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Determinants

5.1 Introduction

Every square matrix has associated with it a scalar called its determinant. To be
extremely rigorous we would have to define this scalar in terms of permutations
on positive integers. However, since in practice it is difficult to apply a definition
of this sort, other procedures have been developed which yield the determinant in
a more straightforward manner. In this chapter, therefore, we concern ourselves
solely with those methods that can be applied easily. We note here for reference
that determinants are only defined for square matrices.

Given a square matrix A, we use det(A) or |A| to designate its determinant. If
the matrix can actually be exhibited, we then designate the determinant of A by
replacing the brackets by vertical straight lines. For example, if

A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦ (1)

then

det(A) =
∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣. (2)

We cannot overemphasize the fact that (1) and (2) represent entirely different
animals. (1) represents a matrix, a rectangular array, an entity unto itself while (2)
represents a scalar, a number associated with the matrix in (1). There is absolutely
no similarity between the two other than form!

We are now ready to calculate determinants.

Definition 1 The determinant of a 1 × 1 matrix [a] is the scalar a.

Thus, the determinant of the matrix [5] is 5 and the determinant of the matrix
[−3] is −3.
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150 Chapter 5 Determinants

Definition 2 The determinant of a 2 × 2 matrix

[
a b

c d

]

is the scalar ad − bc.

Example 1 Find det(A) if

A =
[

1 2
4 3

]
.

Solution

det(A) =
∣∣∣∣1 2
4 3

∣∣∣∣ = (1)(3) − (2)(4) = 3 − 8 = −5. �

Example 2 Find |A| if

A =
[

2 −1
4 3

]
.

Solution

|A| =
∣∣∣∣2 −1
4 3

∣∣∣∣ = (2)(3) − (−1)(4) = 6 + 4 = 10. �

We now could proceed to give separate rules which would enable one to com-
pute determinants of 3 × 3, 4 × 4, and higher order matrices. This is unnecessary.
In the next section, we will give a method that enables us to reduce all determi-
nants of order n(n > 2) (if A has order n × n then det(A) is said to have order n)
to a sum of determinants of order 2.

Problems 5.1

In Problems 1 through 18, find the determinants of the given matrices.

1.
[

3 4
5 6

]
, 2.

[
3 −4
5 6

]
, 3.

[
3 4

−5 6

]
,

4.
[

5 6
7 8

]
, 5.

[
5 6

−7 8

]
, 6.

[
5 6
7 −8

]
,
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7.
[

1 −1
2 7

]
, 8.

[−2 −3
−4 4

]
, 9.

[
3 −1

−3 8

]
,

10.
[

0 1
−2 6

]
, 11.

[−2 3
−4 −4

]
, 12.

[
9 0
2 0

]
,

13.
[

12 20
−3 −5

]
, 14.

[−36 −3
−12 −1

]
, 15.

[−8 −3
−7 9

]
,

16.
[
t 2
3 4

]
, 17.

[
2t 3

−2 t

]
, 18.

[
3t −t2

2 t

]
.

19. Find t so that ∣∣∣∣ t 2t

1 t

∣∣∣∣ = 0.

20. Find t so that ∣∣∣∣t − 2 t

3 t + 2

∣∣∣∣ = 0.

21. Find λ so that ∣∣∣∣4 − λ 2
−1 1 − λ

∣∣∣∣ = 0.

22. Find λ so that ∣∣∣∣1 − λ 5
1 −1 − λ

∣∣∣∣ = 0.

23. Find det(A − λI) if A is the matrix defined in Problem 1.

24. Find det(A − λI) if A is the matrix defined in Problem 2.

25. Find det(A − λI) if A is the matrix defined in Problem 4.

26. Find det(A − λI) if A is the matrix defined in Problem 7.

27. Find |A|, |B|, and |AB| if

A =
[

1 3
2 1

]
and B =

[
4 2

−1 2

]
.

What is the relationship between these three determinants?

28. Interchange the rows for each of the matrices given in Problems 1 through
15, and calculate the new determinants. How do they compare with the
determinants of the original matrices?



152 Chapter 5 Determinants

29. The second elementary row operation is to multiply any row of a matrix
by a nonzero constant. Apply this operation to the matrices given in Prob-
lems 1 through 15 for any constants of your choice, and calculate the new
determinants. How do they compare with the determinants of the original
matrix?

30. Redo Problem 29 for the third elementary row operation.

31. What is the determinant of a 2 × 2 matrix if one row or one column contains
only zero entries?

32. What is the relationship between the determinant of a 2 × 2 matrix and its
transpose?

33. What is the determinant of a 2 × 2 matrix if one row is a linear combination
of the other row?

5.2 Expansion by Cofactors

Definition 1 Given a matrix A, a minor is the determinant of any square
submatrix of A.

That is, given a square matrix A, a minor is the determinant of any matrix
formed from A by the removal of an equal number of rows and columns. As an
example, if

A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦,

then ∣∣∣∣1 2
7 8

∣∣∣∣ and
∣∣∣∣5 6
8 9

∣∣∣∣
are both minors because [

1 2
7 8

]
and

[
5 6
8 9

]

are both submatrices of A, while[
1 2
8 9

]
and

∣∣1 2
∣∣

are not minors because [
1 2
8 9

]

is not a submatrix of A and [1 2], although a submatrix of A, is not square.
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A more useful concept for our immediate purposes, since it will enable us to
calculate determinants, is that of the cofactor of an element of a matrix.

Definition 2 Given a matrix A =[aij

]
, the cofactor of the element aij is a

scalar obtained by multiplying together the term (−1)i + j and the minor obtained
from A by removing the ith row and jth column.

In other words, to compute the cofactor of the element aij we first form a
submatrix of A by crossing out both the row and column in which the element aij

appears. We then find the determinant of the submatrix and finally multiply it by
the number (−1)i + j .

Example 1 Find the cofactor of the element 4 in the matrix

A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦.

Solution We first note that 4 appears in the (2, 1) position. The submatrix
obtained by crossing out the second row and first column is⎡

⎣1 2 3
4 5 6
7 8 9

⎤
⎦ =

[
2 3
8 9

]
,

which has a determinant equal to (2)(9) − (3)(8) = −6. Since 4 appears in the (2, 1)
position, i = 2 and j = 1. Thus, (−1)i+j = (−1)2+1 = (−1)3 = (−1). The cofactor
of 4 is (−1)(−6) = 6. �

Example 2 Using the sameA as in Example 1, find the cofactor of the element 9.

Solution The element 9 appears in the (3, 3) position. Thus, crossing out the
third row and third column, we obtain the submatrix⎡

⎣1 2 3
4 5 6
7 8 9

⎤
⎦ =

[
1 2
4 5

]
.

which has a determinant equal to (1)(5) − (2)(4) = −3. Since, in this case, i = j =
3, the cofactor of 9 is (−1)3 + 3(−3) = (−1)6(−3) = −3. �

We now have enough tools at hand to find the determinant of any matrix.

Expansion by Cofactors. To find the determinant of a matrix A of arbitrary order,
(a) pick any one row or any one column of the matrix (dealer’s choice), (b) for
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each element in the row or column chosen, find its cofactor, (c) multiply each
element in the row or column chosen by its cofactor and sum the results. This sum
is the determinant of the matrix.

Example 3 Find det(A) if

A =
⎡
⎣ 3 5 0

−1 2 1
3 −6 4

⎤
⎦.

Solution In this example, we expand by the second column.

|A| = (5)(cofactor of 5) + (2)(cofactor of 2) + (−6)(cofactor of −6)

= (5)(−1)1 + 2
∣∣∣∣−1 1

3 4

∣∣∣∣+ (2)(−1)2 + 2
∣∣∣∣3 0
3 4

∣∣∣∣+ (−6)(−1)3 + 2
∣∣∣∣ 3 0
−1 1

∣∣∣∣
= 5(−1)(−4 − 3) + (2)(1)(12 − 0) + (−6)(−1)(3 − 0)

= (−5)(−7) + (2)(12) + (6)(3) = 35 + 24 + 18 = 77. �

Example 4 Using the A of Example 3 and expanding by the first row, find
det(A).

Solution

|A| = 3(cofactor of 3) + 5(cofactor of 5) + 0(cofactor of 0)

= (3)(−1)1 + 1
∣∣∣∣ 2 1
−6 4

∣∣∣∣+ 5(−1)1 + 2
∣∣∣∣−1 1

3 4

∣∣∣∣+ 0

= (3)(1)(8 + 6) + (5)(−1)(−4 − 3)

= (3)(14) + (−5)(−7) = 42 + 35 = 77. �

The previous examples illustrate two important properties of the method. First,
the value of the determinant is the same regardless of which row or column we
choose to expand by and second, expanding by a row or column that contains
zeros significantly reduces the number of computations involved.

Example 5 Find det(A) if

A =

⎡
⎢⎢⎣

1 0 5 2
−1 4 1 0

3 0 4 1
−2 1 1 3

⎤
⎥⎥⎦.
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Solution We first check to see which row or column contains the most zeros and
expand by it. Thus, expanding by the second column gives

|A| = 0(cofactor of 0) + 4(cofactor of 4) + 0(cofactor of 0) + 1(cofactor of 1)

= 0 + 4(−1)2+2

∣∣∣∣∣∣
1 5 2
3 4 1

−2 1 3

∣∣∣∣∣∣+ 0 + 1(−1)4+2

∣∣∣∣∣∣
1 5 2

−1 1 0
3 4 1

∣∣∣∣∣∣
= 4

∣∣∣∣∣∣
1 5 2
3 4 1

−2 1 3

∣∣∣∣∣∣+
∣∣∣∣∣∣

1 5 2
−1 1 0

3 4 1

∣∣∣∣∣∣.
Using expansion by cofactors on each of the determinants of order 3 yields

∣∣∣∣∣∣
1 5 2
3 4 1

−2 1 3

∣∣∣∣∣∣ = 1(−1)1+1
∣∣∣∣4 1
1 3

∣∣∣∣+ 5(−1)1+2
∣∣∣∣ 3 1
−2 3

∣∣∣∣+ 2(−1)1+3
∣∣∣∣ 3 4
−2 1

∣∣∣∣
= −22 (expanding by the first row)

and ∣∣∣∣∣∣
1 5 2

−1 1 0
3 4 1

∣∣∣∣∣∣ = 2(−1)1+3
∣∣∣∣−1 1

3 4

∣∣∣∣+ 0 + 1(−1)3+3
∣∣∣∣ 1 5
−1 1

∣∣∣∣
= −8 (expanding by the third column).

Hence,

|A| = 4(−22) − 8 = −88 − 8 = −96. �

For n × n matrices with n > 3, expansion by cofactors is an inefficient pro-
cedure for calculating determinants. It simply takes too long. A more elegant
method, based on elementary row operations, is given in Section 5.4 for matrices
whose elements are all numbers.

Problems 5.2

In Problems 1 through 22, use expansion by cofactors to evaluate the determinants
of the given matrices.

1.

⎡
⎣1 2 −2

0 2 3
0 0 −3

⎤
⎦, 2.

⎡
⎣3 2 −2

1 0 4
2 0 −3

⎤
⎦, 3.

⎡
⎣1 −2 −2

7 3 −3
0 0 0

⎤
⎦,
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4.

⎡
⎣2 0 −1

1 1 1
3 2 −3

⎤
⎦, 5.

⎡
⎣ 3 5 2

−1 0 4
−2 2 7

⎤
⎦, 6.

⎡
⎣1 −3 −3

2 8 3
4 5 0

⎤
⎦,

7.

⎡
⎣2 1 −9

3 −1 1
3 −1 2

⎤
⎦, 8.

⎡
⎣−1 3 3

1 1 4
−1 1 2

⎤
⎦, 9.

⎡
⎣1 −3 −3

2 8 4
3 5 1

⎤
⎦,

10.

⎡
⎣2 1 3

3 −1 2
2 3 5

⎤
⎦, 11.

⎡
⎣−1 3 3

4 5 6
−1 3 3

⎤
⎦, 12.

⎡
⎣1 2 −3

5 5 1
2 −5 −1

⎤
⎦,

13.

⎡
⎣−4 0 0

2 −1 0
3 1 −2

⎤
⎦, 14.

⎡
⎣ 1 3 2

−1 4 1
5 3 8

⎤
⎦, 15.

⎡
⎣ 3 −2 0

1 1 2
−3 4 1

⎤
⎦,

16.

⎡
⎢⎢⎣

−4 0 0 0
1 −5 0 0
2 1 −2 0
3 1 −2 1

⎤
⎥⎥⎦, 17.

⎡
⎢⎢⎣

−1 2 1 2
1 0 3 −1
2 2 −1 1
2 0 −3 2

⎤
⎥⎥⎦,

18.

⎡
⎢⎢⎣

1 1 2 −2
1 5 2 −1

−2 −2 1 3
−3 4 −1 8

⎤
⎥⎥⎦, 19.

⎡
⎢⎢⎣

−1 3 2 −2
1 −5 −4 6
3 −6 1 1
3 −4 3 −3

⎤
⎥⎥⎦,

20.

⎡
⎢⎢⎣

1 1 0 −2
1 5 0 −1

−2 −2 0 3
−3 4 0 8

⎤
⎥⎥⎦, 21.

⎡
⎢⎢⎣

1 2 1 −1
4 0 3 0
1 1 0 5
2 −2 1 1

⎤
⎥⎥⎦,

22.

⎡
⎢⎢⎢⎢⎣

11 1 0 9 0
2 1 1 0 0
4 −1 1 0 0
3 2 2 1 0
0 0 1 2 0

⎤
⎥⎥⎥⎥⎦.

23. Use the results of Problems 1, 13, and 16 to develop a theorem about the
determinants of triangular matrices.

24. Use the results of Problems 3, 20, and 22 to develop a theorem regarding
determinants of matrices containing a zero row or column.

25. Find det(A − λI) if A is the matrix given in Problem 2.

26. Find det(A − λI) if A is the matrix given in Problem 3.

27. Find det(A − λI) if A is the matrix given in Problem 4.

28. Find det(A − λI) if A is the matrix given in Problem 5.
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5.3 Properties of Determinants

In this section, we list some useful properties of determinants. For the sake of
expediency, we only give proofs for determinants of order three, keeping in mind
that these proofs may be extended in a straightforward manner to determinants
of higher order.

Property 1 If one row of a matrix consists entirely of zeros, then the determinant
is zero.

Proof. Expanding by the zero row, we immediately obtain the desired result.

Property 2 If two rows of a matrix are interchanged, the determinant changes
sign.

Proof. Consider

A =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦.

Expanding by the third row, we obtain

|A| = a31(a12 a23 − a13 a22) − a32(a11 a23 − a13 a21)

+ a33(a11 a22 − a12 a21).

Now consider the matrix B obtained from A by interchanging the second and third
rows:

B =
⎡
⎣a11 a12 a13

a31 a32 a33
a21 a22 a23

⎤
⎦.

Expanding by the second row, we find that

|B| = −a31(a12 a23 − a13 a22) + a32(a11 a23 − a13 a21)

− a33(a11 a22 − a12 a21).

Thus, |B| = −|A|. Through similar reasoning, one can demonstrate that the result
is valid regardless of which two rows are interchanged.

Property 3 If two rows of a determinant are identical, the determinant is zero.
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Proof. If we interchange the two identical rows of the matrix, the matrix remains
unaltered; hence the determinant of the matrix remains constant. From Property
2, however, by interchanging two rows of a matrix, we change the sign of the
determinant. Thus, the determinant must on one hand remain the same while on
the other hand change the sign. The only way both of these conditions can be met
simultaneously is for the determinant to be zero.

Property 4 If the matrix B is obtained from the matrix A by multiplying every
element in one row of A by the scalar λ, then |B| = λ|A|.

Proof.

∣∣∣∣∣∣
λa11 λa12 λa13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = λa11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− λa12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ λa13

∣∣∣∣a12 a22
a31 a32

∣∣∣∣
= λ

(
a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
)

= λ

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣.
In essence, Property 4 shows us how to multiply a scalar times a determinant.

We know from Chapter 1 that multiplying a scalar times a matrix simply multiplies
every element of the matrix by that scalar. Property 4, however, implies that mul-
tiplying a scalar times a determinant simply multiplies one row of the determinant
by the scalar. Thus, while in matrices

8
[

1 2
3 4

]
=
[

8 16
24 32

]
,

in determinants we have

8
∣∣∣∣1 2
3 4

∣∣∣∣ =
∣∣∣∣ 1 2
24 32

∣∣∣∣,
or alternatively

8
∣∣∣∣1 2
3 4

∣∣∣∣ = 4(2)

∣∣∣∣1 2
3 4

∣∣∣∣ = 4
∣∣∣∣2 4
3 4

∣∣∣∣ =
∣∣∣∣ 2 4
12 16

∣∣∣∣.
Property 5 For an n × n matrix A and any scalar λ, det(λA) = λn det(A).
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Proof. This proof makes continued use of Property 4.

det(λA) = det

⎧⎨
⎩λ

⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦
⎫⎬
⎭ = det

⎧⎨
⎩
⎡
⎣λa11 λa12 λa13

λa21 λa22 λa23
λa31 λa32 λa33

⎤
⎦
⎫⎬
⎭

=
∣∣∣∣∣∣
λa11 λa12 λa13
λa21 λa22 λa23
λa31 λa32 λa33

∣∣∣∣∣∣ = λ

∣∣∣∣∣∣
a11 a12 a13

λa21 λa22 λa23
λa31 λa32 λa33

∣∣∣∣∣∣
= (λ)(λ)

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23

λa31 λa32 λa33

∣∣∣∣∣∣ = λ(λ)(λ)

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= λ3 det(A).

Note that for a 3 × 3 matrix, n = 3.

Property 6 If a matrix B is obtained from a matrix A by adding to one row of
A, a scalar times another row of A, then |A| = |B|.

Proof. Let

A =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦

and

B =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 + λa11 a32 + λa12 a33 + λa13

⎤
⎦,

where B has been obtained from A by adding λ times the first row of A to the
third row of A. Expanding |B| by its third row, we obtain

|B| = (a31 + λa11)

∣∣∣∣a12 a13
a22 a23

∣∣∣∣− (a32 + λa12)

∣∣∣∣a11 a13
a21 a23

∣∣∣∣
+ (a33 + λa13)

∣∣∣∣a11 a12
a21 a22

∣∣∣∣
= a31

∣∣∣∣a12 a13
a22 a23

∣∣∣∣− a32

∣∣∣∣a11 a13
a21 a23

∣∣∣∣+ a33

∣∣∣∣a11 a12
a21 a22

∣∣∣∣
+ λ

{
a11

∣∣∣∣a12 a13
a22 a23

∣∣∣∣− a12

∣∣∣∣a11 a13
a21 a23

∣∣∣∣+ a13

∣∣∣∣a11 a12
a21 a22

∣∣∣∣
}
.
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The first three terms of this sum are exactly |A| (expand |A| by its third row), while
the last three terms of the sum are

λ

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a11 a12 a13

∣∣∣∣∣∣
(expand this determinant by its third row). Thus, it follows that

|B| = |A| + λ

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a11 a12 a13

∣∣∣∣∣∣.
From Property 3, however, this second determinant is zero since its first and third
rows are identical, hence |B| = |A|.

The same type of argument will quickly show that this result is valid regardless
of the two rows chosen.

Example 1 Without expanding, show that

∣∣∣∣∣∣
a b c

r s t

x y z

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a − r b − s c − t

r + 2x s + 2y t + 2z

x y z

∣∣∣∣∣∣.
Solution Using Property 6, we have that

∣∣∣∣∣∣
a b c

r s t

x y z

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a − r b − s c − t

r s t

x y z

∣∣∣∣∣∣,
⎧⎨
⎩

by adding to the first
row (−1 ) times the
second row

=
∣∣∣∣∣∣
a − r b − s c − t

r + 2x s + 2y t + 2z

x y z

∣∣∣∣∣∣.
⎧⎨
⎩

by adding to the
second row ( 2) times the
third row

�

Property 7 det(A) = det(AT).

Proof. If

A =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦, then AT =

⎡
⎣a11 a21 a31

a12 a22 a32
a13 a23 a33

⎤
⎦.
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Expanding det(AT) by the first column, it follows that

∣∣∣AT
∣∣∣ = a11

∣∣∣∣a22 a32
a23 a33

∣∣∣∣− a12

∣∣∣∣a21 a31
a23 a33

∣∣∣∣+ a13

∣∣∣∣a21 a31
a22 a32

∣∣∣∣
= a11(a22 a33 − a32 a23) − a12(a21a33 − a31 a23) + a13(a21 a32 − a31 a22).

This, however, is exactly the expression we would obtain if we expand det(A) by
the first row. Thus

∣∣AT
∣∣ = |A|.

It follows from Property 7 that any property about determinants dealing with
row operations is equally true for column operations (the analogous elementary
row operation applied to columns), because a row operation on AT is the same
as a column operation on A. Thus, if one column of a matrix consists entirely of
zeros, then its determinant is zero; if two columns of a matrix are interchanged, the
determinant changes the sign; if two columns of a matrix are identical, its determi-
nant is zero; multiplying a determinant by a scalar is equivalent to multiplying one
column of the matrix by that scalar and then calculating the new determinant; and
the third elementary column operation when applied to a matrix does not change
its determinant.

Property 8 The determinant of a triangular matrix, either upper or lower, is the
product of the elements on the main diagonal.

Proof. See Problem 2.

Property 9 If A and B are of the same order, then det(A) det(B) = det(AB).

Because of its difficulty, the proof of Property 9 is omitted here.

Example 2 Show that Property 9 is valid for

A =
[

2 3
1 4

]
and B =

[
6 −1
7 4

]
.

Solution |A| = 5, |B| = 31.

AB =
[

33 10
34 15

]
thus |AB| = 155 = |A||B|. �

Problems 5.3

1. Prove that the determinant of a diagonal matrix is the product of the elements
on the main diagonal.
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2. Prove that the determinant of an upper or lower triangular matrix is the
product of the elements on the main diagonal.

3. Without expanding, show that∣∣∣∣∣∣
a + x r − x x

b + y s − y y

c + z t − z z

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a r x

b s y

c t z

∣∣∣∣∣∣.
4. Verify Property 5 for λ = −3 and

A =
⎡
⎣2 1 0

5 −1 3
2 1 1

⎤
⎦.

5. Verify Property 9 for

A =
∣∣∣∣6 1
1 2

∣∣∣∣ and B =
∣∣∣∣3 −1
2 1

∣∣∣∣.
6. Without expanding, show that∣∣∣∣∣∣

2a 3r x

4b 6s 2y

−2c −3t −z

∣∣∣∣∣∣ = −12

∣∣∣∣∣∣
a r x

b s y

c t z

∣∣∣∣∣∣.
7. Without expanding, show that∣∣∣∣∣∣

a − 3b r − 3s x − 3y

b − 2c s − 2t y − 2z

5c 5t 5z

∣∣∣∣∣∣ = 5

∣∣∣∣∣∣
a r x

b s y

c t z

∣∣∣∣∣∣.
8. Without expanding, show that∣∣∣∣∣∣

a b c

r s t

x y z

∣∣∣∣∣∣ = −
∣∣∣∣∣∣
a x r

b y s

c z t

∣∣∣∣∣∣.
9. Without expanding, show that∣∣∣∣∣∣

a b c

r s t

x y z

∣∣∣∣∣∣ = −1
4

∣∣∣∣∣∣
2a 4b 2c

−r −2s −t

x 2y z

∣∣∣∣∣∣.
10. Without expanding, show that∣∣∣∣∣∣

a − 3x b − 3y c − 3z

a + 5x b + 5y c + 5z

x y z

∣∣∣∣∣∣ = 0.
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11. Without expanding, show that∣∣∣∣∣∣
2a 3a c

2r 3r t

2x 3x z

∣∣∣∣∣∣ = 0.

12. Prove that if one column of a square matrix is a linear combination of another
column, then the determinant of that matrix is zero.

13. Prove that if A is invertible, then det
(
A−1) = 1/ det(A).

5.4 Pivotal Condensation

Properties 2, 4, and 6 of the previous section describe the effects on the determi-
nant of a matrix of applying elementary row operations to the matrix itself. They
comprise part of an efficient algorithm for calculating determinants of matrices
whose elements are numbers. The technique is known as pivotal condensation: A
given matrix is transformed into row-reduced form using elementary row opera-
tions. A record is kept of the changes to the determinant as a result of Properties 2,
4, and 6. Once the transformation is complete, the row-reduced matrix is in upper
triangular form, and its determinant is found easily by Property 8. In fact, since
a row-reduced matrix has either unity elements or zeros on its main diagonal, its
determinant will be unity if all its diagonal elements are unity, or zero if any one
diagonal element is zero.

Example 1 Use pivotal condensation to evaluate∣∣∣∣∣∣
1 2 3

−2 3 2
3 −1 1

∣∣∣∣∣∣.
Solution ∣∣∣∣∣∣

1 2 3
−2 3 2

3 −1 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 2 3
0 7 8
3 −1 1

∣∣∣∣∣∣
⎧⎨
⎩

Property 6: adding to
the second row (2)
times the first row

=
∣∣∣∣∣∣
1 2 3
0 7 8
0 −7 −8

∣∣∣∣∣∣
⎧⎨
⎩

Property 6: adding to
the third row (−3)
times the first row

= 7

∣∣∣∣∣∣
1 2 3
0 1 8

7
0 −7 −8

∣∣∣∣∣∣
{

Property 4: applied
to the second row
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= 7

∣∣∣∣∣∣
1 2 3
0 1 8

7
0 0 0

∣∣∣∣∣∣
⎧⎨
⎩

Property 6: adding
to the third row (7)
times the second row

= 7(0) = 0.
{

Property 8 �

Example 2 Use pivotal condensation to evaluate

∣∣∣∣∣∣
0 −1 4
1 −5 1

−6 2 −3

∣∣∣∣∣∣.
Solution∣∣∣∣∣∣

0 −1 4
1 −5 1

−6 2 −3

∣∣∣∣∣∣ = (−1)

∣∣∣∣∣∣
1 −5 1
0 −1 4

−6 2 −3

∣∣∣∣∣∣
{

Property 2: interchanging
the first and second rows

= (−1)

∣∣∣∣∣∣
1 −5 1
0 1 4
0 −28 3

∣∣∣∣∣∣
⎧⎨
⎩

Property 6: adding
to the third row (6)
times the first row

= (−1)(−1)

∣∣∣∣∣∣
1 −5 1
0 1 −4
0 −28 3

∣∣∣∣∣∣
{

Property 4: applied
to the second row

=
∣∣∣∣∣∣
1 −5 1
0 1 −4
0 0 −109

∣∣∣∣∣∣
⎧⎨
⎩

Property 6: adding
to the third row (28)
times the second row

= (−109)

∣∣∣∣∣∣
1 −5 1
0 1 −4
0 0 1

∣∣∣∣∣∣
{

Property 4: applied
to the third row

= (−109)(1) = −109.
{
Property 8 �

Pivotal condensation is easily coded for implementation on a computer.
Although shortcuts can be had by creative individuals evaluating determinants
by hand, this rarely happens. The orders of most matrices that occur in practice
are too large and, therefore, too time consuming to consider hand calculations in
the evaluation of their determinants. In fact, such determinants can bring com-
puter algorithms to their knees. As a result, calculating determinants is avoided
whenever possible.

Still, when determinants are evaluated by hand, appropriate shortcuts are
taken, as illustrated in the next two examples. The general approach involves
operating on a matrix so that one row or one column is transformed into a new



5.4 Pivotal Condensation 165

row or column containing at most one nonzero element. Expansion by cofactors
is then applied to that row or column.

Example 3 Evaluate ∣∣∣∣∣∣
10 −6 −9

6 −5 −7
−10 9 12

∣∣∣∣∣∣.
Solution∣∣∣∣∣∣

10 −6 −9
6 −5 −7

−10 9 12

∣∣∣∣∣∣ =
∣∣∣∣∣∣
10 −6 −9

6 −5 −7
0 3 3

∣∣∣∣∣∣
⎧⎨
⎩

by adding (1) times the
first row to the third row
(Property 6)

=
∣∣∣∣∣∣
10 −6 −3

6 −5 −2
0 3 0

∣∣∣∣∣∣
⎧⎨
⎩

by adding (−1) times the
second column to the
third column (Property 6)

= −3
∣∣∣∣10 −3

6 −2

∣∣∣∣ {
by expansion by cofactors

= −3(−20 + 18) = 6. �

Example 4 Evaluate ∣∣∣∣∣∣∣∣
3 −1 0 2
0 1 4 1
3 −2 3 5
9 7 0 2

∣∣∣∣∣∣∣∣.
Solution Since the third column already contains two zeros, it would seem
advisable to work on that one.∣∣∣∣∣∣∣∣

3 −1 0 2
0 1 4 1
3 −2 3 5
9 7 0 2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
3 −1 0 2
0 1 4 1
3 − 11

4 0 17
4

9 7 0 2

∣∣∣∣∣∣∣∣
⎧⎪⎨
⎪⎩

by adding
(
− 3

4

)
times

the second row to
the third row.

= −4

∣∣∣∣∣∣∣
3 −1 2
3 − 11

4
17
4

9 7 2

∣∣∣∣∣∣∣
{

by expansion
by cofactors

= −4
(

1
4

)∣∣∣∣∣∣
3 −1 2

12 −11 17
9 7 2

∣∣∣∣∣∣
{
by Property 4
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= (−1)

∣∣∣∣∣∣
3 −1 2
0 −7 9
9 7 2

∣∣∣∣∣∣
⎧⎨
⎩

by adding (−4) times
the first row to the
second row

= (−1)

∣∣∣∣∣∣
3 −1 2
0 −7 9
0 10 −4

∣∣∣∣∣∣
⎧⎨
⎩

by adding (−3) times
the first row to the
third row

= (−1)(3)

∣∣∣∣−7 9
10 −4

∣∣∣∣
{

by expansion by
cofactors

= (−3)(28 − 90) = 186. �

Problems 5.4

In Problems 1 through 18, evaluate the determinants of the given matrices.

1.

⎡
⎣1 2 −2

1 3 3
2 5 0

⎤
⎦, 2.

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦, 3.

⎡
⎣ 3 −4 2

−1 5 7
1 9 −6

⎤
⎦,

4.

⎡
⎣−1 3 3

1 1 4
−1 1 2

⎤
⎦, 5.

⎡
⎣1 −3 −3

2 8 4
3 5 1

⎤
⎦, 6.

⎡
⎣2 1 −9

3 −1 1
3 −1 2

⎤
⎦,

7.

⎡
⎣2 1 3

3 −1 2
2 3 5

⎤
⎦, 8.

⎡
⎣−1 3 3

4 5 6
−1 3 3

⎤
⎦, 9.

⎡
⎣1 2 −3

5 5 1
2 −5 −1

⎤
⎦,

10.

⎡
⎣2 0 −1

1 1 1
3 2 −3

⎤
⎦, 11.

⎡
⎣ 3 5 2

−1 0 4
−2 2 7

⎤
⎦, 12.

⎡
⎣1 −3 −3

2 8 3
4 5 0

⎤
⎦,

13.

⎡
⎢⎢⎣

3 5 4 6
−2 1 0 7
−5 4 7 2

8 −3 1 1

⎤
⎥⎥⎦, 14.

⎡
⎢⎢⎣

−1 2 1 2
1 0 3 −1
2 2 −1 1
2 0 −3 2

⎤
⎥⎥⎦,

15.

⎡
⎢⎢⎣

1 1 2 −2
1 5 2 −1

−2 −2 1 3
−3 4 −1 8

⎤
⎥⎥⎦, 16.

⎡
⎢⎢⎣

−1 3 2 −2
1 −5 −4 6
3 −6 1 1
3 −4 3 −3

⎤
⎥⎥⎦,

17.

⎡
⎢⎢⎣

1 1 0 −2
1 5 0 −1

−2 −2 0 3
−3 4 0 8

⎤
⎥⎥⎦, 18.

⎡
⎢⎢⎣

−2 0 1 3
4 0 2 −2

−3 1 0 1
5 4 1 7

⎤
⎥⎥⎦.
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19. What can you say about the determinant of an n × n matrix that has rank less
than n?

20. What can you say about the determinant of a singular matrix?

5.5 Inversion

As an immediate consequence of Theorem 1 of Section 3.2 and the method of
pivotal condensation, we have:

Theorem 1 A square matrix has an inverse if and only if its determinant is not
zero.

In this section, we develop a method to calculate inverses of nonsingular matri-
ces using determinants. For matrices with order greater than 3 × 3, this method is
less efficient than the one described in Section 3.2, and is generally avoided.

Definition 1 The cofactor matrix associated with an n × n matrix A is an n × n

matrix Ac obtained from A by replacing each element of A by its cofactor.

Example 1 Find Ac if

A =
⎡
⎣ 3 1 2

−2 5 4
1 3 6

⎤
⎦.

Solution

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)1+1
∣∣∣∣5 4
3 6

∣∣∣∣ (−1)1+2
∣∣∣∣−2 4

1 6

∣∣∣∣ (−1)1+3
∣∣∣∣−2 5

1 3

∣∣∣∣
(−1)2+1

∣∣∣∣1 2
3 6

∣∣∣∣ (−1)2+2
∣∣∣∣3 2
1 6

∣∣∣∣ (−1)2+3
∣∣∣∣3 1
1 3

∣∣∣∣
(−1)3+1

∣∣∣∣1 2
5 4

∣∣∣∣ (−1)3+2
∣∣∣∣ 3 2
−2 4

∣∣∣∣ (−1)3+3
∣∣∣∣ 3 1
−2 5

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ac =
⎡
⎣ 18 16 −11

0 16 −8
−6 −16 17

⎤
⎦. �

If A = [aij

]
, we will use the notation Ac = [ac

ij] to represent the cofactor matrix.
Thus ac

ij represents the cofactor of aij .

Definition 2 The adjugate of an n × n matrix A is the transpose of the cofactor
matrix of A.
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Thus, if we designate the adjugate of A by Aa, we have that Aa = (Ac)T.

Example 2 Find Aa for the A given in Example 1.

Solution

Aa =
⎡
⎣ 18 0 −6

16 16 −16
−11 −8 17

⎤
⎦. �

The importance of the adjugate is given in the following theorem, which is
proved in the Final Comments to this chapter.

Theorem 2 AAa = AaA = |A|I.

If |A| �= 0, we may divide by it in Theorem 2 and obtain

A
(

Aa

|A|
)

=
(

Aa

|A|
)

A = I.

Thus, using the definition of the inverse, we have

A−1 = 1
|A|Aa if |A| �= 0.

That is, if |A| �= 0, then A−1 may be obtained by dividing the adjugate of A by the
determinant of A.

Example 3 Find A−1 for the A given in Example 1.

Solution The determinant of A is found to be 48. Using the solution to
Example 2, we have

A−1 =
(

Aa

|A|
)

= 1/48

⎡
⎣ 18 0 −6

16 16 −16
−11 −8 17

⎤
⎦ =

⎡
⎣ 3/8 0 −1/8

1/3 1/3 −1/3
−11/48 −1/6 17/48

⎤
⎦. �

Example 4 Find A−1 if

A =
⎡
⎣5 8 1

0 2 1
4 3 −1

⎤
⎦.
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Solution det(A) = −1 �= 0, therefore A−1 exists.

Ac =
⎡
⎣−5 4 −8

11 −9 17
6 −5 10

⎤
⎦, Aa = (Ac

)T =
⎡
⎣−5 11 6

4 −9 −5
−8 17 10

⎤
⎦,

A−1 = Aa

|A| =
⎡
⎣ 5 −11 −6

−4 9 5
8 −17 −10

⎤
⎦, �

Example 5 Find A−1 if

A =
[

1 2
3 4

]
.

Solution |A| = −2, therefore A−1 exists.

Ac =
[

4 −3
−2 1

]
, Aa = (Ac

)T =
[

4 −2
−3 1

]
,

A−1 = Aa

|A| =
(
− 1

2

) [ 4 −2
−3 1

]
=
[−2 1

3
2 − 1

2

]
. �

Problems 5.5

In Problems 1 through 15, find the inverses of the given matrices, if they exist.

1.
[

4 4
4 4

]
, 2.

[
1 1
3 4

]
, 3.

[
1 1

2

1
2

1
3

]
,

4.
[

2 −1
3 4

]
, 5.

[
8 3
5 2

]
, 6.

[
2 −1
4 −2

]
,

7.

⎡
⎣1 1 0

1 0 1
0 1 1

⎤
⎦, 8.

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦, 9.

⎡
⎣2 0 −1

0 1 2
3 1 1

⎤
⎦,

10.

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦, 11.

⎡
⎣2 0 0

5 1 0
4 1 1

⎤
⎦, 12.

⎡
⎣1 2 1

3 −2 −4
2 3 −1

⎤
⎦,

13.

⎡
⎣2 4 3

3 −4 −4
5 0 −1

⎤
⎦, 14.

⎡
⎣5 0 −1

2 −1 2
2 3 −1

⎤
⎦, 15.

⎡
⎣3 1 1

1 3 −1
2 3 −1

⎤
⎦.
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16. Find a formula for the inverse of

A =
[
a b

c d

]

if its determinant is nonzero.

17. Prove that if A and B are square matrices of the same order, then the product
AB is nonsingular if and only if both A and B are.

18. Prove Theorem 1.

19. What can be said about the rank of a square matrix having a nonzero
determinant?

5.6 Cramer’s Rule

Cramer’s rule is a method, based on determinants, for solving systems of simul-
taneous linear equations. In this section, we first state the rule, then illustrate its
usage by an example, and finally prove its validity using the properties derived in
Section 5.3. We also discuss the many limitations of the method.

Cramer’s rule states that given a system of simultaneous linear equations in
the matrix form Ax = b (see Section 1.3), the ith component of x (or equivalently
the ith unknown) is the quotient of two determinants. The determinant in the
numerator is the determinant of a matrix obtained from A by replacing the ith
column of A by the vector b, while the determinant in the denominator is just |A|
Thus, if we are considering the system

a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2,

a31x1 + a32x2 + a33x3 = b3,

where x1, x2, and x3 represent the unknowns, then Cramer’s rule states that

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
|A| , x2 =

∣∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣
|A| ,

x3 =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣
|A| , where |A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣.
Two restrictions on the application of Cramer’s rule are immediate. First, the

systems under consideration must have exactly the same number of equations as



5.6 Cramer’s Rule 171

unknowns to insure that all matrices involved are square and hence have deter-
minants. Second, the determinant of the coefficient matrix must not be zero since
it appears in the denominator. If |A| = 0, then Cramer’s rule cannot be applied.

Example 1 Solve the system

x + 2y − 3z + w = −5,

y + 3z + w = 6,

2x + 3y + z + w = 4,

x + z + w = 1.

Solution

A =

⎡
⎢⎢⎢⎣

1 2 −3 1
0 1 3 1
2 3 1 1
1 0 1 1

⎤
⎥⎥⎥⎦, x =

⎡
⎢⎢⎢⎣

x

y

z

w

⎤
⎥⎥⎥⎦, b =

⎡
⎢⎢⎢⎣

−5
6
4
1

⎤
⎥⎥⎥⎦.

Since |A| = 20, Cramer’s rule can be applied, and

x =

∣∣∣∣∣∣∣∣∣
−5 −2 −3 1

6 1 3 1
4 3 1 1
1 0 1 1

∣∣∣∣∣∣∣∣∣
20

= 0
20

= 0, y =

∣∣∣∣∣∣∣∣∣
1 −5 −3 1
0 6 3 1
2 4 1 1
1 1 1 1

∣∣∣∣∣∣∣∣∣
20

= 20
20

= 1,

z =

∣∣∣∣∣∣∣∣∣
1 2 −5 1
0 1 6 1
2 3 4 1
1 0 1 1

∣∣∣∣∣∣∣∣∣
20

= 40
20

= 2, w =

∣∣∣∣∣∣∣∣∣
1 2 −3 −5
0 1 3 6
2 3 1 4
1 0 1 1

∣∣∣∣∣∣∣∣∣
20

= −20
20

= −1. �

We now derive Cramer’s rule using only those properties of determinants given
in Section 5.3. We consider the general system Ax = b where

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

an1 an2 an3 · · · amn

⎤
⎥⎥⎥⎥⎥⎦, x =

⎡
⎢⎢⎢⎢⎢⎣

x1
x2
x3
...

xn

⎤
⎥⎥⎥⎥⎥⎦, and b =

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
b3
...

bn

⎤
⎥⎥⎥⎥⎥⎦.
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Then

x1|A| =

∣∣∣∣∣∣∣∣∣∣∣

a11x1 a12 a13 . . . a1n

a21x1 a22 a23 . . . a2n

a31x1 a32 a33 . . . a3n

...
...

...
...

an1x1 an2 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣∣
{
by Property 4 modified to columns

=

∣∣∣∣∣∣∣∣∣∣∣

a11x1 + a12x2 a12 a13 . . . a1n

a21x1 + a22x2 a22 a23 . . . a2n

a31x1 + a32x2 a32 a33 . . . a3n

...
...

...
...

an1x1 + an2x2 an2 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣∣

⎧⎨
⎩

by adding (x2) times
the second column to
the first column

=

∣∣∣∣∣∣∣∣∣∣∣

a11x1 + a12x2 + a13x3 a12 a13 . . . a1n

a21x1 + a22x2 + a23x3 a22 a23 . . . a2n

a31x1 + a32x2 + a33x3 a32 a33 . . . a3n

...
...

...
...

an1x1 + an2x2 + an3x3 an2 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎨
⎪⎪⎩

by adding (x3)

times the third
column to the
first column

=

∣∣∣∣∣∣∣∣∣∣∣

a11x1 + a12x2 + a13x3 + · · · + a1nxn a12 a13 . . . a1n

a21x1 + a22x2 + a23x3 + · · · + a2nxn a22 a23 . . . a2n

a31x1 + a32x2 + a33x3 + · · · + a3nxn a32 a33 . . . a3n

...
...

...
...

an1x1 + an2x2 + an3x3 + · · · + annxn an2 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣∣
by making continued use of Property 6 in the obvious manner. We now note
that the first column of the new determinant is nothing more than Ax, and since,
Ax = b, the first column reduces to b.

Thus,

x1|A| =

∣∣∣∣∣∣∣∣∣∣∣

b1 a12 a13 · · · a1n

b2 a22 a23 · · · a2n

b3 a32 a33 · · · a3n

...
...

...
...

bn an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣∣∣
or

x1 =

∣∣∣∣∣∣∣∣∣
b1 a12 · · · a1n

b2 a22 · · · a2n

...
...

...

bn an2 · · · ann

∣∣∣∣∣∣∣∣∣
|A|
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providing |A| �= 0. This expression is Cramer’s rule for obtaining x1. A similar
argument applied to the jth column, instead of the first column, quickly shows
that Cramer’s rule is valid for every xj, j = 1, 2, . . . , n.

Although Cramer’s rule gives a systematic method for the solution of simul-
taneous linear equations, the number of computations involved can become
awesome if the order of the determinant is large. Thus, for large systems, Cramer’s
rule is never used. The recommended algorithms include Gaussian elimination
(Section 2.3) and LU decomposition (Section 3.5).

Problems 5.6

Solve the following systems of equations by Cramer’s rule.

1. x + 2y = −3,

3x + y = 1.

2. 2x + y = 3,

x − y = 6.

3. 4a + 2b = 0,

5a − 3b = 10.

4. 3s − 4t = 30,

−2s + 3t = −10.

5. 2x − 8y = 200,

−x + 4y = 150.

6. x + y − 2z = 3,

2x − y + 3z = 2.

7. x + y = 15,

x + z = 15,

y + z = 10.

8. 3x + y + z = 4,

x − y + 2z = 15,

2x − 2y − z = 5.

9. x + 2y − 2z = −1,

2x + y + z = 5,

−x + y − z = −2.

10. 2a + 3b − c = 4,

−a − 2b + c = −2,

3a − b = 2.

11. 2x + 3y + 2z = 3,

3x + y + 5z = 2,

7y − 4z = 5.

12. 5r + 8s + t = 2,

2s + t = −1,

4r + 3s − t = 3.

13. x + 2y + z + w = 7,

3x + 4y − 2z − 4w = 13,

2x + y − z + w = −4,

x − 3y + 4z + 5w = 0.

5.7 Final Comments on Chapter 5

We shall now prove Theorem 2 of Section 5.5 dealing with the product of a matrix
with its adjugate. For this proof we will need the following lemma:

Lemma 1 If each element of one row of a matrix is multiplied by the cofactor of
the corresponding element of a different row, the sum is zero.
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Proof. We prove this lemma only for an arbitrary 3 × 3 matrix A where

A =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦.

Consider the case in which we multiply every element of the third row by the
cofactor of the corresponding element in the second row and then sum the results.
Thus,

a31(cofactor of a21) + a32(cofactor of a22) + a33( cofactor of a23)

= a31(−1)3
∣∣∣∣a12 a13
a32 a33

∣∣∣∣+ a32(−1)4
∣∣∣∣a11 a13
a31 a33

∣∣∣∣+ a33(−1)5
∣∣∣∣a11 a12
a31 a32

∣∣∣∣
=
∣∣∣∣∣∣
a11 a12 a13
a31 a32 a33
a31 a32 a33

∣∣∣∣∣∣ = 0
{
from Property 3, Section 5.3

Note that this property is equally valid if we replace the word row by the word
column.

Theorem 1 AAa = |A|I.

Proof. We prove this theorem only for matrices of order 3 × 3. The proof easily
may be extended to cover matrices of any arbitrary order. This extension is left as
an exercise for the student.

AAa =
⎡
⎢⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦
⎡
⎢⎣ac

11 ac
21 ac

31
ac

12 ac
22 ac

32
ac

13 ac
23 ac

33

⎤
⎥⎦.

If we denote this product matrix by
[
bij

]
, then

b11 = a11a
c
11 + a12a

c
12 + a13a

c
13,

b12 = a11a
c
21 + a12a

c
22 + a13a

c
23,

b23 = a21a
c
31 + a22a

c
32 + a23a

c
33,

b22 = a21a
c
21 + a22a

c
22 + a23a

c
23,

etc.

We now note that b11 = |A| since it is precisely the term obtained when one com-
putes det(A) by cofactors, expanding by the first row. Similarly, b22 = |A| since it
is precisely the term obtained by computing det(A) by cofactors after expanding
by the second row. It follows from the above lemma that b12 = 0 and b23 = 0 since
b12 is the term obtained by multiplying each element in the first row of A by the
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cofactor of the corresponding element in the second row and adding, while b23
is the term obtained by multiplying each element in the second row of A by the
cofactor of the corresponding element in the third row and adding. Continuing
this analysis for each bij , we find that

AAa =
⎡
⎣|A| 0 0

0 |A| 0
0 0 |A|

⎤
⎦ = |A|

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦,

AAa = |A|I.

Theorem 2 AaA = |A|I.

Proof. This proof is completely analogous to the previous one and is left as an
exercise for the student.
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