x3 =

⎡
⎣2

0
2

⎤
⎦.

15. x1 =
⎡
⎣1

1
0

⎤
⎦, x2 =

⎡
⎣2

0
1

⎤
⎦, x3 =

⎡
⎣2

2
1

⎤
⎦.

16. x1 =
⎡
⎣0

3
4

⎤
⎦, x2 =

⎡
⎣3

5
0

⎤
⎦, x3 =

⎡
⎣2

5
5

⎤
⎦.

17. x1 =

⎡
⎢⎢⎣

0
1
1
1

⎤
⎥⎥⎦, x2 =

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦, x3 =

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦, x4 =

⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦.

18. x1 =

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦, x2 =

⎡
⎢⎢⎣

0
1

−1
0

⎤
⎥⎥⎦, x3 =

⎡
⎢⎢⎣

1
0

−1
0

⎤
⎥⎥⎦, x4 =

⎡
⎢⎢⎣

1
0
0

−1

⎤
⎥⎥⎦.

19. Prove that no y-vector in the Gram–Schmidt orthonormalization process
is zero.



10.3 Projections and QR-Decompositions 327

20. Prove that the y-vectors in the Gram–Schmidt orthonormalization process
form an orthogonal set. (Hint: first show that 〈y2, y1〉 = 0, hence y2 must be
orthogonal to y1. Then use induction.)

21. With qj defined by Eq. (5), show that Eq. (4) can be simplified to yj = xj −∑j−1
k=1 〈xj, qk〉qk.

22. The vectors

x1 =
⎡
⎣1

1
0

⎤
⎦, x2 =

⎡
⎣0

1
1

⎤
⎦, x3 =

⎡
⎣ 1

0
−1

⎤
⎦

are linearly dependent. Apply the Gram–Schmidt process to it, and use the
results to deduce what occurs whenever the process is applied to a linearly
dependent set of vectors.

23. Prove that if x and y are orthogonal, then

||x − y||2 = ||x||2 + ||y||2.
24. Prove that if x and y are orthonormal, then

||sx + ty||2 = s2 + t2

for any two scalars s and t.

25. Let Q be any n × n matrix whose columns, when considered as n-dimensional
vectors, form an orthonormal set. What can you say about the product QᵀQ?

26. Prove that if 〈y, x〉 = 0 for every n-dimensional vector y, then x = 0.

27. Let x and y be any two vectors of the same dimension. Prove that x + y is
orthogonal to x − y if and only if ||x|| = ||y||.

28. Let A be an n × n real matrix and p be a real n-dimensional column vector.
Show that if p is orthogonal to the columns of A, then 〈Ay, p〉 = 0 for any
n-dimensional real column vector y.

10.3 Projections and QR-Decompositions

As with other vector operations, the inner product has a geometrical interpretation
in two or three dimensions. For simplicity, we consider two-dimensional vectors
here; the extension to three dimensions is straightforward.

Let u and v be two nonzero vectors, considered as directed line segments (see
Section 1.7), positioned so that their initial points coincide. The angle between
u and v is the angle θ between the two line segments satisfying 0 ≤ θ ≤ π. See
Figure 10.1.

Definition 1 If u and v are two-dimensional vectors and θ is the angle between
them, then the dot product of these two vectors is u · v = ||u|| ||v|| cos θ.
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u

v

�

Figure 10.1

To use Definition 1, we need the cosine of the angle between two vectors, which
requires us to measure the angle. We shall take another approach.

The vectors u and v along with their difference u − v form a triangle (see
Figure 10.2) having sides ||u||, ||v||, and ||u − v||. It follows from the law of cosines
that

||u − v||2 = ||u||2 + ||v||2 − 2||u|| ||v|| cos θ,

whereupon

||u|| ||v|| cos θ = 1
2
[||u||2 + ||v||2 − ||u − v||2]

= 1
2

[〈u, u〉 + 〈v, v〉 − 〈u − v, u − v〉]
= 〈u, v〉.

u

v

u 2 v

�

Figure 10.2
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Thus, the dot product of two-dimensional vectors is the inner product of those
vectors. That is,

u · v = ||u|| ||v|| cos θ = 〈u, v〉. (6)

The dot product of nonzero vectors is zero if and only if cos θ = 0, or θ = 90◦.
Consequently, the dot product of two nonzero vectors is zero if and only if the
vectors are perpendicular. This, with Eq. (6), establishes the equivalence between
orthogonality and perpendicularity for two-dimensional vectors. In addition, we
may rewrite Eq. (6) as

cos θ = 〈u, v〉
||u|| ||v|| , (7)

and use Eq. (7) to calculate the angle between two vectors.

Example 1 Find the angle between the vectors

u =
[

2
5

]
and v =

[−3
4

]
.

Solution 〈u, v〉 = 2(−3) + 5(4) = 14, ‖u‖ = √
4 + 25 = √

29, ‖v‖ = √
9 + 16 =

5, so cos θ = 14/(5
√

29) = 0.1599, and θ = 58.7◦. �

Eq. (7) is used to define the angle between any two vectors of the same, but
arbitrary dimension, even though the geometrical significance of an angle becomes
meaningless for dimensions greater than three. (See Problems 9 and 10.)

A problem that occurs often in the applied sciences and that has important
ramifications for us in matrices involves a given nonzero vector x and a nonzero
reference vector a. The problem is to decompose x into the sum of two vectors,
u + v, where u is parallel to a and v is perpendicular to a. This situation is illustrated
in Figure 10.3. In physics, u is called the parallel component of x and v is called the

u

a
vx

Figure 10.3
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perpendicular component of x, where parallel and perpendicular are understood
to be with respect to the reference vector a.

If u is to be parallel to a, it must be a scalar multiple of a, in particular u = λa.
Since we want x = u + v, it follows that v = x − u = x − λa. Finally, if u and v are
to be perpendicular, we require that

0 = 〈u, v〉 = 〈λa, x − λa〉
= λ〈a, x〉 − λ2〈a, a〉
= λ[〈a, x〉 − λ〈a, a〉].

Thus, either λ = 0 or λ = 〈a, x〉/〈a, a〉. If λ = 0, then u = λa = 0, and x =
u + v = v, which means that x and a are perpendicular. In such a case, 〈a, x〉 = 0.
Thus, we may always infer that λ = 〈a, x〉/〈a, a〉, with

u = 〈a, x〉
〈a, a〉a and v = x − 〈a, x〉

〈a, a〉a.

In this context, u is the projection of x onto a, and v is the orthogonal complement.

Example 2 Decompose the vector

x =
[

2
7

]

into the sum of two vectors, one of which is parallel to

a =
[−3

4

]
,

and one of which is perpendicular to a.

Solution

u = 〈a, x〉
〈a, a〉a = 22

25

[−3
4

]
=
[−2.64

3.52

]
,

v = x − u =
[

2
7

]
−
[−2.64

3.52

]
=
[

4.64
3.48

]
.

Then, x = u + v, with u parallel to a and v perpendicular to a. �

We now extend the relationships developed in two dimensions to vectors in
higher dimensions. Given a nonzero vector x and another nonzero reference
vector a, we define the projection of x onto a as

projax = 〈a, x〉
〈a, a〉a. (8)
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As a result, we obtain the very important relationship that

x − 〈a, x〉
〈a, a〉 a is orthogonal to a. (9)

That is, if we subtract from a nonzero vector x its projection onto another nonzero
vector a, we are left with a vector that is orthogonal to a. (See Problem 23.)

In this context, the Gram–Schmidt process, described in Section 10.2, is almost
obvious. Consider Eq. (4) from that section:

yj = xj −
j−1∑
k=1

〈
xj, yk

〉〈
yk, yk

〉yk (4 repeated)

The quantity inside the summation sign is the projection of xj onto yk. Thus for
each k (k = 1, 2, . . . , j − 1), we are sequentially subtracting from xj its projection
onto yk, leaving a vector that is orthogonal to yk.

We now propose to alter slightly the steps of the Gram–Schmidt orthonormal-
ization process. First, we shall normalize the orthogonal vectors as soon as they
are obtained, rather than waiting until the end. This will make for messier hand
calculations, but for a more efficient computer algorithm. Observe that if the yk

vectors in Eq. (4) are unit vectors, then the denominator is unity, and need not be
calculated.

Once we have fully determined a yk vector, we shall immediately subtract the
various projections onto this vector from all succeeding x vectors. In particular,
once y1 is determined, we shall subtract the projection of x2 onto y1 from x2, then
we shall subtract the projection of x3 onto y1 from x3, and continue until we have
subtracted the projection of xn onto y1 from xn. Only then will we return to x2 and
normalize it to obtain y2. Then, we shall subtract from x3, x4, . . . , xn the projections
onto y2 from x3, x4, . . . , xn, respectively, before returning to x3 and normalizing
it, thus obtaining y3. As a result, once we have y1, we alter x2, x3, . . . , xn so each
is orthogonal to y1; once we have y2, we alter again x3, x4, . . . , xn so each is also
orthogonal to y2; and so on.

These changes are known as the revised Gram–Schmidt algorithm. Given a set
of linearly independent vectors {x1, x2, . . . , xn}, the algorithm may be formalized
as follows: Begin with k = 1 and, sequentially moving through k = n;

(i) calculate rkk = √〈xk, xk〉,
(ii) set qk = (1/rkk)xk,

(iii) for j = k + 1, k + 2, . . . , n, calculate rkj = 〈xj, qk〉,
(iv) for j = k + 1, k + 2, . . . , n, replace xj by xj − rkjqk.

The first two steps normalize, the third and fourth steps subtract projections from
vectors, thereby generating orthogonality.
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Example 3 Use the revised Gram–Schmidt algorithm to construct an orthonor-
mal set of vectors from the linearly independent set {x1, x2, x3}, where

x1 =
⎡
⎣1

1
0

⎤
⎦, x2 =

⎡
⎣0

1
1

⎤
⎦, x3 =

⎡
⎣1

0
1

⎤
⎦.

Solution

First Iteration (k = 1)

r11 = √〈x1, x1〉 = √
2,

q1 = 1
r11

x1 = 1√
2

⎡
⎣1

1
0

⎤
⎦ =

⎡
⎣1/

√
2

1/
√

2
0

⎤
⎦,

r12 = 〈x2, q1〉 = 1√
2
,

r13 = 〈x3, q1〉 = 1√
2
,

x2 ← x2 − r12q1 =
⎡
⎣0

1
1

⎤
⎦− 1√

2

⎡
⎣1/

√
2

1/
√

2
0

⎤
⎦ =

⎡
⎣−1/2

1/2
1

⎤
⎦,

x3 ← x3 − r13q1 =
⎡
⎣1

0
1

⎤
⎦− 1√

2

⎡
⎣1/

√
2

1/
√

2
0

⎤
⎦ =

⎡
⎣ 1/2

−1/2
1

⎤
⎦.

Note that both x2 and x3 are now orthogonal to q1.

Second Iteration (k = 2)

Using vectors from the first iteration, we compute

r22 = √〈x2, x2〉 = √3/2,

q2 = 1
r22

x2 = 1√
3/2

⎡
⎣−1/2

1/2
1

⎤
⎦ =

⎡
⎣−1/

√
6

1/
√

6
2/

√
6

⎤
⎦,

r23 = 〈x3, q2〉 = 1√
6
,

x3 ← x3 − r23q2 =
⎡
⎣ 1/2

−1/2
1

⎤
⎦− 1√

6

⎡
⎣−1/

√
6

1/
√

6
2/

√
6

⎤
⎦ =

⎡
⎣ 2/3

−2/3
2/3

⎤
⎦.
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Third Iteration (k = 3)

Using vectors from the second iteration, we compute

r33 = √〈x3, x3〉 = 2√
3
,

q3 = 1
r33

x3 = 1

2/
√

3

⎡
⎣ 2/3

−2/3
2/3

⎤
⎦ =

⎡
⎣ 1/

√
3

−1/
√

3
1/

√
3

⎤
⎦.

The orthonormal set is {q1, q2, q3}. Compare with Example 1 of Section 10.2. �

The revised Gram–Schmidt algorithm has two advantages over the Gram–
Schmidt process developed in the previous section. First, it is less effected by
roundoff errors, and second, the inverse process—recapturing the x-vectors from
the q-vectors—becomes trivial. To understand this second advantage, let us redo
Example 3 symbolically. In the first iteration, we calculated

q1 = 1
r11

x1,

so, we immediately have,
x1 = r11q1. (10)

We then replaced x2 and x3 with vectors that were orthogonal to q1. If we denote
these replacement vectors as x′

2 and x′
3, respectively, we have

x′
2 = x2 − r12q1 and x′

3 = x3 − r13q1.

With the second iteration, we calculated

q2 = 1
r22

x′
2 = 1

r22
(x2 − r12q1).

Solving for x2, we get

x2 = r12q1 + r22q2. (11)

We then replaced x3 with a vector that was orthogonal to q2. If we denote this
replacement vector as x′′

3 , we have

x′′
3 = x′

3 − r23q2 = (x3 − r13q1
)− r23q2.

With the third iteration, we calculated

q3 = 1
r33

x′′
3 = 1

r33
(x3 − r13q1 − r23q2).
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Solving for x3, we obtain

x3 = r13q1 + r23q2 + r33q3. (12)

Eqs. (10) through (12) form a pattern that is easily extended. Begin with
linearly independent vectors x1, x2, . . . , xn, and use the revised Gram–Schmidt
algorithm to form q1, q2, . . . , qn. Then, for any k(k = 1, 2, . . . , n).

xk = r1kq1 + r2kq2 + r3kq3 + · · · + rkkqk.

If we set X = [x1 x2 . . . xn],

Q = [q1 q2 · · · qn] (13)

and

R =

⎡
⎢⎢⎢⎢⎢⎣

r11 r12 r13 . . . r1n

0 r22 r23 · · · r2n

0 0 r33 · · · r3n
...

...
...

...

0 0 0 · · · rnn

⎤
⎥⎥⎥⎥⎥⎦; (14)

we have the matrix representation

X = QR,

which is known as the QR-decomposition of the matrix X. The columns of Q form
an orthonormal set of column vectors, and R is upper (or right) triangular.

In general, we are given a matrix X and are asked to generate its QR-
decomposition. This is accomplished by applying the revised Gram–Schmidt
algorithm to the columns of X, providing those columns are linearly independent.
Then Eqs. (13) and (14) yield the desired factorization.

Example 4 Construct a QR-decomposition for

X =
⎡
⎣1 0 1

1 1 0
0 1 1

⎤
⎦.

Solution The columns of X are the vectors x1, x2, and x3 of Example 3. Using
the results of that problem, we generate

Q =
⎡
⎢⎣1/

√
2 −1/

√
6 1/

√
3

1/
√

2 1/
√

6 −1/
√

3
0 2/

√
6 1/

√
3

⎤
⎥⎦ and R =

⎡
⎢⎣

√
2 1/

√
2 1/

√
2

0
√

3/2 1/
√

6
0 0 2/

√
3

⎤
⎥⎦. �
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Example 5 Construct a QR-decomposition for

X =

⎡
⎢⎢⎣

1 1 0 1
1 2 1 0
0 1 2 1
1 0 1 1

⎤
⎥⎥⎦.

Solution The columns of X are the vectors

x1 =

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦, x2 =

⎡
⎢⎢⎣

1
2
1
0

⎤
⎥⎥⎦, x3 =

⎡
⎢⎢⎣

0
1
2
1

⎤
⎥⎥⎦, x4 =

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦.

We apply the revised Gram–Schmidt algorithm to these vectors. Carrying eight
significant figures through all computations but rounding to four decimals for
presentation purposes, we get

First Iteration (k = 1)

r11 = √〈x1, x1〉 = √
3 = 1.7321,

q1 = 1
r11

x1 = 1√
3

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.5774
0.5774
0.0000
0.5774

⎤
⎥⎥⎦,

r12 = 〈x2, q1
〉 = 1.7321,

r13 = 〈x3, q1
〉 = 1.1547,

r14 = 〈x4, q1
〉 = 1.1547,

x2 ← x2 − r12q1 =

⎡
⎢⎢⎣

1
2
1
0

⎤
⎥⎥⎦− 1.7321

⎡
⎢⎢⎣

0.5774
0.5774
0.0000
0.5774

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.0000
1.0000
1.0000

−1.0000

⎤
⎥⎥⎦,

x3 ← x3 − r13q1 =

⎡
⎢⎢⎣

0
1
2
1

⎤
⎥⎥⎦− 1.1547

⎡
⎢⎢⎣

0.5774
0.5774
0.0000
0.5774

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.6667
0.3333
2.0000
0.3333

⎤
⎥⎥⎦,

x4 ← x4 − r14q1 =

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦− 1.1547

⎡
⎢⎢⎣

0.5774
0.5774
0.0000
0.5774

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.3333
−0.6667

1.0000
0.3333

⎤
⎥⎥⎦.
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Second Iteration (k = 2)

Using vectors from the first iteration, we compute

r22 = √〈x2, x2〉 = 1.7321,

q2 = 1
r22

x2 = 1
1.7321

⎡
⎢⎢⎣

0.0000
1.0000
1.0000

−1.0000

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.0000
0.5774
0.5774

−0.5774

⎤
⎥⎥⎦,

r23 = 〈x3, q2
〉 = 1.1547,

r24 = 〈x4, q2
〉 = 0.0000,

x3 ← x3 − r23q2 =

⎡
⎢⎢⎣

−0.6667
0.3333
2.0000
0.3333

⎤
⎥⎥⎦− 1.1547

⎡
⎢⎢⎣

0.0000
0.5774
0.5774

−0.5774

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.6667
−0.3333

1.3333
1.0000

⎤
⎥⎥⎦,

x4 ← x4 − r24q2 =

⎡
⎢⎢⎣

0.3333
−0.6667

1.0000
0.3333

⎤
⎥⎥⎦− 0.0000

⎡
⎢⎢⎣

0.0000
0.5774
0.5774

−0.5774

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.3333
−0.6667

1.0000
0.3333

⎤
⎥⎥⎦.

Third Iteration (k = 3)

Using vectors from the second iteration, we compute

r33 = √〈x3, x3〉 = 1.8257,

q3 = 1
r33

x3 = 1
1.8257

⎡
⎢⎢⎣

−0.6667
−0.3333

1.3333
1.0000

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.3651
−0.1826

0.7303
0.5477

⎤
⎥⎥⎦,

r34 = 〈x4, q3
〉 = 0.9129,

x4 ← x4 − r34q3 =

⎡
⎢⎢⎣

0.3333
−0.6667

1.0000
0.3333

⎤
⎥⎥⎦− 0.9129

⎡
⎢⎢⎣

−0.3651
−0.1826

0.7303
0.5477

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.6667
−0.5000

0.3333
−0.1667

⎤
⎥⎥⎦.

Fourth Iteration (k = 4)

Using vectors from the third iteration, we compute

r44 = √〈x4, x4〉 = 0.9129,
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q4 = 1
r44

x4 = 1
0.9129

⎡
⎢⎢⎣

0.6667
−0.5000

0.3333
−0.1667

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.7303
−0.5477

0.3651
−0.1826

⎤
⎥⎥⎦.

With these entries calculated (compare with Example 2 of Section 10.2),
we form

Q =

⎡
⎢⎢⎣

0.5774 0.0000 −0.3651 0.7303
0.5774 0.5774 −0.1826 −0.5477
0.0000 0.5774 0.7303 0.3651
0.5774 −0.5774 0.5477 −0.1826

⎤
⎥⎥⎦

and

R =

⎡
⎢⎢⎣

1.7321 1.7321 1.1547 1.1547
0 1.7321 1.1547 0.0000
0 0 1.8257 0.9129
0 0 0 0.9129

⎤
⎥⎥⎦. �

Finally, we note that in contrast to LU-decompositions, QR-decompositions
are applicable to nonsquare matrices as well. In particular, if we consider a matrix
containing just the first two columns of the matrix X in Example 5, and calculate
r11, r12, r22, q1, and q2 as we did there, we have the decomposition

⎡
⎢⎢⎣

1 1
1 2
0 1
1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.5774 0.0000
0.5774 0.5774
0.0000 0.5774
0.5774 −0.5774

⎤
⎥⎥⎦
[

1.7321 1.7321
0 1.7321

]
.

Problems 10.3

In Problems 1 through 10, determine the (a) the angle between the given vectors,
(b) the projection of x1 onto x2, and (c) its orthogonal component.

1. x1 =
[

1
2

]
, x2 =

[
2
1

]
. 2. x1 =

[
1
1

]
, x2 =

[
3
5

]
.

3. x1 =
[

3
−2

]
, x2 =

[
3
3

]
. 4. x1 =

[
4

−1

]
, x2 =

[
2
8

]
.
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5. x1 =
[−7
−2

]
, x2 =

[
2
9

]
. 6. x1 =

⎡
⎣2

1
0

⎤
⎦, x2 =

⎡
⎣2

0
2

⎤
⎦.

7. x1 =
⎡
⎣1

1
0

⎤
⎦, x2 =

⎡
⎣2

2
1

⎤
⎦. 8. x1 =

⎡
⎣0

3
4

⎤
⎦, x2 =

⎡
⎣2

5
5

⎤
⎦.

9. x1 =

⎡
⎢⎢⎣

0
1
1
1

⎤
⎥⎥⎦, x2 =

⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦. 10. x1 =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦, x2 =

⎡
⎢⎢⎣

1
−2

0
−1

⎤
⎥⎥⎦.

In Problems 11 through 21, determine QR-decompositions for the given matrices.

11.
[

1 2
2 1

]
. 12.

[
1 3
1 5

]
. 13.

[
3 3

−2 3

]
.

14.

⎡
⎣1 2

2 2
2 1

⎤
⎦. 15.

⎡
⎣1 1

1 0
3 5

⎤
⎦. 16.

⎡
⎢⎢⎣

3 1
−2 1

1 1
−1 1

⎤
⎥⎥⎦.

17.

⎡
⎣2 0 2

1 1 0
0 1 2

⎤
⎦. 18.

⎡
⎣1 2 2

1 0 2
0 1 1

⎤
⎦. 19.

⎡
⎣0 3 2

3 5 5
4 0 5

⎤
⎦.

20.

⎡
⎢⎢⎣

0 1 1
1 0 1
1 1 0
1 1 1

⎤
⎥⎥⎦. 21.

⎡
⎢⎢⎣

1 0 1
1 1 0
0 −1 −1
0 0 0

⎤
⎥⎥⎦.

22. Show that

∥∥∥∥ 〈x, a〉
〈a, a〉a

∥∥∥∥ = ‖x‖|cos θ|,

where θ is the angle between x and a.

23. Prove directly that

x − 〈a, x〉
〈a, a〉a

is orthogonal to a.

24. Discuss what is likely to occur in a QR-decomposition if the columns are not
linearly independent, and all calculations are rounded.
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10.4 The QR-Algorithm

The QR-algorithm is one of the more powerful numerical methods developed
for computing eigenvalues of real matrices. In contrast to the power methods
described in Section 6.6, which converge only to a single dominant real eigenvalue
of a matrix, the QR-algorithm generally locates all eigenvalues, both real and
complex, regardless of multiplicity.

Although a proof of the QR-algorithm is beyond the scope of this book, the
algorithm itself is deceptively simple. As its name suggests, the algorithm is based
on QR-decompositions. Not surprisingly then, the algorithm involves numerous
arithmetic calculations, making it unattractive for hand computations but ideal
for implementation on a computer.

Like many numerical methods, the QR-algorithm is iterative. We begin with
a square real matrix A0. To determine its eigenvalues, we create a sequence of
new matrices A1, A2, . . . , Ak−1, Ak, . . . , having the property that each new matrix
has the same eigenvalues as A0, and that these eigenvalues become increasingly
obvious as the sequence progresses. To calculate Ak (k = 1, 2, 3, . . .) once Ak−1 is
known, first construct a QR-decomposition of Ak−1:

Ak−1 = Qk−1Rk−1,

and then reverse the order fo the product to define

Ak = Rk−1Qk−1.

It can be shown that each matrix in the sequence {Ak} (k = 1, 2, 3, . . .) has identical
eigenvalues. For now, we just note that the sequence generally converges to one
of the following two partitioned forms:

[
S --

-

T
- - - - - - - - - - - - - - - - - - - - -
0 0 0 · · · 0 --

-

a

]
(15)

or ⎡
⎢⎣ U --

- V
- - - - - - - - - - - - - - - - - - - - - - - -
0 0 0 · · · 0 b c

0 0 0 · · · 0 --
--

-

d e

⎤
⎥⎦. (16)

If matrix (15) occurs, then the element a is an eigenvalue, and the remaining
eigenvalues are found by applying the QR-algorithm a new to the submatrix S.
If, on the other hand, matrix (16) occurs, then two eigenvalues are determined by
solving for the roots of the characteristic equation of the 2 × 2 matrix in the lower
right partition, namely

λ2 − (b + e)λ + (be − cd) = 0.
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The remaining eigenvalues are found by applying the QR-algorithm anew to the
submatrix U.

Convergence of the algorithm is accelerated by performing a shift at each
iteration. If the orders of all matrices are n × n, we denote the element in the
(n, n)-position of the matrix Ak−1 as wk−1,and construct a QR-decomposition for
the shifted matrix Ak−1 − wk−1I. That is,

Ak−1 − wk−1I = Qk−1Rk−1. (17)

We define

Ak = Rk−1Qk−1 + wk−1I. (18)

Example 1 Find the eigenvalues of

A0 =
⎡
⎣ 0 1 0

0 0 1
18 −1 −7

⎤
⎦.

Solution Using the QR-algorithm with shifting, carrying all calculations to eight
significant figures but rounding to four decimals for presentation, we compute

A0 − (−7)I =
⎡
⎣ 7 1 0

0 7 1
18 −1 0

⎤
⎦

=
⎡
⎣0.3624 0.1695 −0.9165

0.0000 0.9833 0.1818
0.9320 −0.0659 0.3564

⎤
⎦
⎡
⎣19.3132 −0.5696 0.0000

0.0000 7.1187 0.9833
0.0000 0.0000 0.1818

⎤
⎦

= Q0R0,

A1 = R0Q0 + (−7)I

=
⎡
⎣19.3132 −0.5696 0.0000

0.0000 7.1187 0.9833
0.0000 0.0000 0.1818

⎤
⎦
⎡
⎣0.3624 0.1695 −0.9165

0.0000 0.9833 0.1818
0.9320 −0.0659 0.3564

⎤
⎦

+
⎡
⎣−7 0 0

0 −7 0
0 0 −7

⎤
⎦

=
⎡
⎣0.0000 2.7130 −17.8035

0.9165 −0.0648 1.6449
0.1695 −0.0120 −6.9352

⎤
⎦,
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A1 − (−6.9352)I =
⎡
⎣6.9352 2.7130 −17.8035

0.9165 6.8704 1.6449
0.1695 −0.0120 0.0000

⎤
⎦

=
⎡
⎣0.9911 −0.1306 −0.0260

0.1310 0.9913 0.0120
0.0242 −0.0153 0.9996

⎤
⎦
⎡
⎣6.9975 3.5884 −17.4294

0.0000 6.4565 3.9562
0.0000 0.0000 0.4829

⎤
⎦

= Q1R1,

A2 = R1Q1 + (−6.9352)I =
⎡
⎣0.0478 2.9101 −17.5612

0.9414 −0.5954 4.0322
0.0117 −0.0074 −6.4525

⎤
⎦.

Continuing in this manner, we generate sequentially

A3 =
⎡
⎣0.5511 2.7835 −16.8072

0.7826 −1.1455 6.5200
0.0001 −0.0001 −6.4056

⎤
⎦

and

A4 =
⎡
⎣0.9259 2.5510 −15.9729

0.5497 −1.5207 8.3583
0.0000 −0.0000 −6.4051

⎤
⎦.

A4 has form (15) with

S =
[

0.9259 2.5510
0.5497 −1.5207

]
and a = −6.4051.

One eigenvalue is −6.4051, which is identical to the value obtained in Example 2
of Section 6.6. In addition, the characteristic equation of R is λ2 + 0.5948λ −
2.8103 = 0, which admits both −2 and 1.4052 as roots. These are the other two
eigenvalues of A0. �

Example 2 Find the eigenvalues of

A0 =

⎡
⎢⎢⎣

0 0 0 −25
1 0 0 30
0 1 0 −18
0 0 1 6

⎤
⎥⎥⎦.
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Solution Using the QR-algorithm with shifting, carrying all calculations to eight
significant figures but rounding to four decimals for presentation, we compute

A0 − (6)I =

⎡
⎢⎢⎣

−6 0 0 −25
1 −6 0 30
0 1 −6 −18
0 0 1 0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

−0.9864 −0.1621 −0.0270 −0.0046
0.1644 −0.9726 −0.1620 −0.0274
0.0000 0.1666 −0.9722 −0.1643
0.0000 0.0000 0.1667 −0.9860

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

6.0828 −0.9864 0.0000 −29.5918
0.0000 6.0023 −0.9996 −28.1246
0.0000 0.0000 6.0001 13.3142
0.0000 0.0000 0.0000 2.2505

⎤
⎥⎥⎦

= Q0R0,

A1 = R0Q0 + (6)I =

⎡
⎢⎢⎣

−0.1622 −0.0266 4.9275 −29.1787
0.9868 −0.0044 −4.6881 27.7311
0.0000 0.9996 2.3856 −14.1140
0.0000 0.0000 0.3751 3.7810

⎤
⎥⎥⎦,

A1 − (3.7810)I =

⎡
⎢⎢⎣

−3.9432 −0.0266 4.9275 −29.1787
0.9868 −3.7854 −4.6881 27.7311
0.0000 0.9996 −1.3954 −14.1140
0.0000 0.0000 0.3751 0.0000

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

−0.9701 −0.2343 −0.0628 −0.0106
0.2428 −0.9361 −0.2509 −0.0423
0.0000 0.2622 −0.9516 −0.1604
0.0000 0.0000 0.1662 −0.9861

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

4.0647 −0.8931 −5.9182 35.0379
0.0000 3.8120 2.8684 −22.8257
0.0000 0.0000 2.2569 8.3060
0.0000 0.0000 0.0000 1.3998

⎤
⎥⎥⎦

= Q1R1,

A2 = R1Q1 + (3.7810)I =

⎡
⎢⎢⎣

−0.3790 −1.6681 11.4235 −33.6068
0.9254 0.9646 −7.4792 21.8871
0.0000 0.5918 3.0137 −8.5524
0.0000 0.0000 0.2326 2.4006

⎤
⎥⎥⎦.
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Continuing in this manner, we generate, after 25 iterations,

A25 =

⎡
⎢⎢⎣

4.8641 −4.4404 18.1956 −28.7675
4.2635 −2.8641 13.3357 −21.3371
0.0000 0.0000 2.7641 −4.1438
0.0000 0.0000 0.3822 1.2359

⎤
⎥⎥⎦,

which has form (16) with

U =
[

4.8641 −4.4404
4.2635 −2.8641

]
and

[
b c

d e

]
=
[

2.7641 −4.1438
0.3822 1.2359

]
.

The characteristic equation of U is λ2 − 2λ + 5 = 0, which has as its roots 1 ± 2i;
the characteristic equation of the other 2 × 2 matrix is λ2 − 4λ + 4.9999 = 0, which
has as its roots 2 ± i. These roots are the four eigenvalues of A0. �

Problems 10.4

1. Use one iteration of the QR-algorithm to calculate A1 when

A0 =
⎡
⎣ 0 1 0

0 0 1
18 −1 7

⎤
⎦.

Note that this matrix differs from the one in Example 1 by a single sign.

2. Use one iteration of the QR-algorithm to calculate A1 when

A0 =
⎡
⎣ 2 −17 7

−17 −4 1
7 1 −14

⎤
⎦.

3. Use one iteration of the QR-algorithm to calculate A1 when

A0 =

⎡
⎢⎢⎣

0 0 0 −13
1 0 0 4
0 1 0 −14
0 0 1 4

⎤
⎥⎥⎦.

In Problems 4 through 14, use the QR-algorithm to calculate the eigenvalues
of the given matrices:

4. The matrix defined in Problem 1.

5. The matrix defined in Problem 2.
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6.

⎡
⎣3 0 0

2 6 4
2 3 5

⎤
⎦. 7.

⎡
⎣7 2 0

2 1 6
0 6 7

⎤
⎦. 8.

⎡
⎣3 2 3

2 6 6
3 6 11

⎤
⎦.

9.

⎡
⎣ 2 0 −1

2 3 2
−1 0 2

⎤
⎦. 10.

⎡
⎣1 1 0

0 1 1
5 −9 6

⎤
⎦. 11.

⎡
⎣ 3 0 5

1 1 1
−2 0 −3

⎤
⎦.

12. The matrix in Problem 3.

13.

⎡
⎢⎢⎣

0 3 2 −1
1 0 2 −3
3 1 0 −1
2 −2 1 1

⎤
⎥⎥⎦. 14.

⎡
⎢⎢⎣

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

⎤
⎥⎥⎦.

10.5 Least-Squares

Analyzing data for forecasting and predicting future events is common to business,
engineering, and the sciences, both physical and social. If such data are plotted,
as in Figure 10.4, they constitute a scatter diagram, which may provide insight
into the underlying relationship between system variables. For example, the data
in Figure 10.4 appears to follow a straight line relationship reasonably well. The
problem then is to determine the equation of the straight line that best fits the data.

A straight line in the variables x and y having the equation

y = mx + c, (19)

y

x

Figure 10.4
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y

x
0 1 2 3 4

10

9

8

7

6

5

4

3

2

1

e(4)

e(3)

e(2)

e(1)

e(0)

y
5

2x
1

15

Denotes a data point

Denotes a point on the
straight line for the same
y-value as the data point

Figure 10.5

where m and c are constants, will have one y-value on the line for each value of
x. This y-value may or may not agree with the data at the same value of x. Thus,
for values of x at which data are available, we generally have two values of y, one
value from the data and a second value from the straight line approximation to
the data. This situation is illustrated in Figure 10.5. The error at each x, designated
as e(x), is the difference between the y-value of the data and the y-value obtained
from the straight-line approximation.

Example 1 Calculate the errors made in approximating the data given in
Figure 10.5 by the line y = 2x + 1.5.

Solution The line and the given data points are plotted in Figure 10.5. There
are errors at x = 0, x = 1, x = 2, x = 3, and x = 4. Evaluating the equation
y = 2x + 1.5 at these values of x, we compute Table 10.1.

It now follows that

e(0) = 1 − 1.5 = −0.5,

e(1) = 5 − 3.5 = 1.5,

e(2) = 3 − 5.5 = −2.5,

e(3) = 6 − 7.5 = −1.5,
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Table 10.1

Evaluated from
Given data y = 2x + 1.5

x y y

0 1 1.5
1 5 3.5
2 3 5.5
3 6 7.5
4 9 9.5

and

e(4) = 9 − 9.5 = −0.5.

Note that these errors could have been read directly from the graph. �

We can extend this concept of error to the more general situation involving N data
points. Let (x1, y1), (x2, y2), (x3, y3), . . . , (xN, yN) be a set of N data points for a
particular situation. Any straight-line approximation to this data generates errors
e(x1), e(x2), e(x3), . . . , e(xN) which individually can be positive, negative, or zero.
The latter case occurs when the approximation agrees with the data at a particular
point. We define the overall error as follows.

Definition 1 The least-squares error E is the sum of the squares of the individual
errors. That is,

E = [e(x1)]2 + [e(x2)]2 + [e(x3)]2 + · · · + [e(xN)]2.

The only way the total error E can be zero is for each of the individual errors to be
zero. Since each term of E is squared, an equal number of positive and negative
individual errors cannot sum to zero.

Example 2 Compute the least-squares error for the approximation used in
Example 1.

Solution

E = [e(0)]2 + [e(1)]2 + [e(2)]2 + [e(3)]2 + [e(4)]2

= (−0.5)2 + (1.5)2 + (−2.5)2 + (−1.5)2 + (−0.5)2

= 0.25 + 2.25 + 6.25 + 2.25 + 0.25

= 11.25. �
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Definition 2 The least-squares straight line is the line that minimizes the
least-squares error.

We seek values of m and c in (19) that minimize the least-squares error. For
such a line,

e(xi) = yi − (mxi + c),

so we want the values for m and c that minimize

E =
N∑

i=1

(yi − mxi − c)2.

This occurs when

∂E

∂m
=

N∑
i=1

2(yi − mxi − c)(−xi) = 0

and

∂E

∂c
=

N∑
i=1

2(yi − mxi − c)(−1) = 0,

or, upon simplifying, when(
N∑

i=1

x2
i

)
m +

(
N∑

i=1

xi

)
c =

N∑
i=1

xiyi, (20)

(
N∑

i=1

xi

)
m + Nc =

N∑
i=1

yi.

System (20) makes up the normal equations for a least-squares fit in two
variables.

Example 3 Find the least-squares straight line for the following x − y data:

x 0 1 2 3 4
y 1 5 3 6 9

.

Solution Table 10.2 contains the required summations.

For this data, the normal equations become

30m + 10c = 65,

10m + 5c = 24,

which has as its solution m = 1.7 and c = 1.4. The least-squares straight line is
y = 1.7x + 1.4.
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Table 10.2

xi yi (xi)
2 xiyi

0 1 0 0
1 5 1 5
2 3 4 6
3 6 9 18
4 9 16 36

Sum
5∑

i=1
xi = 10

5∑
i=1

yi = 24
5∑

i=1
(xi)

2 = 30
5∑

i=1
xiyi = 65

�

The normal equations have a simple matrix representation. Ideally, we would
like to choose m and c for (19) so that

yi = mxi + c

for all data pairs (xi, yi), i = 1, 2, . . . , N. That is, we want the constants m and c to
solve the system

mx1 + c = y1,

mx2 + c = y2,

mx3 + c = y3,

...

mxN + c = yN,

or, equivalently, the matrix equation⎡
⎢⎢⎢⎢⎢⎣

x1 1
x2 1
x3 1
...

...

xN 1

⎤
⎥⎥⎥⎥⎥⎦
[
m

c

]
=

⎡
⎢⎢⎢⎢⎢⎣

y1
y2
y3
...

yN

⎤
⎥⎥⎥⎥⎥⎦.

This system has the standard form Ax = b, where A is defined as a matrix
having two columns, the first being the data vector

[
x1 x2 x3 · · · xN

]T,

and the second containing all ones, x = [m c
]T, and b is the data vector[

y1 y2 y3 · · · yN

]T. In this context, Ax = b has a solution for x if and only if
the data falls on a straight line. If not, then the matrix system is inconsistent, and
we seek the least-squares solution. That is, we seek the vector x that minimizes
the least-squares error as stipulated in Definition 2, having the matrix form

E = ‖Ax − b‖2. (21)
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The solution is the vector x satisfying the normal equations, which take the matrix
form

ATAx = ATb. (22)

System (22) is identical to system (20) when A and b are defined as above.
We now generalize to all linear systems of the form Ax = b. We are primarily

interested in cases where the system is inconsistent (rendering the methods devel-
oped in Chapter 2 useless), ands this generally occurs when A has more rows than
columns. We shall place no restrictions on the number of columns in A, but we
will assume that the columns are linearly independent. We seek the vector x that
minimizes the least-squares error defined by Eq. (21).

Theorem 1 If x has the property that Ax − b is orthogonal to the columns of A,
then x minimizes ‖Ax − b‖2.

Proof. For any vector x0 of appropriate dimension,

‖Ax0 − b‖2 = ‖(Ax0 − Ax) + (Ax − b)‖2

= 〈(Ax0 − Ax) + (Ax − b) , (Ax0 − Ax) + (Ax − b)〉
= 〈(Ax0 − Ax) , (Ax0 − Ax)〉 + 〈(Ax − b) , (Ax − b)〉
= +2 〈(Ax0 − Ax) , (Ax − b)〉
= ‖(Ax0 − Ax)‖2 + ‖(Ax − b)‖2

= +2 〈Ax0, (Ax − b)〉 − 2 〈Ax, (Ax − b)〉 .

It follows directly from Problem 28 of Section 10.2 that the last two inner products
are both zero (take p = Ax − b). Therefore,

‖Ax0 − b‖2 = ‖(Ax0 − Ax)‖2 + ‖(Ax − b)‖2

≥ ‖(Ax − b)‖2,

and x minimizes Eq. (21).

As a consequence of Theorem 1, we seek a vector x having the property
that Ax − b is orthogonal to the columns of A. Denoting the columns of A as
A1, A2, . . . , An, respectively, we require

〈Ai, Ax − b〉 = 0 (i = 1, 2, . . . , n).

If y = [y1 y2 · · · yn

]T denotes an arbitrary vector of appropriate dimension,
then

Ay = A1y1 + A2y2 + · · · + Anyn,
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and

〈Ay, (Ax − b)〉 =
〈

n∑
i=1

Aiyi, (Ax − b)

〉

=
n∑

i=1

〈Aiyi, (Ax − b)〉 (23)

=
n∑

i=1

yi 〈Ai, (Ax − b)〉

= 0.

It also follows from Problem 39 of Section 6.1 that

〈Ay, (Ax − b)〉 = 〈y, Aᵀ(Ax − b)〉 = 〈y, (AᵀAx − Aᵀb)〉. (24)

Eqs. (23) and (24) imply that 〈y, (AᵀAx − Aᵀb)〉 = 0 for any y. We may deduce
from Problem 26 of Section 10.2 that AᵀAx − Aᵀb = 0, or AᵀAx = Aᵀb, which
has the same form as Eq. (22)! Therefore, a vector x is the least-squares solution
to Ax = b if and only if it is the solution to AᵀAx = Aᵀb. This set of normal
equations is guaranteed to have a unique solution whenever the columns of A are
linearly independent, and it may be solved using any of the methods described in
the previous chapters!

Example 4 Find the least-squares solution to

x + 2y + z = 1,

3x − y = 2,

2x + y − z = 2,

x + 2y + 2z = 1.

Solution This system takes the matrix form Ax = b, with

A =

⎡
⎢⎢⎣

1 2 1
3 −1 0
2 1 −1
1 2 2

⎤
⎥⎥⎦, x =

⎡
⎣x

y

z

⎤
⎦, and b =

⎡
⎢⎢⎣

1
2
2
1

⎤
⎥⎥⎦.

Then,

AᵀA =
⎡
⎣15 3 1

3 10 5
1 5 6

⎤
⎦ and Aᵀb =

⎡
⎣12

4
1

⎤
⎦,
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and the normal equations become

⎡
⎢⎣15 3 1

3 10 5
1 5 6

⎤
⎥⎦

⎡
⎢⎣x

y

z

⎤
⎥⎦ =

⎡
⎢⎣12

4
1

⎤
⎥⎦.

Using Gaussian elimination, we obtain as the unique solution to this set of equa-
tions x = 0.7597, y = 0.2607, and z = −0.1772, which is also the least-squares
solution to the original system. �

Example 5 Find the least-squares solution to

0x + 3y = 80,

2x + 5y = 100,

5x − 2y = 60,

−x + 8y = 130,

10x − y = 150.

Solution This system takes the matrix form Ax = b, with

A =

⎡
⎢⎢⎢⎢⎢⎣

1 3
2 5
5 −2

−1 8
10 −1

⎤
⎥⎥⎥⎥⎥⎦, x =

[
x

y

]
, and b =

⎡
⎢⎢⎢⎢⎢⎣

80
100

60
130
150

⎤
⎥⎥⎥⎥⎥⎦.

Then,

AᵀA =
[

131 −15
−15 103

]
and Aᵀb =

[
1950
1510

]
,

and the normal equations become

[
131 −15
−15 103

][
x

y

]
=
[

1950
1510

]
.

The unique solution to this set of equations is x = 16.8450, and y = 17.1134,
rounded to four decimals, which is also the least-squares solution to the original
system. �
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Problems 10.5

In Problems 1 through 8, find the least-squares solution to the given systems of
equations:

1. 2x + 3y = 8,

3x − y = 5,

x + y = 6.

2. 2x + y = 8,

x + y = 4,

−x + y = 0,

3x + y = 13.

3. x + 3y = 65,

2x − y = 0,

3x + y = 50,

2x + 2y = 55.

4. 2x + y = 6,

x + y = 8,

−2x + y = 11,

−x + y = 8,

3x + y = 4.

5. 2x + 3y − 4z = 1,

x − 2y + 3z = 3,

x + 4y + 2z = 6,

2x + y − 3z = 1.

6. 2x + 3y + 2z = 25,

2x − y + 3z = 30,

3x + 4y − 2z = 20,

3x + 5y + 4z = 55.

7. x + y − z = 90,

2x + y + z = 200,

x + 2y + 2z = 320,

3x − 2y − 4z = 10,

3x + 2y − 3z = 220.

8. x + 2y + 2z = 1,

2x + 3y + 2z = 2,

2x + 4y + 4z = −2,

3x + 5y + 4z = 1,

x + 3y + 2z = −1.

9. Which of the systems, if any, given in Problems 1 through 8 represent a least-
squares, straight line fit to data?

10. The monthly sales figures (in thousands of dollars) for a newly opened shoe
store are:

month 1 2 3 4 5

sales 9 16 14 15 21

(a) Plot a scatter diagram for this data.

(b) Find the least-squares straight line that best fits this data.

(c) Use this line to predict sales revenue for month 6.

11. The number of new cars sold at a new car dealership over the first 8 weeks of
the new season are:

week 1 2 3 4 5 6 7 8

sales 51 50 45 46 43 39 35 34



10.5 Least-Squares 353

(a) Plot a scatter diagram for this data.

(b) Find the least-squares straight line that best fits this data.

(c) Use this line to predict sales for weeks 9 and 10.

12. Annual rainfall data (in inches) for a given town over the last seven years are:

year 1 2 3 4 5 6 7

rainfall 10.5 10.8 10.9 11.7 11.4 11.8 12.2

(a) Find the least-squares straight line that best fits this data.

(b) Use this line to predict next year’s rainfall.

13. Solve system (20) algebraically and explain why the solution would be
susceptible to round-off error.

14. (Coding) To minimize the round-off error associated with solving the normal
equations for a least-squares straight line fit, the (xi, yi)-data are coded before
using them in calculations. Each xi-value is replaced by the difference between
xi and the average of all xi-data. That is, if

X = 1
N

N∑
i=1

xi, then set x′
i = xi − X,

and fit a straight line to the (x′
i, yi)-data instead.

Explain why this coding scheme avoids the round-off errors associated
with uncoded data.

15. (a) Code the data given in Problem 10 using the procedure described in
Problem 14.

(b) Find the least-squares straight line fit for this coded data.

16. (a) Code the data given in Problem 11 using the procedure described in
Problem 14.

(b) Find the least-squares straight line fit for this coded data.

17. Census figures for the population (in millions of people) for a particular region
of the country are as follows:

year 1950 1960 1970 1980 1990

population 25.3 23.5 20.6 18.7 17.8

(a) Code this data using the procedure described in Problem 14, and then
find the least-squares straight line that best fits it.

(b) Use this line to predict the population in 2000.
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18. Show that if A = QR is a QR-decomposition of A, then the normal equations
given by Eq. (22) can be written as RᵀRx = RᵀQᵀb, which reduces to
Rx = Qᵀb. This is a numerically stable set of equations to solve, not subject
to the same round-off errors associated with solving the normal equations
directly.

19. Use the procedure described in Problem 18 to solve Problem 1.

20. Use the procedure described in Problem 18 to solve Problem 2.

21. Use the procedure described in Problem 18 to solve Problem 5.

22. Use the procedure described in Problem 18 to solve Problem 6.

23. Determine the error vector associated with the least-squares solution of
Problem 1, and then calculate the inner product of this vector with each of the
columns of the coefficient matrix associated with the given set of equations.

24. Determine the error vector associated with the least-squares solution of
Problem 5, and then calculate the inner product of this vector with each of the
columns of the coefficient matrix associated with the given set of equations.


