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An Introduction to
Optimization

4.1 Graphing Inequalities

Many times in real life, solving simple equations can give us solutions to everyday
problems.

Example 1 Suppose we enter a supermarket and are informed that a certain
brand of coffee is sold in 3-lb bags for $6.81. If we wanted to determine the cost
per unit pound, we could model this problem as follows:

Let x be the cost per unit pound of coffee; then the following equation represents
the total cost of the coffee:

x + x + x = 3x = 6.81. (1)

Dividing both sides of (1) by 3 gives the cost of $2.27 per pound of coffee. �

Example 2 Let’s suppose that we are going to rent a car. If the daily fixed cost
is $100.00, with the added price of $1.25 per mile driven, then

C = 100 + 1.25m (2)

represents the total daily cost, C, where m is the number of miles traveled on a
particular day.

What if we had a daily budget of $1000.00? We would then use (2) to deter-
mine the number of miles we could travel given this budget. Using elementary
algebra, we see that we would be able to drive 720 miles. �

These two simple examples illustrate how equations can assist us in our daily
lives. But sometimes things can be a bit more complicated.
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Example 3 Suppose we are employed in a factory that produces two types of
bicycles: a standard model (S) and a deluxe model (D). Let us assume that the
revenue (R) on the former is $250 per bicycle and the revenue on the latter is $300
per bicycle. Then the total revenue can be expressed by the following equation:

R = 250S + 300D. (3)

Now suppose manufacturing costs are $10,000; so to make a profit, R has to be
greater than $10,000. Hence the following inequality is used to relate the bicycles
and revenue with respect to showing a profit:

250S + 300D > 10,000. (4)

Relationship (4) illustrates the occurrence of inequalities. However, before we can
solve problems related to this example, it is important to “visualize” inequalities,
because the graphing of such relationships will assist us in many ways. �

For the rest of this section, we will sketch inequalities in two dimensions.

Example 4 Sketch the inequality x + y ≤ 2. The equation x + y = 2 is a str-
aight line passing through the points (2, 0)—the x-intercept—and (0, 2)—the
y-intercept. The inequality x + y ≤ 2 merely includes the region “under” the
line.
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Figure 4.1 �



4.1 Graphing Inequalities 129

Remark 1 Notice that the lower left-hand part of the graph is shaded.
An easy way to check is to pick a point, say (−50, −50); clearly −50 +
−50 ≤ 2, therefore the “half-region” containing this point must be the shaded
portion.

Remark 2 The graph of the strict inequality x + y < 2 yields the same picture
with the line dashed (instead of solid) to indicate that points on the line x + y = 2
are not included.

Example 5 Sketch 2x + 3y ≥ 450.
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Figure 4.2 �

Remark 3 Notice that we have restricted this graph to the first quadrant.
Many times the variables involved will have non-negative values, such as vol-
ume, area, etc. Notice, too, that the region is infinite, as is the region in
Example 4.

Example 6 Sketch 4x + y ≤ 12 and 2x + 5y ≤ 24, where x ≥ 0 and y ≥ 0.
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Figure 4.3 �

Remark 4 Note that the “upper-right” corner point is (2, 4). This point is
the intersection of the straight lines given by the equations 4x + y = 12 and
2x + 5y = 24; in Chapter 2 we covered techniques used in solving simultaneous
equations. Here the added constraints of x ≥ 0 and y ≥ 0 render a bounded or
finite region.

We will see regions like Figure 4.3 again both in Section 4.2 (with regard to
modeling) and Section 4.3 (using the technique of linear programming).

Problems 4.1

Sketch the following inequalities:

1. y ≤ 0

2. x ≥ 0

3. y ≥ π

4. x + 4y ≤ 12

5. x + 4y < 12

6. x + 4y ≥ 12

7. x + 4y > 12
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Sketch the inequalities on the same set of axes:

8. x + 4y ≤ 12, x ≥ 0, y ≥ 0

9. x + 4y ≤ 12, 5x + 2y ≤ 24

10. x + 4y ≥ 12, 5x + 2y ≥ 24

11. x + 2y ≤ 12, 2x + y ≤ 16, x + 2y ≤ 20

12. x − y ≥ 100

13. x + y ≥ 100, 3x + 3y ≤ 60

14. x + y ≤ 10, −x + y ≤ 10, x − y ≤ 10, −x − y ≤ 10

4.2 Modeling with Inequalities

Consider the following situation. Suppose a toy company makes two types of
wagons, X and Y . Let us further assume that during any work period, each X takes
3 hours to construct and 2 hours to paint, while each Y takes 1 hour to construct and
2 hours to paint. Finally, the maximum number of hours allotted for construction
is 1500 and the limit on hours available for painting is 1200 hours. If the profit on
each X is $50 and the profit on each Y is $60, how many of each type of wagon
should be produced to maximize the profit?

We can model the above with a number of inequalities. First, we must define
our variables. Let X represent the number of X wagons produced and Y represent
the number of Y wagons produced. This leads to the following four relationships:

3X + Y ≤ 1500 (5)

2X + 2Y ≤ 1200 (6)

X ≥ 0 (7)

Y ≥ 0. (8)

Note that (5) represents the constraint due to construction (in hours) while (6)
represents the constraint due to painting (also in hours). The inequalities (7) and
(8) merely state that the number of each type of wagon cannot be negative.

These four inequalities can be graphed as follows in Figure 4.4:
Let us make a few observations. We will call the shaded region that satisfies

all four inequalities the region of feasibility. Next, the shaded region has four
“corner points” called vertices. The coordinates of these points are given by (0, 0),
(0, 600), (450, 150) and (500, 0). Lastly, this region has the property that, given
any two points in the interior of the region, the straight line segment connecting
these two points lies entirely within the region. We call regions with this property
convex.
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Figure 4.4

The following equation gives the profit (in dollars):

P(X, Y ) = 50X + 60Y. (9)

Note that Equation (9) is called the objective function. The notation P(X, Y ) is read
“P of X and Y” and is evaluated by simply substituting the respective values into
the expression. For example, P(0,600) = 50(0) + 60(600) = 0 + 36,000 = 36,000
dollars, while P(450,150) = 50(450) + 60(150) = 22,500 + 9000 = 31,500 dollars.

Equation (9), the inequalities (5)–(8), and Figure 4.4 model the situation
above, which is an example of an optimization problem. In this particular exam-
ple, our goal was to maximize a quantity (profit). Our next example deals with
minimization.

Suppose a specific diet calls for the following minimum daily requirements: 186
units of Vitamin A and 120 units of Vitamin B. Pill X contains 6 units of Vitamin
A and 3 units of Vitamin B, while pill Y contains 2 units of Vitamin A and 2 units
of Vitamin B. What is the least number of pills needed to satisfy both vitamin
requirements?

Let us allow X to represent the number of X pills ingested and let Y represent
the number of Y pills taken. Then the following inequalities hold:

6X + 2Y ≥ 186 (10)

3X + 2Y ≥ 120 (11)
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Figure 4.5

X ≥ 0 (12)

Y ≥ 0. (13)

Note that (10) models the minimum daily requirement of units ofVitaminA,while
(11) refers to the minimum daily requirement of units of Vitamin B. The quantity
to be minimized, the total number of pills, is given by the objective function:

N(X, Y) = X + Y. (14)

We note that while this region of feasibility is convex, it is also unbounded. Our
vertices are (40, 0), (0, 93), and (22, 27).

In the next section we will solve problems such as these by applying a very
simple, yet extremely powerful, theorem of linear programming.

Problems 4.2

Model the following situations by defining all variables and giving all inequalities,
the objective function and the region of feasibility.

1. Farmer John gets $5000 for every truck of wheat sold and $6000 for every truck
of corn sold. He has two fields: field A has 23 acres and field B has 17 acres.
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For every 2 acres of field A, Farmer John produces a truck of wheat, while
3 acres are required of field B for the same amount of wheat. Regarding the
corn, 3 acres of field A are required for a truck, while only 1 acre of field B is
needed. How many trucks of each commodity should be produced to maximize
Farmer John’s profit?

2. Redo Problem (1) if Farmer John gets $8000 for every truck of wheat and $5000
for every truck of corn.

3. Dr. Lori Pesciotta, a research scientist, is experimenting with two forms of a
special compound, H-Turebab. She needs at least 180 units of one form of the
compound (α) and at least 240 units of the second form of the compound (β).
Two mixtures are used: X and Y . Every unit of X contains two units of α and
three units of β, while each unit of Y has the opposite concentration. What
combination of X and Y will minimize Dr. Pesciotta’s costs, if each unit of X

costs $500 and each unit of Y costs $750?

4. Redo Problem (3) if X costs $750 per unit and Y costs $500 per unit.

5. Redo Problem (3) if, in addition, Dr. Pesciotta needs at least 210 units of a
third form (γ) of H-Turebab, and it is known that every unit of both X and Y

contains 10 units of γ .

6. Cereal X costs $.05 per ounce while Cereal Y costs $.04 per ounce. Every
ounce of X contains 2 milligrams (mg) of Zinc and 1 mg of Calcium, while
every ounce of Y contains 1 mg of Zinc and 4 mg of Calcium. The minimum
daily requirement (MDR) is 10 mg of Zinc and 15 mg of Calcium. Find the
least expensive combination of the cereals which would satisfy the MDR.

7. Redo Problem (6) with the added constraint of at least 12 mg of Sodium if each
ounce of X contains 3 mg of Sodium and every ounce of Y has 2 mg of Sodium.

8. Redo Problem (7) if Cereal X costs $.07 an ounce and Cereal Y costs $.08 an
ounce.

9. Consider the following group of inequalities along with a corresponding objec-
tive function. For each one, sketch the region of feasibility (except for 9 g) and
construct a scenario that might model each set of inequalities:

(a) x ≥ 0, y ≥ 0, 2x + 5y ≤ 10, 3x + 4y ≤ 12, F(x, y) = 100x + 55y

(b) x ≥ 0, y ≤ 0, x + y ≤ 40, x + 2y ≤ 60, G(x, y) = 7x + 6y

(c) x ≥ 2, y ≥ 3, x + y ≤ 40, x + 2y ≤ 60, H(x, y) = x + 3y

(d) x ≥ 0, y ≥ 0, x + y ≤ 600, 3x + y ≤ 900, x + 2y ≤ 1000, J(x, y) = 10x + 4y

(e) 2x + 9y ≥ 1800, 3x + y ≥ 750, K(x, y) = 4x + 11y

(f ) x + y ≥ 100, x + 3y ≥ 270, 3x + y ≥ 240, L(x, y) = 600x + 375y

(g) x ≥ 0, y ≥ 0, z ≥ 0, x + y + 2z ≤ 12, 2x + y + z ≤ 14, x + 3y + z ≤ 15,

M(x, y, z) = 2x + 3y + 4z (Do not sketch the region of feasibility for this
problem.)
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4.3 Solving Problems Using Linear Programming

We are now ready to solve a fairly large class of optimization problems using
a special form of the Fundamental Theorem of Linear Programming. We will
not prove this theorem, but many references to the proof of a more general
result are available (for example, see Luenberger, D. G., Linear and Nonlinear
Programming, 2nd Ed., Springer 2003).

The Fundamental Theorem of Linear Programming Let 	 be a convex region
of feasibility in the xy-plane. Then the objective function F(x, y) = ax + by, where
a and b are real numbers, takes on both maximum and minimum values—if they
exist—on one or more vertices of 	.

Remark 1 The theorem holds only if maximum and/or minimum values exist.

Remark 2 It is possible to have infinitely many values where an optimal (max-
imum or minimum) value exists. In this case, they would lie on one of the line
segments that form the boundary of the region of feasibility. See Example 3 below.

Remark 3 The word programming has nothing to do with computer program-
ming, but rather the systematic order followed by the procedure, which can also
be termed an algorithm.

Some examples are in order.

Example 1 (Wagons): Consider the inequalities (5) through (8), along with
Equation (9), from Section 4.2. We again give the region of feasibility below
in Figure 4.6 (same as Figure 4.4):

Evaluation our objective function,

P(X, Y) = 50X + 60Y, (15)

at each of the four vertices yields the following results:

⎧⎪⎪⎨
⎪⎪⎩

P(0,0) = 0
P(0,600) = 36,000
P(450,150) = 31,500
P(500,0) = 25,000.

By the Fundamental Theorem of Linear Programming, we see that the maxi-
mum profit of $36,000 occurs if no X wagons are produced and 600 Y wagons are
made. �
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Figure 4.6

Example 2 (Wagons): Suppose the profit function in the previous example is
given by

R(X, Y) = 80X + 50Y. (16)

Then

⎧⎪⎪⎨
⎪⎪⎩

R(0,0) = 0
R(0,600) = 30,000
R(450,150) = 43,500
R(500,0) = 40,000.

We see, in this situation, that the maximum profit of $43,500 occurs if 450 X

wagons are produced, along with 150 Y wagons. �

Example 3 (Wagons): Consider the examples above with the profit function
given by

L(X, Y) = 75X + 75Y. (17)
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Then ⎧⎪⎪⎨
⎪⎪⎩

L(0,0) = 0
L(0,600) = 45,000
L(450,150) = 45,000
L(500,0) = 37,500.

Note that we have two situations in which the profit is maximized at $45,000; in
fact, there are many points where this occurs. For example,

L(300, 300) = 45,000. (18)

This occurs at any point along the constraint given by inequality (2). The reason
lies in the fact that coefficients of X and Y in (2) and in Equation (7) have the same
ratio. �

Example 4 (Vitamins): Consider constraints (10) through (13) above in
Section 4.2; minimize the objective function given by Equation (14).

N(X, Y) = X + Y. (19)

�

The region of feasibility (same as Figure 4.5) is given below in Figure 4.7:
Evaluating our objective function (19) at the three vertices, we find that⎧⎨

⎩
N(40, 0) = 40
N(0, 93) = 93
N(22, 27) = 49,

so the minimum number of pills needed to satisfy the minimum daily requirement
is 40.

Sometimes a constraint is redundant; that is, the other constraints “include”
the redundant constraint.

For example, suppose we want to maximize the objective function

Z(X, Y) = 4X + 3Y, (20)

given the constraints

4X + 2Y ≤ 40 (21)

3X + 4Y ≤ 60 (22)

X ≥ 0 (23)

Y ≥ 0. (24)
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The vertices of the region of feasibility are (0, 0), (0, 15), (4, 12), and (10, 0), as
seen below in Figure 4.8.

Note that (11) is maximized at Z(4, 12) = 52.
Suppose we now add a third constraint:

X + Y ≤ 30. (25)

Figure 4.9 below reflects this added condition. Note, however, that the region of
feasibility is not changed and the four vertices are unaffected by this redundant
constraint. It follows, therefore, that our objective function Z(X, Y) = 4X + 3Y is
still maximized at Z(4, 12) = 52.

Remark 4 Sometimes a vertex does not have whole number coordinates (see
problem (15) below). If the physical model does not make sense to have a frac-
tional or decimal answer—for example 2.5 bicycles or 1/3 cars—then we should
check the closest points with whole number coordinates, provided these points
lie in the region of feasibility. For example, if (2.3, 7.8) is the vertex which gives
the optimal value for an objective function, then the following points should be
checked: (2, 7), (2, 8), (3, 7) and (3, 8).
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Problems 4.3

Using linear programming techniques, solve the following problems.

1. Section 4.2, Problem (1).

2. Section 4.2, Problem (2).

3. Section 4.2, Problem (3).

4. Section 4.2, Problem (4).

5. Section 4.2, Problem (5).

6. Section 4.2, Problem (6).

7. Section 4.2, Problem (7).

8. Section 4.2, Problem (8).

9. Section 4.2, Problem (9a); maximize F(x, y).

10. Section 4.2, Problem (9b); maximize G(x, y).

11. Section 4.2, Problem (9c); maximize H(x, y).

12. Section 4.2, Problem (9d); maximize J(x, y).

13. Section 4.2, Problem (9e); minimize K(x, y).

14. Section 4.2, Problem (9f); minimize L(x, y).

15. Maximize P(x, y) = 7x + 6y subject to the constraints x ≥ 0, y ≥ 0, 2x + 3y ≤
1200 and 6x + y ≤ 1500.

4.4 An Introduction to the Simplex Method

In most of the problems considered in the previous section, we had but two
variables (usually X and Y) and two constraints, not counting the usual condi-
tions of the non-negativity of X and Y . Once a third constraint is imposed, the
region of feasibility becomes more complicated; and, with a fourth constraint,
even more so.

Also, if a third variable, say Z, is brought into the discussion, then the
region of feasibility becomes three-dimensional! This certainly makes the tech-
nique employed in the previous section much more difficult to apply, although
theoretically it can be used.

We are fortunate that an alternate method exists which is valid for any number
of variables and any number of constraints. It is known as the Simplex Method.
This is a classic method that has been in use for many years. The reader may wish
to consult G. Hadley’s Linear Programming published by Addison-Wesley in 1963
for the theoretical underpinnings of this algorithm.

Before we illustrate this technique with a number of examples, describing and
defining terms as we go along, we point out that this section will deal exclusively
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with maximization problems. We will address minimization in the next, and final,
section of this chapter.

Example 1 Suppose we want to maximize the following function of two
variables:

z = 7x1 + 22x2. (26)

Note that we are using xi instead of the usual x and y, due to the fact that, in later
examples, we will have more than two independent variables.

Let us assume that the following constraints are imposed:

3x1 + 10x2 ≤ 33,000 (27)

5x1 + 8x2 ≤ 42,000 (28)

x1 ≥ 0 (29)

x2 ≥ 0. (30)

We now introduce the concept of slack variables, which we denote by si. These
variables (which can never be negative) will“pick up the slack”in the relationships
(27) and (28) and convert these inequalities into equations. That is, (27) and (28)
can now be written respectively as:

3x1 + 10x2 + s1 = 33,000 (31)

and

5x1 + 8x2 + s2 = 42,000. (32)

We also incorporate these slack variables into our objective function (26), rewriting
it as:

−7x1 − 22x2 + 0s1 + 0s2 + z = 0. (33)

Finally, we rewrite (27) and (28) as

3x1 + 10x2 + s1 + 0s2 + 0z = 33,000 (34)

5x1 + 8x2 + 0s1 + 1s2 + 0z = 42,000. (35)

�

Remark 1 Admittedly, the Equations (33) through (35) seem somewhat strange.
However, the reader will soon see why we have recast these equations as they now
appear.
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We are now ready to put these last three equations into a table known as the
initial tableau. This is nothing more than a kind of augmented matrix. To do this,
we merely “detach” the coefficients of the five unknowns (x1, x2, s1, s2, and z) and
form the following table:

x1 x2 s1 s2 z⎡
⎣ 3 10 1 0 0 33,000

5 8 0 1 0 42,000
−7 −22 0 0 1 0

⎤
⎦. (36)

Remark 2 Note that the objective function equation—here, Equation (33)—
is in the bottom row. Also, unless otherwise stipulated, we shall always assume
that the decision variables—that is, x1 and x2—are non-negative. Notice, too, the
vertical bar that appears to the left of the rightmost column and the horizontal bar
placed above the bottom row. Finally, we point out that the entry in the last row
and last column is always zero for this initial tableau. These conventions will assist
us in interpreting the end state of the Simplex Method.

Before continuing with the Simplex Method, let us consider another example.

Example 2 Put the following maximization problem into the initial tableau
form: z = 4x1 + 7x2 + 9x3, where x1 + x2 + 6x3 ≤ 50, 2x1 + 3x2 ≤ 40, and 4x1 +
9x2 + 3x3 ≤ 10.

Note that we have three independent (decision) variables (the xi) and that the
three constraints will give us three slack variables (the si). These lead us to the
following four equations:

−4x1 − 7x2 − 9x3 + 0s1 + 0s2 + 0s3 + z = 0 (37)

x1 + x2 + 6x3 + s1 + 0s2 + 0s3 + 0z = 50 (38)

2x1 + 0x2 + 3x3 + 0s1 + s2 + 0s3 + 0z = 40 (39)

4x1 + 9x2 + 3x3 + 0s1 + 0s2 + s3 + 0z = 10. (40)

The initial tableau for this example is given below:

x1 x2 x3 s1 s2 s3 z⎡
⎢⎢⎣

1 1 6 1 0 0 0 50
2 0 3 0 1 0 0 40
4 9 3 0 0 1 0 10

−4 −7 −9 0 0 0 1 0

⎤
⎥⎥⎦. (41)

�
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We will now outline the steps in the Simplex Method:

● Change all inequalities into equations via the use of slack variables.

● Rewrite the objective function, z, in terms of slack variables, setting one side
of the equation equal to zero and keeping the coefficient of z equal to +1.

● The number of equations should equal the sum of the constraints plus one (the
equation given by the objective function).

● Form the initial tableau, listing the constraints above the objective function,
labeling the columns, beginning with the decision variables, followed by the
slack variables, with z represented by the last column before the vertical bar.
The last column should have all the “constants.”

● Locate the most negative number in the last row. If more than one equally neg-
ative number is present, arbitrarily choose any one of them. Call this number
k. This column will be called the work column.

● Consider each positive element in the work column. Divide each of these
elements into the corresponding row entry element in the last column. The
ratio that is the smallest will be used as the work column’s pivot. If there is
more than one smallest ratio, arbitrarily choose any one of them.

● Use elementary row operations (see Chapter 2) to change the pivot element
to 1, unless it is already 1.

● Use elementary row operations to transform all the other elements in the work
column to 0.

● A column is reduced when all the elements are 0, with the exception of the
pivot, which is 1.

● Repeat the process until there are no negative elements in the last row.

● We are then able to determine the answers from this final tableau.

Let us illustrate this by returning to Example 1, where the initial tableau is
given by

x1 x2 s1 s2 z⎡
⎣ 3 10 1 0 0 33,000

5 8 0 1 0 42,000
−7 −22 0 0 1 0

⎤
⎦. (42)

We first note that −22 is the most negative number in the last row of (42). So the
“x2” column is our work column.

We next divide 33,000 by 10 = 3300 and 42,000 by 8 = 5250; since 3300 is the
lesser positive number, we will use 10 as the pivot. Note that we have put a carat
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(∧) over the 10 to signify it is the pivot element.

x1 x2 s1 s2 z⎡
⎣ 3 1̂0 1 0 0 33,000

5 8 0 1 0 42,000
−7 −22 0 0 1 0

⎤
⎦. (43)

We now divide every element in the row containing the pivot by 10.

x1 x2 s1 s2 z⎡
⎣ 0.3 1̂ 0.1 0 0 3300

5 8 0 1 0 42,000
−7 −22 0 0 1 0

⎤
⎦. (44)

Next, we use elementary row operations; we multiply the first row by −8 and add
it to the second row and multiply the first row by 22 and add it to the third row.
This will give us a 0 for every element (other than the pivot) in the work column.

x1 x2 s1 s2 z⎡
⎣ 0.3 1̂ 0.1 0 0 3300

2.6 0 −0.8 1 0 15,600
−0.4 0 2.2 0 1 72,600

⎤
⎦. (45)

And now we repeat the process because we still have a negative entry in the
last row; that is, −0.4 is in the “x1” column. Hence, this becomes our new work
column.

Dividing 3300 by 0.3 yields 11,000; dividing 15,600 by 2.6 gives us 6000; since
6000 is the lesser of the two positive ratios, we will use the 2.6 entry as the pivot
(again denoting it with a carat, and removing the carat from our first pivot).

x1 x2 s1 s2 z⎡
⎣ 0.3 1 0.1 0 0 3300

ˆ2.6 0 −0.8 1 0 15,600
−0.4 0 2.2 0 1 72,600

⎤
⎦. (46)

Dividing each element in this row by 2.6 gives us the following tableau:

x1 x2 s1 s2 z⎡
⎣ 0.3 1 0.1 0 0 3300

1̂ 0 −.31 .38 0 6000
−0.4 0 2.2 0 1 72,600

⎤
⎦. (47)

Using our pivot and elementary row operations, we transform every other element
in this work column to 0. That is, we multiply each element in the second row by
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−0.3 and add the row to the first row and we multiply every element in the second
row by 0.4 and add the row to the last row. This gives us the following tableau:

x1 x2 s1 s2 z⎡
⎣ 0 1 0.19 −0.12 0 1500

1 0 −.31 .38 0 6000
0 0 2.08 0.15 1 75,000

⎤
⎦. (48)

We are now finished with the process, because there are no negative elements in
the last row. We interpret this final tableau as follows:

● x1 = 6000 (note the “1” in the x1 column and the “0” in the x2 column).

● x2 = 1500 (note the “0” in the x1 column and the “1” in the x2 column).

● Both slack variables equal 0. To verify this, please see Equations (31) and (32)
and substitute our values for x1 and x2 into these equations.

● The maximum value of z is 75,000 (found in the lower right-hand corner box).

We now give another example.

Example 3 Maximize z = x1 + 2x2, subject to the constraints 4x1 + 2x2 ≤ 40
and 3x1 + 4x2 ≤ 60.

Following the practice discussed in this section and introducing the slack
variables, we have:

4x1 + 2x2 + s1 = 40 (49)

3x1 + 4x2 + s2 = 60 (50)

and

−x1 − 2x2 + z = 0. (51)

We form the initial tableau, using coefficients of 0 where needed, as follows:

x1 x2 s1 s2 z⎡
⎣ 4 2 1 0 0 40

3 4 0 1 0 60
−1 −2 0 0 1 0

⎤
⎦. (52)

The second column will be our work column, since −2 is the most negative entry.
Dividing 40 by 2 gives 20; dividing 60 by 4 yields 15. Since 15 is a lesser positive
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ratio than 20, we will use the 4 as the pivot:

x1 x2 s1 s2 z⎡
⎣ 4 2 1 0 0 40

3 4̂ 0 1 0 60
−1 −2 0 0 1 0

⎤
⎦. (53)

Dividing every element of the second row will make our pivoting element 1:

x1 x2 s1 s2 z⎡
⎣ 4 2 1 0 0 40

0.75 1̂ 0 0.25 0 15
−1 −2 0 0 1 0

⎤
⎦. (54)

We now use our pivot, along with the proper elementary row operations, to make
every other element in the column zero. This leads to the following tableau:

x1 x2 s1 s2 z⎡
⎣ 2.5 0 1 −0.5 0 10

0.75 1̂ 0 0.25 0 15
0.5 0 0 0.5 1 30

⎤
⎦. (55)

Since the last row has no negative entries, we are finished and have the final
tableau:

x1 x2 s1 s2 z⎡
⎣ 2.5 0 1 −0.5 0 10

0.75 1 0 0.25 0 15
0.5 0 0 0.5 1 30

⎤
⎦. (56)

This final tableau is a little more complicated to interpret than (48).

First notice the “1” in the second row; this implies that x2 = 15. The
corresponding equation represented by this second row thereby reduces to

0.75x1 + 15 + 0.25s2 = 15. (57)

Which forces both x1 and s2 to be zero, since neither can be negative. This forces
s1 = 10, as we can infer from the equation represented by the first row:

0.25x1 + s1 − 0.5s2 = 10. (58)

In practice, we are not concerned with the values of the slack variables, so we sum-
marize by simply saying that our answers are x1 = 0 and x2 = 15 with a maximum
value of z = 30. �
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As we have pointed out, this is a classic technique. However, as the number
of variables (decision and/or slack) increases, the calculations can be somewhat
burdensome. Thankfully, there are many software packages to assist in this matter.
Please refer to the Final Comments at the end of this chapter.

One final remark:As is the case with linear programming, if there are an infinite
number of optimal solutions, the Simplex Method does not give all solutions.

Problems 4.4

Using the Simplex Method, solve the following problems:

1. Section 4.2, Problem (1).

2. Section 4.2, Problem (2).

3. Maximize z = 3x1 + 5x2, subject to x1 + x2 ≤ 6 and 2x1 + x2 ≤ 8.

4. Maximize z = 8x1 + x2, subject to the same constraints in (3).

5. Maximize z = x1 + 12x2, subject to the same constraints in (3).

6. Maximize z = 3x1 + 6x2, subject to the constraints x1 + 3x2 ≤ 30, 2x1 + 2x2 ≤
40, and 3x1 + x2 ≤ 30.

7. Consider problem (9) at the end of Section 4.2. Set up the initial tableaus for
problems (9a) through (9d).

4.5 Final Comments on Chapter 4

In this chapter we covered two approaches to optimization, the Linear Program-
ming Method and the Simplex Method. Both of these techniques are classical
and their geometrics and algebraic simplicity reflect both the beauty and power
of mathematics.

Our goal was to introduce the reader to the basics of these “simple” methods.
However, he or she should be cautioned with regard to the underlying theory.
That is, many times in mathematics we have elegant results (theorems) which
are proved using very deep and subtle mathematical concepts with respect to the
proofs of these theorems.

As we mentioned in the last section, the calculations, while not difficult, can
be a burden. Calculators and software packages can be of great assistance here.

We close with two observations. Please note that we have considered very
special cases where the constraints of the “≤” variety had positive quantities
on the right-hand side. If this is not the case for all the constraints, then we
must use an enhanced version of the Simplex Method (see, for example, Finite
Mathematics: A Modeling Approach by R. Bronson and G. Bronson published
by West in 1996).
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Similarly, regarding the solving of minimization problems via the Simplex
Method, we essentially consider the “negation” of the objective function, and
then apply a modified version of the Simplex Method. For example, suppose we
wanted to minimize z = 3x1 + 2x2, subject to the same constraints. In this case we
would maximize Z = −z = −3x1 − 2x2 while recasting our constraints, and then
proceed with the Simplex Method.


