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The Inverse

3.1 Introduction

Definition 1 An inverse of an n × n matrix A is a n × n matrix B having the
property that

AB = BA = I. (1)

Here, B is called an inverse of A and is usually denoted by A−1. If a square
matrix A has an inverse, it is said to be invertible or nonsingular. If A does not
possess an inverse, it is said to be singular. Note that inverses are only defined
for square matrices. In particular, the identity matrix is invertible and is its own
inverse because

II = I.

Example 1 Determine whether

B =
[

1 1
2

1
3

1
4

]
or C =

[−2 1
3
2 − 1

2

]

are inverses for

A =
[

1 2
3 4

]
.

Solution B is an inverse if and only if AB = BA = I; C is an inverse if and only
if AC = CA = I. Here,

AB =
[

1 2

3 4

][
1 1

2
1
3

1
4

]
=
[

5
3 1

13
3

5
2

]
�=
[

1 0

0 1

]
,
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while

AC =
[

1 2

3 4

][−2 1
3
2 − 1

2

]
=
[

1 0

0 1

]
=
[−2 1

3
2 − 1

2

][
1 2

3 4

]
= CA.

Thus, B is not an inverse for A, but C is. We may write A−1 = C. �

Definition 1 is a test for checking whether a given matrix is an inverse of another
given matrix. In the Final Comments to this chapter we prove that if AB = I for
two square matrices of the same order, then A and B commute, and BA = I. Thus,
we can reduce the checking procedure by half. A matrix B is an inverse for a square
matrix A if either AB = I or BA = I; each equality automatically guarantees the
other for square matrices. We will show in Section 3.4 that an inverse is unique. If
a square matrix has an inverse, it has only one.

Definition 1 does not provide a method for finding inverses. We develop such
a procedure in the next section. Still, inverses for some matrices can be found
directly.

The inverse for a diagonal matrix D having only nonzero elements on its main
diagonal is also a diagonal matrix whose diagonal elements are the reciprocals of
the corresponding diagonal elements of D. That is, if

D =

⎡
⎢⎢⎢⎢⎢⎣

λ1 0
λ2

λ3
. . .

0 λn

⎤
⎥⎥⎥⎥⎥⎦,

then

D−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
λ1

0

1
λ2

1
λ3

. . .

0
1
λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easy to show that if any diagonal element in a diagonal matrix is zero, then
that matrix is singular. (See Problem 57.)

An elementary matrix E is a square matrix that generates an elementary row
operation on a matrix A (which need not be square) under the multiplication
EA. Elementary, matrices are constructed by applying the desired elementary
row operation to an identity matrix of appropriate order. The appropriate order
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for both I and E is a square matrix having as many columns as there are rows
in A; then, the multiplication EA is defined. Because identity matrices contain
many zeros, the process for constructing elementary matrices can be simplified
still further. After all, nothing is accomplished by interchanging the positions of
zeros, multiplying zeros by nonzero constants, or adding zeros to zeros.

(i) To construct an elementary matrix that interchanges the ith row with the jth
row, begin with an identity matrix of the appropriate order. First, interchange
the unity element in the i − i position with the zero in the j − i position, and
then interchange the unity element in the j − j position with the zero in the
i − j position.

(ii) To construct an elementary matrix that multiplies the ith row of a matrix by
the nonzero scalar k, replace the unity element in the i − i position of the
identity matrix of appropriate order with the scalar k.

(iii) To construct an elementary matrix that adds to the jth row of a matrix k times
the ith row, replace the zero element in the j − i position of the identity matrix
of appropriate order with the scalar k.

Example 2 Find elementary matrices that when multiplied on the right by any
4 × 3 matrix A will (a) interchange the second and fourth rows of A, (b) multiply
the third row of A by 3, and (c) add to the fourth row of A − 5 times its second row.

Solution

(a)

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦, (b)

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

⎤
⎥⎥⎦, (c)

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 −5 0 1

⎤
⎥⎥⎦. �

Example 3 Find elementary matrices that when multiplied on the right by any
3 × 5 matrix A will (a) interchange the first and second rows of A, (b) multiply the
third row of A by −0.5, and (c) add to the third row of A − 1 times its second row.

Solution

(a)

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦, (b)

⎡
⎣1 0 0

0 1 0
0 0 −0.5

⎤
⎦, (c)

⎡
⎣1 0 0

0 1 0
0 −1 1

⎤
⎦. �

The inverse of an elementary matrix that interchanges two rows is the matrix
itself, it is its own inverse. The inverse of an elementary matrix that multiplies
one row by a nonzero scalar k is gotten by replacing k by 1/k. The inverse of
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an elementary matrix which adds to one row a constant k times another row is
obtained by replacing the scalar k by −k.

Example 4 Compute the inverses of the elementary matrices found in
Example 2.

Solution

(a)

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎤
⎥⎥⎥⎦, (b)

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1
3 0

0 0 0 1

⎤
⎥⎥⎥⎦, (c)

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 5 0 1

⎤
⎥⎥⎥⎦. �

Example 5 Compute the inverses of the elementary matrices found in
Example 3.

Solution

(a)

⎡
⎢⎣0 1 0

1 0 0
0 0 1

⎤
⎥⎦, (b)

⎡
⎢⎣1 0 0

0 1 0
0 0 −2

⎤
⎥⎦, (c)

⎡
⎢⎣1 0 0

0 1 0
0 1 1

⎤
⎥⎦.

Finally, if A can be partitioned into the block diagonal form,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1 0
A2

A3

. . .

0 An

⎤
⎥⎥⎥⎥⎥⎥⎦,

then A is invertible if and only if each of the diagonal blocks A1, A2, . . . , An is
invertible and

A−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A−1
1 0

A−1
2

A−1
3

. . .

0 A−1
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. �
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Example 6 Find the inverse of

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0
0 5 0 0 0 0 0
0 0 1 0 0 0 0
0 0 4 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Solution Set

A1 =
[

2 0
0 5

]
, A2 =

[
1 0
4 1

]
, and A3 =

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦;

then, A is in the block diagonal form

A =
⎡
⎢⎣A1 0

A2
0 A3

⎤
⎥⎦.

Here A1 is a diagonal matrix with nonzero diagonal elements, A2 is an elementary
matrix that adds to the second row four times the first row, and A3 is an elementary
matrix that interchanges the second and third rows; thus

A−1
1 =

[
1
2 0

0 1
5

]
, A−1

2 =
[

1 0
−4 1

]
, and A−1

3 =
⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦,

and

A−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 0 0 0 0 0 0

0 1
5 0 0 0 0 0

0 0 1 0 0 0 0
0 0 −4 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. �
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Problems 3.1

1. Determine if any of the following matrices are inverses for

A =
[

1 3
2 9

]
:

(a)

⎡
⎣1 1

3

1
2

1
9

⎤
⎦, (b)

[−1 −3
−2 −9

]
,

(c)

[
3 −1

− 2
3

1
3

]
, (d)

[
9 −3

−2 1

]
.

2. Determine if any of the following matrices are inverses for

B =
[

1 1
1 1

]
:

(a)

[
1 1
1 1

]
, (b)

[−1 1
1 −1

]
,

(c)
[

1 1
−1 −1

]
, (d)

[
2 −1

−1 2

]
.

3. Calculate directly the inverse of

A =
[

8 2
5 3

]
.

Hint: Define

B =
[
a b

c d

]
.

Calculate AB, set the product equal to I, and then solve for the elements of B.

4. Use the procedure described in Problem 3 to calculate the inverse of

C =
[

1 2
2 1

]
.

5. Use the procedure described in Problem 3 to calculate the inverse of

D =
[

1 1
1 1

]
.
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6. Show directly that the inverse of

A =
[
a b

c d

]

when ad − bc �= 0 is

A−1 = 1
ad − bc

[
d −b

−c a

]
.

7. Use the results of Problem 6 to calculate the inverse of[
1 1
3 4

]
.

8. Use the results of Problem 6 to calculate the inverse of[
2 1
4 3

]
.

9. Use the results of Problem 6 to calculate the inverse of[
1 1

2
1
2

1
3

]
.

10. Use the results of Problem 6 to calculate the inverse of[
10 20
30 40

]
.

In Problems 11 through 26, find elementary matrices that when multiplied on the
right by a matrix A will generate the specified result.

11. Interchange the order of the first and second row of the 2 × 2 matrix A.

12. Multiply the first row of a 2 × 2 matrix A by three.

13. Multiply the second row of a 2 × 2 matrix A by −5.

14. Multiply the second row of a 3 × 3 matrix A by −5.

15. Add to the second row of a 2 × 2 matrix A three times its first row.

16. Add to the first row of a 2 × 2 matrix A three times its second row.

17. Add to the second row of a 3 × 3 matrix A three times its third row.

18. Add to the third row of a 3 × 4 matrix A five times its first row.

19. Add to the second row of a 4 × 4 matrix A eight times its fourth row.

20. Add to the fourth row of a 5 × 7 matrix A −2 times its first row.

21. Interchange the second and fourth rows of a 4 × 6 matrix A.
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22. Interchange the second and fourth rows of a 4 × 4 matrix A.

23. Interchange the second and fourth rows of a 6 × 6 matrix A.

24. Multiply the second row of a 2 × 5 matrix A by seven.

25. Multiply the third row of a 5 × 2 matrix A by seven.

26. Multiply the second row of a 3 × 5 matrix A by −0.2.

In Problems 27 through 42, find the inverses of the given elementary matrices.

27.
[

2 0
0 1

]
, 28.

[
1 2
0 1

]
, 29.

[
1 0

−3 1

]
, 30.

[
1 0
1 1

]
,

31.

⎡
⎣1 0 0

0 2 0
0 0 1

⎤
⎦, 32.

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦, 33.

⎡
⎣1 0 0

0 1 0
3 0 1

⎤
⎦,

34.

⎡
⎣1 0 3

0 1 0
0 0 1

⎤
⎦, 35.

⎡
⎣1 0 0

0 1 −2
0 0 1

⎤
⎦, 36.

⎡
⎣1 0 0

0 1 0
0 0 −4

⎤
⎦,

37.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦, 38.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 7
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦, 39.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

−3 0 1 0
0 0 0 1

⎤
⎥⎥⎦,

40.

⎡
⎢⎢⎣

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤
⎥⎥⎦, 41.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

⎤
⎥⎥⎦, 42.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

0 0 − 1
2 0

0 0 0 1

⎤
⎥⎥⎦,

In Problems 43 through 55, find the inverses, if they exist, of the given diagonal or
block diagonal matrices.

43.
[

2 0
0 3

]
, 44.

[−1 0
0 0

]
, 45.

[
3 0
0 −3

]
, 46.

[
1
2 0

0 − 2
3

]
,

47.

⎡
⎣10 0 0

0 5 0
0 0 5

⎤
⎦, 48.

⎡
⎣1 1 0

0 1 0
0 0 −1

⎤
⎦, 49.

⎡
⎣−4 0 0

0 −2 0
0 0 3

5

⎤
⎦,

50.

⎡
⎢⎢⎣

1 2 0 0
0 1 0 0
0 0 1 0
0 0 2 1

⎤
⎥⎥⎦, 51.

⎡
⎢⎢⎣

2 0 0 0
0 3 0 0
0 0 1 −3
0 0 0 1

⎤
⎥⎥⎦, 52.

⎡
⎢⎢⎣

4 0 0 0
0 5 0 0
0 0 6 0
0 0 0 1

⎤
⎥⎥⎦,
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53.

⎡
⎢⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎥⎦, 54.

⎡
⎢⎢⎢⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 7

⎤
⎥⎥⎥⎦, 55.

⎡
⎢⎢⎢⎣

4 0 0 0
0 5 0 0
0 0 1 6
0 0 0 1

⎤
⎥⎥⎥⎦,

56. Prove that a square zero matrix does not have an inverse.

57. Prove that if a diagonal matrix has at least one zero on its main diagonal, then
that matrix cannot have an inverse.

58. Prove that if A2 = I, then A−1 = A.

3.2 Calculating Inverses

In Section 2.3, we developed a method for transforming any matrix into row-
reduced form using elementary row operations. If we now restrict our attention
to square matrices, we may say that the resulting row-reduced matrices are upper
triangular matrices having either a unity or zero element in each entry on the
main diagonal. This provides a simple test for determining which matrices have
inverses.

Theorem 1 A square matrix has an inverse if and only if reduction to row-
reduced form by elementary row operations results in a matrix having all unity
elements on the main diagonal.

We shall prove this theorem in the Final Comments to this chapter as

Theorem 2 An n × n matrix has an inverse if and only if it has rank n.

Theorem 1 not only provides a test for determining when a matrix is invertible,
but it also suggests a technique for obtaining the inverse when it exists. Once a
matrix has been transformed to a row-reduced matrix with unity elements on the
main diagonal, it is a simple matter to reduce it still further to the identity matrix.
This is done by applying elementary row operation (E3)—adding to one row of
a matrix a scalar times another row of the same matrix—to each column of the
matrix, beginning with the last column and moving sequentially toward the first
column, placing zeros in all positions above the diagonal elements.

Example 1 Use elementary row operations to transform the upper triangular
matrix

A =
⎡
⎣1 2 1

0 1 3
0 0 1

⎤
⎦

to the identity matrix.
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Solution ⎡
⎣1 2 1

0 1 3
0 0 1

⎤
⎦→

⎡
⎣1 2 1

0 1 0
0 0 1

⎤
⎦

⎧⎨
⎩

by adding to
the second row (−3)

times the third row

→
⎡
⎣1 2 0

0 1 0
0 0 1

⎤
⎦

⎧⎨
⎩

by adding to
the first row (−1)

times the third row

→
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

⎧⎨
⎩

by adding to
the first row (−2)

times the second row
�

To summarize, we now know that a square matrix A has an inverse if and only
if it can be transformed into the identity matrix by elementary row operations.
Moreover, it follows from the previous section that each elementary row operation
is represented by an elementary matrix E that generates the row operation under
the multiplication EA. Therefore, A has an inverse if and only if there exist a
sequence of elementary matrices. E1, E2, . . . , Ek such that

EkEk−1 · · · E3 E2 E1 A = I.

But, if we denote the product of these elementary matrices as B, we then have
BA = I, which implies that B = A−1. That is, the inverse of a square matrix A of
full rank is the product of those elementary matrices that reduce A to the identity
matrix! Thus, to calculate the inverse of A, we need only keep a record of the
elementary row operations, or equivalently the elementary matrices, that were
used to reduce A to I. This is accomplished by simultaneously applying the same
elementary row operations to both A and an identity matrix of the same order,
because if

Ek Ek−1 · · · E3 E2 E1 A = I,

then

(Ek Ek−1 · · · E3 E2 E1)I = Ek Ek−1 · · · E3 E2 E1 = A−1.

We have, therefore, the following procedure for calculating inverses when they
exist. Let A be the n × n matrix we wish to invert. Place next to it another n × n

matrix B which is initially the identity. Using elementary row operations on A,
transform it into the identity. Each time an operation is performed on A, repeat
the exact same operation on B. After A is transformed into the identity, the matrix
obtained from transforming B will be A−1.

If A cannot be transformed into an indentity matrix, which is equivalent to
saying that its row-reduced from contains at least one zero row, then A does not
have an inverse.
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Example 2 Invert

A =
[

1 2
3 4

]
.

Solution

[
1 2
3 4

∣∣∣∣ 1 0
0 1

]
→
[

1 2
0 −2

∣∣∣∣ 1 0
−3 1

] ⎧⎨
⎩

by adding to
the second row (−3)

times the first row

→
[

1 2

0 1

∣∣∣∣∣ 1 0
3
2 − 1

2

]
.

{
by multiplying
the second row by (− 1

2 )

A has been transformed into row-reduced form with a main diagonal of only unity
elements; it has an inverse. Continuing with transformation process, we get

→
[

1 0

0 1

∣∣∣∣∣ −2 1
3
2 − 1

2

]
.

⎧⎨
⎩

by adding to
the first row (−2)

times the second row

Thus,

A−1 =
[−2 1

3
2 − 1

2

]
. �

Example 3 Find the inverse of

A =
⎡
⎣5 8 1

0 2 1
4 3 −1

⎤
⎦.

Solution⎡
⎣5 8 1

0 2 1
4 3 −1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

⎤
⎦→

⎡
⎣1 1.6 0.2

0 2 1
4 3 −1

∣∣∣∣∣∣
0.2 0 0
0 1 0
0 0 1

⎤
⎦ {

by multiplying the
first row by (0.2)

→
⎡
⎣1 1.6 0.2

0 2 1
0 −3.4 −1.8

∣∣∣∣∣∣
0.2 0 0
0 1 0

−0.8 0 1

⎤
⎦
⎧⎨
⎩

by adding to the
third row (−4)

times the first row
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→
⎡
⎣1 1.6 0.2

0 1 0.5
0 −3.4 −1.8

∣∣∣∣∣∣
0.2 0 0
0 0.5 0

−0.8 0 1

⎤
⎦ {

by multiplying the
second row by (0.5)

→
⎡
⎣1 1.6 0.2

0 1 0.5
0 0 −0.1

∣∣∣∣∣∣
0.2 0 0
0 0.5 0

−0.8 1.7 1

⎤
⎦

⎧⎨
⎩

by adding to the
third row (3.4)

times the second row

→
⎡
⎣1 1.6 0.2

0 1 0.5
0 0 1

∣∣∣∣∣∣
0.2 0 0
0 0.5 0
8 −17 −10

⎤
⎦.

{
by multiplying the
third row by (−0.1)

A has been transformed into row-reduced form with a main diagonal of only unity
elements; it has an inverse. Continuing with the transformation process, we get

→
⎡
⎣1 1.6 0.2

0 1 0
0 0 1

∣∣∣∣∣∣
0.2 0 0

−4 9 5
8 −17 −10

⎤
⎦

⎧⎨
⎩

by adding to the
second row (−0.5)

times the third row

→
⎡
⎣1 1.6 0

0 1 0
0 0 1

∣∣∣∣∣∣
−1.4 3.4 2
−4 9 5

8 −17 −10

⎤
⎦

⎧⎨
⎩

by adding to the
first row (−0.2)

times the third row

→
⎡
⎣1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
5 −11 −6

−4 9 5
8 −17 −10

⎤
⎦.

⎧⎨
⎩

by adding to the
first row (−1.6)

times the second row

Thus,

A−1 =
⎡
⎣ 5 −11 −6

−4 9 5
8 −17 −10

⎤
⎦. �

Example 4 Find the inverse of

A =
⎡
⎣0 1 1

1 1 1
1 1 3

⎤
⎦.

Solution⎡
⎣0 1 1

1 1 1
1 1 3

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

⎤
⎦ →

⎡
⎣1 1 1

0 1 1
1 1 3

∣∣∣∣∣∣
0 1 0
1 0 0
0 0 1

⎤
⎦ {

by interchanging the
first and second rows
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→
⎡
⎣1 1 1

0 1 1
0 0 2

∣∣∣∣∣∣
0 1 0
1 0 0
0 −1 1

⎤
⎦

⎧⎨
⎩

by adding to the
the third row (−1)

times the first row

→
⎡
⎢⎣1 1 1

0 1 1
0 0 1

∣∣∣∣∣∣∣
0 1 0
1 0 0

0 − 1
2

1
2

⎤
⎥⎦ {

by multiplying the
third row by ( 1

2 )

→
⎡
⎢⎣1 1 1

0 1 0
0 0 1

∣∣∣∣∣∣∣
0 1 0
1 1

2 − 1
2

0 − 1
2

1
2

⎤
⎥⎦

⎧⎨
⎩

by adding to the
second row (−1)

times the third row

→

⎡
⎢⎢⎣

1 1 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣
0 3

2 − 1
2

1 1
2 − 1

2

0 − 1
2

1
2

⎤
⎥⎥⎦

⎧⎨
⎩

by adding to the
first row (−1)

times the third row

→
⎡
⎢⎣1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣∣
−1 1 0

1 1
2 − 1

2

0 − 1
2

1
2

⎤
⎥⎦.

⎧⎨
⎩

by adding to the
first row (−1)

times the second row

Thus,

A−1 =
⎡
⎢⎣

−1 1 0

1 1
2 − 1

2

0 − 1
2

1
2

⎤
⎥⎦. �

Example 5 Invert

A =
[

1 2

2 4

]
.

Solution

[
1 2
2 4

∣∣∣∣ 1 0
0 1

]
→
[

1 2
0 0

∣∣∣∣ 1 0
−2 1

]
.

⎧⎨
⎩

by adding to
the second row (−2)

times the first row

A has been transformed into row-reduced form. Since the main diagonal contains
a zero element, here in the 2–2 position, the matrix A does not have an inverse. It
is singular. �
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Problems 3.2

In Problems 1–20, find the inverses of the given matrices, if they exist.

1.
[

1 1
3 4

]
, 2.

[
2 1
1 2

]
, 3.

[
4 4
4 4

]
,

4.
[

2 −1
3 4

]
, 5.

[
8 3
5 2

]
, 6.

[
1 1

2
1
2

1
3

]
,

7.

⎡
⎣1 1 0

1 0 1
0 1 1

⎤
⎦, 8.

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦, 9.

⎡
⎣2 0 −1

0 1 2
3 1 1

⎤
⎦,

10.

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦, 11.

⎡
⎣2 0 0

5 1 0
4 1 1

⎤
⎦, 12.

⎡
⎣2 1 5

0 3 −1
0 0 2

⎤
⎦,

13.

⎡
⎣3 2 1

4 0 1
3 9 2

⎤
⎦, 14.

⎡
⎣ 1 2 −1

2 0 1
−1 1 3

⎤
⎦, 15.

⎡
⎣1 2 1

3 −2 −4
2 3 −1

⎤
⎦,

16.

⎡
⎣2 4 3

3 −4 −4
5 0 −1

⎤
⎦, 17.

⎡
⎣5 0 −1

2 −1 2
2 3 −1

⎤
⎦, 18.

⎡
⎣3 1 1

1 3 −1
2 3 −1

⎤
⎦,

19.

⎡
⎢⎢⎣

1 1 1 2
0 1 −1 1
0 0 2 3
0 0 0 −2

⎤
⎥⎥⎦, 20.

⎡
⎢⎢⎣

1 0 0 0
2 −1 0 0
4 6 2 0
3 2 4 −1

⎤
⎥⎥⎦.

21. Use the results of Problems 11 and 20 to deduce a theorem involving inverses
of lower triangular matrices.

22. Use the results of Problems 12 and 19 to deduce a theorem involving the
inverses of upper triangular matrices.

23. Matrix inversion can be used to encode and decode sensitive messages for
transmission. Initially, each letter in the alphabet is assigned a unique positive
integer, with the simplest correspondence being

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

.
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Zeros are used to separate words. Thus, the message

SHE IS A SEER

is encoded

19 8 5 0 9 19 0 1 0 19 5 5 18 0.

This scheme is too easy to decipher, however, so a scrambling effect is added
prior to transmission. One scheme is to package the coded string as a set of
2-tuples, multiply each 2-tuple by a 2 × 2 invertible matrix, and then transmit
the new string. For example, using the matrix

A =
[

1 2

2 3

]
,

the coded message above would be scrambled into

[
1 2

2 3

][
19

8

]
=
[

35

62

]
,

[
1 2

2 3

][
5

0

]
=
[

5

10

]
,

[
1 2

2 3

][
9

19

]
=
[

47

75

]
, etc.,

and the scrambled message becomes

35 62 5 10 47 75 . . . .

Note an immediate benefit from the scrambling: the letter S, which was orig-
inally always coded as 19 in each of its three occurrences, is now coded as a
35 the first time and as 75 the second time. Continue with the scrambling, and
determine the final code for transmitting the above message.

24. Scramble the message SHE IS A SEER using, matrix

A =
[

2 −3
4 5

]
.

25. Scramble the message AARON IS A NAME using the matrix and steps
described in Problem 23.



108 Chapter 3 The Inverse

26. Transmitted messages are unscrambled by again packaging the received mes-
sage into 2-tuples and multiplying each vector by the inverse of A. To decode
the scrambled message

18 31 44 72

using the encoding scheme described in Problem 23, we first calculate

A−1 =
[−3 2

2 −1

]
,

and then

[−3 2
2 −1

][
18
31

]
=
[

8
5

]
,

[−3 2
2 −1

][
44
72

]
=
[

12
16

]
.

The unscrambled message is

8 5 12 16

which, according to the letter-integer correspondence given in Problem 23,
translates to HELP. Using the same procedure, decode the scrambled message

26 43 40 60 18 31 28 51.

27. Use the decoding procedure described in Problem 26, but with the matrix A
given in Problem 24, to decipher the transmitted message

16 120 −39 131 −27 45 38 76 −51 129 28 56.

28. Scramble the message SHE IS A SEER by packaging the coded letters into
3-tuples and then multiplying by the 3 × 3 invertible matrix

A =
⎡
⎢⎣1 0 1

0 1 1
1 1 0

⎤
⎥⎦.

Add as many zeros as necessary to the end of the message to generate complete
3-tuples.
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3.3 Simultaneous Equations

One use of the inverse is in the solution of systems of simultaneous linear
equations. Recall, from Section 1.3 that any such system may be written in the form

Ax = b, (2)

where A is the coefficient matrix, b is a known vector, and x is the unknown vector
we wish to find. If A is invertible, then we can premultiply (2) by A−1 and obtain

A−1Ax = A−1b.

But A−1A = 1, therefore

Ix = A−1b

or

x = A−1b. (3)

Hence, (3) shows that if A is invertible, then x can be obtained by premultiplying
b by the inverse of A.

Example 1 Solve the following system for x and y:

x − 2y = −9,

−3x + y = 2.

Solution Define

A =
[

1 −2
−3 1

]
, x =

[
x

y

]
, b =

[−9
2

]
;

then the system can be written as Ax = b, hence x = A−1b. Using the method
given in Section 3.2 we find that

A−1 =
(
− 1

5

) [1 2
3 1

]
.

Thus, [
x

y

]
= x = A−1b =

(
− 1

5

) [1 2
3 1

][−9
2

]
=
(
− 1

5

) [ −5
−25

]
=
[

1
5

]
.

Using the definition of matrix equality (two matrices are equal if and only if their
corresponding elements are equal), we have that x = 1 and y = 5. �
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Example 2 Solve the following system for x, y, and z:

5x + 8y + z = 2,

2y + z = −1,

4x + 3y − z = 3.

Solution

A =
⎡
⎣5 8 1

0 2 1
4 3 −1

⎤
⎦, x =

⎡
⎣x

y

z

⎤
⎦, b =

⎡
⎣ 2

−1
3

⎤
⎦.

A−1 is found to be (see Example 3 of Section 3.2)⎡
⎣ 5 −11 −6

−4 9 5
8 −17 −10

⎤
⎦.

Thus, ⎡
⎣x

y

z

⎤
⎦ = x = A−1b =

⎡
⎣ 5 −11 −6

−4 9 5
8 −17 −10

⎤
⎦
⎡
⎣ 2

−1
3

⎤
⎦ =

⎡
⎣ 3

−2
3

⎤
⎦,

hence x = 3, y = −2, and z = 3. �

Not only does the invertibility of A provide us with a solution of the system
Ax = b, it also provides us with a means of showing that this solution is unique
(that is, there is no other solution to the system).

Theorem 1 If A is invertible, then the system of simultaneous linear equations
given by Ax = b has one and only one solution.

Proof. Define w = A−1b. Since we have already shown that w is a solution to
Ax = b, it follows that

Aw = b. (4)

Assume that there exists another solution y. Since y is a solution, we have that

Ay = b. (5)

Equations (4) and (5) imply that

Aw = Ay. (6)
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Premultiply both sides of (6) by A−1. Then

A−1Aw = A−1Ay,

Iw = Iy,

or

w = y.

Thus, we see that if y is assumed to be a solution of Ax = b, it must, in fact, equal
w. Therefore, w = A−1b is the only solution to the problem.

If A is singular, so that A−1 does not exist, then (3) is not valid and other
methods, such as Gaussian elimination, must be used to solve the given system of
simultaneous equations.

Problems 3.3

In Problems 1 through 12, use matrix inversion, if possible, to solve the given
systems of equations:

1. 2.x + 2y = −3,

3x + y = 1.

a + 2b = 5,

−3a + b = 13.

3. 4.4x + 2y = 6,

2x − 3y = 7.

4l − p = 1,

5l − 2p = −1.

5. 6.2x + 3y = 8,

6x + 9y = 24.

x + 2y − z = −1,

2x + 3y + 2z = 5,

y − z = 2.

7. 8.2x + 3y − z = 4,

−x − 2y + z = −2,

3x − y = 2.

60l + 30m + 20n = 0,

30l + 20m + 15n = −10,

20l + 15m + 12n = −10.

9. 10.2r + 4s = 2,

3r + 2s + t = 8,

5r − 3s + 7t = 15.

2r + 4s = 3,

3r + 2s + t = 8,

5r − 3s + 7t = 15.

11. 12.2r + 3s − 4t = 12,

3r − 2s = −1,

8r − s − 4t = 10.

x + 2y − 2z = −1,

2x + y + z = 5,

−x + y − z = −2.

13. Use matrix inversion to determine a production schedule that satisfies the
requirements of the manufacturer described in Problem 12 of Section 2.1.
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14. Use matrix inversion to determine a production schedule that satisfies the
requirements of the manufacturer described in Problem 13 of Section 2.1.

15. Use matrix inversion to determine a production schedule that satisfies the
requirements of the manufacturer described in Problem 14 of Section 2.1.

16. Use matrix inversion to determine the bonus for the company described in
Problem 16 of Section 2.1.

17. Use matrix inversion to determine the number of barrels of gasoline that the
producer described in Problem 17 of Section 2.1 must manufacture to break
even.

18. Use matrix inversion to solve the Leontief input–output model described in
Problem 22 of Section 2.1.

19. Use matrix inversion to solve the Leontief input–output model described in
Problem 23 of Section 2.1.

3.4 Properties of the Inverse

Theorem 1 If A, B, and C are square matrices of the same order with AB = I
and CA = I, then B = C.

Proof. C = CI = C(AB) = (CA)B = IB = B.

Theorem 2 The inverse of a matrix is unique.

Proof. Suppose that B and C are inverse of A. Then, by (1), we have that

AB = I, BA = I, AC = I, and CA = I.

It follows from Theorem 1 that B = C. Thus, if B and C are both inverses of A,
they must in fact be equal. Hence, the inverse is unique.

Using Theorem 2, we can prove some useful properties of the inverse of a
matrix A when A is nonsingular.

Property 1
(
A−1)−1 = A.

Proof. See Problem 1.

Property 2 (AB)−1 = B−1A−1.

Proof. (AB)−1 denotes the inverse of AB. However,
(
B−1A−1) (AB) =

B−1 (A−1A
)

B = B−1IB = B−1B = I. Thus, B−1A−1 is also an inverse for AB,
and, by uniqueness of the inverse, B−1A−1 = (AB)−1.

Property 3 (A1A2 · · · An)
−1 = A−1

n A−1
n−1 · · · A−1

2 A−1
1 .
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Proof. This is an extension of Property 2 and, as such, is proved in a similar
manner.

CAUTION. Note that Property 3 states that the inverse of a product is not the
product of the inverses but rather the product of the inverses commuted.

Property 4
(
AT)−1 = (A−1)T

Proof.
(
AT)−1

denotes the inverse of AT. However, using the property of the
transpose that (AB)T = BTAT, we have that

(
AT)(A−1)T = (A−1A

)T = IT = I.

Thus,
(
A−1)T is an inverse of AT, and by uniqueness of the inverse,

(
A−1)T =(

AT)−1
.

Property 5 (λA)−1 = (1/λ) (A)−1 if λ is a nonzero scalar.

Proof. (λA)−1 denotes the inverse of λA. However,

(λA)(1/λ)A−1 = λ(1/λ)AA−1 = 1·I = I.

Thus, (1/λ)A−1 is an inverse of λA, and by uniqueness of the inverse (1/λ)A−1 =
(λA)−1.

Property 6 The inverse of a nonsingular symmetric matrix is symmetric.

Proof. See Problem 18.

Property 7 The inverse of a nonsingular upper or lower triangular matrix is
again an upper or lower triangular matrix respectively.

Proof. This is immediate from Theorem 2 and the constructive procedure
described in Section 3.2 for calculating inverses.

Finally, the inverse provides us with a straightforward way of defining square
matrices raised to negative integral powers. If A is nonsingular then we define
A−n = (A−1)n.

Example 1 Find A−2 if

A =
⎡
⎣ 1

3
1
2

1
2 1

⎤
⎦.
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Solution

A−2 =
(

A−1
)2

=
[

12 −6
−6 4

]2

=
[

12 −6
−6 4

][
12 −6
−6 4

]
=
[

180 −96
−96 52

]
. �

Problems 3.4

1. Prove Property 1.

2. Verify Property 2 for

A =
[

1 1
2 3

]
and B =

[
2 5
1 2

]
.

3. Verify Property 2 for

A =
[

1 2
3 4

]
and B =

[
1 −1
3 5

]
.

4. Verify Property 2 for

A =
⎡
⎣1 1 1

0 1 1
0 0 1

⎤
⎦ and B =

⎡
⎣1 2 −1

0 1 −1
0 0 1

⎤
⎦.

5. Prove that (ABC)−1 = C−1 B−1 A−1.

6. Verify the result of Problem 5 if

A =
[

1 3
0 2

]
, B =

[
4 0
0 2

]
, and C =

[−1 0
2 2

]
.

7. Verify Property 4 for the matrix A defined in Problem 2.

8. Verify Property 4 for the matrix A defined in Problem 3.

9. Verify Property 4 for the matrix A defined in Problem 4.

10. Verify Property 5 for λ = 2 and

A =
⎡
⎣ 1 0 2

2 3 −1
−1 0 3

⎤
⎦.

11. Find A−2 and B−2 for the matrices defined in Problem 2.
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12. Find A−3 and B−3 for the matrices defined in Problem 2.

13. Find A−2 and B−4 for the matrices defined in Problem 3.

14. Find A−2 and B−2 for the matrices defined in Problem 4.

15. Find A−3 and B−3 for the matrices defined in Problem 4.

16. Find A−3 if

A =
[

1 −2
2 1

]
.

17. If A is symmetric, prove the identity

(
BA−1)T(A−1BT)−1 = I.

18. Prove Property 6.

3.5 LU Decomposition

Matrix inversion of elementary matrices (see Section 3.1) can be combined with
the third elementary row operation (see Section 2.3) to generate a good numerical
technique for solving simultaneous equations. It rests on being able to decompose
a nonsingular square matrix A into the product of lower triangular matrix L with
an upper triangular matrix U. Generally, there are many such factorizations. If,
however, we add the additional condition that all diagonal elements of L be unity,
then the decomposition, when it exists, is unique, and we may write

A = LU (7)

with

L =

⎡
⎢⎢⎢⎢⎣

1 0 0 · · · 0
l21 1 0 · · · 0
l31 l32 1 · · · 0
...

...
...

. . .
...

ln1 ln2 ln3 · · · 1

⎤
⎥⎥⎥⎥⎦

and

U =

⎡
⎢⎢⎢⎢⎣

u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n
...

...
...

. . .
...

0 0 0 · · · unn

⎤
⎥⎥⎥⎥⎦.

To decompose A into from (7), we first reduce A to upper triangular from using
just the third elementary row operation: namely, add to one row of a matrix a
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scalar times another row of that same matrix. This is completely analogous to
transforming a matrix to row-reduced form, except that we no longer use the
first two elementary row operations. We do not interchange rows, and we do not
multiply a row by a nonzero constant. Consequently, we no longer require the
first nonzero element of each nonzero row to be unity, and if any of the pivots
are zero—which in the row-reduction scheme would require a row interchange
operation—then the decomposition scheme we seek cannot be done.

Example 1 Use the third elementary row operation to transform the matrix

A =
⎡
⎣ 2 −1 3

4 2 1
−6 −1 2

⎤
⎦

into upper triangular form.

Solution

A =
⎡
⎣ 2 −1 3

4 2 1
−6 −1 2

⎤
⎦→

⎡
⎣ 2 −1 3

0 4 −5
−6 −1 2

⎤
⎦

⎧⎨
⎩

by adding to the
second row (−2) times
the first row

→
⎡
⎣2 −1 3

0 4 −5
0 −4 11

⎤
⎦

⎧⎨
⎩

by adding to the
third row (3) times
the first row

→
⎡
⎣2 −1 3

0 4 −5
0 0 6

⎤
⎦.

⎧⎨
⎩

by adding to the
third row (1) times
the second row

�

If a square matrix A can be reduced to upper triangular form U by a sequence
of elementary row operations of the third type, then there exists a sequence of
elementary matrices E21, E31, E41, . . . , En,n−1 such that

(
En−1,n · · · E41E31E21

)
A = U, (8)

where E21 denotes the elementary matrix that places a zero in the 2–1 position,
E31 denotes the elementary matrix that places a zero in the 3–1 position, E41
denotes the elementary matrix that places a zero in the 4–1 position, and so on.
Since elementary matrices have inverses, we can write (8) as

A =
(

E−1
21 E−1

31 E−1
41 · · · E−1

n,n−1

)
U. (9)

Each elementary matrix in (8) is lower triangular. If follows from Property 7 of
Section 3.4 that each of the inverses in (9) are lower triangular, and then from
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Theorem 1 of Section 1.4 that the product of these lower triangular matrices is
itself lower triangular. Setting

L = E−1
21 E−1

31 E−1
41 · · · E−1

n,n−1,

we see that (9) is identical to (7), and we have the decomposition we seek.

Example 2 Construct an LU decomposition for the matrix given in Example 1.

Solution The elementary matrices associated with the elementary row opera-
tions described in Example 1 are

E21 =
⎡
⎣ 1 0 0

−2 1 0
0 0 1

⎤
⎦, E31 =

⎡
⎣1 0 0

0 1 0
3 0 1

⎤
⎦, and E42 =

⎡
⎣1 0 0

0 1 0
0 1 1

⎤
⎦,

with inverses given respectively by

E−1
21 =

⎡
⎣1 0 0

2 1 0
0 0 1

⎤
⎦, E−1

31 =
⎡
⎣ 1 0 0

0 1 0
−3 0 1

⎤
⎦, and E−1

42 =
⎡
⎣1 0 0

0 1 0
0 −1 1

⎤
⎦.

Then,⎡
⎣ 2 −1 3

4 2 1
−6 −1 2

⎤
⎦ =

⎡
⎣1 0 0

2 1 0
0 0 1

⎤
⎦
⎡
⎣ 1 0 0

0 1 0
−3 0 1

⎤
⎦
⎡
⎣1 0 0

0 1 0
0 −1 1

⎤
⎦
⎡
⎣2 −1 3

0 4 −5
0 0 6

⎤
⎦

or, upon multiplying together the inverses of the elementary matrices,

⎡
⎣ 2 −1 3

4 2 1
−6 −1 2

⎤
⎦ =

⎡
⎣ 1 0 0

2 1 0
−3 −1 1

⎤
⎦
⎡
⎣2 −1 3

0 4 −5
0 0 6

⎤
⎦. �

Example 2 suggests an important simplification of the decomposition process.
Note the elements in L below the main diagonal are the negatives of the scalars
used in the elementary row operations to reduce the original matrix to upper
triangular form! This is no coincidence. In general,

OBSERVATION 1 If an elementary row operation is used to put a zero in the i−j

position of A(i > j) by adding to row i a scalar k times row j, then the i−j element
of L in the LU decomposition of A is −k.

We summarize the decomposition process as follows: Use only the third ele-
mentary row operation to transform a given square matrix A to upper triangular
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from. If this is not possible, because of a zero pivot, then stop; otherwise, the LU
decomposition is found by defining the resulting upper triangular matrix as U and
constructing the lower triangular matrix L utilizing Observation 1.

Example 3 Construct an LU decomposition for the matrix

A =

⎡
⎢⎢⎣

2 1 2 3
6 2 4 8
1 −1 0 4
0 1 −3 −4

⎤
⎥⎥⎦.

Solution Transforming A to upper triangular form, we get

⎡
⎢⎢⎣

2 1 2 3
6 2 4 8
1 −1 0 4
0 1 −3 −4

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

2 1 2 3
0 −1 −2 −1
1 −1 0 4
0 1 −3 −4

⎤
⎥⎥⎦

⎧⎨
⎩

by adding to the
second row (−3) times
the first row

→

⎡
⎢⎢⎢⎣

2 1 2 3
0 −1 −2 −1

0 − 3
2 −1 5

2

0 1 −3 −4

⎤
⎥⎥⎥⎦
⎧⎨
⎩

by adding to the
third row

(− 1
2

)
times

the first row

→

⎡
⎢⎢⎣

2 1 2 3
0 −1 −2 −1
0 0 2 4
0 1 −3 −4

⎤
⎥⎥⎦

⎧⎨
⎩

by adding to the
third row

(− 3
2

)
times

the second row

→

⎡
⎢⎢⎣

2 1 2 3
0 −1 −2 −1
0 0 2 4
0 0 −5 −5

⎤
⎥⎥⎦

⎧⎨
⎩

by adding to the
fourth row (1) times
the second row

→

⎡
⎢⎢⎣

2 1 2 3
0 −1 −2 −1
0 0 2 4
0 0 0 5

⎤
⎥⎥⎦

⎧⎪⎨
⎪⎩

by adding to the

fourth row
(

5
2

)
times

the third row

We now have an upper triangular matrix U. To get the lower triangular matrix
L in the decomposition, we note that we used the scalar −3 to place a zero in
the 2–1 position, so its negative −(−3) = 3 goes into the 2–1 position of L. We
used the scalar − 1

2 to place a zero in the 3–1 position in the second step of the
above triangularization process, so its negative, 1

2 , becomes the 3–1 element in
L; we used the scalar 5

2 to place a zero in the 4–3 position during the last step of
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the triangularization process, so its negative, − 5
2 , becomes the 4–3 element in L.

Continuing in this manner, we generate the decomposition

⎡
⎢⎢⎢⎣

2 1 2 3
6 2 4 8
1 −1 0 4
0 1 −3 −4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0
3 1 0 0
1
2

3
2 1 0

0 −1 − 5
2 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

2 1 2 3
0 −1 −2 −1
0 0 2 4
0 0 0 5

⎤
⎥⎥⎥⎦. �

LU decompositions, when they exist, can be used to solve systems of simulta-
neous linear equations. If a square matrix A can be factored into A = LU, then
the system of equations Ax = b can be written as L(Ux) = b. To find x, we first
solve the system

Ly = b (10)

for y, and then, once y is determined, we solve the system

Ux = y (11)

for x. Both systems (10) and (11) are easy to solve, the first by forward substitution
and the second by backward substitution.

Example 4 Solve the system of equations:

2x − y + 3z = 9,

4x + 2y + z = 9,

−6x − y + 2z = 12.

Solution This system has the matrix form

⎡
⎣ 2 −1 3

4 2 1
−6 −1 2

⎤
⎦
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ 9

9
12

⎤
⎦.

The LU decomposition for the coefficient matrix A is given in Example 2. If
we define the components of y by α, β, and γ , respectively, the matrix system
Ly = b is

⎡
⎣ 1 0 0

2 1 0
−3 −1 1

⎤
⎦
⎡
⎣α

β

γ

⎤
⎦ =

⎡
⎣ 9

9
12

⎤
⎦,
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which is equivalent to the system of equations

α = 9,

2α + β = 9,

−3α − β + γ = 12.

Solving this system from top to bottom, we get α = 9, β = −9, and γ = 30. Conse-
quently, the matrix system Ux = y is⎡

⎣2 −1 3
0 4 −5
0 0 6

⎤
⎦
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ 9

−9
30

⎤
⎦.

which is equivalent to the system of equations

2x − y + 3z = 9,

4y − 5z = −9,

6z = 30.

Solving this system from bottom to top, we obtain the final solution x = −1, y = 4,
and z = 5. �

Example 5 Solve the system:

2a + b + 2c + 3d = 5,

6a + 2b + 4c + 8d = 8,

a − b + 4d = −4,

b − 3c − 4d = −3.

Solution The matrix representation for this system has as its coefficient matrix
the matrix A of Example 3. Define.

y = [α, β, γ, δ]T.

Then, using the decomposition determined in Example 3, we can write the matrix
system Ly = b as the system of equations

α = 5,

3α + β = 8,
1
2α + 3

2β + γ = −4,

− β − 5
2γ + δ = −3,

which has as its solution α = 5, β = −7, γ = 4, and δ = 0. Thus, the matrix system
Ux = y is equivalent to the system of equations

2a + b + 2c + 3d = 5,

− b − 2c − d = −7,

2c + 4d = 4,

5d = 0.
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Solving this set from bottom to top, we calculate the final solution a = −1,

b = 3, c = 2, and d = 0. �

LU decomposition and Gaussian elimination are equally efficient for solving
Ax = b, when the decomposition exists. LU decomposition is superior when Ax =
b must be solved repeatedly for different values of b but the same A, because once
the factorization of A is determined it can be used with all b. (See Problems 17 and
18.) A disadvantage of LU decomposition is that it does not exist for all nonsingular
matrices, in particular whenever a pivot is zero. Fortunately, this occurs rarely, and
when it does the difficulty usually is overcome by simply rearranging the order of
the equations. (See Problems 19 and 20.)

Problems 3.5

In Problems 1 through 14, A and b are given. Construct an LU decomposition for
the matrix A and then use it to solve the system Ax = b for x.

1. A =
[

1 1
3 4

]
, b =

[
1

−6

]
. 2. A =

[
2 1
1 2

]
, b =

[
11
−2

]
.

3. A =
[

8 3
5 2

]
, b =

[
625
550

]
. 4. A =

⎡
⎣1 1 0

1 0 1
0 1 1

⎤
⎦, b =

⎡
⎣ 4

1
−1

⎤
⎦.

5. A =
⎡
⎣−1 2 0

1 −3 1
2 −2 3

⎤
⎦, b =

⎡
⎣−1

−2
3

⎤
⎦.

6. A =
⎡
⎣ 2 1 3

4 1 0
−2 −1 −2

⎤
⎦, b =

⎡
⎣ 10

−40
0

⎤
⎦.

7. A =
⎡
⎣3 2 1

4 0 1
3 9 2

⎤
⎦, b =

⎡
⎣50

80
20

⎤
⎦.

8. A =
⎡
⎣ 1 2 −1

2 0 1
−1 1 3

⎤
⎦, b =

⎡
⎣ 80

159
−75

⎤
⎦.

9. A =
⎡
⎣1 2 −1

0 2 1
0 0 1

⎤
⎦, b =

⎡
⎣ 8

−1
5

⎤
⎦.

10. A =
⎡
⎣1 0 0

3 2 0
1 1 2

⎤
⎦, b =

⎡
⎣2

4
2

⎤
⎦.
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11. A =

⎡
⎢⎢⎣

1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1

⎤
⎥⎥⎦, b =

⎡
⎢⎢⎣

4
−3
−2
−2

⎤
⎥⎥⎦.

12. A =

⎡
⎢⎢⎣

2 1 −1 3
1 4 2 1
0 0 −1 1
0 1 0 1

⎤
⎥⎥⎦, b =

⎡
⎢⎢⎣

1000
200
100
100

⎤
⎥⎥⎦.

13. A =

⎡
⎢⎢⎣

1 2 1 1
1 1 2 1
1 1 1 2
0 1 1 1

⎤
⎥⎥⎦, b =

⎡
⎢⎢⎣

30
30
10
10

⎤
⎥⎥⎦.

14. A =

⎡
⎢⎢⎣

2 0 2 0
2 2 0 6

−4 3 1 1
1 0 3 1

⎤
⎥⎥⎦, b =

⎡
⎢⎢⎣

−2
4
9
4

⎤
⎥⎥⎦.

15. (a) Use LU decomposition to solve the system

−x + 2y = 9,

2x + 3y = 4.

(b) Resolve when the right sides of each equation are replaced by 1 and −1,
respectively.

16. (a) Use LU decomposition to solve the system

x + 3y − z = −1,

2x + 5y + z = 4,

2x + 7y − 4z = −6.

(b) Resolve when the right sides of each equation are replaced by 10, 10, and
10, respectively.

17. Solve the system Ax = b for the following vectors b when A is given as in
Problem 4:

(a)

⎡
⎣ 5

7
−4

⎤
⎦, (b)

⎡
⎣2

2
0

⎤
⎦, (c)

⎡
⎣40

50
20

⎤
⎦, (d)

⎡
⎣1

1
3

⎤
⎦.
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18. Solve the system Ax = b for the following vectors b when A is given as in
Problem 13:

(a)

⎡
⎢⎢⎣

−1
1
1
1

⎤
⎥⎥⎦, (b)

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦, (c)

⎡
⎢⎢⎣

190
130
160

60

⎤
⎥⎥⎦, (d)

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦.

19. Show that LU decomposition cannot be used to solve the system

2y + z = −1,

x + y + 3z = 8,

2x − y − z = 1,

but that the decomposition can be used if the first two equations are
interchanged.

20. Show that LU decomposition cannot be used to solve the system

x + 2y + z = 2,

2x + 4y − z = 7,

x + y + 2z = 2,

but that the decomposition can be used if the first and third equations are
interchanged.

21. (a) Show that the LU decomposition procedure given in this chapter cannot
be applied to

A =
[

0 2
0 9

]
.

(b) Verify that A = LU, when

L =
[

1 0
1 1

]
and U =

[
0 2
0 7

]
.

(c) Verify that A = LU, when

L =
[

1 0
3 1

]
and U =

[
0 2
0 3

]
.

(d) Why do you think the LU decomposition procedure fails for this A? What
might explain the fact that A has more than one LU decomposition?
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3.6 Final Comments on Chapter 3

We now prove the answers to two questions raised earlier. First, what matrices
have inverses? Second, if AB = I, is it necessarily true that AB = I too?

Lemma 1 Let A and B be n × n matrices. If AB = I, then the system of equations
Ax = y has a solution for every choice of the vector y.

Proof. Once y is specified, set x = By. Then

Ax = A(By) = (AB)y = Iy = y,

so x = By is a solution of Ax = y.

Lemma 2 If A and B are n × n matrices with AB = I, then A has rank n.

Proof. Designate the rows of A by A1, A2, . . . , An. We want to show that these n

rows constitute a linearly independent set of vectors, in which case the rank of A is
n. Designate the columns of I as the vectors e1, e2, . . . , en, respectively. It follows
from Lemma 1 that the set of equations Ax = ej (j = 1, 2, . . . , n) has a solution
for each j. Denote these solutions by x1, x2, . . . xn, respectively. Therefore,

Axj = ej.

Since ej (j = 1, 2, . . . , n) is an n-dimensional column vector having a unity element
in row j and zeros everywhere else, it follows form the last equation that

Aixj =
{

1 when i = j,

0 when i �= j.

This equation can be notationally simplified if we make use of the Kronecker delta
δij defined by

δij =
{

1 when i = j.

0 when i �= j.

Then,

Aixj = δij.

Now consider the equation

n∑
i=0

ciAi = 0.
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We wish to show that each constant ci must be zero. Multiplying both sides of this
last equation on the right by the vector xj , we have

(
n∑

i=0

ciAi

)
xj = 0xj,

n∑
i=0

(ciAi) xj = 0,

n∑
i=0

ci

(
Aixj

) = 0,

n∑
i=0

ciδij = 0,

cj = 0.

Thus for each xj (j = 1, 2, . . . , n) we have cj = 0, which implies that c1 = c2 =
· · · = cn = 0 and that the rows A1, A2, . . . , An are linearly independent.

It follows directly from Lemma 2 and the definition of an inverse that if an
n × n matrix A has an inverse, then A must have rank n. This in turn implies
directly that if A does not have rank n, then it does not have an inverse. We now
want to show the converse: that is, if A has rank n, then A has an inverse.

We already have part of the result. If an n × n matrix A has rank n, then the
procedure described in Section 3.2 is a constructive method for obtaining a matrix
C having the property that CA = I. The procedure transforms A to an identity
matrix by a sequence of elementary row operations E1, E2, . . . , Ek−1, Ek. That is,

EkEk−1 . . . E2E1A = I.

Setting

C = EkEk−1 . . . E2E1, (12)

we have

CA = I. (13)

We need only show that AC = I, too.

Theorem 1 If A and B are n × n matrices such that AB = I, then BA = I.

Proof. If AB = I, then from Lemma 1 A has rank n, and from (12) and (13)
there exists a matrix C such that CA = I. It follows from Theorem 1 of Section 3.4
that B = C.
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The major implication of Theorem 1 is that if B is a right inverse of A, then B
is also a left inverse of A; and also if A is a left inverse of B, then A is also a right
inverse of B. Thus, one needs only check whether a matrix is a right or left inverse;
once one is verified for square matrices, the other is guaranteed. In particular, if
an n × n matrix A has rank n, then (13) is valid. Thus, C is a left inverse of A. As a
result of Theorem 1, however, C is also a right inverse of A—just replace A with
C and B with A in Theorem 1—so C is both a left and right inverse of A, which
means that C is the inverse of A. We have now proven:

Theorem 2 An n × n matrix A has an inverse if and only if A has rank n.


