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Simultaneous Linear Equations

2.1 Linear Systems

Systems of simultaneous equations appear frequently in engineering and scientific
problems. Because of their importance and because they lend themselves to
matrix analysis, we devote this entire chapter to their solutions.

We are interested in systems of the form

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

...

am1x1 + am2x2 + · · · + amnxn = bm.

(1)

We assume that the coefficients aij (i = 1, 2, . . . , m; j = 1, 2, . . . , n) and the quan-
tities bi (i = 1, 2, . . . , m) are all known scalars. The quantities x1, x2, . . . , xn

represent unknowns.

Definition 1 A solution to (1) is a set of n scalars x1, x2, . . . , xn that when
substituted into (1) satisfies the given equations (that is, the equalities are valid).

System (1) is a generalization of systems considered earlier in that m can differ
from n. If m > n, the system has more equations than unknowns. If m < n, the
system has more unknowns than equations. If m = n, the system has as many
unknowns as equations. In any case, the methods of Section 1.3 may be used to
convert (1) into the matrix form

Ax = b, (2)
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where

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦, x =

⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦, b =

⎡
⎢⎢⎢⎣

b1
b2
...

bm

⎤
⎥⎥⎥⎦.

Thus, if m �= n, A will be rectangular and the dimensions of x and b will be different.

Example 1 Convert the following system to matrix form:

x + 2y − z + w = 4,

x + 3y + 2z + 4w = 9.

Solution

A =
[

1 2 −1 1
1 3 2 4

]
, x =

⎡
⎢⎢⎣

x

y

z

w

⎤
⎥⎥⎦, b =

[
4
9

]
. �

Example 2 Convert the following system to matrix form:

x − 2y = −9,

4x + y = 9,

2x + y = 7,

x − y = −1.

Solution

A =

⎡
⎢⎢⎣

1 −2
4 1
2 1
1 −1

⎤
⎥⎥⎦, x =

[
x

y

]
, b =

⎡
⎢⎢⎣

−9
9
7

−1

⎤
⎥⎥⎦. �

A system of equations given by (1) or (2) can possess no solutions, exactly
one solution, or more than one solution (note that by a solution to (2) we mean a
vector x which satisfies the matrix equality (2)). Examples of such systems are

x + y = 1,
(3)

x + y = 2,

x + y = 1,
(4)

x − y = 0,



2.1 Linear Systems 45

x + y = 0,
(5)

2x + 2y = 0.

Equation (3) has no solutions, (4) admits only the solution x = y = 1
2 , while (5)

has solutions x = −y for any value of y.

Definition 2 A system of simultaneous linear equations is consistent if it
possesses at least one solution. If no solution exists, the system is inconsistent.

Equation (3) is an example of an inconsistent system, while (4) and (5)
represent examples of consistent systems.

Definition 3 A system given by (2) is homogeneous if b = 0 (the zero vec-
tor). If b �= 0 (at least one component of b differs from zero) the system is
nonhomogeneous.

Equation (5) is an example of a homogeneous system.

Problems 2.1

In Problems 1 and 2, determine whether or not the proposed values of x, y, and z

are solutions of the given systems.

1. x + y + 2z = 2, (a) x = 1, y = −3, z = 2.

x − y − 2z = 0, (b) x = 1, y = −1, z = 1.

x + 2y + 2z = 1.

2. x + 2y + 3z = 6, (a) x = 1, y = 1, z = 1.

x − 3y + 2z = 0, (b) x = 2, y = 2, z = 0.

3x − 4y + 7z = 6. (c) x = 14, y = 2, z = −4.

3. Find a value for k such that x = 1, y = 2, and z = k is a solution of the system

2x + 2y + 4z = 1,

5x + y + 2z = 5,

x − 3y − 2z = −3.

4. Find a value for k such that x = 2 and y = k is a solution of the system

3x + 5y = 11,

2x − 7y = −3.
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5. Find a value for k such that x = 2k, y = −k, and z = 0 is a solution of the
system

x + 2y + z = 0,

−2x − 4y + 2z = 0,

3x − 6y − 4z = 1.

6. Find a value for k such that x = 2k, y = −k, and z = 0 is a solution of the
system

x + 2y + 2z = 0,

2x − 4y + 2z = 0,

−3x − 6y − 4z = 0.

7. Find a value for k such that x = 2k, y = −k, and z = 0 is a solution of the
system

x + 2y + 2z = 0,

2x + 4y + 2z = 0,

−3x − 6y − 4z = 1.

8. Put the system of equations given in Problem 4 into the matrix form Ax = b.

9. Put the system of equations given in Problem 1 into the matrix form Ax = b.

10. Put the system of equations given in Problem 2 into the matrix form Ax = b.

11. Put the system of equations given in Problem 6 into the matrix form Ax = b.

12. A manufacturer receives daily shipments of 70,000 springs and 45,000 pounds
of stuffing for producing regular and support mattresses. Regular mattresses
r require 50 springs and 30 pounds of stuffing; support mattresses s require
60 springs and 40 pounds of stuffing. The manufacturer wants to know how
many mattresses of each type should be produced daily to utilize all available
inventory. Show that this problem is equivalent to solving two equations in
the two unknowns r and s.

13. A manufacturer produces desks and bookcases. Desks d require 5 hours of
cutting time and 10 hours of assembling time. Bookcases b require 15 minutes
of cutting time and one hour of assembling time. Each day, the manufacturer
has available 200 hours for cutting and 500 hours for assembling. The manu-
facturer wants to know how many desks and bookcases should be scheduled
for completion each day to utilize all available workpower. Show that this
problem is equivalent to solving two equations in the two unknowns d and b.

14. A mining company has a contract to supply 70,000 tons of low-grade ore,
181,000 tons of medium-grade ore, and 41,000 tons of high-grade ore to a
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supplier. The company has three mines which it can work. Mine A produces
8000 tons of low-grade ore, 5000 tons of medium-grade ore, and 1000 tons of
high-grade ore during each day of operation. Mine B produces 3000 tons of
low-grade ore, 12,000 tons of medium-grade ore, and 3000 tons of high-grade
ore for each day it is in operation. The figures for mine C are 1000, 10,000,
and 2000, respectively. Show that the problem of determining how many days
each mine must be operated to meet contractual demands without surplus
is equivalent to solving a set of three equations in A, B, and C, where the
unknowns denote the number of days each mine will be in operation.

15. A pet store has determined that each rabbit in its care should receive 80 units
of protein, 200 units of carbohydrates, and 50 units of fat daily. The store
carries four different types of feed that are appropriate for rabbits with the
following compositions:

Protein Carbohydrates Fat
Feed units/oz units/oz units/oz

A 5 20 3
B 4 30 3
C 8 15 10
D 12 5 7

The store wants to determine a blend of these four feeds that will meet the
daily requirements of the rabbits. Show that this problem is equivalent to
solving three equations in the four unknowns A, B, C, and D, where each
unknown denotes the number of ounces of that feed in the blend.

16. A small company computes its end-of-the-year bonus b as 5% of the net profit
after city and state taxes have been paid. The city tax c is 2% of taxable income,
while the state tax s is 3% of taxable income with credit allowed for the city
tax as a pretax deduction. This year, taxable income was $400,000. Show that
b, c, and s are related by three simultaneous equations.

17. A gasoline producer has $800,000 in fixed annual costs and incurs an additional
variable cost of $30 per barrel B of gasoline. The total cost C is the sum of
the fixed and variable costs. The net sales S is computed on a wholesale price
of $40 per barrel. (a) Show that C, B, and S are related by two simultaneous
equations. (b) Show that the problem of determining how many barrels must
be produced to break even, that is, for net sales to equal cost, is equivalent to
solving a system of three equations.

18. (Leontief Closed Models) A closed economic model involves a society in
which all the goods and services produced by members of the society are con-
sumed by those members. No goods and services are imported from without
and none are exported. Such a system involves N members, each of whom pro-
duces goods or services and charges for their use. The problem is to determine
the prices each member should charge for his or her labor so that everyone
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breaks even after one year. For simplicity, it is assumed that each member
produces one unit per year.

Consider a simple closed system consisting of a farmer, a carpenter, and a
weaver. The farmer produces one unit of food each year, the carpenter pro-
duces one unit of finished wood products each year, and the weaver produces
one unit of clothing each year. Let p1 denote the farmer’s annual income
(that is, the price she charges for her unit of food), let p2 denote the car-
penter’s annual income (that is, the price he charges for his unit of finished
wood products), and let p3 denote the weaver’s annual income. Assume on
an annual basis that the farmer and the carpenter consume 40% each of the
available food, while the weaver eats the remaining 20%. Assume that the
carpenter uses 25% of the wood products he makes, while the farmer uses
30% and the weaver uses 45%. Assume further that the farmer uses 50% of
the weaver’s clothing while the carpenter uses 35% and the weaver consumes
the remaining 15%. Show that a break-even equation for the farmer is

0.40p1 + 0.30p2 + 0.50p3 = p1,

while the break-even equation for the carpenter is

0.40p1 + 0.25p2 + 0.35p3 = p2.

What is the break-even equation for the weaver? Rewrite all three equations
as a homogeneous system.

19. Paul, Jim, and Mary decide to help each other build houses. Paul will spend
half his time on his own house and a quarter of his time on each of the houses of
Jim and Mary. Jim will spend one third of his time on each of the three houses
under construction. Mary will spend one sixth of her time on Paul’s house, one
third on Jim’s house, and one half of her time on her own house. For tax pur-
poses each must place a price on his or her labor, but they want to do so in a way
that each will break even. Show that the process of determining break-even
wages is a Leontief closed model comprised of three homogeneous equations.

20. Four third world countries each grow a different fruit for export and each
uses the income from that fruit to pay for imports of the fruits from the other
countries. Country A exports 20% of its fruit to country B, 30% to country
C, 35% to country D, and uses the rest of its fruit for internal consumption.
Country B exports 10% of its fruit to country A, 15% to country C, 35% to
country D, and retains the rest for its own citizens. Country C does not export
to country A; it divides its crop equally between countries B and D and its
own people. Country D does not consume its own fruit. All of its fruit is for
export with 15% going to country A, 40% to country B, and 45% to country C.
Show that the problem of determining prices on the annual harvests of fruit
so that each country breaks even is equivalent to solving four homogeneous
equations in four unknowns.
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21. (Leontief Input–Output Models) Consider an economy consisting of N sec-
tors, with each producing goods or services unique to that sector. Let xi denote
the amount produced by the ith sector, measured in dollars. Thus xi represents
the dollar value of the supply of product i available in the economy. Assume
that every sector in the economy has a demand for a proportion (which may
be zero) of the output of every other sector. Thus, each sector j has a demand,
measured in dollars, for the item produced in sector i. Let aij denote the pro-
portion of item j’s revenues that must be committed to the purchase of items
from sector i in order for sector j to produce its goods or services. Assume
also that there is an external demand, denoted by di and measured in dollars,
for each item produced in the economy.

The problem is to determine how much of each item should be pro-
duced to meet external demand without creating a surplus of any item. Show
that for a two sector economy, the solution to this problem is given by the
supply/demand equations

supply demand
x1 = a11x1 + a12x2 + d1,

x2 = a21x1 + a22x2 + d2.

Show that this system is equivalent to the matrix equations

x = Ax + d and (I − A)x = d.

In this formulation, A is called the consumption matrix and d the demand
vector.

22. Determine A and d in the previous problem if sector 1 must expend half of its
revenues purchasing goods from its own sector and one third of its revenues
purchasing goods from the other sector, while sector 2 must expend one quar-
ter of its revenues purchasing items from sector 1 and requires nothing from
itself. In addition, the demand for items from these two sectors are $20,000
and $30,000, respectively.

23. A small town has three primary industries, coal mining (sector 1), transporta-
tion (sector 2), and electricity (sector 3). Production of one dollar of coal
requires the purchase of 10 cents of electricity and 20 cents of transportation.
Production of one dollar of transportation requires the purchase of 2 cents of
coal and 35 cents of electricity. Production of one unit of electricity requires
the purchase of 10 cents of electricity, 50 cents of coal, and 30 cents of trans-
portation. The town has external contracts for $50,000 of coal, $80,000 of
transportation, and $30,000 units of electricity. Show that the problem of
determining how much coal, electricity, and transportation is required to sup-
ply the external demand without a surplus is equivalent to solving a Leontief
input–output model. What are A and d?

24. An economy consists of four sectors: energy, tourism, transportation, and
construction. Each dollar of income from energy requires the expenditure
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of 20 cents on energy costs, 10 cents on transportation, and 30 cents on con-
struction. Each dollar of income gotten by the tourism sector requires the
expenditure of 20 cents on tourism (primarily in the form of complimentary
facilities for favored customers), 15 cents on energy, 5 cents on transporta-
tion, and 30 cents on construction. Each dollar of income from transportation
requires the expenditure of 40 cents on energy and 10 cents on construction;
while each dollar of income from construction requires the expenditure of 5
cents on construction, 25 cents on energy, and 10 cents on transportation. The
only external demand is for tourism, and this amounts to $5 million dollars a
year. Show that the problem of determining how much energy, tourism, trans-
portation, and construction is required to supply the external demand without
a surplus is equivalent to solving a Leontief input–output model. What are A
and d?

25. A constraint is often imposed on each column of the consumption matrix of
a Leontief input–output model, that the sum of the elements in each column
be less than unity. Show that this guarantees that each sector in the economy
is profitable.

2.2 Solutions by Substitution

Most readers have probably encountered simultaneous equations in high school
algebra. At that time, matrices were not available; hence other methods were
developed to solve these systems, in particular, the method of substitution. We
review this method in this section. In the next section, we develop its matrix
equivalent, which is slightly more efficient and, more importantly, better suited
for computer implementations.

Consider the system given by (1):

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,
...

am1x1 + am2x2 + · · · + amnxn = bm.

The method of substitution is the following: take the first equation and solve for
x1 in terms of x2, x3, . . . , xn and then substitute this value of x1 into all the other
equations, thus eliminating it from those equations. (If x1 does not appear in the
first equation, rearrange the equations so that it does. For example, one might
have to interchange the order of the first and second equations.) This new set of
equations is called the first derived set. Working with the first derived set, solve
the second equation for x2 in terms of x3, x4, . . . , xn and then substitute this value
of x2 into the third, fourth, etc. equations, thus eliminating it. This new set is the
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second derived set. This process is kept up until the following set of equations is
obtained:

x1 = c12x2 +c13x3 + c14x4 + · · · + c1nxn + d1,

x2 = c23x3 + c24x4 + · · · + c2nxn + d2,

x3 = c34x4 + · · · + c3nxn + d3,

...

xm = cm,m+1xm+1 + · · · + cmnxn + dm,

(6)

where the cij’s and the di’s are some combination of the original aij’s and bi’s.
System (6) can be quickly solved by back substitution.

Example 1 Use the method of substitution to solve the system

r + 2s + t = 3,

2r + 3s − t = −6,

3r − 2s − 4t = −2.

Solution By solving the first equation for r and then substituting it into the
second and third equations, we obtain the first derived set

r = 3 − 2s − t,

−s − 3t = −12,

−8s − 7t = −11.

By solving the second equation for s and then substituting it into the third equation,
we obtain the second derived set

r = 3 − 2s − t,

s = 12 − 3t,

17t = 85.

By solving for t in the third equation and then substituting it into the remaining
equations (of which there are none), we obtain the third derived set

r = 3 − 2s − t,

s = 12 − 3t,

t = 5.

Thus, the solution is t = 5, s = −3, r = 4. �
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Example 2 Use the method of substitution to solve the system

x + y + 3z = −1,

2x − 2y − z = 1,

5x + y + 8z = −2.

Solution The first derived set is

x = −1 − y − 3z,

−4y − 7z = 3,

−4y − 7z = 3.

The second derived set is

x = −1 − y − 3z,

y = −3
4

− 7
4
z,

0 = 0.

Since the third equation can not be solved for z, this is as far as we can go. Thus, since
we can not obtain a unique value for z, the first and second equations will not yield a
unique value for x and y. Caution:The third equation does not imply that z = 0. On
the contrary, this equation says nothing at all about z, consequently z is completely
arbitrary. The second equation gives y in terms of z. Substituting this value into
the first equation, we obtain x in terms of z. The solution therefore is x = − 1

4 − 5
4z

and y = − 3
4 − 7

4z, z is arbitrary. Thus there are infinitely many solutions to the
above system. However, once z is chosen, x and y are determined. If z is chosen
to be −1, then x = y = 1, while if z is chosen to be 3, then x = −4, y = −6. The
solutions can be expressed in the vector form

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎢⎣− 1

4 − 5
4z

− 3
4 − 7

4z

z

⎤
⎥⎦ =

⎡
⎢⎣− 1

4

− 3
4
0

⎤
⎥⎦+ z

⎡
⎢⎣− 5

4

− 7
4
1

⎤
⎥⎦. �

Example 3 Use the method of substitution to solve

a + 2b − 3c + d = 1,

2a + 6b + 4c + 2d = 8.
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Solution The first derived set is

a = 1 − 2b + 3c − d,

2b + 10c = 6.

The second derived set is

a = 1 − 2b + 3c − d

b = 3 − 5c

Again, since there are no more equations, this is as far as we can go, and since
there are no defining equations for c and d, these two unknowns must be arbitrary.
Solving fora andb in terms of c andd, we obtain the solutiona = −5 + 13c − d, b =
3 − 5c; c and d are arbitrary. The solutions can be expressed in the vector form

⎡
⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−5 + 13c − d

3 − 5c

c

d

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−5
3
0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

13
−5

1
0

⎤
⎥⎥⎦+ d

⎡
⎢⎢⎣

−1
0
0
1

⎤
⎥⎥⎦.

Note that while c and d are arbitrary, once they are given a particular value, a and
b are automatically determined. For example, if c is chosen as −1 and d as 4, a
solution is a = −22, b = 8, c = −1, d = 4, while if c is chosen as 0 and d as −3, a
solution is a = −2, b = 3, c = 0, d = −3. �

Example 4 Use the method of substitution to solve the following system:

x + 3y = 4,

2x − y = 1,

3x + 2y = 5,

5x + 15y = 20.

Solution The first derived set is

x = 4 − 3y,

−7y = −7,

−7y = −7,

0 = 0.
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The second derived set is

x = 4 − 3y,

y = 1,

0 = 0,

0 = 0.

Thus, the solution is y = 1, x = 1, or in vector form[
x

y

]
=
[

1
1

]
. �

Problems 2.2

Use the method of substitution to solve the following systems:

1. x + 2y − 2z = −1,

2x + y + z = 5,

−x + y − z = −2.

2. x + y − z = 0,

3x + 2y + 4z = 0.

3. x + 3y = 4,

2x − y = 1,

−2x − 6y = −8,

4x − 9y = −5,

−6x + 3y = −3.

4. 4r − 3s + 2t = 1,

r + s − 3t = 4,

5r − 2s − t = 5.

5. 2l − m + n − p = 1,

l + 2m − n + 2p = −1,

l − 3m + 2n − 3p = 2.

6. 2x + y − z = 0,

x + 2y + z = 0,

3x − y + 2z = 0.

7. x + 2y − z = 5,

2x − y + 2z = 1,

2x + 2y − z = 7,

x + 2y + z = 3.

8. x + 2y + z − 2w = 1,

2x + 2y − z − w = 3,

2x − 2y + 2z + 3w = 3,

3x + y − 2z − 3w = 1.

2.3 Gaussian Elimination

Although the method of substitution is straightforward, it is not the most efficient
way to solve simultaneous equations, and it does not lend itself well to electronic
computing. Computers have difficulty symbolically manipulating the unknowns
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in algebraic equations. A striking feature of the method of substitution, however,
is that the unknowns remain unaltered throughout the process: x remains x, y

remains y, z remains z. Only the coefficients of the unknowns and the numbers on
the right side of the equations change from one derived set to the next. Thus, we
can save a good deal of writing, and develop a useful representation for computer
processing, if we direct our attention to just the numbers themselves.

Definition 1 Given the system Ax = b, the augmented matrix, designated by
Ab, is a matrix obtained from A by adding to it one extra column, namely b.

Thus, if

A =
[

1 2 3
4 5 6

]
and b =

[
7
8

]
,

then

Ab =
[

1 2 3 7
4 5 6 8

]
,

while if

A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦ and b =

⎡
⎣−1

−2
−3

⎤
⎦,

then

Ab =
⎡
⎣1 2 3 −1

4 5 6 −2
7 8 9 −3

⎤
⎦.

In particular, the system

x + y − 2z = −3,

2x + 5y + 3z = 11,

−x + 3y + z = 5.

has the matrix representation

⎡
⎣ 1 1 −2

2 5 3
−1 3 1

⎤
⎦
⎡
⎣x

y

z

⎤
⎦
⎡
⎣−3

11
5

⎤
⎦,
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with an augmented matrix of

Ab =
⎡
⎣ 1 1 −2 −3

2 5 3 11
−1 3 1 5

⎤
⎦.

Example 1 Write the set of equations in x, y, and z associated with the
augmented matrix

Ab =
[−2 1 3 8

0 4 5 −3

]
.

Solution

−2x+ y + 3z = 8,

4y + 5z = −3.
�

A second striking feature to the method of substitution is that every derived set
is different from the system that preceded it. The method continues creating new
derived sets until it has one that is particularly easy to solve by back-substitution.
Of course, there is no purpose in solving any derived set, regardless how easy it
is, unless we are assured beforehand that it has the same solution as the original
system. Three elementary operations that alter equations but do not change their
solutions are:

(i) Interchange the positions of any two equations.

(ii) Multiply an equation by a nonzero scalar.

(iii) Add to one equation a scalar times another equation.

If we restate these operations in words appropriate to an augmented matrix,
we obtain the elementary row operations:

(E1) Interchange any two rows in a matrix.

(E2) Multiply any row of a matrix by a nonzero scalar.

(E3) Add to one row of a matrix a scalar times another row of that same matrix.

Gaussian elimination is a matrix method for solving simultaneous linear equa-
tions. The augmented matrix for the system is created, and then it is transformed
into a row-reduced matrix (see Section 1.4) using elementary row operations. This
is most often accomplished by using operation (E3) with each diagonal element
in a matrix to create zeros in all columns directly below it, beginning with the
first column and moving successively through the matrix, column by column. The
system of equations associated with a row-reduced matrix can be solved easily by
back-substitution, if we solve each equation for the first unknown that appears in
it. This is the unknown associated with the first nonzero element in each nonzero
row of the final augmented matrix.
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Example 2 Use Gaussian elimination to solve

x + 3y = 4,

2x − y = 1,

3x + 2y = 5,

5x + 15y = 20.

Solution The augmented matrix for this system is

⎡
⎢⎢⎣

1 3 4
2 −1 1
3 2 5
5 15 20

⎤
⎥⎥⎦.

Then,

⎡
⎢⎢⎣

1 3 4
2 −1 1
3 2 5
5 15 20

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 3 4
0 −7 −7
3 2 5
5 15 20

⎤
⎥⎥⎦

⎧⎨
⎩

by adding to the
second row (−2) times
the first row

→

⎡
⎢⎢⎣

1 3 4
0 −7 −7
0 −7 −7
5 15 20

⎤
⎥⎥⎦

⎧⎨
⎩

by adding to the
third row (−3) times
the first row

→

⎡
⎢⎢⎣

1 3 4
0 −7 −7
0 −7 −7
0 0 0

⎤
⎥⎥⎦

⎧⎨
⎩

by adding to the
fourth row (−5) times
the first row

→

⎡
⎢⎢⎣

1 3 4
0 1 1
0 −7 −7
0 0 0

⎤
⎥⎥⎦

{
by multiplying the

second row by
−1
7

→

⎡
⎢⎢⎣

1 3 4
0 1 1
0 0 0
0 0 0

⎤
⎥⎥⎦.

⎧⎨
⎩

by adding to the
second row (7) times
the first row
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The system of equations associated with this last augmented matrix in
row-reduced form is

x + 3y = 4,

y = 1,

0 = 0,

0 = 0.

Solving the second equation for y and then the first equation for x, we obtain x = 1
and y = 1, which is also the solution to the original set of equations. Compare this
solution with Example 4 of the previous section. �

The notation (→) should be read “is transformed into”; an equality sign is not
correct because the transformed matrix is not equal to the original one.

Example 3 Use Gaussian elimination to solve

r + 2s + t = 3,

2r + 3s − t = −6,

3r − 2s − 4t = −2.

Solution The augmented matrix for this system is

⎡
⎣1 2 1 3

2 3 −1 −6
3 −2 −4 −2

⎤
⎦.

Then,⎡
⎣1 2 1 3

2 3 −1 −6
3 −2 −4 −2

⎤
⎦→

⎡
⎣1 2 1 3

0 −1 −3 −12
3 −2 −4 −2

⎤
⎦

⎧⎨
⎩

by adding to the
second row (−2) times
the first row

→
⎡
⎣1 2 1 3

0 −1 −3 −12
0 −8 −7 −11

⎤
⎦

⎧⎨
⎩

by adding to the
third row (−3) times
the first row

→
⎡
⎣1 2 1 3

0 1 3 12
0 −8 −7 −11

⎤
⎦ {

by multiplying the
second row by (−1)
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→
⎡
⎣1 2 1 3

0 1 3 12
0 0 17 85

⎤
⎦

⎧⎨
⎩

by adding to the
third row (8) times
the second row

→
⎡
⎣1 2 1 3

0 1 3 12
0 0 1 5

⎤
⎦.

{
by multiplying the

third row by
(

1
17

)

The system of equations associated with this last augmented matrix in row-
reduced form is

r + 2s + t = 3,

s + 3t = 12,

t = 5.

Solving the third equation for t, then the second equation for s, and, lastly, the first
equation for r, we obtain r = 4, s = −3, and t = 5, which is also the solution to the
original set of equations. Compare this solution with Example 1 of the previous
section. �

Whenever one element in a matrix is used to cancel another element to zero by
elementary row operation (E3), the first element is called the pivot. In Example
3, we first used the element in the 1–1 position to cancel the element in the
2–1 position, and then to cancel the element in the 3–1 position. In both of
these operations, the unity element in the 1–1 position was the pivot. Later, we
used the unity element in the 2–2 position to cancel the element −8 in the 3–2
position; here, the 2–2 element was the pivot.

While transforming a matrix into row-reduced form, it is advisable to adhere
to three basic principles:

● Completely transform one column to the required form before considering
another column.

● Work on columns in order, from left to right.

● Never use an operation if it will change a zero in a previously transformed
column.

As a consequence of this last principle, one never involves the ith row of a
matrix in an elementary row operation after the ith column has been transformed
into its required form. That is, once the first column has the proper form, no pivot
element should ever again come from the first row; once the second column has
the proper form, no pivot element should ever again come from the second row;
and so on.

When an element we want to use as a pivot is itself zero, we interchange rows
using operation (E1).



60 Chapter 2 Simultaneous Linear Equations

Example 4 Use Gaussian elimination to solve

2c + 3d = 4,

a + 3c + d = 2,

a + b + 2c = 0.

Solution The augmented matrix is⎡
⎣0 0 2 3 4

1 0 3 1 2
1 1 2 0 0

⎤
⎦.

Normally, we would use the element in the 1–1 position to cancel to zero the
two elements directly below it, but we cannot because it is zero. To proceed with
the reduction process, we must interchange the first row with either of the other
two rows. The choice is arbitrary.⎡

⎣0 0 2 3 4
1 0 3 1 2
1 1 2 0 0

⎤
⎦→

⎡
⎣1 0 3 1 2

0 0 2 3 4
1 1 2 0 0

⎤
⎦

⎧⎨
⎩

by interchanging the
first row with the
second row

→
⎡
⎣1 0 3 1 2

0 0 2 3 4
0 1 −1 −1 −2

⎤
⎦.

⎧⎨
⎩

by adding to the
third row (−1) times
the first row

Next, we would like to use the element in the 2–2 position to cancel to zero the
element in the 3–2 position, but we cannot because that prospective pivot is zero.
We use elementary row operation (E1) once again. The transformation yields

→
⎡
⎣1 0 3 1 2

0 1 −1 −1 −2
0 0 2 3 4

⎤
⎦

⎧⎨
⎩

by interchanging the
second row with the
third row

→
⎡
⎣1 0 3 1 2

0 1 −1 −1 −2
0 0 1 1.5 2

⎤
⎦.

{
by multiplying the
third row by (0.5)

The system of equations associated with this last augmented matrix in row-
reduced form is

a + 3c + d = 2,

b − c − d = −2,

c + 1.5d = 2.
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We use the third equation to solve for c, the second equation to solve for b, and
the first equation to solve for a, because these are the unknowns associated with
the first nonzero element of each nonzero row in the final augmented matrix. We
have no defining equation for d, so this unknown remains arbitrary. The solution
is, a = −4 + 3.5d, b = −0.5d, c = 2 − 1.5d, and d arbitrary, or in vector form

⎡
⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−4 + 3.5d

−0.5d

2 − 1.5d

d

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−4
0
2
0

⎤
⎥⎥⎦+ d

2

⎡
⎢⎢⎣

7
−1
−3

2

⎤
⎥⎥⎦.

This is also the solution to the original set of equations. �

The derived set of equations associated with a row-reduced, augmented matrix
may contain an absurd equation, such as 0 = 1. In such cases, we conclude that the
derived set is inconsistent, because no values of the unknowns can simultaneously
satisfy all the equations. In particular, it is impossible to choose values of the
unknowns that will make the absurd equation true. Since the derived set has the
same solutions as the original set, it follows that the original set of equations is
also inconsistent.

Example 5 Use Gaussian elimination to solve

2x + 4y + 3z = 8,

3x − 4y − 4z = 3,

5x − z = 12.

Solution The augmented matrix for this system is

⎡
⎣2 4 3 8

3 −4 −4 3
5 0 −1 12

⎤
⎦.

Then,

⎡
⎣2 4 3 8

3 −4 −4 3
5 0 −1 12

⎤
⎦→

⎡
⎣1 2 1.5 4

3 −4 −4 3
5 0 −1 12

⎤
⎦ {

by multiplying the

first row by
(

1
2

)

→
⎡
⎣1 2 1.5 4

0 −10 −8.5 −9
5 0 −1 12

⎤
⎦

⎧⎨
⎩

by adding to the
second row (−3) times
the first row
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→
⎡
⎣1 2 1.5 4

0 −10 −8.5 −9
0 −10 −8.5 −8

⎤
⎦

⎧⎨
⎩

by adding to the
third row (−5) times
the first row

→
⎡
⎣1 2 1.5 4

0 1 0.85 0.9
0 −10 −8.5 −8

⎤
⎦ {

by multiplying the

second row by
(−1

10

)

→
⎡
⎣1 2 1.5 4

0 1 0.85 0.9
0 0 0 1

⎤
⎦.

⎧⎨
⎩

by adding to the
third row (10) times
the second row

The system of equations associated with this last augmented matrix in row-
reduced form is

x + 2y + 1.5z = 4,

y + 0.85z = 0.9,

0 = 1.

Since no values of x, y, and z can make this last equation true, this system, as well
as the original one, has no solution. �

Finally, we note that most matrices can be transformed into a variety of row-
reduced forms. If a row-reduced matrix has two nonzero rows, then a different
row-reduced matrix is easily constructed by adding to the first row any nonzero
constant times the second row. The equations associated with both augmented
matrices, however, will have identical solutions.

Problems 2.3

In Problems 1 through 5, construct augmented matrices for the given systems of
equations:

1. x + 2y = −3,

3x + y = 1.

2. x + 2y − z = −1,

2x − 3y + 2z = 4.

3. a + 2b = 5,

−3a + b = 13,

4a + 3b = 0.

4. 2r + 4s = 2,

3r + 2s + t = 8,

5r − 3s + 7t = 15.

5. 2r + 3s − 4t = 12,

3r − 2s = −1,

8r − s − 4t = 10.
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In Problems 6 through 11, write the set of equations associated with the given
augmented matrix and the specified variables.

6. Ab =
[

1 2 5
0 1 8

]
variables: x and y.

7. Ab =

⎡
⎣1 −2 3 10

0 1 −5 −3
0 0 1 4

⎤
⎦ variables: x, y, and z.

8. Ab =

⎡
⎣1 −3 12 40

0 1 −6 −200
0 0 1 25

⎤
⎦ variables: r, s, and t.

9. Ab =

⎡
⎣1 3 0 −8

0 1 4 2
0 0 0 0

⎤
⎦ variables: x, y, and z.

10. Ab =

⎡
⎣1 −7 2 0

0 1 −1 0
0 0 0 0

⎤
⎦ variables: a, b, and c.

11. Ab =

⎡
⎢⎢⎣

1 −1 0 1
0 1 −2 2
0 0 1 −3
0 0 0 1

⎤
⎥⎥⎦ variables: u, v, and w.

12. Solve the system of equations defined in Problem 6.

13. Solve the system of equations defined in Problem 7.

14. Solve the system of equations defined in Problem 8.

15. Solve the system of equations defined in Problem 9.

16. Solve the system of equations defined in Problem 10.

17. Solve the system of equations defined in Problem 11.

In Problems 18 through 24, use elementary row operations to transform the given
matrices into row-reduced form:

18.
[

1 −2 5
−3 7 8

]
. 19.

[
4 24 20
2 11 −8

]
. 20.

[
0 −1 6
2 7 −5

]
.

21.

⎡
⎣ 1 2 3 4

−1 −1 2 3
−2 3 0 0

⎤
⎦. 22.

⎡
⎣ 0 1 −2 4

1 3 2 1
−2 3 1 2

⎤
⎦.
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23.

⎡
⎢⎢⎣

1 3 2 0
−1 −4 3 −1

2 0 −1 3
2 −1 4 2

⎤
⎥⎥⎦. 24.

⎡
⎣ 2 3 4 6 0 10

−5 −8 15 1 3 40
3 3 5 4 4 20

⎤
⎦.

25. Solve Problem 1. 26. Solve Problem 2.

27. Solve Problem 3. 28. Solve Problem 4.

29. Solve Problem 5.

30. Use Gaussian elimination to solve Problem 1 of Section 2.2.

31. Use Gaussian elimination to solve Problem 2 of Section 2.2.

32. Use Gaussian elimination to solve Problem 3 of Section 2.2.

33. Use Gaussian elimination to solve Problem 4 of Section 2.2.

34. Use Gaussian elimination to solve Problem 5 of Section 2.2.

35. Determine a production schedule that satisfies the requirements of the
manufacturer described in Problem 12 of Section 2.1.

36. Determine a production schedule that satisfies the requirements of the
manufacturer described in Problem 13 of Section 2.1.

37. Determine a production schedule that satisfies the requirements of the
manufacturer described in Problem 14 of Section 2.1.

38. Determine feed blends that satisfy the nutritional requirements of the pet
store described in Problem 15 of Section 2.1.

39. Determine the bonus for the company described in Problem 16 of
Section 2.1.

40. Determine the number of barrels of gasoline that the producer described in
Problem 17 of Section 2.1 must manufacture to break even.

41. Determine the annual incomes of each sector of the Leontief closed model
described in Problem 18 of Section 2.1.

42. Determine the wages of each person in the Leontief closed model described
in Problem 19 of Section 2.1.

43. Determine the total sales revenue for each country of the Leontief closed
model described in Problem 20 of Section 2.1.

44. Determine the production quotas for each sector of the economy described
in Problem 22 of Section 2.1.

45. An elementary matrix is a square matrix E having the property that the product
EA is the result of applying a single elementary row operation on the matrix
A. Form a matrix H from the 4 × 4 identity matrix I by interchanging any two
rows of I, and then compute the product HA for any 4 × 4 matrix A of your
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choosing. Is H an elementary matrix? How would one construct elementary
matrices corresponding to operation (E1)?

46. Form a matrix G from the 4 × 4 identity matrix I by multiplying any one row
of I by the number 5, and then compute the product GA for any 4 × 4 matrix
A of your choosing. Is G an elementary matrix? How would one construct
elementary matrices corresponding to operation (E2)?

47. Form a matrix F from the 4 × 4 identity matrix I by adding to one row of I
five times another row of I. Use any two rows of your choosing. Compute
the product FA for any 4 × 4 matrix A of your choosing. Is F an elemen-
tary matrix? How would one construct elementary matrices corresponding to
operation (E3)?

48. A solution procedure uniquely suited to matrix equations of the form x =
Ax + d is iteration. A trial solution x(0) is proposed, and then progressively
better estimates x(1), x(2), x(3), . . . for the solution are obtained iteratively
from the formula

x(i+1) = Ax(i) + d.

The iterations terminate when two successive estimates differ by less than a
prespecified acceptable tolerance.

If the system comes from a Leontief input–output model, then a reasonable
initialization is x(0) = 2d. Apply this method to the system defined by Problem
22 of Section 2.1. Stop after two iterations.

49. Use the iteration method described in the previous problem to solve the
system defined in Problem 23 of Section 2.1. In particular, find the first two
iterations by hand calculations, and then use a computer to complete the
iteration process.

50. Use the iteration method described in Problem 48 to solve the system defined
in Problem 24 of Section 2.1. In particular, find the first two iterations
by hand calculations, and then use a computer to complete the iteration
process.

2.4 Pivoting Strategies

Gaussian elimination is often programmed for computer implementation. Since all
computers round or truncate numbers to a finite number of digits (e.g., the fraction
1/3 might be stored as 0.33333, but never as the infinite decimal 0.333333 . . .)
roundoff error can be significant. A number of strategies have been developed to
minimize the effects of such errors.

The most popular strategy is partial pivoting, which requires that a pivot ele-
ment always be larger in absolute value than any element below it in the same
column. This is accomplished by interchanging rows whenever necessary.



66 Chapter 2 Simultaneous Linear Equations

Example 1 Use partial pivoting with Gaussian elimination to solve the system

x + 2y + 4z = 18,

2x + 12y − 2z = 9,

5x + 26y + 5z = 14.

Solution The augmented matrix for this system is⎡
⎣1 2 4 18

2 12 −2 9
5 26 5 14

⎤
⎦.

Normally, the unity element in the 1–1 position would be the pivot. With partial
pivoting, we compare this prospective pivot to all elements directly below it in the
same column, and if any is larger in absolute value, as is the case here with the
element 5 in the 3–1 position, we interchange rows to bring the largest element
into the pivot position.⎡

⎣1 2 4 18
2 12 −2 9
5 26 5 14

⎤
⎦→

⎡
⎣5 26 5 14

2 12 −2 9
1 2 4 18

⎤
⎦.

{
by interchanging the
first and third rows

Then,

→
⎡
⎣1 5.2 1 2.8

2 12 −2 9
1 2 4 18

⎤
⎦ {

by multiplying the
first row by 1

5

→
⎡
⎣1 5.2 1 2.8

0 1.6 −4 3.4
1 2 4 18

⎤
⎦

⎧⎨
⎩

by adding to the
second row (−2) times
the first row

→
⎡
⎣1 5.2 1 2.8

0 1.6 −4 3.4
0 −3.2 3 15.2

⎤
⎦.

⎧⎨
⎩

by adding to the
third row (−1) times
the first row

The next pivot would normally be the element 1.6 in the 2–2 position. Before
accepting it, however, we compare it to all elements directly below it in the same
column. The largest element in absolute value is the element −3.2 in the 3–2
position. Therefore, we interchange rows to bring this larger element into the
pivot position.

Note. We do not consider the element 5.2 in the 1–2 position, even though it
is the largest element in its column. Comparisons are only made between a
prospective pivot and all elements directly below it. Recall one of the three basic
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principles of row-reduction: never involve the first row of matrix in a row operation
after the first column has been transformed into its required form.

→
⎡
⎣1 5.2 1 2.8

0 −3.2 3 15.2
0 1.6 −4 3.4

⎤
⎦ {

by interchanging the
second and third rows

→
⎡
⎣1 5.2 1 2.8

0 1 −0.9375 −4.75
0 1.6 −4 3.4

⎤
⎦ {

by multiplying the
second row by −1

3.2

→
⎡
⎣1 5.2 1 2.8

0 1 −0.9375 −4.75
0 0 −2.5 11

⎤
⎦

⎧⎨
⎩

by adding to the
third row (−1.6) times
the second row

→
⎡
⎣1 5.2 1 2.8

0 1 −0.9375 −4.75
0 0 1 −4.4

⎤
⎦ {

by multiplying the
third row by −1

2.5

The new derived set of equations is

x + 5.2y + z = 2.8,

y − 0.9375z = −4.75,

z = −4.4,

which has as its solution x = 53.35, y = −8.875, and z = −4.4. �

Scaled pivoting involves ratios. A prospective pivot is divided by the largest
element in absolute value in its row, ignoring the last column. The result is com-
pared to the ratios formed by dividing every element directly below the pivot by
the largest element in absolute value in its respective row, again ignoring the last
column. Of these, the element that yields the largest ratio in absolute value is
designated as the pivot, and if that element is not already in the pivot position,
then row interchanges are performed to move it there.

Example 2 Use scaled pivoting with Gaussian elimination to solve the system
given in Example 1.

Solution The augmented matrix for this system is

⎡
⎣1 2 4 18

2 12 −2 9
5 26 5 14

⎤
⎦.

Normally, we would use the element in the 1–1 position as the pivot. With
scaled pivoting, however, we first compare ratios between elements in the first
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column to the largest elements in absolute value in each row, ignoring the last
column. The ratios are

1
4

= 0.25,
2

12
= 0.1667, and

5
26

= 0.1923.

The largest ratio in absolute value corresponds to the unity element in the 1–1
position, so that element remains the pivot. Transforming the first column into
reduced form, we obtain

⎡
⎣1 2 4 18

0 8 −10 −27
0 16 −15 −76

⎤
⎦.

Normally, the next pivot would be the element in the 2–2 position. Instead, we
consider the ratios

8
10

= 0.8 and
16
16

= 1,

which are obtained by dividing the pivot element and every element directly below
it by the largest element in absolute value appearing in their respective rows, ignor-
ing elements in the last column. The largest ratio in absolute value corresponds to
the element 16 appearing in the 3–2 position. We move it into the pivot position
by interchanging the second and third rows. The new matrix is

⎡
⎣1 2 4 18

0 16 −15 −76
0 8 −10 −27

⎤
⎦.

Completing the row-reduction transformation, we get

⎡
⎢⎣1 2 4 18

0 1 −0.9375 −4.75

0 0 1 −4.4

⎤
⎥⎦.

The system of equations associated with this matrix is

x + 2y + 4z = 18,

y − 0.9375z = −4.75,

z = −4.4.

The solution is, as before, x = 53.35, y = −8.875, and z = −4.4. �
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Complete pivoting compares prospective pivots with all elements in the largest
submatrix for which the prospective pivot is in the upper left position, ignoring
the last column. If any element in this submatrix is larger in absolute value than
the prospective pivot, both row and column interchanges are made to move this
larger element into the pivot position. Because column interchanges rearrange the
order of the unknowns, a book keeping method must be implemented to record
all rearrangements. This is done by adding a new row, designated as row 0, to the
matrix. The entries in the new row are initially the positive integers in ascending
order, to denote that column 1 is associated with variable 1, column 2 with variable
2, and so on. This new top row is only affected by column interchanges; none of
the elementary row operations is applied to it.

Example 3 Use complete pivoting with Gaussian elimination to solve the
system given in Example 1.

Solution The augmented matrix for this system is⎡
⎢⎢⎢⎢⎣

1 2 3
-- - - - - - - - - - - - - - -
1 2 4 18

2 12 −2 9

5 26 5 14

⎤
⎥⎥⎥⎥⎦.

Normally, we would use the element in the 1–1 position of the coefficient matrix
A as the pivot. With complete pivoting, however, we first compare this prospective
pivot to all elements in the submatrix shaded below. In this case, the element 26 is
the largest, so we interchange rows and columns to bring it into the pivot position.

⎡
⎢⎢⎢⎣

1 2 3
-- - - - - - - - - - - - - - -
1 2 4 18

2 12 −2 9

5 26 5 14

⎤
⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎣

1 2 3
-- - - - - - - - - - - - - - -
5 26 5 14

2 12 −2 9

1 2 4 18

⎤
⎥⎥⎥⎦

{
by interchanging the
first and third rows

→

⎡
⎢⎢⎢⎣

2 1 3
-- - - - - - - - - - - - - - -
26 5 5 14

12 2 −2 9

2 1 4 18

⎤
⎥⎥⎥⎦.

{
by interchanging the
first and second columns

Applying Gaussian elimination to the first column, we obtain

⎡
⎢⎢⎢⎣

2 1 3
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 0.1923 0.1923 0.5385

0 −0.3077 −4.3077 2.5385

0 0.6154 3.6154 16.9231

⎤
⎥⎥⎥⎦.
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Normally, the next pivot would be −0.3077. Instead, we compare this number
in absolute value to all the numbers in the submatrix shaded above. The largest
such element in absolute value is −4.3077, which we move into the pivot position
by interchanging the second and third column. The result is

⎡
⎢⎢⎢⎣

2 3 1
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 0.1923 0.1923 0.5385

0 −4.3077 −0.3077 2.5385

0 3.6154 0.6154 16.9231

⎤
⎥⎥⎥⎦.

Continuing with Gaussian elimination, we obtain the row-reduced matrix

⎡
⎢⎢⎢⎣

2 3 1
-- - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 0.1923 0.1923 0.5385

0 1 0.0714 −0.5893

0 0 1 53.35

⎤
⎥⎥⎥⎦.

The system associated with this matrix is

y + 0.1923z + 0.1923x = 0.5385,

z + 0.0714x = −0.5893,

x = 53.35.

Its solution is, x = 53.35, y = −8.8749, and z = −4.3985, which is within round-off
error of the answers gotten previously. �

Complete pivoting generally identifies a better pivot than scaled pivoting
which, in turn, identifies a better pivot than partial pivoting. Nonetheless, par-
tial pivoting is most often the strategy of choice. Pivoting strategies are used to
avoid roundoff error. We do not need the best pivot; we only need to avoid bad
pivots.

Problems 2.4

In Problems 1 through 6, determine the first pivot under (a) partial pivoting,
(b) scaled pivoting, and (c) complete pivoting for given augmented matrices.
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1.
[

1 3 35
4 8 15

]
. 2.

[
1 −2 −5
5 3 85

]
.

3.
[

1 8 15
3 −4 11

]
. 4.

⎡
⎢⎣−2 8 −3 100

4 5 4 75
−3 −1 2 250

⎤
⎥⎦.

5.

⎡
⎢⎣1 2 3 4

5 6 7 8
9 10 11 12

⎤
⎥⎦. 6.

⎡
⎢⎣0 2 3 4 0

1 0.4 0.8 0.1 90
4 10 1 8 40

⎤
⎥⎦.

7. Solve Problem 3 of Section 2.3 using Gaussian elimination with each of the
three pivoting strategies.

8. Solve Problem 4 of Section 2.3 using Gaussian elimination with each of the
three pivoting strategies.

9. Solve Problem 5 of Section 2.3 using Gaussian elimination with each of the
three pivoting strategies.

10. Computers internally store numbers in formats similar to the scientific
notation 0, –E–, representing the number 0. –multiplied by the power of 10
signified by the digits following E. Therefore, 0.1234E06 is 123,400 while
0.9935E02 is 99.35. The number of digits between the decimal point and E
is finite and fixed; it is the number of significant figures. Arithmetic opera-
tions in computers are performed in registers, which have twice the number
of significant figures as storage locations.

Consider the system

0.00001x + y = 1.00001,

x + y = 2.

Show that when Gaussian elimination is implemented on this system by a computer
limited to four significant figures, the result is x = 0 and y = 1, which is incorrect.
Show further that the difficulty is resolved when partial pivoting is employed.

2.5 Linear Independence

We momentarily digress from our discussion of simultaneous equations to develop
the concepts of linearly independent vectors and rank of a matrix, both of which
will prove indispensable to us in the ensuing sections.

Definition 1 A vector V1 is a linear combination of the vectors V2, V3, . . . , Vn

if there exist scalars d2, d3, . . . , dn such that

V1 = d2V2 + d3V3 + · · · + dnVn.
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Example 1 Show that [1 2 3] is a linear combination of [2 4 0] and
[0 0 1].

Solution [1 2 3] = 1
2 [2 4 0] + 3[0 0 1]. �

Referring to Example 1, we could say that the row vector [1 2 3]depends lin-
early on the other two vectors or, more generally, that the set of vectors {[1 2 3],
[2 4 0], [0 0 1]} is linearly dependent. Another way of expressing this depen-
dence would be to say that there exist constants c1, c2, c3 not all zero such that
c1 [1 2 3] + c2 [2 4 0] + c3 [0 0 1] = [0 0 0]. Such a set would be
c1 = −1, c2 = 1

2 , c3 = 3. Note that the set c1 = c2 = c3 = 0 is also a suitable set.
The important fact about dependent sets, however, is that there exists a set of
constants, not all equal to zero, that satisfies the equality.

Now consider the set given by V1 = [1 0 0] V2 = [0 1 0] V3 = [0 0 1].
It is easy to verify that no vector in this set is a linear combination of the other two.
Thus, each vector is linearly independent of the other two or, more generally, the
set of vectors is linearly independent. Another way of expressing this independence
would be to say the only scalars that satisfy the equation c1[1 0 0]+ c2[0 1 0]
+ c3[0 0 1] = [0 0 0] are c1 = c2 = c3 = 0.

Definition 2 A set of vectors {V1, V2, . . . , Vn}, of the same dimension, is lin-
early dependent if there exist scalars c1, c2, . . . , cn, not all zero, such that

c1V1 + c2V2 + c3V3 + · · · + cnVn = 0 (7)

The vectors are linearly independent if the only set of scalars that satisfies (7) is
the set c1 = c2 = · · · = cn = 0.

Therefore, to test whether or not a given set of vectors is linearly independent,
first form the vector equation (7) and ask “What values for the c’s satisfy this
equation?” Clearly c1 = c2 = · · · = cn = 0 is a suitable set. If this is the only set of
values that satisfies (7) then the vectors are linearly independent. If there exists a
set of values that is not all zero, then the vectors are linearly dependent.

Note that it is not necessary for all the c’s to be different from zero for a
set of vectors to be linearly dependent. Consider the vectors V1 = [1, 2], V2 =
[1, 4], V3 = [2, 4]. c1 = 2, c2 = 0, c3 = −1 is a set of scalars, not all zero, such that
c1 V1 + c2 V2 + c3V3 = 0. Thus, this set is linearly dependent.

Example 2 Is the set {[1, 2], [ 3, 4]} linearly independent?

Solution The vector equation is

c1[1 2] + c2[3 4] = [0 0].
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This equation can be rewritten as

[c1 2c1] + [3c2 4c2] = [0 0]

or as

[c1 + 3c2 2c1 + 4c2] = [0 0].

Equating components, we see that this vector equation is equivalent to the system

c1 + 3c2 = 0,

2c1 + 4c2 = 0.

Using Gaussian elimination, we find that the only solution to this system is c1 =
c2 = 0, hence the original set of vectors is linearly independent. �

Although we have worked exclusively with row vectors, the above definitions
are equally applicable to column vectors.

Example 3 Is the set

⎧⎨
⎩
⎡
⎣ 2

6
−2

⎤
⎦,

⎡
⎣3

1
2

⎤
⎦,

⎡
⎣ 8

16
−3

⎤
⎦
⎫⎬
⎭

linearly independent?

Solution Consider the vector equation

c1

⎡
⎣ 2

6
−2

⎤
⎦+ c2

⎡
⎣3

1
2

⎤
⎦+ c3

⎡
⎣ 8

16
−3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦. (8)

This equation can be rewritten as

⎡
⎣ 2c1

6c1
−2c1

⎤
⎦+

⎡
⎣3c2

c2
2c2

⎤
⎦+

⎡
⎣ 8c3

16c3
−3c3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

or as ⎡
⎣ 2c1 + 3c2 + 8c3

6c1 + c2 + 16c3
−2c1 + 2c2 − 3c3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦.
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By equating components, we see that this vector equation is equivalent to the
system

2c1 + 3c2 + 8c3 = 0,

6c1 + c2 + 16c3 = 0,

−2c1 + 2c2 − 3c3 = 0.

By using Gaussian elimination, we find that the solution to this system is c1 =(
− 5

2

)
c3, c2 = −c3, c3 arbitrary. Thus, choosing c3 = 2, we obtain c1 = −5, c2 =

−2, c3 = 2 as a particular nonzero set of constants that satisfies (8); hence, the
original vectors are linearly dependent. �

Example 4 Is the set

{[
1
2

]
,

[
5
7

]
,

[−3
1

]}

linearly independent?

Solution Consider the vector equation

c1

[
1
2

]
+ c2

[
5
7

]
+ c3

[−3
1

]
=
[

0
0

]
.

This is equivalent to the system

c1 + 5c2 − 3c3 = 0,

2c1 + 7c2 + c3 = 0.

By using Gaussian elimination, we find that the solution to this system is c1 =
(−26/3)c3, c2 = (7/3)c3, c3 arbitrary. Hence a particular nonzero solution is found
by choosing c3 = 3; then c1 = −26, c2 = 7, and, therefore, the vectors are linearly
dependent. �

We conclude this section with a few important theorems on linear indepen-
dence and dependence.

Theorem 1 A set of vectors is linearly dependent if and only if one of the vectors
is a linear combination of the others.

Proof. Let {V1, V2, . . . , Vn} be a linearly dependent set. Then there exist scalars
c1, c2, . . . , cn, not all zero, such that (7) is satisfied. Assume c1 �= 0. (Since at least
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one of the c’s must differ from zero, we lose no generality in assuming it is c1).
Equation (7) can be rewritten as

c1V1 = −c2V2 − c3V3 − · · · − cnVn,

or as

V1 = −c2

c1
V2 − c3

c1
V3 − · · · − cn

c1
Vn.

Thus, V1 is a linear combination of V2, V3, . . . , Vn. To complete the proof, we
must show that if one vector is a linear combination of the others, then the set is
linearly dependent. We leave this as an exercise for the student (see Problem 36.)

OBSERVATION 1 In order for a set of vectors to be linearly dependent, it is not
necessary for every vector to be a linear combination of the others, only that there
exists one vector that is a linear combination of the others. For example, consider
the vectors [1 0], [2 0], [0 1]. Here, [0, 1] cannot be written as a linear
combination of the other two vectors; however, [2 0] can be written as a linear
combination of [1 0] and [0 1], namely, [2 0] = 2[1 0] + 0[0 1]]; hence, the
vectors are linearly dependent.

Theorem 2 The set consisting of the single vector V1 is a linearly independent
set if and only if V1 �= 0.

Proof. Consider the equation c1V1 = 0. If V1 �= 0, then the only way this equa-
tion can be valid is if c1 = 0; hence, the set is linearly independent. If V1 = 0, then
any c1 �= 0 will satisfy the equation; hence, the set is linearly dependent.

Theorem 3 Any set of vectors that contains the zero vector is linearly dependent.

Proof. Consider the set {V1, V2, . . . , Vn, 0}. Pick c1 = c2 = · · · = cn = 0, cn+1 =
5 (any other number will do). Then this is a set of scalars, not all zero, such that

c1V1 + c2V2 + · · · + cnVn + cn+10 = 0;

hence, the set of vectors is linearly dependent.

Theorem 4 If a set of vectors is linearly independent, any subset of these vectors
is also linearly independent.

Proof. See Problem 37.

Theorem 5 If a set of vectors is linearly dependent, then any larger set, containing
this set, is also linearly dependent.

Proof. See Problem 38.
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Problems 2.5

In Problems 1 through 19, determine whether or not the given set is linearly inde-
pendent.

1. {[1 0], [0 1]}. 2. {[1 1], [1 −1]}.

3. {[2 −4], [−3 6]}. 4. {[1 3], [2 −1], [1 1]}.

5.
{[

1
2

]
,
[

3
4

]}
. 6.

{[
1

−1

]
,
[

1
1

]
,
[

1
2

]}
.

7.

⎧⎨
⎩
⎡
⎣1

0
1

⎤
⎦,

⎡
⎣1

1
0

⎤
⎦,

⎡
⎣0

1
1

⎤
⎦
⎫⎬
⎭. 8.

⎧⎨
⎩
⎡
⎣1

0
1

⎤
⎦,

⎡
⎣1

0
2

⎤
⎦,

⎡
⎣2

0
1

⎤
⎦
⎫⎬
⎭.

9.

⎧⎨
⎩
⎡
⎣1

0
1

⎤
⎦,

⎡
⎣1

1
1

⎤
⎦,

⎡
⎣ 1

−1
1

⎤
⎦
⎫⎬
⎭. 10.

⎧⎨
⎩
⎡
⎣0

0
0

⎤
⎦,

⎡
⎣3

2
1

⎤
⎦,

⎡
⎣2

1
3

⎤
⎦
⎫⎬
⎭.

11.

⎧⎨
⎩
⎡
⎣1

2
3

⎤
⎦,

⎡
⎣3

2
1

⎤
⎦,

⎡
⎣2

1
3

⎤
⎦
⎫⎬
⎭. 12.

⎧⎨
⎩
⎡
⎣1

2
3

⎤
⎦,

⎡
⎣3

2
1

⎤
⎦,

⎡
⎣2

1
3

⎤
⎦,

⎡
⎣−1

2
3

⎤
⎦
⎫⎬
⎭.

13.

⎧⎨
⎩
⎡
⎣4

5
1

⎤
⎦,

⎡
⎣3

0
2

⎤
⎦,

⎡
⎣1

1
1

⎤
⎦
⎫⎬
⎭. 14. {[1 1 0], [1 −1 0]}.

15. {[1 2 3], [−3 −6 −9]}.
16. {[10 20 20], [10 −10 10], [10 20 10]}.
17. {[10 20 20], [10 −10 10], [10 20 10], [20 10 20]}.
18. {[2 1 1], [3 −1 4], [1 3 −2]}.

19.

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

2
1
1
3

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

4
−1

2
−1

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

8
1
4
5

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭.

20. Express the vector

⎡
⎣2

1
2

⎤
⎦
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as a linear combination of

⎧⎨
⎩
⎡
⎣1

1
0

⎤
⎦,

⎡
⎣ 1

0
−1

⎤
⎦,

⎡
⎣1

1
1

⎤
⎦
⎫⎬
⎭.

21. Can the vector [2 3] be expressed as a linear combination of the vectors
given in (a) Problem 1, (b) Problem 2, or (c) Problem 3?

22. Can the vector [1 1 1]T be expressed as a linear combination of the vectors
given in (a) Problem 7, (b) Problem 8, or (c) Problem 9?

23. Can the vector [2 0 3]T be expressed as a linear combination of the vectors
given in Problem 8?

24. A set of vectors S is a spanning set for another set of vectors R if every vector
in R can be expressed as a linear combination of the vectors in S. Show that
the vectors given in Problem 1 are a spanning set for all two-dimensional row
vectors. Hint: Show that for any arbitrary real numbers a and b, the vector
[a b] can be expressed as a linear combination of the vectors in Problem 1.

25. Show that the vectors given in Problem 2 are a spanning set for all two-
dimensional row vectors.

26. Show that the vectors given in Problem 3 are not a spanning set for all two-
dimensional row vectors.

27. Show that the vectors given in Problem 3 are a spanning set for all vectors of
the form [a −2a], where a designates any real number.

28. Show that the vectors given in Problem 4 are a spanning set for all two-
dimensional row vectors.

29. Determine whether the vectors given in Problem 7 are a spanning set for all
three-dimensional column vectors.

30. Determine whether the vectors given in Problem 8 are a spanning set for all
three-dimensional column vectors.

31. Determine whether the vectors given in Problem 8 are a spanning set for
vectors of the form [a 0 a]T, where a denotes an arbitrary real number.

32. A set of vectors S is a basis for another set of vectors R if S is a spanning set
for R and S is linearly independent. Determine which, if any, of the sets given
in Problems 1 through 4 are a basis for the set of all two dimensional row
vectors.

33. Determine which, if any, of the sets given in Problems 7 through 12 are a basis
for the set of all three dimensional column vectors.

34. Prove that the columns of the 3 × 3 identity matrix form a basis for the set of
all three dimensional column vectors.
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35. Prove that the rows of the 4 × 4 identity matrix form a basis for the set of all
four dimensional row vectors.

36. Finish the proof of Theorem 1. (Hint: Assume that V1 can be written as a
linear combination of the other vectors.)

37. Prove Theorem 4.

38. Prove Theorem 5.

39. Prove that the set of vectors {x, kx} is linearly dependent for any choice of the
scalar k.

40. Prove that if x and y are linearly independent, then so too are x + y and x − y.

41. Prove that if the set {x1, x2, . . . , xn} is linearly independent then so too is the
set {k1x1, k2x2, . . . , knxn} for any choice of the non-zero scalars k1, k2, . . . , kn.

42. Let A be an n × n matrix and let {x1, x2, . . . , xk} and {y1, y2, . . . , yk} be two
sets of n-dimensional column vectors having the property that Axi = yi =
1, 2, . . . , k. Show that the set {x1, x2, . . . , xk} is linearly independent if the set
{y1, y2, . . . , yk} is.

2.6 Rank

If we interpret each row of a matrix as a row vector, the elementary row operations
are precisely the operations used to form linear combinations; namely, multiplying
vectors (rows) by scalars and adding vectors (rows) to other vectors (rows). This
observation allows us to develop a straightforward matrix procedure for deter-
mining when a set of vectors is linearly independent. It rests on the concept of
rank.

Definition 1 The row rank of a matrix is the maximum number of linearly inde-
pendent vectors that can be formed from the rows of that matrix, considering each
row as a separate vector. Analogically, the column rank of a matrix is the maximum
number of linearly independent columns, considering each column as a separate
vector.

Row rank is particularly easy to determine for matrices in row-reduced form.

Theorem 1 The row rank of a row-reduced matrix is the number of nonzero
rows in that matrix.

Proof. We must prove two facts: First, that the nonzero rows, considered as
vectors, form a linearly independent set, and second, that every larger set is linearly
dependent. Consider the equation

c1v1 + c2v2 + · · · + crvr = 0, (9)
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where v1 is the first nonzero row, v2 is the second nonzero row, . . . , and vr is the
last nonzero row of a row-reduced matrix. The first nonzero element in the first
nonzero row of a row-reduced matrix must be unity. Assume it appears in column
j. Then, no other rows have a nonzero element in that column. Consequently,
when the left side of Eq. (9) is computed, it will have c1 as its jth component.
Since the right side of Eq. (9) is the zero vector, it follows that c1 = 0. A similar
argument then shows iteratively that c2, . . . , cr, are all zero. Thus, the nonzero
rows are linearly independent.

If all the rows of the matrix are nonzero, then they must comprise a maximum
number of linearly independent vectors, because the row rank cannot be greater
than the number of rows in the matrix. If there are zero rows in the row-reduced
matrix, then it follows from Theorem 3 of Section 2.5 that including them could
not increase the number of linearly independent rows. Thus, the largest number
of linearly independent rows comes from including just the nonzero rows.

Example 1 Determine the row rank of the matrix

A =

⎡
⎢⎢⎢⎣

1 0 −2 5 3

0 0 1 −4 1

0 0 0 1 0

0 0 0 0 0

⎤
⎥⎥⎥⎦.

Solution A is in row-reduced form. Since it contains three nonzero rows, its row
rank is three. �

The following two theorems, which are proved in the Final Comments to this
chapter, are fundamental.

Theorem 2 The row rank and column rank of a matrix are equal.

For any matrix A, we call this common number the rank of A and denote it by
r(A).

Theorem 3 If B is obtained from A by an elementary row (or column) operation,
then r(B) = r(A).

Theorems 1 through 3 suggest a useful procedure for determining the rank of
any matrix: Simply use elementary row operations to transform the given matrix
to row-reduced form, and then count the number of nonzero rows.

Example 2 Determine the rank of

A =

⎡
⎢⎢⎣

1 3 4
2 −1 1
3 2 5
5 15 20

⎤
⎥⎥⎦.
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Solution In Example 2 of Section 2.3, we transferred this matrix into the row-
reduced form ⎡

⎢⎢⎣
1 3 4
0 1 1
0 0 0
0 0 0

⎤
⎥⎥⎦.

This matrix has two nonzero rows so its rank, as well as that of A, is two. �

Example 3 Determine the rank of

B =
⎡
⎣1 2 1 3

2 3 −1 −6
3 −2 −4 −2

⎤
⎦.

Solution In Example 3 of Section 2.3, we transferred this matrix into the row-
reduced form ⎡

⎣1 2 1 3
0 1 3 12
0 0 1 5

⎤
⎦.

This matrix has three nonzero rows so its rank, as well as that of B, is three. �

A similar procedure can be used for determining whether a set of vectors is
linearly independent: Form a matrix in which each row is one of the vectors in the
given set, and then determine the rank of that matrix. If the rank equals the num-
ber of vectors, the set is linearly independent; if not, the set is linearly dependent.
In either case, the rank is the maximal number of linearly independent vectors
that can be formed from the given set.

Example 4 Determine whether the set⎧⎨
⎩
⎡
⎣ 2

6
−2

⎤
⎦,

⎡
⎣3

1
2

⎤
⎦,

⎡
⎣ 8

16
−3

⎤
⎦
⎫⎬
⎭

is linearly independent.

Solution We consider the matrix⎡
⎣2 6 −2

3 1 2
8 16 −3

⎤
⎦.
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Reducing this matrix to row-reduced form, we obtain⎡
⎢⎣

1 3 −1

0 1 − 5
8

0 0 0

⎤
⎥⎦.

This matrix has two nonzero rows, so its rank is two. Since this is less than the
number of vectors in the given set, that set is linearly dependent.

We can say even more: The original set of vectors contains a subset of two
linearly independent vectors, the same number as the rank. Also, since no row
interchanges were involved in the transformation to row-reduced form, we can
conclude that the third vector is linear combination of the first two. �

Example 5 Determine whether the set

{[0 1 2 3 0], [1 3 −1 2 1],
[2 6 −1 −3 1], [4 0 1 0 2]}

is linearly independent.

Solution We consider the matrix⎡
⎢⎢⎢⎣

0 1 2 3 0
1 3 −1 2 1
2 6 −1 −3 1
4 0 1 0 2

⎤
⎥⎥⎥⎦,

which can be reduced (after the first two rows are interchanged) to the row-
reduced form ⎡

⎢⎢⎢⎣
1 3 −1 2 1
0 1 2 3 0
0 0 1 −7 −1

0 0 0 1 27
175

⎤
⎥⎥⎥⎦.

This matrix has four nonzero rows, hence its rank is four, which is equal to the
number of vectors in the given set. Therefore, the set is linearly independent. �

Example 6 Can the vector [
1
1

]
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be written as a linear combination of the vectors

[
3
6

]
and

[
2
4

]
?

Solution The matrix

A =
[

3 6
2 4

]

can be transformed into the row-reduced form

[
3 6
0 0

]
,

which has rank one; hence A has just one linearly independent row vector. In
contrast, the matrix

B =
⎡
⎣1 1

3 6
2 4

⎤
⎦

can be transformed into the row-reduced form,

⎡
⎣1 1

0 1
0 0

⎤
⎦,

which has rank two; hence B has two linearly independent row vectors. Since B
is precisely A with one additional row, it follows that the additional row [1, 1]T
is independent of the other two and, therefore, cannot be written as a linear
combination of the other two vectors. �

We did not have to transform B in Example 6 into row-reduced form to deter-
mine whether the three-vector set was linearly independent. There is a more direct
approach. Since B has only two columns, its column rank must be less than or equal
to two (why?). Thus, the column rank is less than three. It follows from Theorem
3 that the row rank of B is less than three, so the three vectors must be linearly
dependent. Generalizing this reasoning, we deduce one of the more important
results in linear algebra.

Theorem 4 In an n-dimensional vector space, every set of n + 1 vectors is linearly
dependent.
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Problems 2.6

In Problems 1–5, find the rank of the given matrix.

1.
[

1 2 0
3 1 −5

]
. 2.

⎡
⎣4 1

2 3
2 2

⎤
⎦.

3.

⎡
⎣ 1 4 −2

2 8 −4
−1 −4 2

⎤
⎦. 4.

⎡
⎣1 2 4 2

1 1 3 2
1 2 4 2

⎤
⎦.

5.

⎡
⎣1 7 0

0 1 1
1 1 0

⎤
⎦.

In Problems 6 through 22, use rank to determine whether the given set of vectors
is linearly independent.

6. {[1 0], [0 1]}. 7. {[1 1], [1 −1]}.

8. {[2 −4], [−3 6]}. 9. {[1 3], [2 −1], [1 1]}.

10.
{[

1
2

]
,

[
3
4

]}
. 11.

{[
1

−1

]
,

[
1
1

]
,

[
1
2

]}
.

12.

⎧⎨
⎩
⎡
⎣1

0
1

⎤
⎦,

⎡
⎣1

1
0

⎤
⎦,

⎡
⎣0

1
1

⎤
⎦
⎫⎬
⎭. 13.

⎧⎨
⎩
⎡
⎣1

0
1

⎤
⎦,

⎡
⎣1

0
2

⎤
⎦,

⎡
⎣2

0
1

⎤
⎦
⎫⎬
⎭.

14.

⎧⎨
⎩
⎡
⎣1

0
1

⎤
⎦,

⎡
⎣1

1
1

⎤
⎦,

⎡
⎣ 1

−1
1

⎤
⎦
⎫⎬
⎭. 15.

⎧⎨
⎩
⎡
⎣0

0
0

⎤
⎦,

⎡
⎣3

2
1

⎤
⎦,

⎡
⎣2

1
3

⎤
⎦
⎫⎬
⎭.

16.

⎧⎨
⎩
⎡
⎣1

2
3

⎤
⎦,

⎡
⎣3

2
1

⎤
⎦,

⎡
⎣2

1
3

⎤
⎦
⎫⎬
⎭. 17.

⎧⎨
⎩
⎡
⎣1

2
3

⎤
⎦,

⎡
⎣3

2
1

⎤
⎦,

⎡
⎣2

1
3

⎤
⎦,

⎡
⎣−1

2
−3

⎤
⎦
⎫⎬
⎭.

18. {[1 1 0], [1 −1 0]}.
19. {[1 2 3], [−3 −6 −9]}.
20. {[10 20 20], [10 −10 10], [10 20 10]}.
21. {[10 20 20], [10 −10 10], [10 20 10], [20 10 20]}.
22. {[2 1 1], [3 −1 4], [1 3 −2]}.
23. Can the vector [2 3] be expressed as a linear combination of the vectors

given in (a) Problem 6, (b) Problem 7, or (c) Problem 8?
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24. Can the vector [1 1 1]T be expressed as a linear combination of the vectors
given in (a) Problem 12, (b) Problem 13, or (c) Problem 14?

25. Can the vector [2 0 3]T be expressed as a linear combination of the vectors
given in Problem 13?

26. Can [3 7] be written as a linear combination of the vectors [1 2] and [3 2]?
27. Can [3 7] be written as a linear combination of the vectors [1 2] and [4 8]?
28. Find a maximal linearly independent subset of the vectors given in Problem 9.

29. Find a maximal linearly independent subset of the vectors given in Problem 13.

30. Find a maximal linearly independent subset of the set.

[1 2 4 0], [2 4 8 0], [1 −1 0 1], [4 2 8 2], [4 −1 4 3].
31. What is the rank of the zero matrix?

32. Show r(AT) = r(A).

2.7 Theory of Solutions

Consider once again the system Ax = b of m equations and n unknowns given in
Eq. (2). Designate the n columns of A by the vectors V1, V2, . . . , Vn. Then Eq. (2)
can be rewritten in the vector form

x1V1 + x2V2 + · · · + xnVn = b. (10)

Example 1 Rewrite the following system in the vector form (10):

x − 2y + 3z = 7,

4x + 5y − 6z = 8.

Solution

x

[
1
4

]
+ y

[−2
5

]
+ z

[
3

−6

]
=
[

7
8

]
�

Thus, finding solutions to (1) and (2) is equivalent to finding scalars
x1, x2, . . . , xn that satisfy (10). This, however, is asking precisely the question “Is
the vector b a linear combination of V1, V2, . . . , Vn?” If b is a linear combination
of V1, V2, . . . , Vn, then there will exist scalars x1, x2, . . . , xn that satisfy (10) and
the system is consistent. If b is not a linear combination of these vectors, that is, if b
is linearly independent of the vectors V1, V2, . . . , Vn, then no scalars x1, x2, . . . , xn

will exist that satisfy (10) and the system is inconsistent.
Taking a hint from Example 6 of Section 2.6, we have the following theorem.
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Theorem 1 The system Ax = b is consistent if and only if r(A) = r(Ab).

Once a system is deemed consistent, the following theorem specifies the
number of solutions.

Theorem 2 If the system Ax = b is consistent and r(A) = k then the solutions are
expressible in terms of n − k arbitrary unknowns (where n represents the number
of unknowns in the system).

Theorem 2 is almost obvious. To determine the rank of Ab, we must reduce
it to row-reduced form. The rank is the number of nonzero rows. With Gaussian
elimination, we use each nonzero row to solve for the variable associated with the
first nonzero entry in it. Thus, each nonzero row defines one variable, and all other
variables remain arbitrary.

Example 2 Discuss the solutions of the system

x + y − z = 1,

x + y − z = 0.

Solution

A =
[

1 1 −1
1 1 −1

]
, b =

[
1
0

]
, Ab =

[
1 1 −1 1
1 1 −1 0

]
.

Here, r(A) = 1, r(Ab) = 2. Thus, r(A) �= r(Ab) and no solution exists. �

Example 3 Discuss the solutions of the system

x + y + w = 3,

2x + 2y + 2w = 6,

−x − y − w = −3.

Solution

A =
⎡
⎣ 1 1 1

2 2 2
−1 −1 −1

⎤
⎦, b =

⎡
⎣ 3

6
−3

⎤
⎦, Ab =

⎡
⎣ 1 1 1 3

2 2 2 6
−1 −1 −1 −3

⎤
⎦.

Here r(A) = r(Ab) = 1; hence, the system is consistent. In this case, n = 3 and
k = 1; thus, the solutions are expressible in terms of 3 − 1 = 2 arbitrary unknowns.
Using Gaussian elimination, we find that the solution is x = 3 − y − w where y and
w are both arbitrary. �
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Example 4 Discuss the solutions of the system

2x − 3y + z = −1,

x − y + 2z = 2,

2x + y − 3z = 3.

Solution

A =
⎡
⎣2 −3 1

1 −1 2
2 1 −3

⎤
⎦, b =

⎡
⎣−1

2
3

⎤
⎦, Ab =

⎡
⎣2 −3 1 −1

1 −1 2 2
2 1 −3 3

⎤
⎦.

Here r(A) = r(Ab) = 3, hence the system is consistent. Since n = 3 and k = 3, the
solution will be in n − k = 0 arbitrary unknowns. Thus, the solution is unique (none
of the unknowns are arbitrary) and can be obtained by Gaussian elimination as
x = y = 2, z = 1. �

Example 5 Discuss the solutions of the system

x + y − 2z = 1,

2x + y + z = 2,

3x + 2y − z = 3,

4x + 2y + 2z = 4.

Solution

A =

⎡
⎢⎢⎣

1 1 −2
2 1 1
3 2 −1
4 2 2

⎤
⎥⎥⎦, b =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦, Ab =

⎡
⎢⎢⎣

1 1 −2 1
2 1 1 2
3 2 −1 3
4 2 2 4

⎤
⎥⎥⎦.

Here r(A) = r(Ab) = 2. Thus, the system is consistent and the solutions will be in
terms of 3 − 2 = 1 arbitrary unknowns. Using Gaussian elimination, we find that
the solution is x = 1 − 3z, y = 5z, and z is arbitrary. �

In a consistent system, the solution is unique if k = n. If k �= n, the solution will
be in terms of arbitrary unknowns. Since these arbitrary unknowns can be chosen
to be any constants whatsoever, it follows that there will be an infinite number of
solutions. Thus, a consistent system will possess exactly one solution or an infinite
number of solutions; there is no inbetween.
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A homogeneous system of simultaneous linear equations has the form

a11x1 + a12x2 + · · · + a1nxn = 0,

a21x1 + a22x2 + · · · + a2nxn = 0,
...

am1x1 + am2x2 + · · · + amnxn = 0,

(11)

or the matrix form

Ax = 0. (12)

Since Eq. (12) is a special case of Eq. (2) with b = 0, all the theory developed
for the system Ax = b remains valid. Because of the simplified structure of a
homogeneous system, one can draw conclusions about it that are not valid for a
nonhomogeneous system. For instance, a homogeneous system is always consis-
tent. To verify this statement, note that x1 = x2 = · · · = xn = 0 is always a solution
to Eq. (12). Such a solution is called the trivial solution. It is, in general, the non-
trivial solutions (solutions in which one or more of the unknowns is different from
zero) that are of the greatest interest.

It follows from Theorem 2, that if the rank of A is less than n(n being the
number of unknowns), then the solution will be in terms of arbitrary unknowns.
Since these arbitrary unknowns can be assigned nonzero values, it follows that
nontrivial solutions exist. On the other hand, if the rank of A equals n, then the
solution will be unique, and, hence, must be the trivial solution (why?). Thus, it
follows that:

Theorem 3 The homogeneous system (12) will admit nontrivial solutions if and
only if r(A) �= n.

Problems 2.7

In Problems 1–9, discuss the solutions of the given system in terms of consistency
and number of solutions. Check your answers by solving the systems wherever
possible.

1. x − 2y = 0,

x + y = 1,

2x − y = 1.

2. x + y = 0,

2x − 2y = 1,

x − y = 0.

3. x + y + z = 1,

x − y + z = 2,

3x + y + 3z = 4.

4. x + 3y + 2z − w = 2,

2x − y + z + w = 3.
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5. 2x − y + z = 0,

x + 2y − z = 4,

x + y + z = 1.

6. 2x + 3y = 0,

x − 4y = 0,

7. x − y + 2z = 0,

2x + 3y − z = 0,

−2x + 7y − 7z = 0.

8. x − y + 2z = 0,

2x − 3y − z = 0,

−2x + 7y − 9z = 0.

9. x − 2y + 3z + 3w = 0,

y − 2z + 2w = 0,

x + y − 3z + 9w = 0.

2.8 Final Comments on Chapter 2

We would like to show that the column rank of a matrix equals its row rank, and
that an elementary row operation of any kind does not alter the rank.

Lemma 1 If B is obtained from A by interchanging two columns of A, then both
A and B have the same column rank.

Proof. The set of vectors formed from the columns of A is identical to the set
formed from the columns of B, and, therefore, the two matrices must have the
same column rank.

Lemma 2 If Ax = 0 and Bx = 0 have the same set of solutions, then the column
rank of A is less than or equal to the column rank of B.

Proof. Let the order of A be m × n. Then, the system Ax = 0 is a set of m

equations in the n unknowns x1, x2, . . . , xn, which has the vector form

x1A1 + x2A2 + · · · + xnAn = 0, (13)

where A1, A2, . . . , An denote the columns of A. Similarly, the system Bx = 0 has
the vector form

x1B1 + x2B2 + · · · + xnBn = 0. (14)

We shall assume that the column rank of A is greater than the column rank of B
and show that this assumption leads to a contradiction. It will then follow that the
reverse must be true, which is precisely what we want to prove.

Denote the column rank of A as a and the column rank of B as b. We assume
that a > b. Since the column rank of A is a, there must exist a columns of A that
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are linearly independent. If these columns are not the first a columns, rearrange
the order of the columns so they are. Lemma 1 guarantees such reorderings do
not alter the column rank. Thus, A1, A2, . . . , Aa are linearly independent. Since
a is assumed greater than b, we know that the first a columns of B are not lin-
early independent. Since they are linearly dependent, there must exist constants
c1, c2, . . . , ca — not all zero — such that

c1B1 + c2B2 + · · · + caBa = 0.

It then follows that

c1B1 + c2B2 + · · · + caBa + 0Ba+1 + · · · + 0Bn = 0,

from which we conclude that

x1 = c1, x2 = c2, . . . , xa = ca, xa+1 = 0, . . . , xn = 0.

is a solution of Eq. (14). Since every solution to Eq. (14) is also a solution to Eq.
(12), we have

c1A1 + c2A2 + · · · + caAa + 0Aa+1 + · · · + 0An = 0,

or more simply

c1A1 + c2A2 + · · · + caAa = 0,

where all the c’s are not all zero. But this implies that the first a columns of A
are linearly dependent, which is a contradiction of the assumption that they were
linearly independent.

Lemma 3 If Ax = 0 and Bx = 0 have the same set of solutions, then A and B
have the same column rank.

Proof. If follows from Lemma 2 that the column rank of A is less than or equal
to the column rank of B. By reversing the roles of A and B, we can also conclude
from Lemma 2 that the column rank of B is less than or equal to the column rank
of A. As a result, the two column ranks must be equal.

Theorem 1 An elementary row operation does not alter the column rank of a
matrix.

Proof. Denote the original matrix as A, and let B denote a matrix obtained
by applying an elementary row operation to A; and consider the two homoge-
neous systems Ax = 0 and Bx = 0. Since elementary row operations do not alter
solutions, both of these systems have the same solution set. Theorem 1 follows
immediately from Lemma 3.
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Lemma 4 The column rank of a matrix is less than or equal to its row rank.

Proof. Denote rows of A by A1, A2, . . . Am, the column rank of matrix A by c

and its row rank by r. There must exist r rows of A which are linearly independent.
If these rows are not the first r rows, rearrange the order of the rows so they are.
Theorem 1 guarantees such reorderings do not alter the column rank, and they
certainly do not alter the row rank. Thus, A1, A2, . . . , Ar are linearly independent.
Define partitioned matrices R and S by

R =

⎡
⎢⎢⎢⎣

A1
A2
...

Ar

⎤
⎥⎥⎥⎦ and S =

⎡
⎢⎢⎢⎣

Ar+1
Ar+2

...

An

⎤
⎥⎥⎥⎦.

Then A has the partitioned form

A =
[

R
S

]
.

Every row of S is a linear combination of the rows of R. Therefore, there exist
constants tij such that

Ar+1 = tr+1,1A1 + tr+1,2A2 + · · · + tr+1,rAr,

Ar+2 = tr+2,1A1 + tr+2,2A2 + · · · + tr+2,rAr,

...

An = tn,1A1 + tn,2A2 + · · · + tn,rAr,

which may be written in the matrix form

S = TR,

where

T =

⎡
⎢⎢⎢⎣

tr+1,1 tr+1,2 · · · tr+1,n

tr+2,1 tr+2,2 · · · tr+2,n
...

...
...

...

tn,1 tn,2 · · · tn,n

⎤
⎥⎥⎥⎦.

Then, for any n-dimensional vector x, we have

Ax =
[

R
S

]
x =

[
Rx
Sx

]
=
[

Rx
TRx

]
.
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Thus, Ax = 0 if and only if Rx = 0. It follows from Lemma 3 that both A and R
have the same column rank. But the columns of R are r-dimensional vectors, so
its column rank cannot be larger than r. Thus,

c = column rank of A = column rank of R ≤ r = row rank of A

Lemma 5 The row rank of a matrix is less than or equal to its column rank.

Proof. By applying Lemma 4 to AT, we conclude that the column rank of AT is
less than or equal to the row rank of AT. But since the columns of AT are the rows
of A and vice-versa, the result follows immediately.

Theorem 2 The row rank of a matrix equals its column rank.

Proof. The result is immediate from Lemmas 4 and 5.

Theorem 3 An elementary row operation does not alter the row rank of a matrix.

Proof. This theorem is an immediate consequence of both Theorems 1 and 2.
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